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Abstract

Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria

disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment

for malaria after wide-spread resistance to chloroquine emerged and, although replaced by

artemisinin combinations, is currently used as intermittent preventive treatment of malaria

in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-

Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven

by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydroptero-

ate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limit-

ing pfgch1 gene and promoter, have recently been described. However, the genetic make-

up and prevalence of those amplifications is not fully understood. We analyse the whole

genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic coun-

tries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different

forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates,

respectively. Amplifications are more likely to be present in isolates with a greater accumula-

tion of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and

there was evidence that the frequency of pfgch1 variants may be increasing in some African

populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate

containing antibiotics used for the treatment of bacterial infections. The selection of P. falcip-

arum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps

substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in

vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform
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the surveillance of SP drug resistance, its prophylactic use, and future experimental work to

understand functional mechanisms.

Author summary

Malaria causes approximately 435,000 deaths per year, concentrated in sub-Saharan

Africa and among children under the age of five years. Global efforts to control and elimi-

nate malaria are hampered by the emergence of Plasmodium falciparum malaria parasites

resistant to currently available antimalarial drugs. Sulfadoxine-pyrimethamine (SP) was

used globally as a first-line treatment for malaria and, although replaced by artemisinin

combinations, is still used for the prevention of malarial disease in vulnerable groups (e.g.

pregnant women). SP resistance is caused by mutations in the P. falciparum parasite genes

pfdhfr and pfdhps, but recently novel structural variants in and around the pfgch1 gene

have been described. By analysing genome sequence data of 4,134 P. falciparum across 29

malaria endemic countries, we establish there are at least ten different pfgch1 structural

variants, existing in the presence of pfdhfr and pfdhps mutations, and occur increasingly

and at high frequency in some Southeast Asian and African populations. These pfgch1
structural variants may enhance the survival of those parasites with pfdhfr and pfdhps sub-

stitutions, potentially threatening the efficacy of SP for prevention of malaria in vulnerable

groups. Therefore it is important that they are monitored in molecular surveillance stud-

ies. Our work will assist epidemiological studies, laboratory and surveillance activities

looking at the diversity and role of pfgch1 structural variants and their prevalence across

malaria endemic regions, especially in countries using SP regimens.

Introduction

The Plasmodium falciparum parasite inflicts high morbidity and mortality on human popula-

tions in malaria endemic regions, especially in sub-Saharan Africa. To inform control mea-

sures, investigations of P. falciparum adaptation for host immune evasion, antimalarial drug

resistance and other important biological mechanisms have focused on analyses of genome-

wide polymorphisms [1, 2]. A number of studies have revealed SNPs and structural variants

(e.g. duplications, amplifications or copy number variants) linked to antimalarial drugs, such

as chloroquine, sulfadoxine-pyrimethamine (SP) and artemisinin [3]. SP is a combination

drug which inhibits the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps)
enzymes in the folate pathway of the parasite, and is widely used as intermittent preventive

treatment of malaria in pregnancy (IPTp) and in infants as part of seasonal malaria chemopro-

phylaxis (SMC) in sub-Saharan Africa. SP became a first-line treatment for malaria after wide-

spread resistance to chloroquine, but was replaced by artemisinin combination therapies for

uncomplicated cases with the increasing prevalence of P. falciparum mutant alleles that confer

the parasite resistance to pyrimethamine in pfdhfr (N51I, C59R, S108N, I164L) and to sulfa-

doxine in pfdhps (I431V, S436A/F, A437G, K540E/N, A581G, A613S/T) genes [4, 5]. Sequen-

tial accumulation of the several point mutations leads to increased levels of resistance by

reducing binding affinity of the drug to the folate pathway enzymes dhps and dhfr [6].

Evidence across many countries has shown that longer term usage of SP leads to a greater

risk of resistance haplotypes in pfdhps and pfdhfr genes [1]. The increased prevalence in para-

sites with resistant haplotypes is due to selection by drug pressure from the use of SP for IPTp
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and SMC as well as the use of anti-folate containing antibiotics. Fixation of some of the key

SP-resistant mutations in the parasite population may occur, despite discontinuation of SP as

the first-line treatment for more than a decade [7], and understanding these genetics dynamics

is crucial for malarial disease control. Genomic analyses of the malaria parasites have revealed

copy number variations of the GTP cyclohydrolase I gene (pfgch1), which encodes the first and

the rate-limiting enzyme in the folate biosynthesis pathway. Increased copy number of pfgch1
has been linked to SP resistance in Southeast Asia [8], with a direct association to pfdhfr and

pfdhps alleles [9]. Similarly, a pfgch1 promoter copy number variation (amplification) in Mala-

wian parasites with quintuple mutations (I51-R59-N108-G437-E540) has been identified,

which differs from the whole gene amplification found in Southeast Asia [1, 10]. The multiple

copies of pfgch1 are thought to compensate for the putatively fitness-reducing mutations in

pfdhfr and pfdhps by providing higher concentrations of upstream substrates in the folate-bio-

synthetic pathway [10].

Here we investigate the genetic diversity in the pfgch1, pfdhfr and pfdhps genes across

4,134 P. falciparum isolates from 29 malaria endemic populations. Using both long and short

sequence data, we reveal there are multiple forms of pfgch1 promoter and gene copy number

variations, whose frequencies are heterogeneously distributed geographically, and linked to

pfdhfr and pfdhps haplotypes. Worryingly, we reveal an overall trend towards an increased

prevalence of the known pfdhfr and pfdhps resistant markers, which may be attributed to SP

drug pressures, and that the presence of amplified pfgch1 is exacerbating the existing problem

and may be assisting with maintaining these resistant parasites and the evolution of new

mutants.

Materials and methods

Short read sequencing data

Publicly available raw sequence data were downloaded for P. falciparum field isolates

(n = 6,236; 30 countries; from 2001 to 2015) from the European Nucleotide Archive (study

accessions ERP000190 and ERP000199). These data include Illumina raw sequences from the

MalariaGEN Community Project [11]. The data were aligned to the 3D7 strain reference

genome (v3.1) using bwa-mem software (default parameters, except –c 100 –T 50). Multiplicity

of infection (MOI) was calculated using estMOI software [12] and the threshold was obtained

based on previous work [13]. Samples with MOI >1 (estMOI > 30%) and overall genomic

coverage<10-fold were removed from the dataset, leading to 5,280 isolates used for further

analysis. SNPs and small indels were called using the samtools software suite, and those with a

minor allele frequency >1% in drug resistance loci retained. The final dataset contained 4,134

samples (see pathogenseq.lshtm.ac.uk for a list of ENA accession numbers) without missing or

mixed SNP genotype calls in pfdhfr, pfdhps and pfgch1. Large duplications were called by

applying Delly software (v0.8.1) with default settings, and their breakpoints inferred using

split-reads. All structural variants of low-quality (supporting paired-end calls < 3 or average

mapping quality < 20) and>100kbp in length were removed, with 1,323 potential events

located in the pfgch1 gene locus or its promoter region. All isolates with multiple calls in the

region of interest were also removed and 1,273 remaining duplications were clustered (start

and end breakpoints ± 50) to create 10 unique events. Coverage at a chromosome, regional

and locus level was calculated from the alignment files for each isolate, and used to infer a

pfgch1 gene and promoter copy number in those isolates with amplifications. The copy num-

ber estimation involved normalisation using a median coverage of isolates with no duplica-

tions. African samples were classified into geographical regions based on an established

grouping [14].
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Long read sequencing data

Four laboratory parasite strains (K1 Thailand, D10 Papua New Guinea, NF54 Africa, T996

Thailand) were cultured under standard conditions [15] at the LSHTM and DNA was

extracted using the Genomic-tip 100/G kit (QIAGEN) according to its protocol. The DNA was

sequenced on the PacBio RSII long read technology. Chromosome-wide assemblies of PacBio

sequence data were also available for a further five laboratory strains (7G8 Brazil, DD2 Indo-

china, GB4 Ghana, HB3 Honduras, IT Brazil) and nine field isolates (GN01 Guinea, SN01 Sen-

egal, CD01 Congo, ML01 Mali, GA01 Gabon, KE01 Kenya, SD01 Sudan, and KH01 and KH02

Cambodia) (accession number ERP009847) [16]. Raw PacBio sequencing data were analysed

in the SMRT Portal software using the Hierarchical Genome Assembly Process (HGAP3)

pipeline, resulting in corrected long reads for each sample, and total genome sizes of 24Mbp.

Corrected reads were aligned to the 3D7 reference genome (v3.1) using NGMLR (v0.2.7) soft-

ware with default settings. Structural variants were identified using Sniffles (v1.0.11) software

with default parameters. Manual verification was performed through alignment of candidate

regions with the Mauve software [17]. All of the PacBio strains with reported structural vari-

ants in the pfgch1 locus or its promoter region were used to validate any possible putative

duplications found in the Illumina short read analysis, estimate breakpoints, and distinguish

different types of amplifications identified.

Statistical analysis

The calculation of the frequencies and visualisation of data were performed in R software

using multiple packages (e.g. dplyr, tidyr, tibble, gggenes, rworldmap and tidyverse). Wilcoxon

tests were used to compare the differences in mutation frequencies between structural variant

and geographical groups. Genotypic resistance was established for chloroquine using pfcrt
(C72S, M74I, N75D/E, K76T, A144F, L148I, I194T, A220S, Q271E, A326D/S, I356L/T and

R371I) and pfmdr1 (N86Y) mutations [18–20], and for artemisinin using pfkelch13 mutations

(F446I, Y493H, P574L, R539T, and C580Y) [21]. Pearson correlation coefficients and allelic

associations (e.g. linkage disequilibrium r2) were calculated between SNPs and amplifications

using the polycor and LDcorSV packages.

Results

Global frequencies of pfdhfr and pfdhps genotypes

High quality SNPs for genes in the folate pathway were characterised from Illumina whole

genome sequencing data across 4,134 isolates representing West Africa (n = 1,254, 10 coun-

tries), Central Africa (n = 337, 2 countries), East Africa (n = 270, 3 countries), Southern Africa

(n = 234, 3 countries), Horn of Africa (n = 22, 1 country), South(east) Asia (n = 1,890, 6 coun-

tries), Oceania (n = 95, 2 countries), and South America (n = 32, 2 countries). There were thir-

teen common non-synonymous mutations (minor allele frequency > 1%) in pfdhfr (N51I,

C59R, S108N, I164L and S306F) and pfdhps (I431V, S436A, S436F, A437G, K540E, K540N,

A581G and A613S), which collectively formed 38 common genotypes across all of the studied

regions (frequency of>1% for any of the region) (Table 1; S1 Table).

A quadruple pfdhfr/pfdhps mutant genotype (pfdhfr N51I/C59R/S108N and pfdhps A437G;

IRNIS-ISGKAA) was frequent in Central Africa (59.3%) and West Africa (30.1%), consistent

with other studies [22, 23]. Furthermore, the octuple mutant (IRNIS-VAGKGS) with unique

mutations in pfdhps I431V and A613S was characterised primarily in Benin (26.2%) and Cam-

eroon (14.6%) (S2 Table) [5]. The pfdhps I431V is generally thought of as West African because

it was first described in Nigeria, but in our limited set of isolates from that country (n = 19) it
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Table 1. The frequency (%) of pfdhfr/pfdhps genotypes by region across the 4,134 P. falciparum isolates.

Genotypes � No.

muts

West Africa

(n = 1254)

Central Africa

(n = 337)

East Africa

(n = 270)

Southern Africa

(n = 234)

Horn of

Africa (n = 22)

South(east) Asia

(n = 1890)

Oceania

(n = 95)

South America

(n = 32)

NCSIS-ISAKAA WT 1.8 - - 1.3 - 0.4 - -

NCSIS-ISGKAA 1 5.5 - - - - - - -

NCSIS-IAAKAA 1 6.1 - - - - - - -

NCNIS-ISAKAA 1 - - - - - - - 56.3

NCSIS-IAGKAA 2 3.4 - - - - - - -

NRNIS-ISAKAA 2 - - - - - 1.5 9.5 -

ICNIS-ISAKAA 2 - - 1.5 - - - - 9.4

ICNIS-ISGKAA 3 0.7 9.8 - - - - - -

NRNIS-ISGKAA 3 3.1 - - - - 0.8 - -

IRNIS-ISAKAA 3 5.7 2.1 5.2 - - 4.1 - -

NRNIS-IAAKAA 3 1.3 - - - - 0.2 - -

NRNIF-ISAKAA 3 - - - - - - 48.4 -

NRNIS-ISGEAA 4 - - 2.2 1.7 - 0.3 4.2 -

NRNIS-IAGKAA 4 1.9 - - - - 0.7 - -

NRNIF-ISGKAA 4 - - - - - - 7.4 -

ICNIS-ISGEAA 4 - 1.2 5.2 - - - - -

IRNIS-ISGKAA 4 30.1 59.3 - 3.4 - 3.4 - -

IRNIS-IAAKAA 4 14.6 3.3 2.2 - - 0.5 - -

NRNIS-IAGEAA 5 - - - - - 1.7 - -

NRNIF-ISGEAA 5 - - - - - - 28.4 -

ICNIS-ISGEGA 5 - - - - - - - 9.4

IRNIS-ISGKGA 5 - - - 1.7 - 0.5 - -

IRNIS-ISGEAA 5 0.9 1.8 58.1 89.3 86.4 3.2 - -

IRNIS-IAGKAA 5 15.8 5.0 - - - 4.2 - -

NRNLS-ISGEGA 6 - - - - - 1.0 - -

NRNLS-IAGEAA 6 - - - - - 1.7 - -

IRNIS-ISGNGA 6 - - - - - 4.1 - -

IRNIS-ISGEGA 6 - 1.2 20.0 - - 3.8 - -

IRNIS-IAGKAS 6 3.0 1.8 - - - - - -

IRNIS-IAGEAA 6 - - - - - 9.0 - -

IRNIS-VAGKAA 6 - 4.2 - - - - - -

IRNLS-ISGEAA 6 - - - - - 1.3 - -

IRNLS-IFGKAA 6 - - 1.1 - - - - -

IRNLS-ISGNGA 7 - - - - - 14.1 - -

IRNLS-ISGEGA 7 - - - - - 26.7 - -

IRNLS-IAGEAA 7 - - - - - 10.5 - -

IRNLS-IFGEAS 8 - - - - - 1.4 - -

IRNIS-VAGKGS 8 1.7 6.8 - - - - - -

WT wild-type; No. muts is the number of mutations deviating from wild-type;

� based on pfdhfr (N51I, C59R, S108N, I164L and S306F) and pfdhps (I431V, S436A/S436F, A437G, K540E/K540N, A581G and A613S; frequencies greater than 15% are

bolded)

https://doi.org/10.1371/journal.pgen.1009268.t001
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was not detected. Other prevalent genotypes in West Africa were the quadruple (IRNIS-IAA-

KAA) (14.6%) and quintuple (IRNIS-IAGKAA) (15.8%) mutant genotypes. The quintuple

mutant genotype (IRNIS-ISGEAA) was predominant in Southern Africa (89.3%), and eastern

regions of the continent (Horn of Africa, 86.4%; East Africa, 58.1%). Furthermore, in eastern

regions, the IRNIS-ISGEGA genotype mutant was reported (overall 20.0%; Tanzania, 25.0%)

(S2 Table). The most prevalent genotypes in Southeast Asia were the septuple mutants (IRNL-

S-ISGEGA, 26.7%; IRNLS-ISGNGA, 14.1%) which include the regional specific pfdhfr I164L

mutation, and differ between themselves by the pfdhps K540E/N SNP. The IRNLS-ISGEGA

genotype mutant was most frequent in Thailand and Myanmar, while the IRNLS-ISGNGA

was frequent in Cambodia (S2 Table). Two genotypes were prominent in Oceania (NRNIF-

ISAKAA, 48.4%; NRNIF-ISGEAA, 28.4%), which were not prominent in other regions

(<0.1%), and contain a regional specific mutation (pfdhfr S306F). Lastly, the South American

population was characterised by the NCNIS-ISAKAA (56.3%) genotype mutant.

Pfgch1 amplification types and their global distribution

Across the 4,134 isolates we identified ten unique amplifications (denoted DupA—DupJ),

present in 1,171 (28.3%) samples (Fig 1). Amplifications were in the pfgch1 gene or promoter

regions. The majority (681/1171; 58.2%) involved pfgch1 promoter only regions (pDupI,

pDupJ) and therefore were of short length, and were found exclusively in African populations

(Table 2; S3 Table). The pfgch1 genic amplifications (gDupA-H) were longer in length and

had high variability in frequency (Fig 1). Amplifications gDupA (34 kb, Cambodia, n = 3),

gDupB (25 kb, Ethiopia, n = 2) and gDupC (19 kb, Cambodia, n = 2; Kenya, n = 3) were less

prevalent than others, but longer and included up to six neighbouring genes (PF3D7_1223500,
Pf3D7_1223600, VIT, YHM2, PF3D7_1223900, PF3D7_1224100). The gDupD amplification

(12 kb, Madagascar, n = 2) contained only pfgch1, PF3D7_1224100 and PF3D7_1224200
loci. The gDupE amplification contained 5 genes (VIT, YHM2, PF3D7_1223900, pfgch1,

Fig 1. The pfgch1 amplifications (DupA-J) and their frequencies (%). A. Amplification (Dup) genetic map. B.

Barplot of amplification (Dup) frequencies by each geographical region.

https://doi.org/10.1371/journal.pgen.1009268.g001
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PF3D7_124100) and was the most frequent in Southeast Asia (n = 279, 14.8%; Thailand,

Myanmar and Cambodia), but was also present in African countries (n = 10, 0.5%; Ghana,

Cameroon, Democratic Republic of Congo). The gDupF (�7.3 kb) amplification spans four

loci and is present in South/Southeast Asia (n = 98, 5.2%; Thailand, Myanmar and Bangladesh)

and Ghana (n = 3, 0.6%). The gDupG amplification only involves the modification of the

pfgch1 locus and its promoter, and was mostly observed in Southeast Asian isolates (n = 59,

3.1%; Cambodia, Vietnam and Thailand) and Ghana (n = 8, 1.7%). Additionally, we found 5

unique amplifications suggesting that more variants may exist across regions of interest.

Collectively, one of every five Southeast Asian isolates (23.1%) had a gene (gDupE, gDupF

or gDupG) amplification, with the highest occurrence in Thailand and Myanmar (38.9% and

34.4% respectively). The gDupH is an amplification of the pfgch1 locus, but not its promoter,

and was almost exclusively observed in African samples (n = 19, 0.9%; Cameroon, n = 12). The

gDupF, gDupG and gDupH amplifications have been reported in Thailand [8]. While pDupI

and pDupJ amplifications appear exclusively in Africa and consist of the promoter of the

pfgch1 gene (chr. 12: 973,848–973,907; EPD promoter ID: CZT99398_1 [24]). The pDupI

(�400 kb) amplification was discovered in Malawian isolates [1] and occurs with a high fre-

quency in the African continent (West 18.4%, Central 21.1%; East 65.2%, Southern 85.9%).

The pDupJ (�310bp) amplification is a novel modification reported in two isolates.

Confirming amplifications and their breakpoints using long-read sequences

To assist the refinement of amplification breakpoints and study of the surrounding sequences,

we analysed long-read PacBio data for eighteen P. falciparum strains, including nine labora-

tory (K1, D10, NF54, T996, 7G8, DD2, GB4, HB3, IT) and nine field isolates (GN01, SN01,

CD01, ML01, GA01, KE01, SD01, KH01 and KH02). Strains GB4 (Ghana) and T996 (Thai-

land) had a gDupF amplification with similar breakpoints (chr. 12 location: GB4 968,859–

976,203; T996 968,862–976,203), but different numbers of copies (Ghana 3; T996 4). The

gDupG amplification was identified in the Cambodian field isolate KH02 (chr. 12: 973,794–

976,052; 2 copies). The gDupH amplification was confirmed in the NF54 African laboratory

strain (chr. 12: 974,231–976,053) and carried four copies of the pfgch1 gene. Importantly,

Table 2. Distribution (%) of the pfgch1 amplifications (gene DupA-H; promoter DupI-J).

Region n Any A B C D E F � G �� H ��� I + I ++ I +++ J

West Africa 1254 20.3 - - - - 0.3 0.2 0.7 0.6 4.5 4.3 9.6 0.1

Central Africa 337 26.4 - - - - 1.8 - - 3.6 8.3 11.9 0.9 -

East Africa 270 66.3 - - 1.1 - - - - - 46.3 18.5 0.4 -

Southern Africa 234 87.2 - - - 0.9 - - - - 59.0 26.9 - 0.4

Horn of Africa 22 9.1 - 9.1 - - - - - - - - - -

Southeast Asia 1890 23.4 0.2 - 0.1 - 14.8 5.2 3.1 0.1 - - - -

� GB4, T996;

�� KH02;

��� NF54;

+ KE01;

++ KE01/ML01;

+++ ML01;

DupA—H are gene duplications; DupI (3 types) and DupJ are promoter duplications; (n = 107), Colombia (n = 16) and Peru (n = 22) have no amplifications;

frequencies greater than 10% are bolded

https://doi.org/10.1371/journal.pgen.1009268.t002
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geographical locations of the PacBio pfgch1 copy number variants matched those identified in

the clinical isolates with Illumina data.

The pDupI pfgch1 promoter amplification was observed in field isolates from Kenya (KE01,

466bp region; chr. 12: 973,804–974,270; 3 copies) and Mali (378bp; chr. 12: 973,835–974,213; 2

copies), where differences in their length and number of copies suggest independent origin of

these variations. Interpreting the Illumina pDupI amplifications, there appear to be at least

three distinct events based on these breakpoints, two of them matching long-read sequencing

denoted as pDupI_1 (KE01) and pDupI_3 (ML01), while in a third (pDupI_2) the start posi-

tion overlaps with KE01 and the end with the ML01 strain (denoted KE01/ML01) (S1 Fig).

All three types of pDupI amplifications contain a confirmed promoter (EPD promoter ID:

CZT99398_1) and are frequent across African populations (n = 679, 32.1%; pDupI_1, n = 347,

16.4%; pDupI_2, n = 207, 9.8%; pDupI_3, n = 125, 5.9%) [24]. The pDupI_1 modification was

the most prevalent amplification found in Southern (138/234, 59.0%) and East Africa (125/

270, 46.3%), affecting Malawi (64.2%), Tanzania (46.8%) and Kenya (46.0%) (Table 2; S3

Table). For pDupI_2, the highest prevalence was observed in Southern (26.9%), East (18.5%)

and Central Africa (11.9%), whilst pDupI_3 was found in West Africa (9.6%; Nigeria, 30.8%;

Ghana, 18.4%; Ivory Coast, 10.9%; Mauritania, 10.9%).

In 7G8 (Brazil), D10 (Papua New Guinea) and K1 (Thailand) long-read sequences, we

detected large copy number variants involving the pfgch1 gene and its neighbouring loci (chr.

12 location: 7G8 946,264–978,039; D10 962,087–992,006; K1 961,455–980,630); however, no

evidence of their existence was found in the clinical isolates using Illumina data (n = 4,134).

Almost all of the reported breakpoints are located in non-coding regions and near to long

repeats consisting of A and T nucleotides, confirming characteristics of copy number variant

formation across the highly repetitive P. falciparum genome [25].

Copy number variant analysis and frequency in global isolates

Copy number variation in pfgch1 has a potential role in sustaining SP resistance, and we esti-

mated the number of copies directly using relative sequencing coverage compared to chromo-

some 12-wide levels of non-amplified isolates (Fig 2). For field isolates with gDupA, gDupB,

and gDupC, we observed at least two copies, but in gDupD found in Madagascar there was

only one copy. For gDupE and gDupF, there tended to be greater copies in Southeast Asia

(median 2.66) than in West and Central Africa (median = 2.16) (Wilcoxon P = 0.03), which is

consistent with the higher number of copies found in T996 (Thailand, 4 copies) compared to

GB4 (Ghana, 3 copies) strains. The median number of copies of gDupG was approximately

one. For gDupH events, there were at least two copies in Central Africa (median 2.00) and at

least three copies for West African countries (median 3.17), consistent with the four copies of

the NF54 strain. It is possible that pDupI and pDupJ have a common origin, but inference is

difficult as there are only two pDupJ amplifications. There were differences in the the number

of copies of the pfgch1 promoter amplifications between regions in Africa (median: Southern

4.97, East 3.71, West 3.32, Central 2.41), consistent with differences in PacBio strains (copies:

Kenya KE01 3, Mali ML01 2), and potentially linked to geographical differences in SP use.

Pfdhfr/pfdhps mutations and pfgch1 amplifications

It is known that the accumulation of pfdhfr and pfdhps mutations lead to greater resistance to

the SP [26]. Moreover, the pfgch1 amplification was found to facilitate further development of

highly resistant pfdhfr parasites by improving their fitness and increasing resistance [27]. Mul-

tiple pfdhfr/pfdhps mutants and different pfgch1 amplifications were frequently identified

together, and there was a trend for those with amplifications to have a greater number of
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pfdhfr/pfdhps mutations in both Africa (Median number of pfdhfr/pfdhps mutations: No

pfgch1 amplification 4 vs. a pfgch1 amplification 5; Wilcoxon P<0.0001) and Southeast Asia

(No pfgch1 amplification 5 vs. a pfgch1 amplification 6; Wilcoxon P<0.0001) (S2 Fig). The

most common amplifications in Southeast Asia (gDupE, gDupF and gDupG) were frequently

(>80%) identified on a core quintuple (IRNIS-ISGEAA or IRNIS-ISGNAA) background,

with at least six pfdhfr/pfdhps SNPs (IRNLS-ISGEGA 40.6%, IRNLS-IAGEAA 12.9%, IRNI-

S-IAGEAA 8.5%, IRNLS-ISGNGA 8.1%, IRNIS-ISGEGA (6.8%)) (S4 Table). The gDupH

amplifications in West and Central Africa appear predominantly with the quadruple mutant

(IRNIS-ISGKAA 50.0%), but a significant number (25%) were identified on the sextuple back-

ground (IRNIS-VAGKGS 15.0%, IRNIS-VAGKAA 10.0%). The promoter amplification

pDupI ML01 amplification type was predominantly in West Africa, on two highly frequent

pfdhfr-pfdhps mutant backgrounds (IRNIS-ISGKAA 31.2%, IRNIS-IAGKAA 25.6%). The

remaining promoter amplifications (pDupI KE01 and KE01/ML01) were located primarily in

Southern, East and Central Africa, and predominantly accompanied by a quintuple IRNIS-IS-

GEAA mutant (54.5%), as well as other frequent genotypes (IRNIS-ISGKAA 16.1%, IRNIS-IS-

GEGA 8.7%).

Despite the sampling period and frame of the data being “convenient” in nature rather than

systematic, a time point analysis was possible using those countries with more than one year of

sampling. This provided evidence of no change or increase in the frequency of pfdhps/pfdhfr
mutants. For example, there was a higher frequency of quintuple and sextuple mutants in

Kenya and Tanzania at later time-points (S3 Fig). There also appears to be an increasing num-

ber of pfgch1 promoter amplifications in countries like Mali, Gambia and Kenya. In Kenya,

Fig 2. Copy numbers of the pfgch1 amplifications. n—number of samples with amplification; p—percentage of

samples with amplification.

https://doi.org/10.1371/journal.pgen.1009268.g002
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from 2007 to 2014 the number of amplifications increased two-fold (S3 Fig), following the

introduction of IPTp-SP in 1999 and six years of SP as first-line treatment (1998 to 2004).

Almost 75% of Kenyan samples were reported with quintuple mutants and more than 65%

contain pfgch1 promoter amplifications (Fig 3). Similarly, for Tanzanian isolates, which were

sourced between 2010 and 2013, 80% were found with quintuple or sextuple mutants and 65%

reported promoter amplifications. In Tanzania, SP was used as a first-line treatment from

2001 to 2004 and IPTp-SP was introduced in 2001.

Links to other drug resistance loci

The patterns of genotypic chloroquine (pfcrt, pfmdr1) and artemisinin (pfkelch13) drug resis-

tance were explored in relation to the presence of SP related pfdhfr/pfdhps mutations and pfgch1
amplifications (Table 3). Although, markers of chloroquine and artemisinin resistance are not

in the folate pathway, they have been subject to directional selection, and an integrated analysis

may reveal insights into the history of drug resistance in geographical regions. A high level of

chloroquine resistance was observed across most of the geographical regions, except Southern

Africa, where the Malawian population had almost no mutants and reversion to susceptible

strains has been observed due to the early removal of chloroquine as a front-line antimalarial [1,

28] (Table 3). In West and Central Africa, those parasites with pfgch1 gene amplifications (com-

pared to promoter or no amplifications) had a lower prevalence of genotypic chloroquine resis-

tance (Z-test P<2.2 × 10−16) (Table 3). The prevalence of genotypic chloroquine resistance in

Southeast Asia is high (>80%) regardless of a pfgch1 amplification, but a higher prevalence is

reported in samples with gene amplifications (compared to none; Z-test P<2.2 × 10−16). As

expected, artemisinin related mutations were only found in Southeast Asia, and a lower preva-

lence is associated with isolates with reported pfgch1 amplifications (compared to none; Z-test

P<8.3 × 10−11), but this analysis may be confounded by time of sampling. A temporal analysis

revealed a decreasing frequency of chloroquine resistance related mutations (pfcrt K76T and

I356T; pfmdr1 N86Y) in Eastern Africa (Tanzania: 2010 71.9%, 2013 30.1%; Kenya: 2007 80%,

2014 7.1%) (S3 Fig). There were no strong signals of pfcrt resistance reversion in any of the

Southeast Asian populations, but the data only spanned 2007 to 2014, and chloroquine is still

accessible and used due to the continued presence of P. vivax [29].

Fig 3. Maps with the distribution of the number of pfdhfr/pfdhps mutations (outer pie chart), pfgch1 amplifications (inner pie chart) and

sulfadoxine-pyrimethamine (SP) usage (shading of country)). A. Africa, B. South(east) Asia.

https://doi.org/10.1371/journal.pgen.1009268.g003
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Discussion

Monitoring of the polymorphisms in the P. falciparum genome associated with antimalarial

drug resistance can be used to control and prevent malaria, support elimination strategies, and

guide treatment choices. Surveillance is crucial for drugs like SP, which was replaced as a

front-line treatment, and is now used prophylactically in pregnant women and children.

Increasing numbers of pfdhfr and pfdhps resistance mutants due to selection by drug pressure

have been observed, and increased copy number of pfgch1, which encodes the first and the

rate-limiting enzyme of de novo folate biosynthesis, has been linked to SP resistance in South-

east Asia, particularly Thailand [8]. Adaptations in pfgch1 gene are thought to compensate for

the lower fitness in parasites with three or more mutations in pfdhfr or increase resistant in

parasites with fewer polymorphisms [27]. The function of the promoter duplication remains

unknown, however, it is plausible that it performs a similar role as the gene amplification.

Moreover, multiple copies of pfgch1 have been shown to have a direct association with point

mutations in pfdhfr (I164L) or pfdhps (K540E) in Southeast Asia [9], which is confirmed in

our work. Similarly, in Malawi and other countries in Africa which have had prolonged SP

use, a pfgch1 promoter duplication has been identified in parasites with pfdhfr/pfdhps muta-

tions, distinct from the whole gene amplification found in Southeast Asia.

Our analysis in 4,134 P. falciparum across 29 malaria endemic countries reveals a more

fine-scaled picture of pfgch1 gene and promoter amplifications, reporting 12 different struc-

tural changes occurring in African or Asian populations. Using 18 strains with long read

sequence data allowed us to robustly determine the breakpoints, including in regions of long

mono-nucleotide (A or T) or AT/TA di-nucleotide repeats. The prevalence of amplifications

was correlated with geography, with gene- and promoter-based types dominant in Southeast

Asia and Africa, respectively. The divergence between continents and multiple types indicate

Table 3. Distribution of the pfgch1 amplifications (Dup).

Region Dup � n No. pfdhfr/pfdhps mutations �� Mean/Median [IQR] CQ Resistance ��� (%) ARS Resistance ���� (%)

West Africa None 999 3.6/4 [3-4] 50.7 -

Prom 232 4.0/4 [4-5] 50.0 -

Gene 23 4.0/4 [3-4.5] 26.1 -

Central Africa None 248 4.3/4 [4-4] 66.5 -

Prom 71 4.2/4 [4-4] 67.6 -

Gene 18 4.8/4 [4-5] 72.2 -

East Africa None 94 4.5/5 [4-5] 34.0 -

Prom 176 5.1/5 [5-6] 35.8 -

Southern Africa None 32 4/5 [4-5] 28.1 -

Prom 202 5.0/5 [5-5] 1.0 -

Horn of Africa None 22 4.8/5 [5-5] 90.9 -

South(east) Asia None 1453 5.9/6 [5-7] 83.7 35.7

Gene 437 6.6/7 [6-7] 91.8 22.2

Oceania None 95 3.6/3 [3-5] 97.9 -

South America None 32 1.9/1 [1-2.25] 100 -

CQ chloroquine; ARS artemisinin; IQR interquartile range;

� Promoter pDupI-J; Gene gDupA-H;

�� based on pfdhfr (N51I, C59R, S108N, I164L and S306F) and pfdhps (I431V, S436A, A437G, K540E/K540N, A581G and S613S);

��� based on pfcrt K76T and other mutations (C72S, M74I, N75D/E, A144F, L148I, I194T, A220S, Q271E, A326D/S, I356L/T and R371I) or pfmdr1 N86Y;

���� based on pfkelch13 (F446I, Y493H, P574L, R539T, and C580Y)

https://doi.org/10.1371/journal.pgen.1009268.t003
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an independent emergence of structural changes. Furthermore, the location of breakpoints in

areas of mono- or di-nucleotide repeats, encourage even more distinctive variations due to an

AT-rich genome of P. falciparum. Nonetheless, there were minor exceptions, including in

Cameroon, DRC, Kenya and Ghana [10], where both promoter and gene amplifications were

present. Further, the extent of amplification copy number appears to be linked to geography.

For example, the Ghanaian (GB4) and Thailand (T996) strains had identical breakpoints, but

the latter has one additional copy. Similarly, for the promoter amplification DupI, isolates

from Southern and East African countries tended to have higher estimated copy number com-

pared to the western and central regions of the continent. This regional difference is in part

due to local evolution of strains exposed to SP (and other anti-folate drugs) over a longer

period, resulting from differences in antimalarial drug implementation policy between

countries.

Higher numbers of pfdhfr/pfdhps mutations were correlated with the presence of pfgch1
amplifications in both Africa and Asia. Whilst, the relatively low numbers of pfdhfr/pfdhps
mutations in Papua New Guinea and South America were accompanied by the absence of

pfgch1 amplifications. The promoter amplification (DupI) and quintuple pfdhfr/pfdhps
genotype (IRNIS-ISGEAA) were linked in African populations, whilst the septuple (IRNL-

S-ISGEGA) mutant was linked with gene amplifications (DupE and DupF) in Asia. The

prevalence of pfgch1 gene and promoter amplifications and occurrence of pfdhfr/pfdhps
mutants in Africa broadly overlaps with the duration and degree of SP usage as a first-line

treatment. Malawi abandoned chloroquine early and has had the longest SP exposure with

>10 years as a first-line treatment, and almost all isolates contained pfgch1 promoter ampli-

fications, pfdhfr/pfdhps quintuple mutants and pfcrt wild-type alleles. Whereas, Kenya and

Tanzania introduced SP five or more years after Malawi, and�65% isolates had promoter

amplifications and a low prevalence of pfcrt resistance alleles (<40%). Further, across the

seven years of data from Kenya, there was an increase in both the prevalence of pfgch1
promoter amplifications and pfdhfr/pfdhps quintuple mutants. In Southeast Asia the near

fixation of chloroquine resistance alleles and higher levels of SP related pfdhfr/pfdhps muta-

tions, were in tandem with 20% pfgch1 amplification frequency, particularly in Thailand

and Myanmar. Interestingly, in Southeast Asia there was an allelic association between pfcrt
I356T and pfdhfr I164L, most probably due to the high historical usage of both antimalarial

drugs.

Overall, whilst there may be some limitations with the convenience nature of the P. falcipa-
rum sampling, the trend towards longer SP exposure and an increase in drug resistance poly-

morphisms makes it essential to monitor structural changes in the pfgch1 locus and the

number of pfdhfr/pfdhps mutations as well as correlations between them. Pfgch1 gene expres-

sion may modify SP sensitivity [30], and further analysis studying the expression of different

pfgch1 amplifications with relation to pfdhfr/pfdhps could provide additional insights into SP

resistance. In lieu of further whole genome sequencing, drug resistance assays, and allelic

manipulation of P. falciparum to understand functional mechanisms, our work has character-

ised new forms of pfgch1 amplification, which can be used as the basis of enhanced surveillance

for SP efficacy.

Conclusion

The SP combination is still the only antimalarial drug treatment recommended by WHO for

intermittent preventive treatment in vulnerable populations, because of its safety in pregnant

women and infants and its long action. The selection of P. falciparum with pfgch1 amplifica-

tions may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, intensifying the
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persistence of SP resistance, and potentially threatening the efficacy of this regimen for preven-

tion of malaria in vulnerable groups. Our work has revealed new forms of pfgch1 amplification,

which can be used for surveillance activities.
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