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Summary (35/40 words) : 18 

Ultra-sensitive malaria molecular diagnostics are providing insights not captured previously using 19 

traditional diagnostics methods. Identification and treatment of low-level malaria infections identified by 20 

molecular tools may benefit asymptomatic individuals, malaria in pregnancy, and elimination campaigns. 21 

 22 
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Abstract: 23 

Ultra-sensitive molecular diagnostics are lowering the limit of detection for malaria parasites in the blood 24 

and providing insights not captured by conventional diagnostics such as microscopy and rapid antigen 25 

tests. Low-level malaria infections identified by molecular tools may influence clinical outcomes, 26 

transmission events, and elimination efforts. While many ultra-sensitive molecular methods require well-27 

equipped laboratories, technologies such as loop-mediated isothermal amplification provide more 28 

portable and analytically sensitive solutions. These tools may benefit asymptomatic patient screening, 29 

antenatal care, and elimination campaigns. We review the recent evidence, offer our perspective on the 30 

impact of these new tests and identify future research priorities.  31 

 32 

Main text (total word count 2104/ 3000 max): 33 

In 2019, 228 million malaria cases occurred worldwide, with most cases (93%) and malaria-related deaths 34 

(94%) in the WHO Africa region [1]. Malaria diagnosis conventionally relies on the identification of 35 

asexual parasites in peripheral blood smears. Preparation and microscopic examination of smears requires 36 

expertise and delivers a moderate limit of detection (LOD) at 50-200 parasites/µL. The introduction of 37 

antigen based rapid diagnostic tests (RDT) in the 2000’s and then more recently simplified molecular 38 

diagnostics such as loop-mediated isothermal amplification (LAMP) are providing new insights on 39 

malaria burden. However, the usefulness, relevance, and impact of such highly sensitive tests are tightly 40 

linked to the clinical and epidemiological context where those tests are implemented. In the following, we 41 

consider ultra-sensitive testing for molecular methods that detect DNA or RNA at or below an LOD of 42 

0.1 parasites/µL.  43 

 44 

A recent study investigated the relevance of “low-density” P. falciparum infection in febrile children in a 45 

moderately endemic area of Tanzania [2]. The authors provide important findings in terms of clinical 46 
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outcomes for febrile children at the primary care setting based on three cohorts defined by the diagnostic 47 

test result. Only patients from the “high-density” (rapid diagnostic test- positive) group were specifically 48 

treated for P. falciparum infection during the study. The authors concluded that, based on post hoc 49 

detection of malaria by ultra-sensitive methods (qPCR detection of the multigenic target varATS, which 50 

has a LOD < 0.1 parasites/µL [3]),), conventional diagnostic tools are sufficient for the management of 51 

febrile children. The study did not observe differences in terms of outcomes between children diagnosed 52 

with no Plasmodium infection and those with a low-density Plasmodium infection. Importantly, children 53 

presenting with a high-density infection were more likely to have a hospital re-admission compared to 54 

low-density infection children. A second area that is noteworthy is that the study outcomes monitored 55 

were relatively severe in nature: proportion of clinical failures, secondary hospitalization, conversion to 56 

high-density malaria infection, and death in the 28 days following the study inclusion. These results 57 

support a previous study of school-aged children in Benin [4], showing that sensitive methods such as 58 

conventional PCR (LOD ~ 0.5-1 parasites/µL)  would not bring benefit to the management of febrile 59 

malaria cases. However, as the authors specified, more studies are needed to confirm those findings in 60 

larger cohorts and different levels of endemicity.  61 

The classification of low-density and high-density infections is challenging. First, RDT performance 62 

(including the newer “ultra-sensitive RDTs”) may be affected by histidine rich protein (HRP) 2/3 63 

deletions, leading to false negative tests [5]. Furthermore, RDT detection of non-falciparum species is 64 

unreliable due to poor weak detection of the antigen, typically lactate dehydrogenase (LDH). For the two 65 

previously mentioned reasons, a negative RDT with overt malaria symptomatology and clinical signs 66 

such as thrombopenia should alert the provider of the possible malaria diagnosis. The interpretation of 67 

discrepancy between positive PCR results and negative RDT results remains controversial. Patients 68 

recently treated for malaria may have persistently positive PCR test results, the likelihood increasing with 69 

the sensitivity of the molecular test used [6,7]. Detection of parasite DNA may indicate residual P. 70 
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falciparum asexual parasites [7], gametocytaemia, or lingering parasite genetic material rather than active 71 

infection[8], and so interpretation of positive molecular tests should be related to the clinical context.   72 

Finally, three factors influence the respective limits of detection of molecular methods: the volume of 73 

sample extracted and concentrated, the molecular target (DNA, RNA, and their respective copy number 74 

or expression), and the methodology itself (optimization, reagent mix, method of signal detection, usage 75 

of probes, as examples). Regarding the volume of sample, field-based sampling is usually limited by 76 

finger prick techniques to collect blood which yields approximately 5 µL of blood. Formal venipuncture 77 

can provide volumes in excess of 1mL and therefore permit greater input blood volumes for extraction 78 

methods. The simple change of input volume into a nucleic acid extraction pipeline can improve the 79 

sensitivity of a given technique [9]. Molecular methods can detect either RNA or DNA. While RNA 80 

methods have shown higher sensitivity of highly expressed genes such as 18SrRNA [10], multicopy 81 

genomic targets also provides analytically sensitive Plasmodium DNA detection [3]. Several published 82 

papers compared the different PCR methods’ respective sensitivity for Plasmodium detection in certain 83 

epidemiological settings [10–13]. Lastly, the particular method’s final readout approach can affect a given 84 

target's sensitivity: for example, fluorescence-based detection (qPCR, RT-qPCR and LAMP) has higher 85 

sensitivity than visual-based detection (conventional PCR or RT-PCR with agarose gel revelation of 86 

amplicons).   87 

Notably, low-density infections may lead to chronic health issues in malaria-endemic areas and impact 88 

public health measures. Recurrent episodes of symptomatic malaria are observed in longitudinal follow-89 

up studies and can occur over a longer time frame than 28 days [14,15]. Recurrence of high-density 90 

parasitemia may contribute to chronic anemia in infected individuals by peripheral destruction of the 91 

erythrocytes and impairment of erythropoiesis [16]. A common finding in individuals with asymptomatic 92 

malaria infections  identified by ultra-sensitive molecular methods is a significantly higher risk of reduced 93 

hemoglobin levels [17]. In chronically infected individuals, splenomegaly occurs from constant splenic 94 

filtration of infected erythrocytes and parasitic debris [18]. Furthermore, it has been reported that 95 
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asymptomatic low-level infection impairs neutrophil function, increasing risk of severe systemic bacterial 96 

co-infections (particularly Salmonella infections) [18]. Low-level infections have also been associated 97 

with increased inflammation assessed with CRP level in a manner that correlates with parasite density 98 

[19]. Asymptomatic P. falciparum infections may also affect cognition and development in children, as 99 

shown in studies conducted in Uganda and Kenya [20,21]. In these studies, introduction of malaria 100 

chemoprevention in the form of intermittent treatment in children reduced school absenteeism and 101 

improved health and cognitive abilities in semi-immune children [20,21].  102 

 103 

While ultra-sensitive molecular malaria diagnostic methods may not be feasible nor relevant in their 104 

current state of technology readiness at the primary care setting in LMIC, studies in this area have 105 

contributed significantly in three significant groups within at-risk communities: (i) asymptomatic low-106 

level malaria infections, (ii) malaria in pregnancy (MiP) and (iii) malaria elimination settings. Low-level 107 

malaria infection usually exhibited in asymptomatic individuals is revealed using ultra-sensitive 108 

molecular methods but not traditional methods like microscopy or RDT [10,17]. The ability to detect 109 

these low-level malaria infections improves estimation of malaria prevalence in endemic areas, but can 110 

also contribute to transfusion and transplant safety. In non-endemic areas, screening of migrants entering 111 

from endemic settings for low—level infections may prevent introduction of parasites into local 112 

Anopheles spp. populations. Methods using ultrasensitive detection of the parasite RNA can identify a 4- 113 

or 5-fold greater number of low-level infections than traditional RDTs and microscopy in a high-114 

transmission setting of Ethiopia[17]. Other studies reported a similar trend in asymptomatic adults in 115 

Ghana [22] and in India [23].  116 

Blood safety in transfusion should rely on blood and tissue donors' screening [24,25]. All symptomatic 117 

patients are by default excluded from any blood donation procedure in any country. However, 118 

asymptomatic individuals may harbor Plasmodium parasites. Countries like the United Kingdom (UK) 119 

and France perform antibody-based screening of at-risk donors depending on the individual’s travel 120 
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history and birthplace. However, screening may be inefficient due to immune tolerance to malaria, as 121 

recently reported in France [24]. On the other hand, the implementation of extended deferral after travel 122 

to endemic areas and/or documented malaria episodes in donors (such as the policies implemented in 123 

Canada or the USA) restricts the population from contributing to blood donation efforts. A study in the 124 

UK found that a positive malaria PCR result in an antibody-negative patient can be associated with low-125 

level asymptomatic parasitemia [26]. Low-level parasitemia puts the recipient at risk of transfusion-126 

acquired malaria. Asymptomatic screening of at-risk individuals using ultrasensitive techniques could 127 

improve safety of the blood supply while allowing more individuals to be blood donors. This strategy of 128 

molecular-based screening could also apply to organ donors to avoid post-transplantation malaria.  129 

Last, asymptomatic individual screening with ultra-sensitive molecular testing can benefit migrant 130 

populations. A recent screening of migrants from sub-Saharan Africa in Spain revealed that  131 

approximately 8% of the screened individuals retained low-level malaria parasitemia [27]. Another 132 

example is the temporary re-introduction of P. vivax in Greece with local outbreaks related to migration 133 

[28]. Furthermore, Middle East countries, among others that have previously achieved malaria 134 

elimination, remain at risk of malaria re-introduction. Migrant workers are a likely source of re-135 

introduction in countries that achieved elimination but have a large immigrant work-force, such as Qatar 136 

[29] or Singapore [30].  137 

 138 

Pregnant women can also benefit from ultra-sensitive molecular testing screening strategies. In 139 

pregnancy, P. falciparum placental sequestration results in low-level peripheral blood parasitemia 140 

(reviewed i [31]). MiP may be asymptomatic for the pregnant mother. However, P. falciparum in the 141 

placenta affects fetal development and birth outcome, leading to fetal loss, developmental delays and low 142 

birth weight of the newborn [31]. In 2019, the WHO reported that 29% of pregnancies in moderate to 143 

high malaria transmission areas are at risk of MiP, and that 16% of low birth weight newborns in these 144 

areas were a consequence of malaria infection, putting 822,000 neonates at risk [1].  The current strategy 145 
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for MiP prevention targets the vector (insecticide-treated bed nets) and the systematic administration of 146 

intermittent preventive treatment (IPT) which is the combination of sulfadoxine and pyrimethamine. 147 

However, IPT-based strategies present several limitations. The coverage of IPT remains low, with 34% of 148 

women attending ANC fulfilling the three IPT doses recommended by the WHO [1]. Additionally, 149 

sulfadoxine-pyrimethamine drug resistance is a concern in sub-Saharan Africa. IPT coverage is limited to 150 

the second and third trimester of pregnancy. However, infections acquired during the first trimester of 151 

pregnancy display "placental" phenotype through variant surface expression and are associated with 152 

adverse birth outcomes [32,33]. It is also known that infections acquired before pregnancy may persist at 153 

a low asymptomatic level, and clonal expansion occurs with the placental maturation, putting these 154 

women at risk of MiP [34,35]. To detect and treat these infections, molecular screening with ultra-155 

sensitive molecular malaria diagnostics is a potential approach. Ultra-sensitive molecular testing and 156 

subsequent treatment could prevent adverse birth outcomes related to MiP [36].  The feasibility of this is, 157 

however, unproven in resource-limited settings. 158 

Finally, low-density asymptomatic malaria cannot be ignored in elimination strategies.  For instance, it 159 

has been determined that asymptomatic cases represent up to 75% of infections, and that it can contribute 160 

up to 50% of onwards transmission when parasites are present in their sexual form [37].  However, the 161 

role of these low-level infections that are revealed only by ultra-sensitive methods remains unclear. A 162 

recent study provides insights into the transmission potential of low-level infections based on the minimal 163 

gametocytemia necessary to infect a mosquito [38]. The authors showed that conventional detection 164 

methods might be sufficient for parasite detection at a level that matters to prevent onward direct 165 

transmission at the time of sampling. However, asymptomatic parasitemia and low-level gametocytemia 166 

may oscillate over time and this is only captured in longitudinal studies. Importantly, low-level 167 

parasitemia can contribute to malaria transmission.  Indeed, at the end of the rainy season malaria 168 

parasites persist at a low level in individuals and allow the parasite to survive and resume transmission at 169 

the next rain season [39,40]. Tracking the low-level infected asymptomatic patient promotes malaria 170 
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control strategies.  With malaria elimination on the road map, ultra-sensitive point of care molecular 171 

diagnostics for malaria are needed for rational treatment of individuals with low level infection and to 172 

reduce or interrupt transmission of the parasite.  173 

To conclude, there is currently no consensus regarding the value of wide-scale implementation of ultra-174 

sensitive malaria testing. Policies regarding the implementation of ultra-sensitive diagnostic test must be 175 

tailored to the epidemiological context and the public health policy of a given area. Targeting the right 176 

population is a key strategy for management of resources and rational allocation of testing to thosein 177 

malaria-endemic areas that would benefit the most: pregnant women, communities approaching 178 

elimination, and so-called “asymptomatic” carriers are leading candidates for such interventions.  179 
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