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Haoyang Sun1*, Borame L. Dickens1, Mark Jit2,3, Alex R. Cook1*† and L. Roman Carrasco4†

Abstract

Background: Zika virus (ZIKV) emerged as a global epidemic in 2015–2016 from Latin America with its true
geographical extent remaining unclear due to widely presumed underreporting. The identification of locations with
potential and unknown spread of ZIKV is a key yet understudied component for outbreak preparedness. Here, we
aim to identify locations at a high risk of cryptic ZIKV spread during 2015–2016 to further the understanding of the
global ZIKV epidemiology, which is critical for the mitigation of the risk of future epidemics.

Methods: We developed an importation simulation model to estimate the weekly number of ZIKV infections
imported in each susceptible spatial unit (i.e. location that did not report any autochthonous Zika cases during
2015–2016), integrating epidemiological, demographic, and travel data as model inputs. Thereafter, a global risk
model was applied to estimate the weekly ZIKV transmissibility during 2015–2016 for each location. Finally, we
assessed the risk of onward ZIKV spread following importation in each susceptible spatial unit to identify locations
with a high potential for cryptic ZIKV spread during 2015–2016.

Results: We have found 24 susceptible spatial units that were likely to have experienced cryptic ZIKV spread during
2015–2016, of which 10 continue to have a high risk estimate within a highly conservative scenario, namely,
Luanda in Angola, Banten in Indonesia, Maharashtra in India, Lagos in Nigeria, Taiwan and Guangdong in China,
Dakar in Senegal, Maputo in Mozambique, Kinshasa in Congo DRC, and Pool in Congo. Notably, among the 24
susceptible spatial units identified, some have reported their first ZIKV outbreaks since 2017, thus adding to the
credibility of our results (derived using 2015–2016 data only).

Conclusion: Our study has provided valuable insights into the potentially high-risk locations for cryptic ZIKV
circulation during the 2015–2016 pandemic and has also laid a foundation for future studies that attempt to further
narrow this key knowledge gap. Our modelling framework can be adapted to identify areas with likely unknown
spread of other emerging vector-borne diseases, which has important implications for public health readiness
especially in resource-limited settings.
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transmission, Mathematical modelling
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Background
Zika virus (ZIKV) is a flavivirus that is mainly transmitted
by the Aedes mosquitoes [1]. Since its first isolation in a
Ugandan forest in 1947 [2], the virus has until recent years
only caused regional outbreaks [3, 4]. In February 2016, a
Public Health Emergency of International Concern was
declared by the World Health Organization, as ZIKV
swept through the majority of the countries in Latin
America and the Caribbean, coinciding with an unusual
increase in the number of microcephaly cases and other
neurological disorders [5]. The reported ZIKV incidence
declined substantially after 2016 [6], but in the meantime,
new scientific evidence continued to emerge and reveal
new locations where ZIKV circulation had never been
identified before [7]. More recently, the first autochthon-
ous ZIKV case in Europe was reported in October 2019
with its source remaining unknown at the time of writing
[8], which underscores our limited understanding of the
virus's epidemiology. Although ZIKV is no longer a public
health emergency, the potential reoccurrence of future
large-scale epidemics remains a concern, which necessi-
tates continued investments in ZIKV research and surveil-
lance in preparation for such an event [9].
To date, modelling studies have yielded important in-

sights into the virus's transmission dynamics [10–14], eco-
logical niche [15–17], and at-risk population size [18], but
little has been done to understand the gap between where
cases may have already occurred and where they have
been reported [19]. Due to the high proportion of ZIKV
infections that are asymptomatic and its similarity in clin-
ical presentation to other diseases such as dengue fever
[3], undetected or unreported spread of ZIKV was widely
presumed, especially in countries with limited public
health resources [17]. The identification of these locations
is critical, as their healthcare systems may be over-
whelmed during possible future waves of epidemics if ill
prepared, and due to the risk of onward dissemination via
air travel. Whilst a recent study used travel surveillance
and viral genomes data to detect an unreported ZIKV out-
break in Cuba [20], our understanding of the geographical
areas that are likely to have experienced cryptic ZIKV
spread is still seriously lacking at a global scale. To narrow
this knowledge gap requires a novel modelling framework
integrating a wide range of factors that determine the
worldwide introduction of the virus and the subsequent
autochthonous transmission.
In this study, we aim to answer the following key ques-

tions, focusing on all countries or first-level subdivisions
where no indigenous Zika cases were reported during the
2015–2016 global epidemic: (i) At least how many ZIKV
infections were imported in each country or subdivision
during 2015–2016 and to what extent were imported
ZIKV infections underreported? (ii) Which countries or
subdivisions were most likely to experience cryptic ZIKV

spread during the 2015–2016 global epidemic based on
currently available data?

Methods
Data
Epidemiological data
The weekly number of reported autochthonous Zika cases
during 2015–2016 for each country in the Americas was
published as bar charts by the Pan American Health
Organization (PAHO) [21]. These data were digitised by
the Andersen Lab for a genomic epidemiological study [22]
and made publicly available [23]. We used the Web Plot
Digitizer to extract the weekly number of notified Zika
cases in Brazil during 2015 published by Lourenço et al.
[24], since these data were not published by the PAHO. To
achieve a higher spatial resolution, we also obtained weekly
cumulative case counts for each first-level subdivision of
Colombia between Eweek 38 and Eweek 52 of 2016 from
the Colombian National Institute of Health’s website [25].
Each time series was then differenced to derive the weekly
case counts and combined with data compiled by Siraj
et al. [26], which included weekly notified case data prior to
Eweek 38 of 2016. For weekly autochthonous Zika cases
reported by countries outside the Americas, we manually
reviewed information compiled by HealthMap alongside
additional data sources such as ReliefWeb [27, 28] (refer to
the Additional File 1: supporting information [29–33] for
more details). Each reported case was located to a first-level
country subdivision whenever possible, and both confirmed
and suspected autochthonous cases were included in our
study (Additional File 2: Data S1).
In addition to autochthonous case data, we obtained the

reported total number of imported Zika cases during
2015–2016 for each US state, which was published by the
Centres for Disease Control and Prevention (collection of
imported case data for Florida and Texas was not needed
for the study, as discussed in later sections) [34]. For all
the other countries or subdivisions that did not report any
autochthonous cases during 2015–2016, the imported
case data were collected using HealthMap [27].

Travel data
We requested the yearly average length of stay (LOS) on
inbound tourism trips up to 2016 from the United Na-
tions World Tourism Organization (UNWTO) [35]. For
each country, we took the most recently available esti-
mate for the analyses. In most cases, estimates were de-
rived based on the check-in dates from arrival and
departure cards or border survey data, but if such data
were unavailable for a country, the estimate based on
the Hotel Occupancy Survey was used instead [35]. In
the rare event that the data were completely missing for
a given country, we took the conservative approach and
assumed the average LOS to be equal to the minimum
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value among all the countries under study, to avoid
overestimating the number of imported ZIKV infections
(refer to section “Simulation of the number of imported
infections” for more details).
The monthly number of air ticket bookings during

2015–2016 was obtained from the Official Airline Guide
(OAG) for every origin-destination route with up to two
connections. This was used to derive the weekly number
of bookings assuming the daily number of bookings was
uniform within each month for each route. For each first-
level country subdivision with no incoming air passengers
during 2015–2016, we performed an estimation of the
most likely airport (within the same country) that the
population would rely on when they returned home (de-
tails shown in the Additional File 1: supporting informa-
tion [36]). The subdivision was subsequently merged with
the one where the identified airport was located, and they
were modelled as a single unit from then on. For each
country where autochthonous cases could not be located
to the subdivision level, the entire country was treated as a
single unit of analysis. Hence, the spatial unit of analysis
in our study can be a single first-level country subdivision,
a combination of subdivisions, or an entire country (here-
inafter referred to as “spatial unit”). Countries with zero
incoming air passenger during 2015–2016 were excluded
from the analysis (refer to the Additional File 1: support-
ing information for more details).

Demographic and ecological data
We obtained the global estimated 2015-population counts
at a ~ 1 km × 1 km resolution from the Socioeconomic
Data and Applications Centre (SEDAC) [37], which was
used to derive the total population within each spatial unit.
The daily temperature at 2m between 2015 and 2016 was
obtained from the European Centre for Medium-Range
Weather Forecasts at ~ 30 km × 30 km resolution [38].
Each temperature map was resampled using bilinear
interpolation based on the cell size of the SEDAC popula-
tion map. Subsequently, the resampled temperature pixel
values were averaged within each spatial unit for each day,
using the corresponding 2015-population counts as
weights. We did not calculate raw average values because
the population distribution can be highly uneven for some
spatial units such as the Sichuan province of China, where
the majority reside within the basin instead of the moun-
tain or plateau regions.
The methods employed to quantify the global environ-

mental suitability of Ae. aegypti and Ae. albopictus, as well
as the associated uncertainties, were described in Dickens
et al. [39]. For each species, we obtained 250 vector suitabil-
ity maps at a ~ 5 km× 5 km resolution via bootstrapping.
Our models performed reasonably well based on the out-
of-sample prediction accuracy, with a median true skill stat-
istic of 0.84 (0.76–0.86) for Ae. aegypti and 0.71 (0.66–0.78)

for Ae. albopictus [39]. Following the same procedure as
above, each vector suitability map was resampled according
to the resolution of the SEDAC population map to derive
the average suitability value weighted by the human popula-
tion counts for each spatial unit.

Statistical analyses
Overview
To map the cryptic spread of ZIKV during the 2015–2016
global epidemic, we first performed simulations to esti-
mate the weekly number of ZIKV infections imported into
each spatial unit that did not report any autochthonous
cases during 2015–2016. Hereinafter, we will refer to these
spatial units as susceptible spatial units, and the rest as
donor spatial units. As a by-product of the simulation, a
reporting index was derived to quantify the probability of
reporting a case per importation for each susceptible
spatial unit. Next, we estimated the virus's weekly basic
reproduction number (R0) for each susceptible spatial
unit, which was then used to compute the probability that
no onward spread following ZIKV importation occurred
during 2015–2016. These probability estimates derived
from our model, together with the local evidence of
Aedes-borne disease transmission potential based on the
existing literature, were used to identify susceptible spatial
units with a high chance of cryptic ZIKV spread during
2015–2016 (refer to Fig. 1 for the schematic overview of
methods, and Additional File 3 for the R code).

Simulation of the number of imported infections
To simulate the weekly number of imported ZIKV infec-
tions for each susceptible spatial unit, we first made the
following definitions and assumptions. First, the local
population of a spatial unit was defined as all who live in
that spatial unit regardless of citizenship status. At any
point in time, the size of a spatial unit i’s local popula-
tion who were visiting other spatial units was assumed
to be approximately equal to the total number of spatial
unit i’s visitors. Hence, the total number of individuals
located in a spatial unit at any point in time can be ap-
proximated by the total local population size, which was
given by the SEDAC population estimates. Second, we
assumed that air travellers with origin airport located in
spatial unit i and destination airport located in spatial
unit j were only made up of people belonging to the
local population of spatial unit i or those of spatial unit j.
Third, people who acquired ZIKV infection while visit-
ing a spatial unit were assumed to remain asymptomatic
by the end of their visits, so that all the autochthonous
cases reported by a spatial unit can be assumed to come
from its local population. Fourth, for any individual who
belonged to the local population of a susceptible spatial
unit and visited a donor spatial unit during 2015–2016,
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no immunity against ZIKV developed prior to his/her
visit.
A total of 10,000 simulations were performed, where

in each simulation s = 1, …, 10, 000, we generated an es-
timate of the number of ZIKV infections imported from
a donor spatial unit i to a susceptible spatial unit j during

Eweek t, denoted by MðsÞ
i→ j;t . Of these, MðsÞ

i→ j;t ½i� belonged
to the local population of spatial unit i and MðsÞ

i→ j;t ½ j� the
local population of spatial unit j, which were estimated
separately as follows.

To begin with, we divided the autochthonous case
count reported in spatial unit i during Eweek t, by the
country-specific reporting rate based on O’Reilly et al.’s
study to obtain the actual number of autochthonous in-
fections Ii, t [14]. Here, we used ci to denote the country
to which spatial unit i belonged, and ρci to denote the
percentage of autochthonous infections in ci that were
reported, which was assumed to be time-invariant. In

each simulation s, the reporting rate estimate ρðsÞci was
drawn from a beta distribution with parameters aci and

Fig. 1 Schematic overview of the methods. Blue boxes denote input data, and dark orange boxes output estimates. Note that in the onward spread
analysis, we further imposed thermal restrictions for ZIKV transmission and applied a threshold value for the estimated environmental suitability of Ae.
aegypti to minimise false positives. Refer to the “Methods” section “Susceptible spatial units with cryptic spread of ZIKV” for more details
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bci , under which the 2.5th and 97.5th percentiles of the
resulting distribution equal the endpoints of the 95%
credible interval produced by O’Reilly et al. [14]. For
countries where the reporting rate estimate was unavail-
able, we assumed the parameters for the reporting rate
uncertainty distribution to be equal to those for French
Guiana, which had the highest reporting rate estimate
among all the countries included in O’Reilly et al.’s study
[14]. We considered this as a conservative approach, as
it sought to avoid overestimating the weekly number of
imported infections Mi→ j, t. Overall, countries not in-
cluded in O’Reilly et al.’s study only accounted for less
than 3% of the total number of autochthonous cases re-
ported worldwide during 2015–2016. In the equations
below, Ui, t refers to the autochthonous case count re-
ported by spatial unit i in Eweek t, and the same realisa-

tion ρðsÞci applied to all spatial units within country ci and
for all Eweeks within each simulation s:

ρ sð Þ
ci � Beta aci ; bcið Þ;

I sð Þ
i;t ¼ Ui;t

ρ sð Þ
ci

:

Next, of the vi→ j, t air travellers with origin airport lo-
cated in spatial unit i and destination airport located in
spatial unit j during Eweek t, vi→ j, t[i] belonged to the

local population of spatial unit i. In each simulation s,

vðsÞi→ j;t½i� was drawn from a binomial distribution, with

number of Bernoulli trials vi→ j, t, and success probabil-
ity πci;c j , where ci and cj referred to the countries to
which spatial units i and j belonged respectively. Whilst
for each country the UNWTO provided information on
the arrivals of non-resident tourists/visitors at the na-
tional borders by country of residence, these data were
incomplete and only allowed us to estimate the success
probability πci;c j for less than 1.6% of the country pairs
in our study. In addition, we did not find country-level
indicators such as gross domestic product per capita to
be informative for predicting πci;c j based on the very
few estimates constructed from the UNWTO data.

Hence, in each simulation s, πðsÞ
ci;c j was drawn from a

beta distribution with a substantial amount of variation
around 0.5 to capture parameter uncertainty, followed

by vðsÞi→ j;t ½i� that was drawn from a binomial distribution

as previously described. We then subtracted vðsÞi→ j;t½i�
from vi→ j, t to obtain vðsÞi→ j;t ½ j�:

π sð Þ
ci;c j � Beta 10; 10ð Þ;

v sð Þ
i→ j;t i½ � � Bin vi→ j;t ;π sð Þ

ci;c j

� �
;

v sð Þ
i→ j;t j½ � ¼ vi→ j;t − v sð Þ

i→ j;t i½ �:

It should be noted that within each simulation s, the

realisation πðsÞ
ci;c j also applied to all other routes with the

same origin and destination countries. In other words,
given a pair of origin and destination countries, the
aforementioned probability value was generated only
once in each simulation.
Therefore, in simulation s, the first component of

MðsÞ
i→ j;t was given by:

M sð Þ
i→ j;t i½ � � Bin v sð Þ

i→ j;t i½ �;
I sð Þ
i;t

POPi −
X
k≠i

v sð Þ
i→k;t k½ �∙LOSci

0BB@
1CCA:

The justification for the above calculation was as fol-
lows. In the denominator, POPi denoted the total number
of people located in spatial unit i at Eweek t (or any point
in time, as previously discussed). Here, we assumed a
stable system in which the weekly arrival rate of visitors
from the local population of any spatial unit k ≠ i was
equal to the rate at which they exited spatial unit i, vi→ k,

t[k], for any Eweek t. On average, these individuals stayed
in spatial unit i for LOSci weeks during their visits based
on the UNWTO’s estimates. Applying Little’s law origin-

ally developed in queueing theory [40], we multiplied
X
k≠i

vðsÞi→k;t ½k� by LOSci in each simulation s to obtain the esti-

mated total number of people located in spatial unit i at
Eweek t who did not belong to the local population of
spatial unit i, which was then subtracted from POPi.

Therefore, MðsÞ
i→ j;t ½i� can be considered as a realisation of a

random variable following a hypergeometric distribution,

where vðsÞi→ j;t ½i� random draws were obtained without re-

placement from a total number of fPOPi −
X
k≠i

vðsÞi→k;t ½k�∙

LOScig individuals, of whom IðsÞi;t carried ZIKV. Here, to

ease the computation, we approximated MðsÞ
i→ j;t½i� by

drawing from a binomial distribution instead. Note that

we only included IðsÞi;t into the numerator of the success
probability, since most autochthonous infections occur-
ring prior to Eweek t had recovered by Eweek t, given a re-
covery rate of around 1/7–1/5 per day [11, 13]. In

addition, the aforementioned IðsÞi;t individuals were pre-
sumably still able to travel because the vast majority were
unreported and likely to be asymptomatic.
Of the total (unobserved) number of incident au-

tochthonous infections occurring in spatial unit i dur-
ing Eweek t (denoted by Li, t), Mi→ j, t[j] were visitors
belonging to the local population of spatial unit j.
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Conditioning on Li, t, Mi→ j, t[j] followed a binomial
distribution with the number of Bernoulli trials Li, t

and a success probability as a function of i, j, and t.
Since Li, t was reasonably large (i.e. greater than 20 in
most cases), we modelled Mi→ j, t[j] as a Poisson ran-
dom variable with mean parameter proportional to
the total person-time at risk of the visitors from
spatial unit j, and similarly for the number of autoch-
thonous infections occurring in spatial unit i during
Eweek t that belonged to the local population of
spatial unit i (Ii, t). Hence, the ratio between their ex-
pected values was given by:

E Mi→ j;t j½ �
� �
E Ii;t
� � ≅

vi→ j;t j½ �∙LOSci
POPi −

X
k≠i

vi→k;t k½ �∙LOSci
 !

1 − ηi;t
� � : �ð Þ

At any point in time during Eweek t, the number of
people located in spatial unit i was POPi, of whom ðvi→ j;t ½
j�∙LOSciÞ were visitors from spatial unit j by Little’s law

[40], and likewise ðPOPi −
X
k≠i

vi→k;t ½k�∙LOSciÞ belonged

to the local population of spatial unit i as derived earlier.
In the denominator of equation (∗), we included an add-
itional factor (1 − ηi, t), which denoted the percentage of
the local population of spatial unit i that were still suscep-

tible to ZIKV infection in Eweek t (i.e. ηi;t ¼
X
t0<t

I i;t0=

POPi , assuming protective immunity to last at least until
the end of our study period after primary ZIKV infection).
Hence, in each simulation s, given the “observed data”

IðsÞi;t , it can be shown that the posterior predictive distri-

bution of MðsÞ
i→ j;t ½ j� was as follows, if we impose a uni-

form prior over the positive real line for EfIi;tg:

M sð Þ
i→ j;t j½ � j I sð Þ

i;t � NB I sð Þ
i;t þ 1;

E Mi→ j;t j½ �
� �
E Ii;t
� � ! sð Þ

þ 1

24 35 − 10@ 1A:

In other words, MðsÞ
i→ j;t ½ j� was drawn from a negative bi-

nomial distribution that modelled the number of failures

before the ðIðsÞi;t þ 1Þth success in a sequence of independ-
ent Bernoulli trials with equal success probability

½ðEfMi→ j;t ½ j�g
EfIi;tg ÞðsÞ þ 1�

− 1

, where we derived ðEfMi→ j;t ½ j�g
EfIi;tg ÞðsÞ by

plugging the previously simulated values fvðsÞi→k;t ½k�gk≠i
and fIðsÞ

i;t0
g
t0<t

into equation (*).

Finally, the estimated weekly number of ZIKV infec-
tions imported from a donor spatial unit i to a suscep-
tible spatial unit j in simulation s was given by the sum

of its two components. Note that we treated the MðsÞ
i→ j;t ½

j� individuals as imported infections in Eweek t despite

the possibility that a certain percentage may have
returned to spatial unit j slightly after Eweek t, because
no information was available regarding the distribution
of LOS. Given that the average LOS was very short in
general, the effect of this decision upon the subsequent
analyses of the onward ZIKV spread for each suscep-
tible spatial unit was negligible:

M sð Þ
i→ j;t ¼ M sð Þ

i→ j;t i½ � þM sð Þ
i→ j;t j½ �:

To validate our importation simulation model, we
plotted the median estimate of the total number of ZIKV
infections imported in each susceptible spatial unit in
the US in 2015–2016 against the corresponding reported
case count, both on a log10 scale. If our simulation re-
sults were reasonably accurate and the reporting rates
were similar among these susceptible spatial units, we
would expect to see all the data points to be close to a
straight line with a slope of one.

Reporting index
As a by-product of the importation simulation model, a
reporting index was derived to quantify the probability
of reporting a case per imported infection for each sus-
ceptible spatial unit. Only within this section did we fur-
ther merge all the susceptible spatial units of a country
to be analysed as a single unit, provided the reported
imported cases could not be located to the subdivision
level.
For each susceptible spatial unit j, we denoted the ac-

tual total number of imported ZIKV infections during
2015–2016 as nj, where its uncertainty distribution can

be approximated by
X
i;t

MðsÞ
i→ j;t ðs ¼ 1;…; 10000Þ as ob-

tained from the importation simulation model. The
reporting index pj was assigned an uninformative
prior Beta(1, 1) and assumed to be independent from
variable nj. Thus, given a specific value of nj, the re-
ported imported case count xj followed a beta-binomial
distribution with uniform density:

f x jjnj
� � ¼ 1

nj þ 1
;where x j ¼ 0;…; nj:

Using Bayes’ theorem, we can compute f(nj| xj) as fol-
lows, where I(∙) was the indicator function:

f n jjx j
� � ¼ f n j

� �
f x jjnj
� �

f x j
� � ∝ f n j

� �
∙

1
nj þ 1

∙I n j≥x j
� �

:

The posterior density of pj was given by the equation
below:
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f p jjx j

� �
¼
Z

f n jjx j
� �

∙ f p jjnj; x j

� �
dnj:

Hence, for each susceptible spatial unit j, we generated
10,000 values from the posterior distribution of the
reporting index. Specifically, for s∗ = 1, …, 10, 000:

i. Draw nðs
�Þ

j j x j from the set of simulated numbers

of imported infections
X
i;t

MðsÞ
i→ j;t ðs ¼ 1;…; 10; 000

Þ, with probabilities proportional to the weights

1X
i;t

MðsÞ
i→ j;t þ 1

∙Ið
X
i;t

MðsÞ
i→ j;t ≥x jÞ.

ii. Draw pðs
�Þ

j j nðs�Þj ; x j from Betaðx j þ 1; nðs
�Þ

j − x j þ 1Þ.

It should be noted that we found a total of four coun-
tries that contained at least one donor spatial unit and
one susceptible spatial unit simultaneously. For these
countries, we estimated that only an average of 0.47 in-
fections per susceptible spatial unit belonged to “within-
country importation”, with New York having the largest
number (6.40, which was less than 0.03% of its estimated
total number of imported ZIKV infections). Hence, this
did not affect the estimation of reporting index, where
the reported case data presumably only included Zika
cases imported from abroad.

Estimation of basic reproduction number
We applied a global risk model developed by Caminade et al.
to estimate the daily R0 of ZIKV within each spatial unit [13],
which was subsequently averaged across each Eweek to be
used for the analysis of onward ZIKV spread in the section
“Susceptible spatial units with cryptic spread of ZIKV”. The
model inputs included the human recovery rate (r), as well
as a set of species-specific parameters: biting rates (h1, h2),
vector preferences (ϕ1, ϕ2), vector-to-host and host-to-vector
transmission probabilities (τV→H

1 , τV→H
2 and τH→V

1 , τH→V
2 ),

mortality rates (μ1, μ2), extrinsic incubation rates (ν1, ν2), and
vector-to-host ratios (m1, m2) [13], where the subscripts 1
and 2 referred to Ae. aegypti and Ae. albopictus respectively
(Table 1). The expected number of secondary human ZIKV
infections generated by a primary human infection in a fully
susceptible population was given by:

R0 ¼
X2
q¼1

τV→H
q τH→V

q h2q
μq Tð Þ

 !
νq Tð Þ

νq Tð Þ þ μq Tð Þ

 !
ϕ2
qmq

r

 !
:

We followed Caminade et al. [13] and estimated vector
mortality rates and extrinsic incubation rates as a func-
tion of the population-weighted average of temperature
for each spatial unit and each day. We re-calibrated the
scaling factor that transformed vector suitability values
to vector-to-host ratios, so that our median R0 estimate
at the temperature 25 °C in French Polynesia would
equal to that obtained by Zhang et al. via the fitting of a

Table 1 Parameters for the global risk model. Subscripts 1 and 2 referred to Ae. aegypti and Ae. albopictus respectively. Unless
otherwise stated, parameter values were calculated following Caminade et al. [13]

Symbol Description Calculation

h1, h2 Biting rates
(per day)#

h1 = 0.67, [41]
h2 = h1/2.

ϕ1, ϕ2 Vector preferences ϕ1 = 1,
ϕ2 = ϕ1/2.

τV→H
1 , τV→H

2 Vector-to-host transmission probability τV→H
1 ¼ 0:5,
τV→H
2 ¼ τV→H

1 :

τH→V
1 , τH→V

2 Host-to-vector transmission probability τH→V
1 ¼ 0:1,
τH→V
2 ¼ 0:33τH→V

1 :

μ1, μ2 Mortality rates
(per day)

μ1 ¼ 1
1:22þ expð − 3:05þ0:72TÞ þ 0:196; ðT < 22°CÞ

μ1 ¼ 1
1:14þ expð51:4 − 1:3TÞ þ 0:196; ðT ≥22°CÞ

μ2 ¼ 1
1:1þ expð − 4:04þ0:576TÞ þ 0:11883; ðT < 15°CÞ

μ2 = 0.000339T2 − 0.0189T + 0.336, (15 ° C ≤ T < 26.3 ° C)
μ2 ¼ 1

1:065þ expð32:2 − 0:92TÞ þ 0:073079:ðT ≥26:3°CÞ
ν1, ν2 Extrinsic incubation rates (per day) ν1 ¼ 1

4þ expð5:15 − 0:123 TÞ ;
ν2 = ν1/1.03.

m1, m2 Vector-to-host ratios Assumed to be proportional to the vector suitability values.
The scaling factor was re-calibrated using the R0 estimate produced by Zhang et al. [11].

r Human recovery rate
(per day)

r = 1/7.

#Given the relatively minor contribution of the biting rates’ temperature-dependence to the variation in R0 [42], here we treated the biting rates as constant, and

the uncertainties in h2ϕ2τV→HτH→V

r were absorbed by re-calibrating the scaling factor that converted vector suitability values to vector-to-host ratios
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deterministic model to the 2013 French Polynesia
outbreak data [11]. All the other parameters were as-
sumed to be constant. Despite the uncertainty in

these parameter values, the factor h21ϕ
2
1τ

V→H
1 τH→V

1
r can be

viewed as a single constant whose uncertainty was
absorbed by the aforementioned model re-calibration
(Similarly for Ae. albopictus, assuming the estimated
ratio between the two species for each of the model
parameters h, ϕ, τV→H, and τH→ V in Table 1 to be
reasonably accurate).
Instead of producing a single daily R0 estimate for

each spatial unit, we generated 250 values of R0 per
spatial unit and per day, where each value was based
on a bootstrap estimate of the population-weighted
average of vector suitability within the corresponding
spatial unit. To validate the model, we took published
estimates of R0 and compared them with our model
estimates to assess the agreement (refer to the
Additional File 1: supporting information [41] for the
inclusion and exclusion criteria for the published R0

estimates used for the model validation) [24, 33, 43,
44].

Susceptible spatial units with cryptic spread of ZIKV
We calculated the probability that no onward spread
of ZIKV occurred following importation during 2015–
2016, for each susceptible spatial unit with at least
one imported infection throughout the 10,000 simula-
tions. Specifically, in each iteration s = 1, …, 10000,
we first computed the weekly effective number of
imported infections for each susceptible spatial unit j,
as defined by Perkins et al. [45]. This accounted for
the fact that the generation time of ZIKV can be
much longer than that of directly transmitted viruses,
and hence, each human ZIKV infection can be caused
by an earlier infection that had occurred one to five
weeks before [45].

ωu ¼ 1
7

Z7u
7 u − 1ð Þ

FZIKV xþ 7ð Þ − FZIKV xð Þf gdx;

g
M sð Þ

•→ j;t ¼
X5
u¼1

δ j t − u; t½ �∙ωu∙M
sð Þ
•→ j;t − u:

In the first equation, the cumulative distribution
function of the ZIKV generation time was denoted
by FZIKV. This was estimated by Ferguson et al. and
subsequently used by Harris et al. to obtain the
weight parameters ωu ’s [10, 46]. In the second equa-

tion, MðsÞ
•→ j;t − u referred to the number of ZIKV infec-

tions imported in spatial unit j during Eweek (t − u)
in simulation s, summed over all the donor spatial

units. The extra factor δj[t − u, t] was defined to be
one if the weekly mean temperature in spatial unit j
remained within the thermal range for ZIKV trans-
mission from Eweeks (t − u) to t, and zero otherwise.
In other words, sustained temperature suitability for
ZIKV transmission was required from the time of
each imported infection to its secondary human infec-
tion. Here, we used Tesla et al.’s thermal range esti-
mate (22.7–34.7 °C), which took into account the
temperature constraints for different stages of mos-
quito development and ZIKV transmission and has
been validated using Zika case data reported by dif-
ferent municipalities in Colombia [47]. We addition-
ally created a highly conservative scenario where a
much narrower interval (26–29 °C) was considered
based on Mordecai et al.’s estimated temperature
range for maximal ZIKV transmission [48], to identify
susceptible spatial units with a particularly high likeli-
hood of cryptic ZIKV spread.
The analysis of onward ZIKV spread presented below

was largely inspired from Churcher et al. [49]. If we as-
sumed the entire local population to be immunologically
naïve, the number of infections generated in Eweek t by

the
g

MðsÞ
•→ j;t imported infections followed a negative bino-

mial distribution with expectation
g

MðsÞ
•→ j;t ∙R0

ððs − 1Þ%250þ1Þ
j;t

∙I½aegððs − 1Þ%250þ1Þ
j ≥0:24� and size

g
MðsÞ

•→ j;t ∙k . Here, we

additionally required the bootstrap estimate of the envir-
onmental suitability for Ae. aegypti (i.e. the main vector

for ZIKV) in spatial unit j, denoted by aegððs − 1Þ%250þ1Þ
j ,

to be at least 0.24. This threshold was derived by Dick-
ens et al. that maximised the true skill statistic, which
can be used to convert suitability value into binary spe-
cies presence/absence [39]. The parameter k referred to
the over-dispersion parameter of the offspring distribu-
tion, and a smaller value would lead to a larger variation
in the number of secondary infections produced by each
primary infection, and a higher chance of zero offspring.
Due to the unavailability of the over-dispersion param-
eter estimates derived from Zika case data, we took a
conservative approach and set k to be 0.1 (i.e. highly
over-dispersed offspring distribution) following previ-
ous work by Grubaugh et al. [22], to minimise false
positives in our final results. In each iteration s = 1, …,
10, 000, we derived the probability that no onward
spread of ZIKV occurred following importation in

spatial unit j during 2015–2016, denoted by θðsÞj .

These 10,000 probability values were then averaged to
obtain θ j , representing the probability of no onward
ZIKV spread in spatial unit j averaged over the uncer-
tainty in the weekly numbers of imported infections
and local ZIKV transmissibility:
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θ sð Þ
j ¼

Y
t

1þ
R0

s − 1ð Þ%250þ1ð Þ
j;t ∙I aeg s − 1ð Þ%250þ1ð Þ

j ≥0:24
h i

k

0@ 1A
g

− M sð Þ
•→ j;t ∙k

;

θ j ¼ 1
10; 000

X10;000
s¼1

θ sð Þ
j :

It should be noted that in the above calculation, we
ignored ZIKV immunity among the local population
of susceptible spatial unit j accumulated via weekly
ZIKV importation. This was because the number of

imported ZIKV infections
X
i;t

Mi→ j;t ½ j� over 2015–

2016 was estimated to account for at most ~ 0.03% of
the entire local population among all the susceptible
spatial units j, and hence was negligible.
Under each of the thermal restrictions previously

specified, we obtained a list of susceptible spatial
units with a high chance of cryptic ZIKV spread
during 2015–2016 through the following steps. First,
we only retained all the susceptible spatial units with
θ below 0.05, and considered any θ values below 0:
05= j fθg j as highly significant findings (provided the
spatial unit was also retained in the subsequent fil-
tering process). The calculation of 0:05= j fθg j can
be considered as a Bonferroni correction to control
for the type I error, where j fθg j referred to the
total number of spatial units for which θ was com-
puted. Next, we conducted a literature review to re-
move any remaining susceptible spatial units where
no evidence of historical or current spread of den-
gue, Chikungunya, or yellow fever was found, as
these spatial units were assumed to have very limited
potential for ZIKV transmission. Susceptible spatial
units without evidence of Ae. aegypti establishment
based on the existing literature were also excluded
even if Ae. albopictus was present, since the former
is known to be the primary vector for ZIKV
transmission.
Finally, we additionally excluded French Polynesia,

where a large proportion of the local population had
developed immunity against ZIKV due to a large out-
break there in 2013 [50], as our model implicitly as-
sumed the ZIKV seroprevalence for each susceptible
spatial unit to be zero at the start of 2015. Any
remaining susceptible spatial units with evidence of his-
torical ZIKV transmission but no outbreaks were
intentionally retained, since the population-level im-
mune landscape at the beginning of 2015 in these
spatial units was still poorly understood in general due
to incomplete or outdated serological data.

Results
Model validation results
We observed a high correlation between the estimated
total number of imported ZIKV infections and the re-
ported case count during 2015–2016 for each suscep-
tible spatial unit in the US (Pearson r = 0.913 for log10
transformed data). Except two data points, where either
the reported or the estimated value was zero, the rest of
the observations were close to a straight line with a slope
of one (Fig. 2a), suggesting our simulation results were
reasonably accurate provided the reporting rates were
not drastically different among these susceptible spatial
units within the same country. In addition, there was
overall a good agreement between the median R0 esti-
mates derived from the global risk model and those ob-
tained from the literature, with the majority falling
within the ±0.3 error band (Fig. 2b). Refer to Add-
itional File 4: Fig. S1 and Additional File 5: Fig. S2 for
visualisations of the global risk model outputs.

Estimated number of imported ZIKV infections and
reporting index
The majority of the susceptible spatial units in Africa and
Asia presented relatively low numbers of imported ZIKV
infections based on our simulations, which were generally
consistent with the reported case counts during 2015–
2016 (Fig. 3). However, a few exceptions within these con-
tinents were found. For example, we estimated that 432
(332–582) ZIKV infections were imported in Shanghai,
China, although not a single imported case was reported
by the city. Similarly, an estimated number of 473 (322–
734) ZIKV infections were imported in the Luanda spatial
unit in Angola during 2015–2016 without being detected.
As a by-product of the importation simulation model, we
estimated a reporting index for each susceptible spatial
unit, to quantify the probability of reporting a case with
each importation (Additional File 6: Table S1). Note that
for some countries presented in Fig. 3 and Additional File
6: Table S1, we were only able to find the total reported
number of imported Zika cases at a country level (e.g.
Australia, New Zealand). To facilitate the comparison of
the reported and simulated data, each of these countries
was treated as a single unit (only in Fig. 3 and Additional
File 6: Table S1).

Mapping the cryptic spread of ZIKV during 2015–2016
A total of 24 susceptible spatial units were identified to
have a high chance of cryptic ZIKV spread during 2015–
2016 under our primary scenario, of which 21 (87.5%)
are located in Asia or Africa (Table 2, Fig. 4). In particu-
lar, there were 10 susceptible spatial units estimated to
have a significant risk of cryptic ZIKV spread during
2015–2016 even under the highly conservative scenario
(i.e. thermal restriction for ZIKV transmission being 26–
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29 °C), namely, Luanda in Angola, Banten in Indonesia,
Maharashtra in India, Lagos in Nigeria, Taiwan and
Guangdong in China, Dakar in Senegal, Maputo in
Mozambique, Kinshasa in Congo DRC, and Pool in
Congo (Table 2, Fig. 4). Of all the 24 susceptible spatial
units identified, we found 8 where there exists evidence
of historical ZIKV circulation prior to 2015, although in
most cases the serological data were collected many de-
cades ago (Table 2) [51–56]. Refer to Additional File 7:
Table S2 for the estimated probability that no onward
spread of ZIKV occurred following importation during
2015–2016 in each susceptible spatial unit.
Note that some spatial units in our study may repre-

sent a group of subdivisions within a country. Within
each of these spatial units, only one subdivision had
nonzero incoming air passengers during 2015–2016 (see
the “Methods” section for more details), which was
assigned as the name for that spatial unit. For example,
the susceptible spatial unit named “Luanda” in Table 2
contained four other subdivisions in Angola in addition
to the Luanda subdivision itself. The list of all the first-
level country subdivisions within each susceptible spatial
unit was provided in Additional File 8: Table S3.

Discussion
This study unveils the potential cryptic spread of ZIKV
during 2015–2016 to further our understanding of the
virus’s circulation worldwide. This was achieved via inte-
grating heterogeneous data sources to model ZIKV’s
transmissibility, importation, and onward spread, com-
bined with the evidence of Aedes-borne disease trans-
mission potential from the existing literature. Although
ZIKV has received much less media attention ever since

the epidemic waned, our results highlight the geograph-
ical areas where future studies may be needed to investi-
gate if past or ongoing ZIKV circulation is present, in
preparation for possible epidemics in the future.
Overall, the global distribution of the number of

imported ZIKV infections based on our simulations was
consistent with the importation risk estimates derived by
Nah et al. [57], where countries in Western Europe and
the Americas experienced a higher risk of importation in
contrast to the majority of Asian and African countries.
Several spatial units in Asia and Africa, however, were es-
timated to have a large number of imported ZIKV infec-
tions, such as Shanghai in China and Luanda in Angola, in
agreement with the findings of Bogoch et al. [17]. Differ-
ent from the previous studies, we directly estimated the
absolute number of imported infections at a reasonably
high spatial resolution, and our results were found to cor-
relate very well with the imported case counts reported by
different susceptible spatial units in the US.
To date, new evidence of ZIKV transmission continues

to accumulate, which enables our estimated geographical
extent of cryptic ZIKV spread to be partially validated.
On 26 December 2016, the first Zika case in Angola was
identified in a 14-year-old boy residing in Luanda, im-
mediately after the initiation of ZIKV RT-PCR testing in
the country [58]. Correspondingly, our model success-
fully detected autochthonous ZIKV transmission in
Luanda, with the estimated probability of no indigenous
cases occurring during 2015–2016 being the lowest
(8.53 × 10−31) among all the 24 susceptible spatial units
listed in Table 2. Note that we classified Luanda as a
susceptible spatial unit in our study, since the first de-
tected case was not announced until the early January of

Fig. 2 Model validation results. a Validation of the importation simulation model. The dashed line was based on a linear regression model with the
slope fixed to be one fitted to all observations on a log10 scale excluding the two red dots, which show that the reported or the estimated value was
zero. b Comparison of R0 values obtained from our estimation versus the existing literature. The grey polygon denotes the ± 0.3 error band and the
red dot refers to the R0 estimate at the temperature 25 °C in French Polynesia by Zhang et al. [11], which was used to calibrate the model
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2017 [59]. Besides Luanda, Tamil Nadu in India reported
its first autochthonous Zika case in July 2017 [60]. Based
on our model, 31 (19–46) ZIKV infections were
imported in Tamil Nadu during 2015–2016, with the
chance of no onward spread following these imported
infections being low (0.0003). Thus, it was possible that
ZIKV had already circulated silently in Tamil Nadu by
the end of 2016, which later gave rise to the first re-
ported case in 2017. Moreover, in a recent study pub-
lished in October 2019, low ZIKV seroprevalence was

observed in serum samples collected from Southern
Taiwan at the end of 2015, providing evidence of pos-
sible undetected autochthonous transmission [61]. Over-
all, the abovementioned epidemiological evidence adds
to the credibility of our results, and underscores the ne-
cessity of local investigation in the rest of the susceptible
spatial units that were found to have a high potential of
cryptic ZIKV spread during 2015–2016.
In Africa, information on the ZIKV seroprevalence

and incidence remains limited and largely outdated, but

Fig. 3 ZIKV importation in each susceptible spatial unit during 2015–2016: a Reported case count vs b median estimate of the total number of
imported infections derived from the simulation model. Each country was treated as a single unit if the imported case count was reported at a
country level (e.g. Australia, New Zealand), to facilitate comparison of the two maps. All donor spatial units were coloured in grey
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recent evidence suggests that the virus has been silently
spreading in the continent for at least two decades [55]. Ac-
cording to Herrera et al., of the 387 serum samples col-
lected from febrile patients in Nigeria and Senegal during
1992–2016, 6.2% were positive for IgM to ZIKV and nega-
tive for dengue reactivity, with four samples from which
ZIKV envelope was amplified [55]. Thus, there are at least
two plausible interpretations for the 9 susceptible spatial
units in Africa listed in Table 2. These spatial units could
have indeed experienced ZIKV spread during 2015–2016,
which was undetected due to limited surveillance capacity.
Alternatively, the level of herd immunity prior to 2015 may
have been higher than currently known (due to paucity of
serological data), thereby successfully preventing ZIKV
transmission during 2015–2016. In either case, a significant
knowledge gap remains to be filled, and this is particularly
critical in light of the past or current spread of dengue, Chi-
kungunya, or yellow fever viruses in these spatial units,
which shows that the future risk of ZIKV epidemics should

not be ignored. For example, a dengue outbreak occurred
in Abidjan city, Côte d’Ivoire in 2019, where a total of 1776
suspected dengue cases were reported between 1 January
and 25 June [62]. Recent entomological investigations car-
ried out in Abidjan also revealed a very high larval index of
Ae. aegypti, the primary vector species of ZIKV [63]. Else-
where, a cross-sectional study conducted between Novem-
ber 2015 and June 2016 in Kinshasa, Democratic Republic
of Congo, found that 30.2% and 26.4% of the participants
had experienced past dengue and Chikungunya infections
respectively [64]. Although no acute ZIKV infections were
found, of note is that much fewer blood samples (n = 80)
were tested for ZIKV, with no urine samples collected and
only RT-PCR performed [64]. Thus, the possibility of low-
level cryptic transmission of ZIKV in Kinshasa remains to
be investigated.
In South Asia, the presence of ZIKV antibodies in

humans was first discovered in India in 1952 [53]. More re-
cently, India reported its first three laboratory-confirmed

Table 2 Susceptible spatial units with a high chance of cryptic ZIKV spread during 2015–2016 (refer to Additional File 8: Table S3 for
the list of first-level country subdivisions belonging to each susceptible spatial unit)

Country Spatial unit
name

Estimated probability (θ) that no onward spread of ZIKV had occurred
during 2015–2016

Evidence of historical ZIKV circulation
prior to 2015 (Y/N)

Angola Luanda* < 0.0001 Y [51]

Indonesia Banten* < 0.0001 Y [52]

India Maharashtra* < 0.0001 Y [53]

Nigeria Lagos* < 0.0001 Y [54]

China Taiwan* < 0.0001 N

China Guangdong* < 0.0001 N

India Karnataka 0.0002 N

India Tamil Nadu 0.0003 Y [53]

India Delhi 0.0004 N

USA Hawaii 0.0004 N

Senegal Dakar* 0.0004 Y [55]

Uruguay Canelones 0.0004 N

Réunion Réunion 0.0004 N

Australia Queensland 0.0005 N

Indonesia Bali 0.0007 N

Mozambique Maputo* 0.0007 Y [56]

Ghana Greater Accra 0.0018 N

Congo DRC Kinshasa* 0.0019 N

India Kerala 0.0050 N

Saudi Arabia Makkah 0.0115 N

India Goa 0.0130 N

India Telangana 0.0190 Y [53]

Congo Pool* 0.0281 N

Côte d’Ivoire Abidjan 0.0470 N§

*θ remained lower than 0.05 even within the highly conservative scenario
§There was evidence of historical ZIKV circulation prior to 2015 in Côte d’Ivoire, but it was not clear whether any of the positive serum samples were collected
from the Abidjan spatial unit or not
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indigenous Zika cases in Gujarat on 15 May 2017, months
after they were detected [65]. Subsequently, another case
was found in Tamil Nadu during the same year [60]. After
testing over 35,000 febrile illness serum samples, the Indian
government had only identified the aforementioned four
cases by 2017, indicating a very low level of ZIKV circula-
tion [66]. Interestingly, we have found seven spatial units in
the country with a high potential of cryptic ZIKV spread
during 2015–2016, and these included Tamil Nadu but not
Gujarat. Based on the representative partial sequences, the
virus from Gujarat seems to belong to an old Asian strain,
in contrast to the ZIKV in Tamil Nadu, which was classi-
fied as the then-current Asian outbreak strain [67]. It is
thus possible that the unreported cases in Gujarat were not
imported from any of the donor spatial units in our study
and hence were not detected by our model. The four Zika
cases reported in 2017, together with the following 2018
outbreaks in Rajasthan and Madhya Pradesh [67], demon-
strate the importance of strengthening ZIKV surveillance in
other states as well, especially the ones where we found a
high potential for cryptic spread of ZIKV. Given the consid-
erably high intensity of dengue transmission in India [68],
any low-level spread of ZIKV could be easily undetected
due to misdiagnosis, until the virus causes a major outbreak
possibly in the future.
In Southeast Asia, data on ZIKV epidemiology is scarce

despite the long-term circulation of the virus [7]. Our study
has identified two provinces in Indonesia—Bali and Ban-
ten—where cryptic ZIKV spread was likely to have oc-
curred during 2015–2016. The earliest serological evidence
of ZIKV transmission within the country was obtained in
Central Java and Lombok around the 1970s [69, 70], and
the virus was found to remain circulating in the early 2010s

[52]. Specifically, among the 662 samples collected from
healthy children aged 1–4 years in 2014, 9.1% were ZIKV-
seropositive, who came from 11 provinces including Banten
but not Bali [52]. The total number of serum samples ob-
tained from these two provinces was limited (67 combined)
[52], and the level of ZIKV immunity among the general
population was still unclear. Besides Southeast Asia, we also
found two spatial units in East Asia that may require future
risk assessment, namely Guangdong and Taiwan. Both
spatial units have reported dengue outbreaks within the
past few years [71, 72], as well as imported ZIKV infections
as recently as the early 2020 [73, 74]. These, combined with
the latest discovery of low ZIKV seroprevalence in southern
Taiwan and a neighbouring province of Guangdong [61,
75], suggest that the potential risk of future ZIKV outbreaks
should not be overlooked.
In West Asia, our results highlight only one spatial unit

that requires special attention, namely Makkah. In 2009, a
dengue epidemic occurred in the city, with a 20-fold in-
crease in the incidence rate compared with the year before,
and the disease became endemic since then [76], suggesting
the local environment could also be suitable for ZIKV trans-
mission. We estimated that at least 22 (12–36) ZIKV infec-
tions were imported in Makkah during 2015–2016, with a
very low chance of no onward transmission (0.012). Not-
ably, the city receives ~ 200,000 pilgrims from Indonesia an-
nually [77], where ZIKV is presumed to be endemic [52],
thus facing a potentially ongoing risk of ZIKV importation
every year. To date, no indigenous Zika cases in Makkah
have been reported, but serological data indicate that the
virus may have circulated elsewhere within the country. In a
recent study involving 410 asymptomatic pregnant women
in Najran, 24 tested positive for anti-ZIKV IgM and 52 were

Fig. 4 Susceptible spatial units with a high chance of cryptic ZIKV spread during 2015–2016 (shown in red). If evidence of historical ZIKV
circulation prior to 2015 was found in any of these locations, the corresponding polygon is striped. Susceptible spatial units coloured in dark red
refer to those that continue to have high potential for cryptic ZIKV spread during 2015–2016 under the highly conservative scenario (i.e. thermal
restriction for ZIKV transmission being 26–29 °C)
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anti-ZIKV IgG positive, none of whom had travelled abroad
[78]. Although no acute infections were detected using RT-
PCR and cross-reactivity with dengue virus could not be ex-
cluded, the study points to the possibility of silent ZIKV
spread in Saudi Arabia, which needs to be further assessed
by larger studies at the nationwide level [78].
Outside of Africa and Asia, we found high potential for

cryptic ZIKV spread during 2015–2016 in the following
spatial units: Canelones in Uruguay (which covers the vast
majority of the country), Hawaii in the USA, and Queens-
land in Australia. Being one of the very few countries in
the Americas without any ZIKV transmission reported to
date [7], Uruguay also did not find any autochthonous
dengue cases until an outbreak which occurred in the
early 2016 [79]. The high estimated risk of cryptic ZIKV
spread in the Canelones spatial unit during 2015–2016
was likely to be attributed to the very large number of
imported ZIKV infections, which we estimated to be 2043
(1537–2913). In contrast, both Hawaii and Queensland
were estimated to have much fewer imported ZIKV infec-
tions but meanwhile higher environmental suitability for
Ae. aegypti, with multiple historical dengue epidemics re-
ported to date [80, 81], and hence may face a higher risk
of local ZIKV outbreak in the future.
Zika has not gone away. It is thought that low-level

transmission is still ongoing in many countries in the
world [7]. The identification of locations with likely cryp-
tic spread of ZIKV during the 2015–2016 global epidemic
can have significant public health implications, as evi-
denced by the previous silent circulation of the virus in
northeast Brazil that eventually caused a huge epidemic
nationally and internationally [82]. Even in spatial units
where winter months exist (e.g. Guangdong), ZIKV can be
transmitted vertically in Ae. aegypti as a means of survival
under adverse conditions, and thus the epidemiological
importance of cryptic ZIKV spread in these areas should
not be discounted [83]. In addition, improving knowledge
about global ZIKV spread could also contribute to a better
understanding of dengue epidemiology, given the immune
interactions between these closely-related flaviviruses as
demonstrated by a recent study [84].
Our study must be interpreted in light of the following

limitations. For each susceptible spatial unit, we were un-
able to quantify the population-level immunity immedi-
ately prior to the 2015–2016 global ZIKV epidemic,
largely owing to the paucity of updated serological data,
which also include antibody titre data that are needed to
account for the effect of pre-existing dengue immunity on
the susceptibility to ZIKV infection in each location [85].
This is compounded by the complex effect of vector-virus
genetic interactions on ZIKV transmissibility [86], which
is still poorly understood in general and outside the scope
of our study. In addition, we did not account for land or
sea transport in our analysis, and assumed their impact on

our estimates to be limited given that most ZIKV infec-
tions that were imported from donor to susceptible spatial
units involved air travel, although short-range commuting
flows could play a more important role in the epidemic
invasion path once the virus was introduced to a new
country or continent [87]. We also did not consider
importation caused by infected passengers in transit who
entered a country as short-term visitors before reaching
their final destinations, due to the generally short LOS
presumed for this relatively small number of individuals.
Besides, our study did not account for the impact of wea-
ther variables such as rainfall on the seasonal variation in
vector-to-host ratios, which is challenging to model on a
global scale and can be further explored in future work.
Finally, we relied on only the locations with reported in-

digenous Zika cases as sources of importation, and hence,
both the estimated number of imported infections and the
geographical extent of cryptic ZIKV spread during 2015–
2016 were conservative. In other words, it is not possible
to reveal all the locations at a high risk of cryptic ZIKV
spread in a single modelling study, and the findings gener-
ated in this study were conditional on the currently avail-
able data only. For instance, it is thought that ZIKV may
be endemic in many parts of Southeast Asia, but epi-
demiological data are seriously lacking [7], thereby hinder-
ing a more comprehensive analysis of ZIKV spread within
the region. Nonetheless, this study has made an important
contribution to narrowing the knowledge gap of the global
ZIKV epidemiology and has also laid a foundation for fu-
ture studies that attempt to further explore this important
topic. For example, once previously undetected circulation
of ZIKV is confirmed by serological/RT-PCR testing at
locations that we estimated as having a high potential of
cryptic ZIKV spread, future modelling studies can then
aim to identify geographical areas with (1) high connectiv-
ity to the aforementioned locations and (2) local evidence
of Aedes-borne disease transmission potential, to further
narrow this key knowledge gap.

Conclusions
In conclusion, our study has provided valuable insights into
the potentially high-risk locations for cryptic ZIKV circula-
tion during the 2015–2016 pandemic. Enhanced surveil-
lance is recommended in these geographical areas to
mitigate the risk of future epidemics—locally, nationally,
and even globally—given the world is increasingly vulner-
able to pandemic threats due to the expansion of air traffic
networks. In the context of the growing importance of
enhanced vigilance and epidemic preparedness in
today’s world, our modelling framework can also be
adapted to identify areas with likely unknown spread of
other emerging vector-borne diseases, which has im-
portant implications for public health readiness espe-
cially in resource-limited settings.
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