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Abstract  

Background: Mathematical modeling constitutes an important tool for planning robust 

responses to epidemics. This study was conducted to guide the Qatari national response to the 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. The study 

investigated the time course of the epidemic, forecasted healthcare needs, predicted the impact of 

social and physical distancing restrictions, and rationalized and justified easing of restrictions. 

Methods: An age-structured deterministic model was constructed to describe SARS-CoV-2 

transmission dynamics and disease progression throughout the population.  

Results: The enforced social and physical distancing interventions flattened the epidemic curve, 

reducing the peaks for incidence, prevalence, acute-care hospitalization, and intensive care unit 

(ICU) hospitalizations by 87%, 86%, 76%, and 78%, respectively. The daily number of new 

infections was predicted to peak at 12,750 on May 23, and active-infection prevalence was 

predicted to peak at 3.2% on May 25. Daily acute-care and ICU-care hospital admissions and 

occupancy were forecast accurately and precisely. By October 15, 2020, the basic reproduction 

number 0R  had varied between 1.07-2.78, and 50.8% of the population were estimated to have 

been infected (1.43 million infections). The proportion of actual infections diagnosed was 

estimated at 11.6%. Applying the concept of tR  tuning, gradual easing of restrictions was 

rationalized and justified to start on June 15, 2020, when tR  declined to 0.7, to buffer the 

increased interpersonal contact with easing of restrictions and to minimize the risk of a second 

wave. No second wave has materialized as of October 15, 2020, five months after the epidemic 

peak.  
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Conclusions: Use of modeling and forecasting to guide the national response proved to be a 

successful strategy, reducing the toll of the epidemic to a manageable level for the healthcare 

system.   

Keywords: SARS-CoV-2, COVID-19, coronavirus, epidemiology, Qatar, mathematical model, 

healthcare 
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Introduction 

Mathematical modeling has become a fundamental tool to guide surveillance of infectious 

diseases and emergency responses to epidemics [1-3]. Powered by surveillance and outbreak 

data, infection transmission models help monitor and predict epidemiological trends using real-

time estimation of key indicators, such as incidence of infection, severe and critical disease 

cases, disease mortality, and basic reproduction number (
0R ; the number of secondary infections 

each infection would generate in a fully susceptible population [4]) [3]. 

Qatar is a peninsula located in the Arabian Gulf, with a diverse population of 2.8 million people 

[5]. Like other countries, Qatar has been affected by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) pandemic [6-9]. Yet, the nation mounted an evidence-informed 

national response, in which in addition to early case identification, isolation, and quarantine 

through contact tracing, diverse standardized and centralized sources of data were generated, 

including population-based surveys. This wealth of data provided a special opportunity to 

understand infection transmission dynamics, predict healthcare needs associated with the 

resulting disease, coronavirus disease 2019 (COVID-19) [10], and to inform the global 

epidemiology of this infection. 

Qatar has a unique socio-demography that affected the transmission patterns of SARS-CoV-2 

[8,11], a respiratory infection that propagates through social networks. Nearly 90% of the 

population are expatriates [5,12,13] with craft and manual workers (CMWs) constituting 60% of 

the population [14]. Of the national subpopulations, Indians (28%) constitute the largest 

population segment, followed by Bangladeshis (13%), Nepalese (13%), Qataris (11%), 

Egyptians (9%), and Filipinos (7%) [13]. The CMW population is predominantly male, single, 
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and young, with the top three countries of origin being India, Bangladesh, and Nepal [14]. Most 

CMWs live in shared housing accommodations akin to dormitories [15]. 

This study was conducted to describe SARS-CoV-2 transmission dynamics in Qatar and to craft 

a national response using mathematical modeling of the epidemic time-course, predicting the 

impact of social and physical distancing restrictions and the impact of easing those restrictions, 

and forecasting healthcare needs, in terms of hospitalizations requiring acute-care and intensive 

care unit (ICU) beds. The study was initiated before the identification of the first laboratory-

confirmed case of community transmission on March 6, 2020, and has continued to provide real-

time projections and forecasts since then.  

The overarching aim of the present article was to provide the technical tools and a “case study” 

to demonstrate how individual countries can use mathematical modeling to effectively craft 

national public-health responses and to formulate evidence-based policy decisions that minimize 

the epidemic’s toll on morbidity, mortality, societies, and economies.       

Methods 

Mathematical model 

Building on our previously developed models [8,16-19], an age-structured, meta-population, 

deterministic mathematical model was constructed to describe SARS-CoV-2 transmission 

dynamics and disease progression (Figure S1 of Supplementary Material (SM)). The model 

stratified the Qatari population into groups (“compartments”) according to the major nationality 

groups (Indians, Bangladeshis, Nepalese, Qataris, Egyptians, Filipinos, and all other 

nationalities), age group by decile, infection status (infected, uninfected), severity of illness 
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(asymptomatic/mild, severe, critical), and disease/hospitalization stage (severe, critical), using 

sets of coupled, nonlinear, differential equations. A detailed description of the model is available 

in the SM. 

The risk of acquiring the infection varied between susceptible populations based on nationality, 

infectious contact rate per day, age-specific exposure/susceptibility to the infection, and 

subpopulation-mixing and age-mixing matrices parametrizing the mixing between individuals in 

different nationality and age groups. Following a latency period, infected individuals in the 

model develop an asymptomatic/mild, severe, or critical infection. The age-dependence of the 

proportions of infected persons developing asymptomatic/mild, severe, or critical infections was 

based on the modeled SARS-CoV-2 epidemic in France [20]. Severe and critical infections 

progress to severe and critical disease, respectively, prior to recovery. Patients are hospitalized in 

acute-care and ICU-care beds, respectively, based on existing standards of care in Qatar. Critical 

disease cases have an additional risk of COVID-19 mortality.  

The model was parameterized using the best available data for SARS-CoV-2 natural history and 

epidemiology. A detailed description of model parameters, definitions, values, and justifications 

is found in Tables S1-S2 in the SM. The size and demographic structure of the population of 

Qatar were based on a population census conducted by Qatar’s Planning and Statistics Authority 

[5]. Life expectancy was obtained from the United Nations World Population Prospects database 

[21]. 

Model fitting and analyses 

The model was fitted to the standardized and centralized databases of SARS-CoV-2 testing, 

infections, hospitalizations, and mortality [8], as well as to findings of ongoing epidemiologic 
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studies [8,11,22,23]. Data included: 1) time-series of the number of polymerase chain reaction 

(PCR)-confirmed SARS-CoV-2 cases, 2) time-series of the SARS-CoV-2 testing PCR positivity 

rate in each national subpopulation, 3) time-series of the PCR positivity rate in symptomatic 

patients with suspected SARS-CoV-2 infection coming to primary healthcare centers, 4) time-

series of the proportion of laboratory-confirmed SARS-CoV-2 cases aged >60 years, 5) time-

series of new/daily hospital admissions in acute-care beds and ICU-care beds, 6) the proportion 

of acute-care cases subsequently transferred to ICUs , 7) time-series of hospital occupancy in 

acute-care and ICU-care beds, 8) the cumulative number of deaths (not time series, due to the 

relatively small number of deaths), 9) a community survey assessing active-infections using 

PCR, 10) age-distribution of antibody positivity [8,22,23], and 11) national subpopulation 

distribution of antibody positivity [8,22,23]. A nonlinear least-square data fitting method, based 

on the Nelder-Mead simplex algorithm, was used to conduct the model fitting [24]. 

Model fitting was used to estimate epidemiologic indicators such as incidence, prevalence, attack 

rate (proportion of the population ever infected), and 
0R , as well as to forecast acute-care and 

ICU-care hospital admissions and hospital bed occupancy. The model was further used to 

evaluate the impact of implemented social and physical distancing restrictions by comparing 

model projections of the actual epidemic to those in a counter-factual scenario in which such 

interventions were not enforced. Informed by global estimates of 0R  in the early epidemic that 

ranged between 2-4 [25,26], the counter-factual scenario with no interventions was implemented 

assuming 0 3R = . The model was also used to predict the impact of different scenarios for easing 

of social and physical distancing restrictions. 

Uncertainty analysis 
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Five hundred simulation runs were conducted to determine the range of uncertainty attending 

model predictions. At each run, Latin Hypercube sampling was applied in selecting input 

parameter values [27,28] from pre-specified ranges that assume ±30% uncertainty around 

parameter point estimates. The model was then refitted to input data. The resulting distribution 

for each model prediction, based on the 500 runs, was used to derive the mean and 95% 

uncertainty interval (UI).  

Mathematical modeling analyses were conducted in MATLAB R2019a (Boston/MA/USA) [29] 

whereas statistical analyses were performed in STATA/SE 16.1 (College Station, TX) [30].  

Results 

The model fitted the various data sources (examples in Figures S2-S3). Figure 1 shows model 

predictions for evolution of SARS-CoV-2 incidence, cumulative incidence, active-infection 

prevalence, and attack rate in the total population. Peak incidence was estimated at 12,750 new 

infections on May 23, 2020 while peak prevalence was estimated at 3.2% on May 25, 2020. By 

October 15, 2020, an estimated 1,426,500 infections were projected to have occurred, for a 

proportion of the population infected of 50.8%. Also by October 15, 2020, the proportion of all 

infections that had actually been diagnosed and confirmed by PCR was estimated at 11.6%. 0R  

varied between 1.07-2.78 from March 1 to October 15, with the highest values reached well after 

the onset of easing of restrictions on June 15, 2020 (Figure S4A of SM). 

Figure 2A-2B shows model-predicted daily hospital admissions in acute-care and ICU-care beds, 

respectively. New hospital admissions were predicted to peak at 292 acute-care beds on May 22, 

2020 and 23 ICU-care beds on May 27, 2020. Figure 2C-2D shows evolution of hospital 
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occupancy in acute-care and ICU-care beds. Peaks were predicted at 1,910 acute-care beds on 

May 27, 2020 and 244 ICU-care beds on June 6, 2020. The average hospital stay in an acute-care 

bed was estimated at 7.7 days while the stay in an ICU-care bed was estimated at 14.0 days. 

These model predictions agreed with actual COVID-19 hospital admission data (Figure S3 of 

SM).  

Discussions with policymakers to plan easing of social and physical distancing restrictions were 

initiated in April of 2020. The effective reproduction number ( tR ), the number of secondary 

infections each infection is generating at a given time, t , heavily influenced these discussions. 

Based on the model-predicted evolution of tR  at that time (Figure 3A), it was advised that no 

easing of restrictions should occur before the epidemic peak, then predicted to occur on May 20, 

as the epidemic was still in its exponential growth phase ( 1tR  ). Model simulations confirmed 

that premature easing of restrictions would result in epidemic amplification (Figure 3B). To 

minimize the likelihood of a second wave and to buffer against a potential increased contact rate 

in the population, it was advised that easing of restrictions should not start before tR  reached 

0.70, and that easing of restrictions should be implemented gradually over at least two months. 

Model simulations confirmed this rationale, and indicated that gradual easing of restrictions after 

tR  reached 0.70 would minimize the risk of a second wave (Figure 3C). Accordingly, 

policymakers planned and subsequently implemented a gradual easing of restrictions starting 

June 15, 2020, the day on which tR  was predicted to decline to 0.7. This line of analysis and 

rationale proved successful, as no second wave had materialized as of October 15, 2020, five 

months after the epidemic peak (Figure 3D). 
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Figures 4 and S5 (SM) show the predicted evolution of the epidemic in the counter-factual 

scenario of no social and physical distancing interventions. In the absence of these interventions, 

the epidemic would have peaked at 97,100 new infections per day on April 3, 2020 (Figure 4A), 

and at a prevalence of 23.4% on April 5, 2020 (Figure 4B). New hospital admissions would have 

peaked at 1,235 acute-care bed admissions on April 7, 2020 (Figure 4C) and at 103 ICU-care bed 

admissions on April 10, 2020 (Figure 4D). Accordingly, by October 15, 2020, the enforced 

social and physical distancing restrictions reduced the peaks for incidence, prevalence, and 

acute-care and ICU-care hospital admissions by >75% (Figure 4A-4D), and averted 840,000 

infections (37%; Figure S5A of SM), 209 deaths (46%; Figure S5B of SM), 10,110 acute-care 

hospital admissions (32%; Figure S5C of SM), and 1,056 ICU-care hospital admissions (34%; 

Figure S5D of SM). These results show the extent of flattening of the epidemic curve that was 

accomplished with the enforced social and physical distancing interventions.    

Figure S6 of SM shows the results of the uncertainty analysis for the key epidemiological 

indicators in Figure 1, and Figure S7 of SM shows the results of the uncertainty analysis for the 

key hospitalization indicators in Figure 2. The results indicated overall narrow uncertainty 

intervals confirming the model’s predictive power. 

Discussion 

Our study demonstrates that mathematical modeling was influential in informing the national 

public-health response and in formulating evidence-based policy decisions to minimize the 

pandemic’s toll on health, society, and the economy. The model, which was implemented in real-

time, starting from March 2020, and was continuously updated and refined as more data became 

available, predicted with reasonable accuracy and precision the key epidemiologic indicators, 
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such as the epidemic peak and the impact of easing of restrictions, as well as healthcare needs, at 

a time of uncertainty in which knowledge of the epidemiology of this infection was growing but 

still limited.  

One of the highlights of this modeling approach is the application of the concept of rational tR  

tuning for managing the easing of restrictions (Figure 4). Grounded on a theoretical foundation 

[4], rational tR  tuning proved to be a successful and effective strategy in safely easing the 

restrictions so as to ensure social and economic stability and functionality, while minimizing the 

risk of a second wave (Figure 3). Another highlight is the estimation of healthcare needs that 

guided resource-allocation planning well before the time when these resources were needed. 

Throughout the epidemic, including the epidemic peak, healthcare needs in Qatar remained well 

within the health system capacity, avoiding any serious strain. Importantly, this forecasting of 

healthcare needs also prevented resource waste by avoiding overestimation of healthcare needs.   

Despite the large number of infections in Qatar, results show that the epidemic would have been 

far worse if no social and physical distancing interventions had been enforced. In absence of 

interventions, the epidemic would have progressed very rapidly to a peak nearly 10-fold higher 

than what was actually observed (Figure 4). Disease burden would have been much larger and 

the healthcare system would have been strained to the point of collapse. This demonstrates that 

for a respiratory infection with such large 0R  and serious disease sequalae, inaction would have 

had dire consequences, and that the national strategy focused on flattening the epidemic curve 

was appropriate to manage the epidemic.     
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An important finding of this study is that PCR-confirmed infections constitute only a small 

fraction of the actual number of infections. Only 11.6% of infections were estimated to have ever 

been diagnosed, probably because most infections were asymptomatic or mild. Indeed, a nation-

wide population-based survey in Qatar showed that 58.5% of those who were PCR positive in 

this survey reported no symptoms during the last two weeks preceding the survey [8]. The 

growing number of serological testing studies in Qatar have also shown that the vast majority of 

those who are antibody-positive were never diagnosed with this infection [8,11,22,23]. For 

instance, out of all those antibody-positive in a nation-wide seroprevalence survey of the CMW 

population, only 9.3% had a documented, PCR-confirmed infection prior to antibody testing, 

affirming that as estimated by the model, nine of every 10 infections were never diagnosed. 

These findings are also consistent with a growing body of serological evidence from other 

countries [31-35].   

We found that >97% of infections estimated to have occurred did not require hospitalization. The 

low infection severity appears to be a consequence of the young age profile of the population, 

with only 2% being >60 years of age [5,8,17,36], in addition to a well-funded healthcare system 

that emphasizes a proactive, high-quality standard of care [8], and possibly high levels of T cell 

cross-reactivity against SARS-CoV-2, reflecting T cell memory of circulating ‘common cold’ 

coronaviruses [37-41]. 

This study has limitations. Model estimates are contingent on the validity and generalizability of 

input data. Our estimates were based on current SARS-CoV-2 natural history and disease 

progression parameters, but our understanding of this infection is still evolving. Available input 

data were most complete at the national level. We did not have sufficient data about social 
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networks of different national subpopulations and patterns of mixing between those 

subpopulations to factor them into the model. Despite these limitations, our model, tailored to the 

complexity of the epidemic in Qatar, was able to reproduce observed epidemic trends, and to 

provide useful and consequential predictions and insights about infection transmission and 

healthcare needs. Importantly, the modeling estimates successfully influenced the national 

response.   

In conclusion, Qatar experienced a large SARS-CoV-2 epidemic, but avoided a burdensome 

epidemic, such as that unfolding in other counties. Mathematical modeling played an influential 

role in guiding the national public-health response by characterizing and understanding the 

epidemic, forecasting healthcare needs, predicting the impact of social and physical distancing 

restrictions, and rationalizing and justifying the easing of restrictions. While this article 

illustrates a successful case study, the modeling tools employed here can be adapted and applied 

in other countries to guide SARS-CoV-2 epidemic control, preparedness for the current or future 

waves of infection, or enforcement and easing of restrictions or other interventions, such as 

vaccination [19].    
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Figure 1. Model predictions for evolution of SARS-CoV-2 A) incidence (number of daily new 

infections), B) cumulative number of infections, C) active-infection prevalence (those latently infected or 

infectious), and D) attack rate (proportion ever infected) in the total population of Qatar. 
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Figure 2. Model predictions for evolution of COVID-19 A) daily hospital admissions in acute-care beds, 

B) daily hospital admissions in ICU-care beds, C) cumulative number of hospitalizations in acute-care 

beds, D) cumulative number of hospitalizations in ICU-care beds, E) hospital occupancy of COVID-19 

patients (number of beds occupied at any given time) in acute-care beds, and F) hospital occupancy of 

COVID-19 patients in ICU-care beds.  
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Figure 3. A) Effective reproduction number Rt and easing of social and physical distancing restrictions. 

B) Prediction of the number of daily new infections with early easing of restrictions, three weeks before 

the epidemic peak. C) Prediction of the number of daily new infections with delayed easing of 

restrictions, three weeks after the epidemic peak. This figure demonstrates the rationale and criteria used 

for the start of easing of restrictions. The figure shows the model fit and results at the time when the 

policy decision was actually made. An updated prediction for Rt is in Figure S4 of SM. The figure also 

shows in D) the number of daily new diagnosed and laboratory-confirmed infections. 

   

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.08.20184663doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.08.20184663


 

22 

 

 

Figure 4. Impact of social and physical distancing interventions on A) number of daily new infections, B) 

active-infection prevalence (those latently infected or infectious), C) daily hospital admissions in acute-

care beds, and D) daily hospital admissions in ICU-care beds. 
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I. SARS-CoV-2 mathematical model structure 

A deterministic age-structured meta-population compartmental model was developed to describe 

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission dynamics and 

disease progression in the population of Qatar, factoring subpopulation heterogeneity in exposure 

to the infection. The model stratified the population into compartments according to nationality 

subpopulation, age group (0-9, 10-19, 20-29,…, ≥80 years), infection status (infected, 

uninfected), infection stage (asymptomatic/mild, severe, critical), and disease stage (severe 

disease or critical disease). All Coronavirus Disease 2019 (COVID-19) mortality was assumed to 

occur in individuals that are in the critical disease stage. The model is based on extension and 

adaptation of our calibrated mathematical models developed to characterize SARS-CoV-2 

transmission dynamics [1-5]. 

Epidemic dynamics were described using a system of coupled nonlinear differential equations 

for each age group and subpopulation (nationality) group. Each age group, a , denoted a ten-year 

age band apart from the last category which grouped together all individuals ≥80 years of age. 

The population was divided into seven resident subpopulation groups i  ( )1,2,3,4,5,6,7i =  

representing the subpopulations of Indians, Bangladeshis, Nepalese, Qataris, Egyptians, 

Filipinos, and all other nationalities, respectively—these are the largest nationality subpopulation 

groups in Qatar. Qatar’s population composition and subpopulations size and demographic 

structure were based on findings of “The Simplified Census of Population, Housing, and 

Establishments” conducted by Qatar’s Planning and Statistics Authority [6]. Life expectancy was 

obtained from the United Nations World Population Prospects database [7].  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.08.20184663doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.08.20184663


3 
 

Figure S1. Schematic diagram describing the basic structure of the SARS-CoV-2 mathematical model. 
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The model was expressed in terms of the following system of coupled nonlinear differential 

equations for each subpopulation group and age group: 

( ) ( ) ( )( )
( , )

1 ( 1, ) , ( , )
dS a i

a S a i a i a S a i
dt

   = − − − + +  

( ) ( ) ( ) ( )( )
( , )

1 ( 1, ) , , ( , )
dE a i

a E a i a i S a i a E a i
dt

    = − − + − + +   

( ) ( ) ( ) ( )( )/
/ / /

( , )
1 ( 1, ) , ( , )A M

A M A M AD A M

dI a i
a I a i f a E a i a I a i

dt
    = − − + − + +  

( ) ( ) ( )( )
( , )

1 ( 1, ) ( ) , ( , )S
S S SD S

dI a i
a I a i f a E a i a I a i

dt
    = − − + − + +  

( ) ( ) ( )( )
( , )

1 ( 1, ) ( ) , ( , )C
C C CD C

dI a i
a I a i f a E a i a I a i

dt
    = − − + − + +  

( ) ( ) ( )( )
( , )

1 ( 1, ) , ( , )S
S SD S S SC S

dD a i
a D a i I a i a D a i

dt
     = − − + − + + +  

( ) ( ) ( ) ( ) ( )( )
( , )

1 ( 1, ) , , ( , )C
C CD C SC S C C

dD a i
a D a i I a i D a i a a D a i

dt
      = − − + + − + + +  

( ) ( )( )/ /

( , )
1 ( 1, ) ( , ) ( , ) ( , ) ( , )A M A M S S C C

dR a i
a R a i I a i D a i D a i a R a i

dt
     = − − + + + − +  

The definitions of population variables and symbols used in the equations are in Table S1. 

Table S1. Definitions of population variables and symbols used in the model 

Symbol Definition 

( , )S a i  Susceptible population  

( , )E a i  Latently infected population  

( )/ ,A MI a i  Population with asymptomatic/mild infection 

( ),SI a i  Population with severe infection 

( ),CI a i  Population with critical infection 

( ),SD a i  Population with hospitalization in acute-care beds 

( ),CD a i  Population with hospitalization in intensive care unit beds 

( , )R a i  Recovered population 

agen   Number of age groups 

popn   Number of subpopulation groups 

( )a  Transition rate from one age group to the next age group. Here (0) ( ) 0agen = =  

( )a  Susceptibility profile to the infection in each age group  

( )i  Level of exposure profile in each subpopulation group i   

1/  Duration of latent infection 
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  Average rate of infectious contacts  

1/ AD  Duration of asymptomatic/mild infection infectiousness 

1/ SD  Duration of severe infection infectiousness before isolation and/or hospitalization  

1/ S  Duration of severe disease following onset of severe disease  

1/ CD  Duration of critical infection infectiousness before isolation and/or hospitalization  

1/ C  Duration of critical disease following onset of critical disease  

1/ SC  Rate of disease progression from severe disease to critical disease 

( )a  Disease mortality rate in each age group  

1/   Natural death rate 

/ ( )A Mf a  Proportion of infections that will progress to be asymptomatic/mild infections  

( )Sf a  Proportion of infections that will progress to be infections that require hospitalization in 

acute-care beds 

( )Cf a  Proportion of infections that will progress to be infections that require hospitalization in 

intensive care unit beds 

Z  The subpopulation mixing matrix 

H  The age-mixing matrix 

The force of infection ( , )a i  (hazard rate of infection) experienced by each susceptible ( , )S a i  

population, is given by 

( ) ( ) ( ) /
, ' , ', '

' 1 ' 1 /

( ', ') ( ', ') ( ', ')
,

( ', ') ( ', ') ( ', ') ( ', ') ( ', ')

( ', ') ( ', ') ( ', ')

age popn n

A M S C
i i a a i

a i A M S C

S C

I a i I a i I a i
a i i a Z H

S a i E a i I a i I a i I a i

D a i D a i R a i

  
= =

+ +
=

+ + + + 
 
+ + + 

  

Here   is the rate of infectious contacts, ( )i  is the level of exposure profile in each 

subpopulation group i , and ( )a  is the susceptibility profile to the infection in each age group 

a .  

To account for temporal variation in the basic reproduction number (
0R  ), we incorporated 

temporal changes in the rate of infectious contacts. We parameterized the temporal variation 

(time dependence of  ) through the following combined function of the Woods-Saxon and 

logistic functions.  
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1 2

1 2

1 2

  

( )                              

1 1

                     

t b t b

c c

Wood Saxon function Logistic function

a a
t

e e


   − −

−   
   

−

= +

+ +
 

This function was mathematically designed to describe and characterize the time evolution of the 

level of risk of exposure before and after easing of restrictions. It was informed by our 

knowledge of SARS-CoV-2 epidemiology in Qatar [4], and it provided a robust fit to the data. 

Here 
1a , 

2a , 
1b , 

2b , 
1c , and 

2c  are fitting parameters. 

The mixing among the different age groups and subpopulation groups is dictated by the mixing 

matrices , ', 'a a iH  (for age group mixing) and ,i iZ   (for subpopulation group mixing). These 

matrices provide the likelihood of mixing and are given by the following expressions:  

/

/
, ', ' , '

/

/

( ', ') ( ', ') ( ', ') ( ', ') ( ', ')

( ', ') ( ', ') ( ', ') ( ', ')
(1 )

( '', ') ( '', ') ( '', ') ( '', ') ( '', ')

( '', ') ( '', ') (

A M S C

A M S C
a a i Age a a Age

A M S C

A M S C

S a i E a i I a i I a i I a i

D a i D a i D a i R a i
H e e

S a i E a i I a i I a i I a i

D a i D a i D a



+ + + +

+ + + +
= + −

+ + + +

+ + +1 '', ') ( '', ')

agen

a i R a i=

 
 

+ 


 

( )
, ,

0                        if 

1,     where W=
    if 

1
i i i i pop

pop pop

i i

Z n qW
i i

n n

 

=


= +  
 −


 

Here, 
,a a   (and ,i i  ) is the identity matrix.  0,1Agee   measures the degree of assortativeness in 

the age mixing. At the extreme 0Agee = , the mixing is fully proportional, while at the other 

extreme, 1Agee = , the mixing is fully assortative, that is individuals mix only with members in 

their own age group. W  is the subpopulation connectivity matrix of dimension pop popn n  and the 

mixing is assumed symmetric for all subpopulations. The W  matrix normalizes to 1, that is the 
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sum of all entries adds up to 1. q  parametrizes the connectivity to other subpopulations relative 

to the connectivity within the same subpopulation. 

II. Model fitting and parameter values 

The model was fitted to the following sources of data: 1) time-series of the number of 

polymerase chain reaction (PCR) laboratory-confirmed SARS-CoV-2 cases, 2) time-series of 

SARS-CoV-2 testing PCR positivity rate in each nationality subpopulation, 3) time-series of 

PCR positivity rate in symptomatic patients with suspected SARS-CoV-2 infection presenting to 

primary healthcare centers, 4) time-series of proportion of laboratory-confirmed SARS-CoV-2 

cases aged >60 years, 5) time-series of new/daily hospital admissions in acute-care beds and in 

ICU-care beds, 6) proportion of acute-care bed cases transferred subsequently to ICU-care beds, 

7) time-series of hospital occupancy in acute-care beds and in ICU-care beds, 8) cumulative 

number of deaths (not time series with the relatively small number of deaths), 9) one community 

survey assessing active-infection using PCR, 10) age-distribution of antibody positivity [4,8,9], 

and 11) nationality subpopulation distribution of antibody positivity [4,8,9]. 

Model input parameters were based on best available empirical data for SARS-CoV-2 natural 

history and epidemiology. Model parameter values are listed in Table 2. The following 

parameters were derived by fitting the model to data: 
Cf , 

S , 
C , 

SC , , ( )a , ( )i , Agee , q , 

0a , 
1a , 

2a , 
0b , 

1b , 
2b , 

0t , 
1c , and 

2c . 

Table S2. Model parameter values. 

Parameter Symbol Value Justification 

Duration of latent infection 

 

1/  3.69 days Based on existing estimate [10] and based 

on a median incubation period of 5.1 days 

[11] adjusted by observed viral load 

among infected persons [12] and reported 

transmission before onset of symptoms 

[13]. 
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Duration of infectiousness 

 

1/ AD  

1/ SD  

1/ CD  

3.48 days Based on existing estimate[10] and based 

on observed time to recovery among 

persons with mild infection [10,14] and 

observed viral load in infected persons 

[12,13,15].
 

Life expectancy in Qatar 1/   80.7 years United Nations World Population 

Prospects database [7]. 

Disease mortality rate in each 

age group  
( )a   The distribution and age dependence of 

COVID-19 mortality was based on the 

modeled SARS-CoV-2 epidemic in 

France [16].  

  Age 0-19 years 1RRD   1 0.1RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

  Age 20-29 years 2RRD   2 0.4RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

  Age 30-39 years   Reference 

category 

Model fitting 

  Age 40-49 years 3RRD   3 3.0RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

  Age 50-59 years 4RRD   4 10.0RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

  Age 60-69 years 5RRD   5 45.0RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

  Age 70-79 years 6RRD   6 120.0RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

  Age 80+ years 7RRD   7 505.0RRD =  Model-estimated relative risk of death 

based on the SARS-CoV-2 epidemic in 

France [16]. 

Proportion of infections that will 

progress to be infections that 

require hospitalization in acute-

care beds 

( )Sf a   The distribution and age dependence of 

asymptomatic/mild, severe, or critical 

infections was based on the modeled 

SARS-CoV-2 epidemic in France [16]. 
 

  Age 0-19 years ( )1 SRRS f t  1 0.1RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

  Age 20-29 years ( )2 SRRS f t  2 0.5RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16].
 

  Age 30-39 years 

( )

2

0

0

0

t t

b

Sf t a e

 −
−  
 =  

Reference 

category 

This parameter was described by a 

Gaussian function, as it provided the best 

fit for the data of the daily hospital 

admissions in acute-care beds. 

  Age 40-49 years ( )3 SRRS f t  3 1.2RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16]. 
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  Age 50-59 years ( )4 SRRS f t  4 2.3RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

  Age 60-69 years ( )5 SRRS f t  5 4.5RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

  Age 70-79 years ( )6 SRRS f t  6 7.8RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

  Age 80+ years ( )7 SRRS f t  7 27.6RRS =  Model-estimated relative risk of severe 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

Proportion of infections that will 

progress to be infections that 

require hospitalization in 

intensive care unit beds 

( )Cf a   The distribution and age dependence of 

asymptomatic/mild, severe, or critical 

infections was based on the modeled 

SARS-CoV-2 epidemic in France [16].
 

  Age 0-19 years 1 CRRC f  1 0.2RRC =   Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

  Age 20-29 years 2 CRRC f  2 0.3RRC =  Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16].
 

  Age 30-39 years 
Cf   Reference 

category 

Model fitting 

  Age 40-49 years 3 CRRC f  3 1.8RRC =  Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16].
 

  Age 50-59 years 4 CRRC f  4 4.7RRC =  Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16].
 

  Age 60-69 years 5 CRRC f  5 10.6RRC =  Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16].
 

  Age 70-79 years 6 CRRC f  6 13.6RRC =  Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

  Age 80+ years 7 CRRC f  7 8.7RRC =  Model-estimated relative risk of critical 

infection based on the SARS-CoV-2 

epidemic in France [16]. 

 

III. Basic reproduction number 
0R  and effective reproduction number 

tR   

As informed by the method of Heffernan and et al. [17], the overall basic reproduction number (

0R ) and overall effective reproduction number (
tR ) were derived to be 
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( )
( ) ( )0 , , ,

1 1 1 1

, 1
=

( ) ( )

pop age pop agen n n n

i i a a i

i a i a Tot

N a i
R i a Z H

N a a


 

     
  

 = = = =

    
    

 + + + +   


( )

( )
( ) ( )

( )

( ), , ,

1 1 / , , 1 1

/ , , 1 1

, , 1

, ( ) ( )
,

pop age pop age

pop age

n n n n

t i i a a in n
i a A M S C i a

A M S C j b

S a i I a i
R i a Z H

N a i a a
I b j









 

     
  

 = = = = =

= = =

 
 

      =          + + + +     
 

  
 

  

Here, 
TotN  is the total population size and ( ),N a i  is the population size of each age group a  

and subpopulation group i .  
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Figure S2. Model fits to (A) SARS-CoV-2 laboratory-confirmed cases and (B) testing PCR 

positivity rate.  
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Figure S3. Model fits to A) daily hospital admissions in acute-care beds, B) daily hospital 

admissions in ICU-care beds, C) hospital occupancy of COVID-19 patients (number of beds 

occupied at any given time) in acute-care beds, and D) hospital occupancy of COVID-19 patients 

in ICU-care beds. 
  

 
v 

 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.08.20184663doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.08.20184663


13 
 

Figure S4. Evolution of the basic reproduction number R0 (A) and effective reproduction 

number Rt (B) in Qatar.  
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Figure S5. Impact of the social and physical distancing interventions on A) cumulative number 

of infections, B) cumulative number of deaths, C) cumulative number of hospital admissions in 

acute-care beds, and D) cumulative number of hospital admissions in ICU-care beds. 
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Figure S6. Uncertainty analysis. Mean and 95% uncertainty interval (UI) for the evolution of 

SARS-CoV-2 A) incidence (number of daily new infections), B) cumulative number of 

infections, C) active-infection prevalence (those latently infected or infectious), and D) attack 

rate (proportion ever infected), in the total population of Qatar. 
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Figure S7. Uncertainty analysis. Mean and 95% uncertainty interval (UI) for the evolution of 

COVID-19 A) daily hospital admissions in acute-care beds, B) daily hospital admissions in ICU-

care beds, C) cumulative number of hospitalizations in acute-care beds, D) cumulative number of 

hospitalizations in ICU-care beds, E) hospital occupancy of COVID-19 patients (number of beds 

occupied at any given time) in acute-care beds, and F) hospital occupancy of COVID-19 patients 

in ICU-care beds. 
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