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Abstract1

The increasingly evident role of asymptomatic and pre-symptomatic trans-2

mission means testing is central to COVID-19 control, but test sensitivity3

estimates are low (around 65%). We extend an existing branching pro-4

cess contact tracing model, adding diagnostic testing and refining parameter5

estimates. Poor test sensitivity potentially reduces the efficacy of contact6

tracing, due to false-negative results impacting quarantine. We show that,7

counter-intuitively, faster testing could also reduce operational test sensitiv-8

ity, exacerbating this effect. If sensitivity-based risks are mitigated, we find9

that contact tracing can facilitate control, but small changes in the popula-10

tion reproduction number (1·3 to 1·5) could impact contact tracing feasibility.11
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Main12

In December 2019, SARS-CoV-2, a novel coronavirus strain, was detected13

in Hubei Province, China [1]. By 31st January 2020 the first UK cases of14

COVID-19, the disease caused by SARS-CoV-2, were confirmed [2]. Ini-15

tial modelling studies indicated that fast and effective contact tracing could16

contain the UK outbreak in most settings [3, 4]. However, by 20th March17

there were almost 4,000 confirmed cases nationwide [5], at which point the18

UK Government halted national contact tracing and scaled up physical dis-19

tancing measures, including the closure of schools and social venues, ex-20

tending to heightened restrictions on non-essential travel, outdoor activities21

and between-household social mixing [6]. Similar patterns occurred in other22

countries [7, 8].23

By early May 2020 these measures were estimated to have reduced the24

effective reproduction number, R, from 2·6 to 0·62 [9, 10] and so from 12th–25

13th May in England some limitations on outdoor exercise were lifted and26

workers encouraged to return to work if they could maintain physical dis-27

tancing [11].28

Capacity for diagnostic testing in the UK, as in other countries, has been29

escalated over recent months, with capacity reaching over 300,000 tests a day30

by the end of June (https://coronavirus.data.gov.uk/testing). Cur-31

rently, testing of asymptomatic individuals is limited to staff and patients32

in NHS and social care facilities [12], but on the 28th of May the UK Gov-33

ernment rolled out the initial stages of their ‘Test & Trace’ contact tracing34

programme to the general population, which aims to follow chains of trans-35

mission and use isolation to prevent onward spread. Since the beginning of36

‘Test & Trace’ over 3 million people were tested by the end of July, just under37

50,000 of which were positive [13].38

Crucially, the current strategy only tests symptomatic contacts and noti-39

fies individuals that they no longer need to isolate following a negative test,40

which comes back in 24 or 48 hours depending on type of test [13]. However,41

there are critical limitations to the diagnostic test, with poor sensitivity (cur-42

rent estimates imply close to 65% [14, 15]), especially in community-based43

settings, leading to high false negative rates which are exacerbated by high44

variability in symptom severity [15]. Infectious individuals who test falsely45

negative may prematurely resume their normal activities, contributing to46

ongoing chains of transmission: reliance on testing of contacts will always47

reduce the effectiveness of contact tracing, potentially substantially [16].48
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Imperfect adherence and the innate difficulties in identifying contacts will49

pose challenges for ‘Test & Trace’, particularly in crowded urban settings [17].50

Therefore, evaluating both the limitations of contact tracing and how to51

maximise its effectiveness could be crucial in preventing an exponential rise in52

cases, which might see contact tracing capacity rapidly exceeded and stricter53

physical distancing measures required [18].54

As our knowledge of the transmission dynamics of SARS-CoV-2 grows,55

extending Hellewell et al.’s [3] UK-focused contact tracing study with new56

insights could inform this ‘Test & Trace’ strategy. The key conclusion of the57

initial study was that highly effective contact tracing would be sufficient to58

control an initial outbreak of COVID-19 in the UK, however substantial new59

evidence supports much higher pre- and asymptomatic transmission rates60

than had initially been considered [19, 20, 21]. The focus on rapid testing61

in the UK contact tracing programme also requires a detailed assessment of62

the associated trade-offs through mechanistic modelling of the testing pro-63

cess. Up-to-date modelling studies are therefore needed to investigate the64

feasibility of contact tracing and the conditions under which it is effective.65

We use improved incubation period and serial interval estimates [22, 23,66

24], consider imperfect self-reporting and tracing rates and simulate the use67

of diagnostic tests for both detection and tracing of asymptomatic infection68

chains. We also simulate decision-making regarding quarantine procedures69

for traced individuals and explore the trade-offs introduced by poor test sen-70

sitivity, particularly when negative test results are used to advise individuals71

to cease self-isolation.72

Results73

Testing74

By comparing the time individuals are tested after exposure in the model75

to temporal estimates of PCR test sensitivity [15] we see that an average of76

65% sensitivity is a relatively realistic expectation if testing is conducted 2 or77

more days post-isolation (Figure 1a). Test sensitivity is expected to peak at78

just over 75% 8 days post-exposure, but the majority of testing in the model79

occurs between 4 and 7 days post-exposure, where sensitivity estimates have80

more variance.81

In the case of a 2 day testing delay, 29·3% of cases are tested before 5 days82

post-exposure, at which point sensitivity estimates are around 62%, and only83

2
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10·2% of cases are tested before 4 days post-exposure. The time-weighted84

average of expected test sensitivity for all cases tested in the model with a 285

day delay is 68·0%. For a 4 day test delay, less than 1% of cases are tested86

before day 5 post-exposure, but just under 10% are tested after day 14, when87

test sensitivity drops to 61%.88

However, in the case of immediate testing, 65% sensitivity could be a89

substantial over-estimate, with 64·5% of cases being tested before 5 days90

post-exposure and 48·9% before 4 days, meaning the test could be less than91

33% sensitive for around half of all cases tested.92

Even if test sensitivity was constant, the timing of testing and quarantine93

duration has an impact on the risk of a large outbreak (at least 2,000 cases)94

and can undermine the positive impact of testing within a contact tracing95

programme. The probability of a large outbreak occurring is greater with96

an assumed test sensitivity of 65% compared to scenarios where no testing97

was carried out at all if testing is rapid and results in an immediate return98

to normal behaviour (Figure 1b, upper left panel). This result was observed99

across all contact tracing coverage rates. The deleterious effect of releasing100

false negative cases is mitigated by using a precautionary seven-day quaran-101

tine period, which reduced the risk of a large outbreak 11·7% to 3·9% for102

RS = 1·3 with 60% contact tracing (Figure 1b).103

A two day delay in carrying out the tests also led to a decrease in the104

probability of a large outbreak, from 11·7% to 6·3% for RS of 1·3. Combining105

the two-day delay in testing and the seven-day precautionary quarantine106

reduced the risk of a large outbreak further, from 11·7% to 3·4% for RS =107

1·3 and 60% contact tracing.108

In the case of instant testing and an immediate end to quarantine if the109

test is negative, there was a comparatively small benefit from scaling up110

of contact tracing coverage from 0% to 100%, implying that much of the111

potential positive impact of contact tracing could be lost if such an approach112

were taken.113

Whilst a test with 65% sensitivity and no minimum quarantine period114

can reduce the benefits of contact tracing, if a test were to be 95% sensitive,115

this would improve the outcome compared to no testing in all scenarios.116

However, with a two-day test delay and seven-day precautionary quarantine117

a 65% sensitive test is almost as effective in reducing transmission as a 95%118

sensitive test due to this strategy ensuring quarantine of all cases during peak119

transmission periods irrespective of test result.120
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Case detection121

Even with perfect contact tracing and employing good diagnostic practices122

(100% of contacts traced in 24 hours and a minimum quarantine period of123

7 days), a large proportion of cases are likely to go unobserved (Figure 2).124

High levels of symptomatic self-reporting to the tracing programme and im-125

proved test sensitivity can increase case detection: 95% sensitivity and 100%126

self-reporting gives an increase from 30·5% to 73·9% compared to 65% sensi-127

tivity and 50% self-reporting (both for RS = 1.3). However, this still results128

in 26·1% of cases being missed, hence detecting every case is essentially in-129

feasible.130

Super-spreading events131

Every missed case is a potential new chain of transmission and, given the high132

heterogeneity in the secondary case distribution, characterised by dispersion133

parameter k, there is a substantial risk of super-spreading events. Consid-134

ering a scenario with poor adherence to self-reporting guidelines and where135

one missed case leads to a cluster of either 5 or 100 new cases, we assume136

observation of the outbreak only occurs when the first case is hospitalised,137

after which contact tracing may be initiated (Figure 3a and b).138

For a cluster of 5 new cases the median total unobserved outbreak size139

before the first case is hospitalised is 13 cases for RS = 1·3 and 16 cases for140

RS = 1·5, which translates to 8·0% and 36·9% probability of a large outbreak141

respectively if 60% contact tracing can be implemented (Figure 3c). For a142

cluster of 100 new cases the median is 219 for RS = 1·3 and 238 for RS = 1·5,143

translating to 36·3% and 84·9% probability of a large outbreak with 60%144

contact tracing. This emphasises the importance of maintaining physical145

distancing measures that restrict the attendance of indoor social gatherings146

to avoid super-spreading events which could rapidly escalate.147

Additional observations148

More generally, the probability of a large outbreak given the current outbreak149

size (Figure 3c) could be used to assess at what point during an epidemic150

contact tracing would be unable to control transmission, as well as to inform151

targets for coverage and speed. In our model both the time taken to trace152

contacts and the proportion of contacts traced had effects on the risk of a153

large outbreak, although increasing tracing speed may have the counter-effect154

4
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of reducing average test sensitivity due to impact on test timing with respect155

to exposure.156

We also found that higher contact tracing coverage results in a lower157

overall number of individuals which are traced, tested and quarantined, due158

to the lower outbreak size. This means that achieving greater efficacy in159

tracing will ultimately require fewer resources. However, these resources are160

likely to be needed in a more condensed period of time.161

Conclusions162

Our results show that with a test sensitivity of 65%, fast testing which rec-163

ommends infected but false-negative individuals to cease quarantine could be164

counter-productive, undermining contact tracing efforts, and may be worse165

than not testing. However the impact of low test sensitivity could be miti-166

gated by applying a minimum quarantine period to all traced contacts and167

using positive tests to prompt further contact tracing. This would allow168

negative individuals to leave quarantine comparatively early, but not imme-169

diately upon receipt of test result. Simply slowing down the decision-making170

process, so any false negative tests occur later in the infectious period, will171

also reduce the amount of transmission caused by premature cessation of172

quarantine and potentially increase likelihood of a more accurate test re-173

sult [15]. Control policies in some countries are being designed to account174

for the high proportion of false negative individuals: for instance Greece175

requires negative-testing international arrivals to self-quarantine for seven176

days [25]; in Singapore two negative tests 24 hours apart are required to177

release from quarantine [26].178

We show that even a test with low (65%) sensitivity can improve contact179

tracing outcomes if the impact of false negative cases can be limited by180

employing appropriate precautionary measures. This effect is seen because181

testing can bridge asymptomatic links in transmission chains that would182

otherwise have been missed, although there is some uncertainty surrounding183

the infectiousness of asymptomatic individuals [23]. Nonetheless, this benefit184

is only possible, provided testing is applied to all contacts, not just those185

displaying symptoms as was the initial UK policy.186

Testing asymptomatic contacts would require more testing and resources,187

as well as potentially testing individuals earlier in their infectious period,188

before symptom onset. Earlier testing increases the impact of immediate189

quarantine cessation for false negative cases, so this would require a minimum190

5
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quarantine period. Despite these considerations, if very good contact tracing191

can be implemented from the beginning of the outbreak then fewer total192

resources will be required because of a smaller final outbreak size, meaning193

the key factor for feasibility will be time-limited resource access.194

We demonstrated that small increases in the reproduction number un-195

der physical distancing measures, RS, has a large impact on the feasibility196

of contact tracing. We only consider values of RS up to 1·5, which is still197

substantially lower than estimates of R0 in the absence of any interventions198

(R0 ≈ 2·7 [27]), but may be achievable with partial interventions. Our esti-199

mates of RS reflect a decrease in social contacts of almost 50% but even 60%200

coverage and a one day trace time is insufficient to negate the risk of a large201

outbreak. This reiterates that physical distancing is still critical, even with202

highly effective contact tracing, and that contact tracing will likely be insuf-203

ficient to allow a complete return to normal life without additional measures,204

such as an effective vaccine.205

In addition to general physical distancing, the risk posed by a single large206

super-spreading event means that relaxing restrictions on large gatherings,207

particularly indoors, could lead to a rise in case numbers, especially in com-208

munities where self-reporting rates are expected to be poor. Even with very209

low RS = 1·1, a local cluster of 100 unobserved cases could approximately210

double in size before being detected.211

However, we found that the risk of a large outbreak (≥2,000 cases) was212

relatively low for RS = 1·1 no matter what the contact tracing and testing213

strategy. What is of note to national governments who are exiting extreme214

social distancing is that a dramatic change in the dynamics occurs in the215

small absolute increase of RS to 1·3. At RS = 1·1 with a poorly resourced216

or ineffective contact tracing system the probability of a large outbreak is217

roughly 1%. However when RS ≥ 1.3 then an ineffective contact tracing218

system becomes noticeable, at which stage it is too late to act.219

A number of our assumptions may cause our results to appear unduly220

optimistic. For example, we model a scenario with very low initial case num-221

bers and assume that tracing can be initiated before test results are received,222

and that contacts of up to 3 days pre-onset are traced. This means there223

is potentially an increased requirement for maintaining physical distancing224

measures, even if contact tracing is deployed at high coverage nationwide.225

We also consider the test to have a fixed sensitivity over the course of226

infection, whereas previous studies show that testing too early or late after227

exposure can dramatically increase false negative rates [15]. However, these228
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temporal estimates ignore variation in the incubation period, assuming a229

fixed onset time of 5 days. Additionally, high between-person variance has230

been observed in the natural history of infection [23]. It is therefore unclear231

what is driving these temporal changes in sensitivity or whether this temporal232

profile makes sense on an individual basis.233

Furthermore there were worrying trends in adherence to movement re-234

strictions towards the end of “lockdown”, suggesting that recommended quar-235

antine through the ‘Test & Trace’ programme may also be affected; an un-236

published study of 90,000 adults across the UK in the two weeks up to 25th237

May found that lockdown adherence may have dropped to 50% [28]. Our as-238

sumption of 90% untraced symptomatic individuals self-isolating is therefore239

at the upper end of realistic, although symptomatic individuals will perhaps240

be more cautious or less mobile due to the burden of symptoms. However,241

this could also have repercussions on assuming that contact-traced individu-242

als will self-isolate when asked to do so, particularly if asymptomatic.243

Modelling studies in other countries have proposed combinations of con-244

tact tracing and population-level mitigation strategies [29] and a recent UK245

study puts RS in the range of 1–1·6 for a combination of school closures,246

50% reduction in social contacts and elderly shielding [10]. This covers the247

range of values considered in this study and demonstrates the potential level248

of physical distancing together with high-coverage contact tracing to keep249

the effective reproduction number below one.250

We also assume the Negative Binomial dispersion, k, of secondary cases,251

does not vary with RS due to different social distancing measures. This252

relationship is poorly characterised, but it is believed that social distancing253

may increase k, leading to decreased heterogeneity in number of contacts,254

potentially making outbreak control harder, although this effect is expected255

to be at least cancelled out by the reduction in the mean [30]. Furthermore256

it is also possible that less heterogeneity in contacts may make tracing of257

individual contacts more feasible, allowing for a higher coverage.258

Contact tracing improvements include secondary contact tracing as seen259

in Vietnam, i.e. tracing the contacts of contacts of known cases, to get ahead260

of the chain of transmission [31]. The use of a digital tracing app across261

the UK if combined with manual tracing could boost tracing coverage [32]262

and interactive dashboards are being rolled out across a number of countries263

to inform modelling efforts and raise public awareness [33]. Backwards con-264

tact tracing, whilst highly labour intensive, could also fill vital gaps where265

transmission links have been missed [34]. As experience in contact tracing266
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develops, it will also likely be possible to give contacts a prior probability of267

infection (based on the duration and contact setting for example) and com-268

bine this with the test results to give a more accurate measure by which to269

determine isolation requirements.270

Overall, we conclude that contact tracing could bring substantial benefits271

to controlling and preventing outbreaks, with tracing coverage and speed272

playing an important role, as well as testing. However, any ‘test & trace’273

strategy must carefully consider the limitation of poor test sensitivity, as well274

as the additional tracing information obtained from testing asymptomatic275

individuals. Poorly sensitive tests are inappropriate for ruling out a diagnosis,276

and infectious individuals immediately halting quarantine following a false277

negative result could have dangerous implications. In line with previous278

studies [8], we have demonstrated that contact tracing alone is highly unlikely279

to prevent large outbreaks unless used in combination with evidence-based280

physical distancing measures, including restrictions on large gatherings.281

Methods282

In this extension of a previous COVID-19 branching process model [3], the283

number of potential secondary cases generated by an index case is drawn284

from a Negative Binomial. The exposure time for each case, relative to in-285

fector onset, is drawn from a shifted Gamma distribution that allows for286

pre-symptomatic transmission and is left-truncated to ensure secondary case287

exposure time is after the primary case exposure time. Secondary cases are288

averted if the primary case is classified as ‘quarantined’ at the time of infec-289

tion, assuming within household segregation is possible. The probability of290

quarantine depends on whether the primary case was traced, any test result,291

and adherence to self-isolation recommendations (Figure 4). Each simulation292

was seeded with five infected individuals that are initially undetected by the293

contact tracing system.294

Secondary case distribution295

A standard Negative Binomial assumption was used to represent hetero-296

geneity in onward transmission due to factors such as individual contact297

patterns or infectiousness, with the mean relating to the effective repro-298

duction number under physical distancing RS which takes a value of 1·1,299

1·3 or 1·5 with a constant dispersion parameter k = 0·16, as used in the300

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2020. ; https://doi.org/10.1101/2020.06.09.20124008doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124008
http://creativecommons.org/licenses/by-nc-nd/4.0/


original analysis [30, 3]. The estimates of k for SARS-COV-2 are wide-301

ranging, from k = 0·1(range : 0·05 − 0·2) for pre-lockdown UK [34] to302

k = 0·25(range : 0·13 − 0·88) for Tianjin, China during lockdown mea-303

sures [35]. Due to the variation in the literature we have not updated this304

parameter as 0·16 lies within these ranges and it is not yet possible to derive305

accurate national estimates of k for post-lockdown scenarios. Here a smaller306

k represents greater heterogeneity in transmission and results in the majority307

of index cases leading to no secondary infections, while a small proportion of308

individuals infect a large number of secondary cases. All parameter estimates309

and references can be found in Table 1.310

Generation interval311

The incubation period (time from exposure to symptoms) is assumed to fol-312

low a Lognormal distribution with mean 1·43 and standard deviation 0·66313

on the log scale [22]. Each new case is then infected at an exposure time314

drawn from a Gamma-distributed infectivity profile (shape = 17·77, rate =315

1·39 day−1, shift = 12·98 days) relative to their infector’s symptom onset.316

If this time is before the infector’s exposure then this value is rejected and317

re-sampled to prevent negative generation intervals. This Gamma distribu-318

tion has been fitted under these sampling assumptions to serial interval data319

published by He et al. [23] using the fitdistr package in R and our resulting320

distributions qualitatively match those presented in the original paper (Fig-321

ure 5). The exposure time is then compared to the isolation times of the322

infector and cases are averted if the infector is in isolation when the infection323

event would have happened. For non-averted cases, symptom onset times are324

then drawn from the Lognormal incubation period distribution and the prob-325

ability of a case remaining asymptomatic throughout their infected period is326

fixed at 40% [19, 20].327

Contact tracing328

New cases are identified either through tracing contacts of known cases or329

symptomatic individuals self-reporting to the system, which we model as a330

two-stage process. Firstly, if an individual is symptomatic (i.e. has a fever331

and/or dry persistent cough) but untraced we assume that a combination of332

reduced social activity due to illness, and awareness of COVID-19 preven-333

tion measures, results in a 90% chance of self-isolation one day after symptom334

9
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onset. Secondly, individuals who self-isolate in this way then have a proba-335

bility of contacting the tracing programme and reporting their symptoms as336

a potential case, which can be varied in the model.337

The assumption of 90% self-isolation relies on high levels of public aware-338

ness and draws on evidence from COVID-19 studies in the United States339

and Israel that suggest 87·3% to 94% of individuals may isolate if they had340

COVID-19 symptoms [36, 37]. These figures are supported by a US-based341

2013 study that reports 72% of respondents would stay at home if they had342

flu-like symptoms, provisional on access to sick pay [38], without the ad-343

ditional factor of social responsibility introduced by pandemic awareness.344

However, it is important to note that this figure may still be optimistic, with345

one study reporting 62·2% of Japanese citizens surveyed went to work within346

seven days of onset of symptoms [39] and another that 75·1% of individuals347

living in a UK households with COVID-19 symptoms admit to leaving the348

house in the last 24 hours [40].349

Contact tracing is initiated where an existing case has been identified350

and isolated. The contacts of that individual are then traced with 40%–351

100% coverage. If a contact is successfully traced they will always isolate.352

The time taken to trace and isolate a contact is either one day or drawn from353

a Uniform distribution of 1–4 days. In the absence of testing, traced contacts354

are assumed to isolate until non-infectious—approximately 14 days [23]. Any355

contacts that show symptoms or test positive will have their contacts traced;356

this continues until no further cases result in transmission chain extinction.357

Testing358

In simulations that include testing, we assume test sensitivities of 65% or359

95% with the lower value representing true sensitivity observed in healthcare360

settings [14, 15] and the higher value being closer to measurements in con-361

trolled conditions [41] and also to demonstrate utility of an alternative testing362

protocol with higher sensitivity. Due to the nature of the branching process363

model, only infected individuals are modelled so the impact of test specificity364

cannot be assessed under these methods, although the implications would be365

related to programme feasibility rather than efficacy. Current specificity es-366

timates are believed to be reasonably high in comparison [42, 16, 43], with367

some estimates of close to 100%, but false positive tests could lead to unnec-368

essary negative socioeconomic impact under any scheme requiring quarantine369

of healthy individuals.370
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When testing is included in the model, all individuals that either self-371

report to the contact tracing system (individual A in Figure 4), or are traced372

contacts (B & D in Figure 4), are tested. From the moment a contact self-373

reports or is traced, either a zero- or two-day delay is simulated before the374

test result is returned, chosen to be representative of UK programme tar-375

gets. If a positive test is returned, the individual’s contacts are traced. If a376

negative test is returned, two different scenarios are explored; either a) im-377

mediate departure from quarantine, or b) the individual is asked to complete378

a precautionary quarantine period (e.g. 7 days from beginning of isolation).379

Any contacts of a negative-testing case that were successfully identified prior380

to receiving the test result are still isolated and tested.381

No active case detection382

A scenario in which there is no active case detection in the community is383

considered whereby the only detected cases are those who are hospitalised.384

This is simulated by reducing the case reporting proportion to 6%, reflect-385

ing the hospitalisation rate in the UK [44]. Time from symptom onset to386

hospitalisation is drawn from an Exponential distribution with mean 5·954387

days (fitted to data published alongside a modelling study [44]). We then388

defined the undetected outbreak size as the number of cases that were ex-389

posed prior to the first hospitalisation, given an initial seeding of 5 index390

cases at t = 0. We also consider a scenario of 100 index cases to represent a391

mass super-spreading event, such as the large outbreaks seen in meat-packing392

plants across Europe [45] or an instance in the SARS outbreak where a flight393

attendant is thought to have infected more than 100 individuals [46].394

Simulation process395

Results presented are the combined output of 5,000 simulations for each396

parameter combination, or scenario, considered. These results are used to397

derive the probability of a large outbreak given a range of conditions. A398

large outbreak is considered to be 2,000 cases and each simulation is run399

for a maximum of 300 days. The threshold of 2,000 cases was chosen by400

running simulations with a maximum of 5,000 cases and noting which of the401

simulated epidemics that went extinct; 99% of extinction events occurred402

before reaching 2,000 cases. The model was written in R and the code is403

publicly available in an online GitHub repository (https://github.com/404
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Parameter Values Refs
Number of initial cases 5, 100 range
Effective reproduction number
under physical distancing, RS

1·1, 1·3, 1·5 range

Dispersion of RS, k 0·16 [30, 3]
Proportion asymptomatic 40% [19, 20]
Delay: onset to isolation 1 day
Incubation period (Lognormal) mean log: 1·43 [22, 23]
Incubation period (Lognormal) sd log: 0·66 [22, 23]
Infection time (Gamma) shape: 17·77 [23]
Infection time (Gamma) rate: 1·39 day−1 [23]
Infection time shift -13.0 days [23]
Untraced self-isolation prob. 90% [36, 37, 38]
Self-reporting probability 0·5–1.0 range
Contact tracing coverage 0–100% range
Min time to trace contacts 1 day
Max time to trace contacts 1–4 days range
Test sensitivity 65%, 95% [15, 14, 41]
Delay: isolate to test result 0–2 days range
Isolation duration if -ve test 0–7 days range
Proportion cases hospitalised 6% [44]
Onset to hospitalisation (Exp) mean: 5.95 days [44]

Table 1: Model parameters values/ranges. Parameters taken from the liter-
ature are fixed and for other parameters a range of values are explored.

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2020. ; https://doi.org/10.1101/2020.06.09.20124008doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20124008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Test sensitivity and mitigation. a) Normalised density dis-
tributions of time cases are tested in our model, measured in days post-
exposure, for an immediate test upon identification (blue), a 2 day delay to
testing (pink) and a 4 day delay (grey) for RS =1·3. Black data points are
temporal sensitivity estimates from Kuchirka et al. [15]. Grey dashed line
represents 65% sensitivity (as assumed in the model). b) Comparing effec-
tiveness of test-and-release of negative-testing cases (left-hand panels) with
a minimum seven-day quaratine period (right-hand panels). Assuming 65%
sensitivity; 50% self-reporting; 1 day trace delay. Error bars: 95% confidence
intervals from simulation output variation.
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Figure 2: Case detection. Proportion of cases detected for varying self-
reporting of symptomatic cases (50% and 100%) and diagnostic test sensitiv-
ity (65% and 95%). Effective reproduction number under physical distanc-
ing: RS = 1.1, 1.3 and 1.5. Box boundaries represent lower (25%), median
(50%) and upper (75%) quartiles; whiskers represent the full range of values,
excluding outliers, which are marked individually.
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Figure 3: Super-spreading scenarios. a) Total cases occurring before
first hospitalisation in a population with no active tracing or case detection
from one super-spreading event (5 new cases). b) Same as a) but with 100
new cases. Vertical dashed lines represent median values. c) Probability of
outbreak by total number of cases so far. Sensitivity = 65%, self-reporting
proportion = 50%, individuals testing negative are isolated for a minimum of
7 days, time to test from isolation = 2 days. Error windows: 95% confidence
intervals calculated from simulation output variation.
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Figure 4: Contact tracing schematic. Overview of the contact tracing
process implemented in our model. Person A isolates and self-reports to
the contact tracing programme with some delay after symptom onset, by
which time they have infected Persons B and C. When Person A self-reports
contact tracing is initiated. They are then tested with positive result and
remain isolated for their infectious period. Person B was infected by A
prior to their symptom onset and is detected by tracing after some delay,
after infecting Person D. After isolating they are tested, with a false negative
result. This leads to B either a) stopping isolation immediately or b) finishing
a minimum 7 day isolation period. Both may allow new onward transmission.
Person C was infected by A but not traced as a contact. Person C does not
develop symptoms but is infectious, leading to missed transmission. Person
D was traced and tested before the false negative test was returned for Person
B. The test for D returns positive, meaning that D remains isolated, halting
this chain of transmission.
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Figure 5: Parameters’ distributions. Distributions for a) incubation pe-
riod (exposure time to symptom onset) from Li et al. [22]; b) transmission
profile relative to symptom onset, fitted to data and compared to He et
al. [23]; c) serial interval, fitted and compared to He et al. [23]; and d) gen-
eration interval, combined distribution from a) and b) with re-sampling to
prevent negative serial intervals, as described in the main text.
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