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Abstract 

This research paper style thesis comprises six papers, each addressing a different aspect of 

the selection of empiric antibiotic regimens for the treatment of severe childhood infections, 

focussing on suspected bloodstream infection.  

Antibiotics are a means to effectively manage life-threatening bacterial infections, such as 

bloodstream infections. Recommendations for life-saving empiric antibiotic treatment for 

bloodstream infection are traditionally based on knowledge of the epidemiology of the 

targeted infection, and are strongly influenced by knowledge about antibiotic resistance in 

causative pathogens. The underlying assumption is that the in vitro phenomenon of 

antimicrobial resistance relates to a poor response to antibiotics in vivo.  

Bacteria causing bloodstream infection are increasingly found to be resistant to antibiotics 

and this can vary by region, hospital and patient group. It is therefore necessary to select and 

review best options for empiric treatment taking into account these trends. Details on the 

current approaches, data sources and the advantages and limitations of both are discussed 

in the first part of thesis (chapters 2-5).  

The methods for selecting optimal empiric treatment from microbiological data, including 

information on antimicrobial resistance, are poorly defined. It is unclear which approach is 

most informative clinically and which can still use microbiology data generated as part of 

routine care and utilized for surveillance. Importantly, empiric regimens must be based on 

knowledge of the bacteria associated with a specific infection syndrome including their 

relative frequency as well as their resistance patterns. The probability that a given regimen 

will cover the next clinically identified episode of the infection in question can then be derived 

as guidance for regimen selection. In the second part of the thesis, a specific method for 

constructing a weighted-incidence syndromic combination antibiogram (or WISCA) to 

estimate coverage is therefore developed and presented.  
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The WISCA is derived from a Bayesian decision tree model, and has the advantages of 

explicitly combining relative incidence and resistance patterns for a given syndrome as well 

as accurately reflecting imprecision of coverage estimates. The Bayesian decision tree 

WISCA is used to investigate coverage of empiric antibiotic regimens at hospital level in 

Europe, including potential methods for dealing with heterogeneity between centres while still 

supporting data pooling to improve precision (Chapter 6). A further application is the 

estimation and comparison of coverage offered by recommended regimens for neonatal 

sepsis in Asian countries with data pooling at the level of country (Chapter 7).  

Finally, the potential influence of patient characteristics on selection of antibiotics of last 

resort (i.e. those with a broad therapeutic spectrum but likely to be strong drivers for the 

selection of antimicrobial resistance and therefore to be used only when necessary) was 

investigated (Chapter 8). This demonstrates that certain patients or infection episodes are 

more likely to be treated with last resort antibiotics than others, and would seem to indicate 

expected heterogeneity among neonates and children with bloodstream infection. The 

Bayesian WISCA provides a useful approach to pooling information to guide empiric therapy 

and could increase confidence in the selection of specific regimens. In presented analyses, it 

provides evidence for the continued use of narrow-spectrum regimens in certain contexts, 

and could be further developed to address data pooling and allow the integration of local 

resistance data with surveillance data for data-based modification of high-level treatment 

recommendations (Chapter 9). Further work should focus on promoting the uniform reporting 

of coverage (and WISCA) to enable robust meta-analysis of antimicrobial resistance data 

and address best methods for dealing with small sample sizes expected at hospital-level and 

for stratified coverage estimates. 
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1. Overview of thesis 

This research paper style thesis comprises six papers, each addressing a different aspect of 

empiric antibiotic management of severe childhood infections, focussing on suspected 

bloodstream infection.  

The overall aim of the research was to develop a new approach to the selection of empiric 

antibiotic regimens for the management of suspected bloodstream infection in neonates and 

children while confirmatory microbiological results are awaited. Relevant data that may 

inform the choice of empiric therapy are already available from blood cultures collected as 

part of the routine clinical work-up of children with bloodstream infection, and these data are 

currently used for surveillance of antimicrobial resistance trends. However, the numbers of 

neonatal and paediatric isolates contributed to hospital-level and surveillance databases are 

known to be small, and optimal use of these data are therefore paramount. 

This overview chapter provides a summary of the thesis and its aims and objectives. Chapter 

2 sets out the background to the thesis, providing details on the management of severe 

childhood infection, such as bloodstream infection, and outlining the limitations of current 

approaches to presenting routine microbiological data for clinical decision-making about 

empiric antibiotic treatment. Chapter 3 describes the data sources and provides details of the 

overall methodological approach. 

The papers in chapters 4 and 5 identify and assess some limitations of the selection of 

empiric antibiotic regimens based on routine microbiology data available through surveillance 

programmes and at the individual hospital level. They identify important areas that need to 

be considered and addressed in the development of a novel methodology to support the 

selection of empiric antibiotic regimens for childhood bloodstream infection.  

Chapter 6 describes the proposed method for selecting empiric antibiotic regimens for 

childhood bloodstream infection from routinely available blood culture data. 
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Chapter 7 demonstrates the application of this method to the evaluation of empiric antibiotic 

regimens for neonatal sepsis based on neonatal blood culture isolate data from several 

Asian countries. 

The strong association between patient and infection-episode characteristics and prescribing 

of so-called last-resort antibiotics (i.e. those with a particularly broad spectrum that have also 

been identified as drivers of further selection of antimicrobial resistance) is examined in 

chapter 8. The results highlight how these characteristics affect antimicrobial resistance and 

highlights the need for further refinement of the methods developed in this thesis.  

Finally, chapter 9 places the developed method into the context of current clinical practice 

and discusses its implications in different contexts as well as providing an outlook towards 

future work. 

1.1 Contributions of the candidate 

This PhD was undertaken alongside my work as a researcher with the Paediatric Infectious 

Diseases Research Group (PIDRG) at the Institute for Infection and Immunity, St George’s 

University of London (SGUL). It builds on the Masters of Public Health (Health Services 

Research Stream) undertaken at the London School of Hygiene and Tropical Medicine prior 

to taking up my post at the Institute. The aim was to enable me to develop an area of 

academic expertise related to but not formally part of my work at SGUL. 

The PhD was undertaken part-time while first being responsible for Antibiotic Resistance and 

Prescribing in European Children project (ARPEC, 2009-2013). The ARPEC project involved 

several European universities and Health Institutions, and aimed to develop and implement a 

method of surveillance of antimicrobial prescription and resistance in children attending 

hospitals and primary care across Europe. I was part of the project co-ordinating team at St 

George’s University of London and in charge of the antimicrobial resistance surveillance 

work package. 
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The analyses and methodological approach presented in the thesis were designed and 

undertaken by me with appropriate guidance from my supervisors. My specific contributions 

and those of other authors are outlined at the start of each chapter, whenever collaborative 

work is included.  

1.2 Funding 

The PhD was funded by my employers, the PIDRG at SGUL. Prof. Mike Sharland from the 

PIDRG was my associate supervisor. Data from the ARPEC project were analysed to 

address some of the specific objectives of this PhD. However, this constituted secondary 

data use and the methods used for analysis were not part of the original ARPEC work plan.  

1.3 Research aim and objectives 

The overall aim of the research undertaken for my PhD thesis was to examine the utility and 

limitations of using routine bloodstream infection data for informing empirical prescribing, and 

develop a way in which these data could be used to give clinicians an estimate of coverage 

for different empiric treatment regimens. Regimen coverage describes the likelihood that the 

next microbiologically confirmed episode of bloodstream infection encountered will be 

adequately treated by the regimen. 

The specific objectives were: 

1. To critique common methods for presenting and using routine microbiological data for 

selecting empiric antibiotic regimens for the treatment of childhood bloodstream 

infections. 

2. To assess how various characteristics of routine data affect their use in the selection 

of empiric antibiotic regimens, specifically: 

a. To investigate how variations in antimicrobial susceptibility testing approaches 

impact on the interpretation of routine microbiological data for the purpose of 

selecting empiric antibiotic regimens.  
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b. To determine how routine surveillance data from adults relates to data from 

children, and the potential impact of differences for population data use to 

guide decision-making about empiric antibiotic regimens for children. 

3. To develop a method that addresses current weaknesses in utilisation of routine 

microbiological data for the selection of empiric antibiotic regimens, and in particular, 

which provides information on the estimated coverage of potential regimens with 

adequate reflection of statistical uncertainty around those estimates. 

4. To demonstrate the potential for this new approach to inform clinical practice by using 

it to determine the estimated coverage of frequently used empiric antibiotic regimens.  

5. To determine potential patient-related and disease-related factors that may be used 

by clinicians in decision-making about the choice of empiric antibiotic regimens to 

assess the need for stratified empiric antibiotic prescribing guidance. 

1.4 Other outputs 

During the period of research for the PhD, I also contributed to a number of research papers 

focusing on the epidemiology of bloodstream infection in children and the current 

pharmacoepidemiology of antibiotic use in paediatric bloodstream and other infections. 

These publications are not formally part of this thesis. However, some of this research work 

used the same datasets and explored related research questions and was to some extent 

shaped by the research undertaken for this thesis.  

a. Le Doare K, Bielicki J, Heath PT, Sharland M; Systematic Review of Antibiotic 

Resistance Rates Among Gram-Negative Bacteria in Children With Sepsis in 

Resource-Limited Countries. Journal of the Pediatric Infectious Diseases Society. 

March 2015;4(1): 11-20 

b. Spyridis N, Syridou G, Goossens H, Versporten A, Kopsidas J, Kourlaba G, Bielicki 

JA, Drapier N, Zaoutis T, Tsolia M, Sharland M; ARPEC Project Group Members. 

Variation in paediatric hospital antibiotic guidelines in Europe. Archives of Disease in 

Childhood. Jan 2016;101(1):72-6 
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c. Kent A, Kortsalioudaki C, Monahan IM, Bielicki JA, Planche TD, Heath PT, Sharland 

M; Neonatal Gram Negative MIC group. Neonatal gram-negative infections, antibiotic 

susceptibility and clinical outcome: an observational study. Archives of Disease in 

Childhood: Fetal and Neonatal Edition. March 2016. doi: 10.1136/archdischild-2015-

309554. 

d. Versporten A, Bielicki JA, Drapier N, Sharland M, Goossens H; ARPEC project group. 

The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) 

point prevalence survey: developing hospital-quality indicators of antibiotic 

prescribing for children. J Antimicrob Chemother. 2016 Apr;71(4):1106-17 

e. Gharbi M, Doerholt K, Vergnano S, Bielicki JA, Paulus S, Menson E, Riordan A, Lyall 

H, Patel SV, Bernatoniene J, Versporten A, Heginbothom M, Goossens H, Sharland 

M. Using a simple point-prevalence survey to define appropriate antibiotic prescribing 

in hospitalised children across the UK. BMJ Open. Nov 2016. 6(11): e012675 

f. Folgori L, Tersigni C, Hsia Y, Kortsalioudaki C, Heath P, Sharland M, Bielicki J. The 

relationship between Gram-negative colonization and bloodstream infections in 

neonates: a systematic review and meta-analysis. Clin Microbiol Infect. Mar 2018; 

24(3): 251-257. 

g. Hsia Y, Sharland M, Jackson C, Wong ICK, Magrini N, Bielicki JA. Consumption of 

oral antibiotic formulations for young children according to the WHO AWaRe groups: 

an analysis of sales data from 70 middle and high-income countries. Lancet 

Infectious Diseases. Jan 2019; 19(1): 67-75 

h. Hufnagel M, Versporten A, Bielicki J, Drapier N, Sharland M, Goossens H. High 

Rates of Prescribing Antimicrobials for Prophylaxis in Children and Neonates: Results 

From the Antibiotic Resistance and Prescribing in European Children Point 

Prevalence Survey. J Pediatric Infect Dis Soc. May 2019; 8(2):143-151 

i. Hsia Y, Lee BR, Versporten A, Yang Y, Bielicki J, Jackson C, Newland J, Goossens 

H, Magrini N, Sharland M. Use of the WHO Access, Watch, and Reserve 
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classification to define patterns of hospital antibiotic use (AWaRe): an analysis of 

paediatric survey data from 56 countries. Lancet Glob Health. Jul 2019; 7(7): 861-71 
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2. Background 

Bacterial infections can take several forms. Some of these are not generally life-threatening, 

for example, otitis media. Others are classified as serious, and can present an immediate 

danger to life, most importantly pneumonia, meningitis and bloodstream infections. In their 

most severe forms, these infections present as a severe inflammatory syndrome known as 

sepsis.  

In 2013, 3.3 million children throughout the world were estimated to have died of infectious 

causes before the age of 5 years, accounting for 52% of all deaths in this age group (1). 

While the largest burden of mortality from infections is seen in lower and middle-income 

countries, severe infections remain a cause of death in high income countries with mortality 

from paediatric sepsis in high-income countries estimated to be up to 5%, increasing to up to 

20% for the most severe cases and neonates (2-4). 

Broadly speaking, sepsis represents a dysregulated inflammatory response to overwhelming 

infection (5). Severe inflammation can also have other causes and is not always confirmed to 

be due to bacterial infection. Differentiating between sepsis and other similar clinical entities 

is challenging, especially in neonates and young children in whom non-specific signs and 

symptoms often dominate (6). 

The timely treatment of sepsis with antibiotics can be lifesaving. For this reason, the 

Surviving Sepsis Campaign, a global expert consortium produced evidence-based advice on 

the management of severe infections, and provided various recommendations on the use of 

early antibiotic treatment (7). More recently, similar recommendations have been made for 

neonates and children (8). 

The need to administer antibiotics early in cases of severe infection means that confirmation 

of bacterial aetiology by microbiological culture is not available at the point of treatment 

initiation. In other words, treatment has to be administered empirically without knowledge of 

the causative bacteria. Empiric treatment regimens are traditionally selected to cover the 
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expected spectrum of bacteria according to age, patient characteristics and suspected site of 

infection (9). This ensures successive patients with suspected infections can be appropriately 

treated at an early stage of infection 

Increasing antibiotic resistance has been observed among important bacteria commonly 

implicated in cases of childhood sepsis (9-12). This further complicates empiric antibiotic 

therapy as previously effective first-line and even second-line antibiotics may no longer work. 

The Surviving Sepsis Campaign, therefore, not only recommends early but also broad-

spectrum antibiotic treatment taking into account the regional and local epidemiology of 

antibiotic resistance (7, 8). In line with this, an increasing empiric use of so-called last-resort 

very broad-spectrum antibiotics has been observed for childhood sepsis in regions with 

known high prevalence of antibiotic resistance (13).  

Rising antibiotic resistance levels are creating a vicious circle for clinicians managing 

childhood sepsis as high use of broad-spectrum antibiotics has the potential to further drive 

selection of resistant bacteria (14). Thus, the need to treat severe bacterial infections early 

and broadly may jeopardize the continued effectiveness of these drugs (15).  

International and national guidelines specify that treatment protocols for serious bacterial 

infections, including bloodstream infections, should be based on locally observed bacterial 

resistance patterns. Relevant information for severe childhood infections is available from 

blood cultures obtained as part of the routine work-up of children presenting with signs of 

sepsis. Such data are already locally presented in hospitals and collected as part of national 

and international antimicrobial resistance surveillance programmes (16-18). However, 

despite recommendations for the use of this data to inform the choice of empiric regimens, 

for example in the Surviving Sepsis Campaign guidelines, no guidance is provided for exactly 

how to analyse routine microbiological data and produce information to guide selection of 

empiric treatment regimens (7, 8).  
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2.1 Clinical approach to treating severe bacterial infections: childhood 
bloodstream infection 

The introduction outlined the general challenges clinicians face when selecting empiric 

antibiotic treatment for children with severe infections thought to be caused by bacteria. This 

section is based on a published paper outlining the clinical approach towards the selection of 

empiric antibiotic treatment in greater detail. 

As noted, one of the most serious types of bacterial infections are bloodstream infections 

when bacteria can be grown from normally sterile blood cultures. Bloodstream infections can 

be primary or secondary, with translocation of bacteria into the blood occurs because of 

another focal infection, for example pneumonia or osteomyelitis. Both types of bloodstream 

infections can present as a severe inflammatory syndrome (sepsis). Signs resulting from 

inflammation may also be the result of other infections and non-infectious causes (19-21). 

This leads to empiric antibiotic treatment being started in more children than are finally 

confirmed to have bloodstream infection (22, 23).  

An association between concordant empiric antibiotic treatment (that is, a regimen to which 

the subsequently identified causative bacteria are susceptible in antimicrobial susceptibility 

testing) and better clinical outcomes has been repeatedly described (24-27). Not all 

antibiotics are active against all bacteria, and agents covering many different types of 

bacteria are commonly referred to as having a broad spectrum. A regimen can consist of a 

single antibiotic or of multiple antibiotics given at the same time to cover a wider range of 

bacteria.  

It is important that empiric antibiotic regimens for childhood bloodstream infections are 

informed by the current epidemiology and observed changes in the relative frequency of 

different species bacteria causing them and changes in their antimicrobial resistance. 

Balancing the need to capture episodes caused by bacteria resistant to narrower spectrum 

antibiotics and the need to use antibiotics judiciously is a particular challenge (28-30).  
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Generally, information from blood culture isolates is presented to clinicians at one of three 

levels:  

1. Clinicians review the antimicrobial susceptibility profile (antibiogram) of individual 

bloodstream isolates during patient care (the patient perspective). At this point, they 

adapt empiric antibiotic therapy and define a targeted regimen as required. The data 

are applicable only to the specific patient and episode.  

2. Hospitals often produce cumulative hospital antibiograms (31). These are summaries 

of the susceptibilities of different bacterial species identified from routine 

microbiological samples at the hospital (the hospital perspective). Of note, cumulative 

antibiograms are mostly focused on individual bacteria and their resistance profiles to 

specific antibiotics rather than providing an overall coverage estimate for potential 

antibiotic regimens (32). 

3. In many countries, data on antimicrobial resistance in blood culture isolates are 

collected as part of surveillance (the public health surveillance perspective) (33, 34). 

These are then presented in reports to reflect the current state of and trends in 

antimicrobial resistance. Again, reporting focuses on individual bacteria and their 

resistance profiles. Furthermore, variation in bacterial incidence and resistance 

patterns between different patient groups as well as down to hospital and unit level 

means that it is unclear how such aggregate data can be used for local clinical 

decision-making. 

All three formats present the same data in different ways. However, only the first format is 

directly clinically relevant. While the local and surveillance perspectives may contain relevant 

information about the bacteria expected to cause bloodstream infections in future patients, a 

focus on individual bacteria and their susceptibilities limits their clinical interpretation. 
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ABSTRACT
Potentially life-threatening infections require
immediate antibiotic therapy. Most early stage
antibiotic treatment for these infections is
empirical, that is, covering a range of possible
target bacteria while awaiting culture results.
Empirical antibiotic regimens need to reflect the
epidemiology of most likely causative bacteria,
type of infection and patient risk factors.
Summary data from relevant isolates in similar
patients help to identify appropriate empirical
regimens. At present, such data are mostly
presented as hospital or other aggregate
antibiograms, showing antimicrobial
susceptibility testing results by bacterial species.
However, a more suitable method is to calculate
weighted incidence syndromic combination
antibiograms for different types of infections and
regimens, allowing head-to-head comparisons of
empirical regimens. Once there is confirmatory or
negative microbiological evidence of infection,
empirical regimens should be adapted to the
identified bacterial species and susceptibilities or
discontinued.

THE CASE
A 3-year-old boy with cerebral palsy is
admitted to the paediatric intensive care
unit (PICU) with viral respiratory tract
infection, intubated and invasively venti-
lated for 2 days because of respiratory
failure. After extubation and in the
absence of central venous catheters, he
develops a fever without a clear focus.
Clinically, the patient is stable from a
respiratory point of view, but has signs of
sepsis. He does not have any signs of
meningitis. A urine sample is obtained
without evidence of infection on dipstick.

The child has not had any hospital
admissions or antibiotic treatments in the
last 15 months. The results from blood
and urine cultures are pending.

SHOULD THIS PATIENT BE TREATED
WITH ANTIBIOTICS IMMEDIATELY?
This largely depends on the clinical status
of the patient and the confidence with
which an immediate diagnosis can be
made (figure 1). In this scenario, the
assessment of the patient as having sepsis
would indicate that immediate empirical
antibiotic treatment within 1 hour is
required.1

What is empirical antibiotic treatment?
This boy’s treatment will have to be
empirical to cover potential bloodstream
infection. Empirical antibiotic treatment
has several ‘stages’, depending on how
much information is available from
microbiological cultures (figure 2).2 This
in turn is influenced by the laboratory
techniques in use and sample processing
in specific laboratories.
Although systems for direct detection

of bacterial nucleic acid in blood are
available, these systems are very expen-
sive, and have not been shown to be reli-
able or useful enough to either replace or
supplement blood cultures in most set-
tings. Moreover, even these techniques
are not fast enough to give a result before
antibiotic treatment is started. Many
microbiology laboratories do now use
new technologies, such as using matrix-
assisted laser desorption/ionisation time
of flight, to give same-day species
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identification of bacteria that have been isolated from
blood cultures. This information can sometimes be
useful in early review and de-escalation of ongoing
empirical therapy.3 However, antibiotic susceptibility
testing will almost always have to be performed in the
conventional manner, which requires a further over-
night incubation. Thus there are at least two stages
when empirical antibiotic therapy should be reviewed:
when the blood culture signals positive and the iden-
tity of the isolate is established, and then on the fol-
lowing day when antibiotic susceptibilities become
available. At each stage, microbiology staff can help
with the interpretation of available data.

IF SO, WHICH ANTIBIOTIC(S) SHOULD BE GIVEN?
You may be working in a setting, in which hospital-
level recommendations for empirical treatment are
available. In such guidance, several options are often
provided for children with sepsis, depending on age,

the presence of comorbidities and the presence of
central venous catheters. This demonstrates that there
may be important information about the patient that
needs to be considered before making a choice about
empirical antibiotic treatment. At the hospital treating
this patient, piperacillin/tazobactam would usually be
used to empirically treat sepsis in children older than
1 month of age with underlying chronic
comorbidities.
Your own hospital may not provide local guidance.

In this case, the British National Formulary for
Children suggests a number of possible regimens for
treating community-acquired and hospital-acquired
suspected bloodstream infections (table 1).4

Why is getting empirical antibiotic treatment right
important?
When selecting the optimal empirical regimen, the
principal aim is to cover the expected spectrum of the

Figure 1 Bacterial infections for which empirical antibiotic treatment may be necessary.

Figure 2 Different stages of empirical antibiotic treatment, depending on available information from microbiological samples.

Best practice

2 Bielicki JA, et al. Arch Dis Child Educ Pract Ed 2016;0:1–7. doi:10.1136/archdischild-2016-310527

Protected by copyright.
 on August 9, 2020 at Basel U

niversity.
http://ep.bm

j.com
/

Arch D
is C

hild Educ Pract Ed: first published as 10.1136/archdischild-2016-310527 on 22 N
ovem

ber 2016. D
ow

nloaded from
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 26 

causative bacteria according to age, patient character-
istics and suspected site of infection. This will ensure
that patients, in whom bacterial infection is eventually
proven, are appropriately treated at an early stage of
infection. Treatment concordance or discordance,
meaning antibiotic therapy to which the isolate is sus-
ceptible or non-susceptible in vitro, is assessed in rela-
tion to microbiological results rather than describing a
clinical response to treatment. For life-threatening
infections, such as bloodstream infections, there is
some evidence, mainly from adult patients, that early
concordant antibiotic treatment improves patient
outcomes.5

SHOULD THIS PATIENT BE TREATED WITH A
CARBAPENEM EMPIRICALLY?
One option could be to simply administer the most
‘broad spectrum’ antibiotic available to this child, for
example, meropenem. Unfortunately, there are several
problems with this type of approach:
1. Empirical antibiotic therapy is supposed to be given for

a short period of time. However, in reality once a broad-
spectrum antibiotic, such as a carbapenem, is com-
menced empirically it can be very difficult to de-escalate
treatment promptly. From a clinical decision-making
point of view, a positive blood or other culture would
enable us to tailor this patient’s antibiotic therapy
accordingly. However, his cultures may remain negative,
while he may clinically still appear unwell. In this case,
many clinicians would be worried about stopping or
de-escalating empirical antibiotic treatment, a phenom-
enon that has been well described for neonatal intensive

care patients, for example.6 In such a situation, broad-
spectrum antibiotics are likely to be continued or even
escalated in the absence of proof of infection. Prolonged
empirical use of broad-spectrum antibiotics is known to
be associated with a number of negative outcomes, such
as a higher risk of necrotising enterocolitis in neonates7

and a higher risk of candida bloodstream infection in
paediatric intensive care patients.8

2. Using the most broad-spectrum options for all children
also drives antimicrobial resistance locally and globally.
The local impact of a policy of broad-spectrum antibiotic
use was demonstrated in a trial carried out in neonatal
intensive care in the Netherlands:9 an empirical regimen
of amoxicillin and cefotaxime for the treatment of neo-
natal sepsis led to 18 times higher colonisation with
resistant Gram-negative bacteria than when a more con-
servative regimen of penicillin plus tobramycin were
used.

3. Our patient does not have any specific risk factors for
bloodstream infection caused by multidrug resistant
Gram-negative organisms. In patients with such risk
factors (eg, known colonisation by extended-spectrum
β-lactamase producing bacteria) the treating physician
may feel that a very broad regimen, such as meropenem,
is a safe bet. Even the broadest antibiotic regimens,
however, have gaps in their cover: K. pneumoniae
bloodstream isolate resistance to carbapenems is
known to be around 7% in children across Europe.10

This means that one would have to use ever more
complicated combination regimens to ensure that all
possible isolates, including carbapenem-resistant
Enterobacteriaceae, are covered.

Table 1 British National Formulary for Children 2015/2016 recommendations for empirical treatment of neonatal and paediatric
septicaemia4

Infection Antimicrobials

Septicaemia in neonate <72 hours old Benzylpenicillin plus gentamicin
If Gram-negative pathogen suspected: add cefotaxime, stop benzylpenicillin if Gram-negative
infection confirmed

Septicaemia in neonate >72 hours old Flucloxacillin plus gentamicin OR amoxicillin plus cefotaxime
Suggested duration 7 days

Septicaemia in child 1 month to 18 years,
community-acquired

Amoxicillin plus aminoglycoside OR cefotaxime alone
If Pseudomonas spp or resistant organisms suspected: use broad-spectrum antipseudomonal
β-lactam antibiotic
If anaerobic infection suspected: add metronidazole
If Gram-positive infection suspected: add flucloxacillin OR vancomycin
Suggested duration at least 5 days

Septicaemia in child 1 month to 18 years,
hospital-acquired

Broad-spectrum antipseudomonal β-lactam antibiotic, for example: piperacillin/tazobactam,
imipenem/cilastin, meropenem
If Pseudomonas spp or multiresistant organisms suspected or if severe sepsis: add aminoglycoside
If methicillin-resistant Staphylococcus aureus (MRSA) suspected: add vancomycin
If anaerobic infection suspected: add metronidazole to a broad-spectrum cephalosporin
Suggested duration at least 5 days

Septicaemia in presence of central vascular catheter Vancomycin
If Gram-negative pathogens suspected: add broad-spectrum antipseudomonal β-lactam
Consider line removal

Meningococcal septicaemia Benzylpenicillin or cefotaxime, if allergic give chloramphenicol
Potentially to be used interchangeably: ampicillin and amoxicillin, ceftriaxone and cefotaxime, teicoplanin and vancomycin.
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Thus, although we may feel that giving the broadest
regimen will improve cover, this may not actually be
the case, and this approach may be risky. Moreover,
data are currently rarely available to support clinicians
in daily practice that enable the cover of different regi-
mens to be compared. However, clinicians could
target empirical treatment better if this was available,
and we address this issue in the next section.

How are empirical antibiotic treatments selected?
As mentioned above, patient-level knowledge of risk
factors for a specific aetiology of sepsis is important in
selecting empirical treatment. For example, if our
patient had a central venous line, specific bacteria,
such as Staphylococcus aureus or coagulase-negative
staphylococci (CoNS), would be more likely to be
causing the bloodstream infection, and we would
need to consider the cover provided by regimens for
these pathogens. Similarly, knowledge of whether an
infection is nosocomial and information on any recent
antibiotic treatments is important.
Local antibiotic guidelines are usually based on

aggregate microbiological data gathered at a local/hos-
pital level for many patients, based on the assumption
that isolates from these patients are representative of
isolates likely to be encountered at this hospital. Such
data are frequently summarised in the form of a hos-
pital antibiogram.11 Table 2 is an example of a hos-
pital antibiogram. These generally present resistance
information by pathogen, summarising the results of
individual isolates for the key bacterial species over a
specified period of time, for example, 1 year. Of note,
not all data in a hospital antibiogram may be of clin-
ical relevance. For example, while Enterobacter or
Serratia spp may appear susceptible to cephalosporins
in vitro, these agents should not be used to treat
Enterobacter or Serratia spp infection.

WHAT TOOLS CAN SUPPORT EMPIRICAL
ANTIBIOTIC DECISIONS?
While hospital antibiograms provide useful summaries
of the resistance of pathogens to various antibiotics,
they have several limitations in the context of empir-
ical treatment decision-making: although you may
have a suspicion about the causative bacteria in a
given patient, it is difficult to know for sure, and you
would want to provide cover for less likely, but poten-
tially dangerous candidates as well. It may be import-
ant to determine whether patients being treated for
probable severe bacterial infection are colonised by
multidrug resistant bacteria, for example, to provide
appropriate empirical cover.
In our patient, there is a strong suspicion that the

most likely type of infection is a primary bloodstream
infection as he does not have any signs suggestive of
urinary tract infection or meningitis and is stable from
a respiratory point of view. We would therefore want

to provide cover for bacteria that cause bloodstream
infection in children seen at our centre.
One limitation is that many antibiograms will

include isolates from all types of cultures, such as
blood, urine and cerebrospinal fluid.11 While this
approach increases the sample size of isolates, and
therefore improves confidence in estimates of cover
provided by different antibiotics, the pathogen and
resistance patterns can differ between different sites of
infection. In order to improve concordance of an
empirical regimen for a specific site of infection, it is
preferable to limit an antibiogram to isolates from
relevant cultures: for suspected bloodstream infection,
these would be blood cultures; for urinary tract infec-
tions, it would be urine cultures, and so on.
Another limitation is that antibiograms are rarely

age-specific, even though pathogen and resistance pat-
terns for children and adults are not the same.10 12

Consequently, to support empirical antibiotic prescrib-
ing, clinicians require a summary statistic that will
describe the likely overall cover of different antibiotic
regimens given the type of patient and infection.
Finally, you would want to know whether the cover

provided by different regimens is in fact similar. As
with any other type of data, any observed differences
may be down to chance and, depending on sample
size, one’s confidence in the estimate of a regimen’s
cover may be low, as in the case when the 95% CI
around the estimate is wide. Establishing the equiva-
lence of regimens is important because guidelines
such as ‘Surviving Sepsis’ recommend selecting a
regimen that provides cover for the whole likely spec-
trum of causative bacteria guided by local microbio-
logical results.1

The weighted incidence syndromic combination
antibiogram
An alternative approach that overcomes the limitations
of a hospital antibiogram is to present the microbio-
logical data as a weighted incidence syndromic com-
bination antibiogram (WISCA).13–15 This describes
the cover provided by different regimens, taking into
account the distribution of pathogens and resistance
patterns (weighted incidence) for a specific syndromic
infection and can be calculated for both single and
multiple (combination) antibiotic regimens. A further
advantage is that it is possible to calculate 95% CIs
for the cover estimates, which allows clinicians to con-
sider whether different regimens are likely to provide
truly different cover.15 To select an appropriate
regimen for our patient, we would want to review the
WISCAs for candidate regimens, such as those listed
in the British National Formulary for children (BNFc),
based on bloodstream isolates only.
Table 3 shows a WISCA that includes various regi-

mens. These have been calculated from the data in
table 2 using a method based on a decision tree.15 You
can see that amoxicillin plus gentamicin cover a
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similar proportion of isolates as piperacillin/tazobac-
tam or meropenem, and may therefore be as good an
option for empirical treatment in this instance. This
assumes that all isolates in table 2 were from blood
cultures.
The low level of cover provided by broad-spectrum

antibiotics, such as piperacillin/tazobactam and mero-
penem, is mainly due to the inclusion of pathogens
with high levels of resistance to these agents, for
example, CoNS. It may not be necessary to provide
early cover for CoNS, especially for children without
central venous access lines who will not have sepsis
due to CoNS.
As several regimens are very similar in empirical

cover, the selection of a specific regimen can be
carbapenem-sparing and consider additional factors:
piperacillin/tazobactam, for example, may have
specific advantages in terms of renal toxicity com-
pared with gentamicin in a combination treatment of
amoxicillin and gentamicin and could be used to
provide cover for specific bacteria of concern, such as
P. aeruginosa. Our patient does not have risk factors
for specific pathogens of concern, has normal renal
function and could, on the basis of the WISCAs in
table 3, perhaps have been empirically treated with
amoxicillin plus gentamicin in the first instance.

MOVING ON FROM EMPIRICAL ANTIBIOTICS
It is very important to adapt empirical antibiotic regi-
mens once additional information becomes available.
This is also the reason why it is critical to take all rele-
vant microbiological samples before starting antibio-
tics, if at all possible. In the UK, changes to empirical
antibiotics should follow the ‘Start Smart, Then
Focus’ approach.16

In our patient, you may want to stop any antibiotic
therapy if he is improving at 48 hours, urine and
blood cultures are negative at this stage, and clinically
it appears that his deterioration was not due to infec-
tion. Equally, if his blood cultures grow a specific
organism unlikely to be a contaminant, say
Escherichia coli, you may want to adjust therapy to
the most narrow-spectrum option compatible with the
specific microbiological susceptibilities of the isolate.

If you are unsure about how to de-escalate treatment
safely, your microbiology colleagues will be able to
help you. At the same time, you should think about
how long you might need to treat (see table 1), and
whether there will be an opportunity to switch from
intravenous antibiotics to oral treatment. For example,
if our patient had signs of urinary tract infection on
dipstick, was improving clinically and his urine cul-
tures grew E. coli, but his blood cultures remained
negative, he may simply be suffering from a urinary
tract infection and you could switch to oral treatment
informed by the antibiogram of the urinary E. coli
isolate.

SUMMARY
The selection of empirical antibiotic regimens for
severe bacterial infections, when immediate treatment
is required, needs to take into account the epidemi-
ology of the targeted infection and key patient
characteristics. This can be achieved by analysing
available microbiological data, and presenting this in a
clinically meaningful manner as a WISCA.
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2.2 Challenges for deriving optimal empiric antibiotic regimen from routine 
microbiological data  

There are several challenges of deriving relevant information from routine data when 

considering on-going large-scale surveillance of antimicrobial resistance. Such data are 

widely available in Europe and globally and could therefore potentially be made accessible to 

clinical decision-makers. 

At present, microbiological cultures are the only widely available and used test to definitively 

confirm most severe bacterial infections, including bloodstream infections in children. 

Because of this, blood cultures are obtained for many children suspected of having a severe 

infection, but the rate of positive blood cultures is low (<3% in the UK, <7% in high-incidence 

settings, e.g. Kenya) (35, 36). Optimal sampling techniques can be difficult in busy clinical 

care with potential for false positive and false negative results (37). Therefore, in children it is 

often necessary to interpret blood culture results in a clinical context to guide definitive 

treatment. 

Despite these concerns, information on bacteria isolated from a blood culture is considered 

one of the most robust sources of microbiological information (38-40) In addition to their 

clinical relevance, blood cultures are likely to have limited sampling bias (41). They examine 

a normally sterile site, making it easier to distinguish between merely colonizing and infecting 

isolates. Moreover, the majority of children with suspected bloodstream infection will be 

evaluated in the hospital setting, where appropriate samples can be taken. It is for these 

reasons that several established national and international surveillance programmes focus 

on bacteria isolated from blood culture (42, 43). 

One limitation of using routine blood culture data is a lack of standardisation of laboratory 

procedures (44). Although there are several defined standards for the interpretation of 

susceptibility testing results, the selection of tested antibiotics is generally determined by the 

isolated bacterium, the type of infection, the antibiotics available for treatment at any given 

centre and the guidelines in use in the laboratory (43, 45). While this may seem justifiable on 
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the basis of clinical needs and patient characteristics, it is known that differences in the 

laboratory methods used to evaluate antimicrobial susceptibility can affect the observed 

resistance patterns (44, 46, 47). In particular so-called “reflex testing” can be problematic 

when certain bug-drug combinations are only evaluated based on the detection of resistance 

in a first line standardised antibiotic panel. Thus the denominator for these second line tests 

is constituted not of all isolates but only of those with some antimicrobial resistance, biasing 

resistance prevalence estimates.  

Revisions to and variability between interpretive guidelines for antimicrobial susceptibility 

testing can add complexity to analyses of routine data for the identification of trends in 

antimicrobial resistance (45, 48, 49). This has to be borne in mind when using routine 

microbiological data to describe the epidemiology of bloodstream infections, especially when 

it is desirable to compare different hospitals or regions over time (50). 

Nonetheless, the secondary use of routine data for selecting empiric regimens could be 

highly efficient: Hospitals may already be reporting these data internally or to surveillance 

databases; data may be in format that can easily be used for evaluation of coverage of 

different regimens of interest; despite limitations, such data are likely to provide a reflection 

of the current epidemiology. This is particularly true of surveillance data which are already 

widely available in Europe, North America and Australia (34). Defining methods for analysis 

and presentation of these data to support selection of empiric antibiotic regimens would 

mean that existing data could be used in a better way to inform clinical practice.  
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2.3 Rationale for thesis 

Standard approaches towards determining empiric regimens from routine microbiological 

data at the hospital level, such as antibiograms, are unlikely to lead to clinically useful local 

adaptations of empiric treatment strategies. This is particularly true in a setting, where overall 

isolate numbers are low, like in neonatal and paediatric practice. Routine microbiological 

data are easily available in each hospital and are often already fed into large scale 

surveillance of epidemiological trends. However, surveillance data like hospital data are not 

generally presented in a clinically relevant fashion.  

The optimal alternative approach would make use of such routinely available data routinely 

to 

(i) allow the definition of infection-based rather than bacteria-based recommendations 

(e.g. for suspected bloodstream infection); 

(ii) take into account the epidemiology of the infection of interest, that is both the 

prevalence of bacteria and their resistance patterns; 

(iii) adequately handle low isolate numbers for any one of the bacteria of interest. 

The benefits of such an approach would be a more efficient and clinically relevant use of 

routinely available data to ensure a high likelihood of concordant empiric treatment for 

children treated for bloodstream infections. At the same time, a robust method for selecting 

empiric antibiotic regimens could support the data-driven use of narrow-spectrum 

alternatives whenever appropriate and contribute to the conservation of broad-spectrum 

agents for use in patient groups most likely to benefit.
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3. Thesis data sources and analytical approaches 

3.1 Selection of empiric antibiotic regimens for bloodstream infections 

The decision to prescribe empiric antibiotics is taken by an individual clinician for an 

individual patient but is usually informed by other sources of guidance. When selecting an 

empiric antibiotic regimen for inclusion in such guidance the following aspects need to be 

considered: 

- The specific infection syndrome being targeted: In clinical practice, infection 

syndromes are variably characterised by a set of signs and symptoms, non-specific 

laboratory markers and radiological findings. Some bacteria can cause multiple 

infection syndromes (for example, E. coli is an important cause of urinary tract 

infection, but also primary bloodstream infection or meningitis).  

- The relative incidence of different types of bacteria causing the target infection 

syndrome: Unless reliable point-of-care or rapid testing is available to identify 

causative bacteria at the time point of the treatment decision, a good understanding 

of the frequency with which different bacteria are isolated in a given infection 

syndrome will form the basis of selecting an empiric regimen. 

- The antibiotic resistance patterns of causative bacteria: The prevalence of resistance 

to antibiotics available for use in a given location and for a given patient group in all 

bacteria commonly identified in the infection syndrome needs to be taken into 

account.  

- Patient characteristics: The relative incidence and resistance patterns of bacteria may 

vary according to certain patient characteristics even within the same infection 

syndrome. For example, variation may be observed across age, according to the 

source of infection (community-acquired or hospital-acquired) or due to the presence 

of underlying chronic co-morbidities that lead to frequent healthcare contacts. Other 

patient characteristics, such as the presence of antibiotic allergies or impaired renal 
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or liver function, will also impact on whether a certain optimal empiric regimen is 

suitable for use in the individual patient. 

Adaptations to the initial empiric regimen will occur as results from microbiological sampling 

become available. In most cases, this is still a sequential process relying on culturing the 

bacterium first, then subjecting that isolate to antimicrobial susceptibility testing (51). A 

summary of this process is presented in Figure a.  

 

Figure a: Summary of the key steps for the selection of empiric antibiotic regimens at hospital level. 

3.2 The role of the cumulative antibiogram: how hospitals summarize routine 
data 

The usual tool for informing the selection of empiric treatment regimens at the hospital is a 

hospital antibiogram (31). The hospital antibiogram is the most basic cumulative summary 

reflecting the local microbiology of bacterial infections. It is based on summarizing the 

antibiograms of individual isolates of the key bacterial species. This is usually constructed by 

including all isolates of the bacteria of interest over a specified period of time, for example 
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one year. As such, hospital antibiograms often do not apply to an infection syndrome of 

interest as included isolates will come from different sources and types of patients.  

Hospital antibiograms list pathogens individually and focus on key bacteria, often those for 

which extensive susceptibility testing is relevant. Bacteria for which resistance is not 

considered a substantial problem, such as Streptococcus pyogenes or Streptococcus 

agalactiae, are unlikely to be included, and the relative frequency of these in specific 

infection syndromes therefore cannot be estimated from a hospital antibiogram. Finally, 

hospital antibiograms can be subject to bias resulting from local laboratory practices, such as 

the selection of antibiotics for susceptibility testing, and the inclusion or exclusion of repeat 

isolates from an individual patient.  Patients with the same pathogen being repeatedly 

isolated are often the most complex patients and therefore most at risk of at some point 

carrying or being infected by resistant isolates. This could lead to overestimations of 

resistance. 

Low numbers of neonatal and paediatric isolates (compared with isolates from adults) are 

one reason why hospitals may choose not to present childhood data separately (18). An 

additional limitation for informing empiric treatment is the focus on reporting susceptibility 

results for specific bacteria-antibiotic pairs, since the causative pathogen is generally 

unknown at the time of treatment initiation. The relevance of the hospital antibiogram for 

guiding empiric antibiotic regimen selection is therefore unclear. 

3.3 The desirable characteristics of a metric for selecting empiric antibiotic 
regimens for childhood bloodstream infections 

Current guidance on defining empiric treatment approaches for childhood bloodstream 

infection may be confusing for clinicians. Although relatively robust data on which to base 

recommendations are available, these are generally summarized in terms of bacterial 

susceptibility rather than being presented in a clinically meaningful manner. Standard 

cumulative antibiograms are therefore unlikely to lead to clinically useful adaptations of 
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empiric treatment strategies. This is particularly true in settings, where overall isolate 

numbers are low, like in neonatal and paediatric practice. 

The optimal approach would make use of routinely available data to 

(i) allow the definition of clinical infection-based rather than bacteria-based 

recommendations (e.g. for suspected bloodstream infection) (52), 

(ii) take into account the epidemiology of the infection of interest, that is both the 

prevalence of bacteria and their resistance patterns (53), 

(iii) adequately handle low isolate numbers for any one of the bacteria of interest (53). 

It is therefore desirable to have a syndromic metric that provides information about the 

expected coverage of an empiric antibiotic regimen. This is defined as the percentage of 

isolates, in this case causing childhood bloodstream infections, against which the regimen of 

interest was active in microbiological testing (also defined as concordance) (54). In essence, 

the expected coverage can be derived as a weighted average of the susceptibilities of 

relevance bacteria with the weights defined by their relative incidence (55). At the same time, 

coverage reflects the probability that a regimen will be active against all relevant potential 

causative bacteria for the next child presenting with bloodstream infection.  

Refinement of the classical cumulative antibiogram has led to alternative approaches being 

proposed that address some of the challenges above while still using widely available data 

from routine microbiological samples and generating an estimate of coverage. One method is 

the weighted incidence syndromic combination antibiogram or WISCA (55). This approach 

has been used to evaluate coverage of antibiotic regimens for bloodstream infection in 

neonates and children based on population data (16, 53, 56). However, the original 

description of the WISCA did not address the potential impact and handling of low isolate 

numbers including quantification of uncertainty. 
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3.4 Interpretive algorithms to derive antibiotic concordance from antimicrobial 
susceptibility testing data 

Hospital antibiogram and surveillance data are generally used for reporting on specific 

pathogen-antibiotic combinations. However, results for antimicrobial susceptibility testing 

involving some pathogen-antibiotic combinations can be used to make inferences about 

susceptibility for related agents or even antibiotic groups (57, 58). The application of 

interpretive rules is important in clinical decision-making when individuals are treated to 

determine whether a specific causative bacterium is covered by current antibiotic therapy or 

not. For example, susceptibility to benzylpenicillin for Streptococcus pneumoniae is indicative 

of the isolate being susceptible to all beta-lactams without further testing (57). This can then 

guide escalation or de-escalation decisions when moving from empiric to definitive therapy. 

Similarly, the application of interpretive rules could improve the use of routine data for 

aggregate analyses, such as a WISCA. For this thesis, interpretive rules were based on 

EUCAST algorithms (59).  

For monotherapy regimens, EUCAST standard algorithms were applied to infer susceptibility 

from other testing results when different antibiotics were considered equivalent (for example, 

oxacillin and cefoxitin for methicillin-resistance in S. aureus). Isolates reported as 

intermediate or resistant to an antibiotic representative of a monotherapy regimen, such as 

ceftriaxone, were classified as resistant. Very recently, the intermediate category has been 

reclassified by EUCAST to indicate susceptible if treated with an increased dose and 

eliminated where this is not the case (60). For combination regimens, isolates were classified 

as susceptible to the regimen if they were reported as susceptible to at least one of the 

antibiotics in the combination. The antibiotic with higher susceptibility levels in a combination 

regimen determined the estimate of susceptibility to the regimen (for example E. coli 

amoxicillin susceptibility reported to be 20%, gentamicin susceptibility reported to be 90%, 

overall susceptibility of E. coli to amoxicillin and gentamicin is 90%). 

One reason for missing data from antimicrobial susceptibility testing is that a certain 

pathogen has intrinsic resistance to a given antibiotic. This pathogen-antibiotic combination 
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would then not be tested as a result indicating susceptibility would be uninterpretable and 

would not indicate that the antibiotic could be suitable for treatment. An example for such a 

situation is the susceptibility of enterococci to cephalosporins (61). Similarly, there are 

bacteria for which a resistant phenotype would be considered highly unusual and 

assumptions can be made about being generally susceptible to certain antibiotic groups 

regardless of the availability of susceptibility testing. An example would be susceptibility of 

Group B streptococcus to cephalosporins or carbapenems (59). 

3.5 Data sources 

3.5.1 ARPEC antimicrobial resistance database 

Using established methodology from the European Antimicrobial Resistance Surveillance 

Network (EARS-Net), information on bacteraemia rates and antimicrobial susceptibilities for 

key bacteria was collected as part of the ARPEC project (62).  

 

Figure b: Data available in the ARPEC antimicrobial resistance database.  

Limited additional data were collected on the patient from whom the blood culture had been 

taken (Figure b). 

All first positive blood cultures from patients under 18 years of age at the time of routine 

blood culture during the study period with growth of Staphylococcus aureus, Streptococcus 

pneumoniae, non-typable Haemophilus and Haemophilus influenzae, Enterococcus faecalis 

and E. faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, 
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Enterobacter spp., Acinetobacter baumannii, Stenotrophomonas maltophilia and Salmonella 

enterica serovar were included. Any blood cultures originating from the same patient and 

positive for the same organism within 4 weeks of the original reported blood culture were 

excluded. For each isolate, antimicrobial susceptibility testing information for any antibiotic 

from a pre-specified list was recorded as sensitive, intermediate or resistant (Table a). 

Minimal inhibitory concentrations were not collected.  

CODE  ANTIBIOTIC CODE  ANTIBIOTIC 

AMK  Amikacin  
AMX  Amoxicillin  
AMC  Amoxicillin/Clavulanic acid  
AMP  Ampicillin  
AZM Azithromycin  
ATM Aztreonam  
CZO  Cefazolin  
FEP  Cefepime  
CTX  Cefotaxime 
FOX  Cefoxitin 
CAZ  Ceftazidime 
CRO  Ceftriaxone 
CHL  Chloramphenicol 
CIP  Ciprofloxacin 
CLR  Clarithromycin 
CLI  Clindamycin 
CLO  Cloxacillin 
DIC  Dicloxacillin  
ERY  Erythromycin  
FLC Flucloxacillin  
FUS  Fusidic acid 
GEN  Gentamicin  
IPM  Imipenem  
LVX  Levofloxacin  

LNZ  Linezolid  
MEM  Meropenem 
MET  Methicillin 
MFX  Moxifloxacin 
MUP  Mupirocin 
NAL  Nalidixic acid 
NET  Netilmicin 
NIT  Nitrofurantoin 
NOR  Norfloxacin 
OFX  Ofloxacin 
OXA  Oxacillin 
PEN  Penicillin G 
PNV  Penicillin V 
PIP  Piperacillin  
TZP  Piperacillin/Tazobactam  
RIF  Rifampin  
TEC  Teicoplanin 
TET  Tetracycline 
TIC  Ticarcillin 
TCC  Ticarcillin/Clavulanic acid 
TOB  Tobramycin 
TMP  Trimethoprim 
SXT  Trimethoprim/Sulfamethoxazole 
VAN  Vancomycin 

Table a: Antimicrobial susceptibility testing data collected as part of the ARPEC antimicrobial resistance project 

To support data interpretation, background information on paediatric specialist services in 

participating hospitals, annual admissions data and annual data for all positive blood cultures 

were also collected. Furthermore, information on laboratory/hospital-specific microbiology 

approaches, including the type of interpretive criteria used for determining susceptibility to 

tested antibiotics, was of interest.  
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Data collection used a custom-built database and was completely anonymous. Data were 

extracted from the laboratory information systems of participating hospitals based on the 

eligibility criteria outlined above for 2011 and 2012.  

The final ARPEC-AMR database included data on >1500 bloodstream infections from 19 

centres in 10 European countries. The full ARPEC-AMR data were used for the analyses in 

chapters 4, 5 and 6 of this thesis.  

3.5.2 ARPEC antibiotic use point prevalence survey 

Building on the success of point prevalence surveys to evaluate antimicrobial use patterns in 

the hospital setting for adult patients, this standardized methodology was adapted and 

validated for collecting data from children as part for the ARPEC project (63, 64).  

In brief, participating hospitals conducted a one-day survey on all neonatal and paediatric 

wards as a means of auditing antimicrobial prescribing rates in hospitalised children. For this, 

all patients less than 18 years of age admitted overnight were counted and contributed to the 

denominator, calculated by ward and overall for each hospital. All patients with an 

antimicrobial prescription at 8 am on the day of the survey contributed to the data on 

antimicrobial prescribing. Day cases, outpatients, emergency admissions after midnight on 

the day of survey, psychiatric patients, children admitted to an adult ward and over 18 year-

olds admitted to paediatric wards were excluded and did not contribute to either numerator or 

denominator data.  

Data on all systemic antimicrobials defined by WHO Anatomical Therapeutic Chemical (ATC) 

classification system were of interest (65): Antibacterials, antimycotics and antifungals and 

antivirals for systemic use, antibiotics used as drugs for the treatment of tuberculosis, 

intestinal anti-infectives and anti-malarias. For each prescription and treated patient 

additional information was collected (Figure c).  
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Figure c: Data available in the ARPEC point prevalence study of inpatient neonatal and paediatric antimicrobial 
prescribing 

Data collection used custom-built software and was completely anonymous. Three point 

prevalence surveys were conducted: A feasibility study in 11 European hospitals, the first 

ARPEC-PPS in September 2011 in 73 hospitals located in 23 different countries globally and 

the second ARPEC-PPS in October/November 2012 in 226 hospitals in 41 countries.  

The ARPEC-PPS database includes 26,618 surveyed neonates and children of which 9944 

were prescribed at least one antimicrobial on the day of survey. In total, the database 

contained 17,126 prescriptions, of which most were antibacterials for systemic use.  

The ARPEC-PPS data were used for the analysis in chapter 8 of this thesis. For this, a data 

extract containing all antibacterial prescriptions issued to neonates and children with at least 

on antimicrobial prescription for sepsis was prepared and analysed.  

3.5.3 NeoAMR Feasibility survey  

Data were collected as part of a feasibility assessment for international sites wishing to take 

part in a prospective cohort study on neonatal sepsis (NeoOBS). NeoOBS is designed to 

evaluate healthcare utilization and current clinical practice of antibiotic management of 

neonatal sepsis, and to assess risk factors for and outcomes of babies with culture-negative 

and culture-positive sepsis (ClinicalTrials.gov Identifier: NCT03721302).  
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During the feasibility phase, anonymous aggregate data from an international network of 

sites were collected using a REDCapTM database, and stored in a secure server at St. 

George’s University of London. The feasibility survey was designated a clinical audit not 

requiring formal Ethics Committee review in the country of the data host (UK). Contributing 

centres were individually responsible for obtaining ethical approval according to local 

regulatory and legal requirements. The feasibility survey covered a number of low and 

middle-income countries worldwide, however, for this PhD only data from Asian centres were 

included.  

As part of the survey, the prevalence of antimicrobial resistance among blood culture isolates 

from newborns up to 28 days of age or infants cared for on neonatal units was estimated. 

Information was collected on bacterial isolates and their susceptibilities cultured between 1 

January 2016 and 31 December 2016.  

Sites were requested to provide information on nine specific bacteria frequently associated 

with neonatal sepsis, likely to cause severe disease and requiring optimal early antibiotic 

therapy, namely Escherichia coli, Klebsiella spp., Enterobacter spp., Acinetobacter spp., 

Pseudomonas spp., Staphylococcus aureus, Enterococcus spp., Streptococcus agalactiae 

(GBS) and Streptococcus pyogenes (GAS). For each of the pathogens, participating sites 

submitted the number of total isolates, the number tested for susceptibility to relevant 

antibiotics, including aminopenicillins, aminoglycosides, third-generation cephalosporins, 

carbapenems, and the number of isolates found to be resistant to these (Table b). 

The feasibility survey data was analysed alongside data from the literature in chapter 7 of 

this thesis. 

Step  
1 Total number of positive 

cultures 
Total number of bacterial blood culture isolates from neonates 
during the target period (= Sum of total n for Step 2 plus other 
bacterial isolates without correction for contaminants or 
duplicate isolates) 

2 Pathogens of interest 

To
ta

l n
 

Antibiotic classes* of interest for susceptibility 
testing and antibiotic resistance 
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Escherichia coli X X X X X   
Klebsiella spp. X  X X X   
Enterobacter spp. X  X X X   
Acinetobacter spp. X  X X X   
Pseudomonas spp. X  X X X   
Staphylococcus aureus X     X X 
Enterococcus spp. X X     X 
Streptococcus 
agalactiae X       

Streptococcus 
pyogenes X       

*Susceptibility testing and resistance data were not collected for individual antibiotics within a given 
class. For example, questions on resistance were phrased “How many of [the tested] isolates [for this 
pathogen] were resistant to at least one [member of antibiotic class]?” 

Table b: Description of feasibility survey data collection for period prevalence of bacterial isolates and their 
resistance patterns 

3.6 Ethics 

The research for this thesis was based on data that were exempt from UK National Research 

Ethics Service (NRES) approval, because data collection was considered to constitute 

surveillance, service evaluation or audit (see LSHTM review, appendix A). The analysis 

involved the secondary use of these anonymised pre-exisiting datasets or, in one case, data 

from the published literature. I did not have access to coded or patient-level data. 
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4. Estimating clinically relevant resistance in childhood 
bloodstream isolates from surveillance data 

The potential impacts of laboratory practice on assessing resistance prevalence were 

discussed in subchapter 2.2. Despite the outlined limitations, routine data generated by 

laboratories applying variable algorithms and interpretive criteria are frequently reported as 

part of antimicrobial resistance surveillance. For such surveillance, it is usual to request or 

report on the results for specific pathogen-antibiotic susceptibility tests (for example, third-

generation cephalosporins for many Gram-negative bacteria of interest) rather than 

evaluating the full antibiograms for reported isolates. While not explicit, there is an underlying 

assumption that resistance in these individual bug-drug combinations is associated with 

clinically relevant antibiotic resistance and could at least be indicative of the utility of certain 

empiric regimens.  

This chapter comprises of a published paper that investigates the potential impact of routine 

blood culture microbiology data collection for surveillance on estimating bacterial multidrug 

resistance. Multidrug resistance is of clinical importance because it is likely to adversely 

affect coverage of potentially suitable empiric antibiotic regimens (66, 67). In addition, the 

relationship between resistance percentages for individual bug-drug combinations and 

multidrug resistance may affect what clinical inferences for selection of empiric antibiotic 

regimens can be drawn from standard surveillance and hospital antibiogram reporting.  

The analysis focuses on bloodstream isolates of Gram-negative bacteria included in 

European surveillance of antimicrobial resistance for which reporting centres on individual 

pathogen-antibiotic class combinations. Multidrug resistance was defined based on an 

algorithm developed for surveillance purposes by the European Centre for Disease 

Prevention and Control (ECDC) (68).  

Data on antimicrobial resistance from the ARPEC project were used for this analysis. 
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Abstract This study evaluates whether estimated multidrug
resistance (MDR) levels are dependent on the design of the
surveillance system when using routine microbiological data.
We used antimicrobial resistance data from the Antibiotic
Resistance and Prescribing in European Children (ARPEC)
project. The MDR status of bloodstream isolates of
Escherichia coli, Klebsiella pneumoniae and Pseudomonas
aeruginosa was defined using European Centre for Disease
Prevention and Control (ECDC)-endorsed standardised algo-
rithms (non-susceptible to at least one agent in three or more
antibiotic classes). Assessment of MDR status was based on
specified combinations of antibiotic classes reportable as part
of routine surveillance activities. The agreement betweenMDR
status and resistance to specific pathogen–antibiotic class combi-
nations (PACCs) was assessed. Based on all available antibiotic
susceptibility testing, the proportion of MDR isolates was 31%
for E. coli, 30% for K. pneumoniae and 28% for P. aeruginosa
isolates. These proportions fell to 9, 14 and 25%, respectively,

when based only on classes collected by current ECDC surveil-
lance methods. Resistance percentages for specific PACCs were
lower compared with MDR percentages, except for
P. aeruginosa. Accordingly, MDR detection based on these
had low sensitivity for E. coli (2–41%) and K. pneumoniae
(21–85%). Estimates of MDR percentages for Gram-negative
bacteria are strongly influenced by the antibiotic classes reported.
When a complete set of results requested by the algorithm is not
available, inclusion of classes frequently tested as part of routine
clinical care greatly improves the detection of MDR. Resistance
to individual PACCs should not be considered reflective ofMDR
percentages in Enterobacteriaceae.

Introduction

Bacteria resistant to multiple antibiotics have been identified as a
major challenge for patient management and public health [1, 2].
Multidrug-resistant Gram-negative bacteria (MDR-GNB) are
considered to be particularly worrying because the therapeutic
options are limited [3, 4]. Furthermore, certainMDR-GNB, such
as those producing extended-spectrum beta-lactamases or
carbapenemases encoded on plasmids, are of concern due to their
potential for interspecies plasmid transfer [5, 6].

Large-scale national and international surveillance is an
important tool in monitoring MDR-GNB resistance trends
[7]. At present, most surveillance relies on collecting results
from traditional antibiotic susceptibility testing (AST) to track
resistance epidemiology, including multidrug resistance
(MDR) [8–10]. It is, therefore, important that the comparabil-
ity of isolates identified as MDR by surveillance databases is
established. Standardised algorithms for reporting isolates as
MDR were proposed in 2012 by a group of international ex-
perts, but these rely on a large number of antibiotics being
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included in AST (Table 1) [11]. The selection of antibiotic
classes for routine testing continues to be highly variable
[16–19]. This potentially presents a major challenge for esti-
mating and comparing MDR-GNB prevalence from routine
data, given that individual laboratories may not test all antibi-
otic classes required.

The monitoring of specific pathogen–antibiotic class com-
binations (PACCs) can be an alternative surveillance strategy
to make best use of the available routine data [7, 12–14].
Some PACCs have been suggested as being useful for
MDR-GNB assessment based on the recognition of an asso-
ciation in resistance between different antibiotic classes [15].

Using data on neonatal and paediatric GNB isolates obtain-
ed from the Antibiotic Resistance and Prescribing in European
Children (ARPEC) project, this study evaluates the degree to
which estimated levels of MDR are dependent on surveillance
system design when routine microbiological data are used.

Materials and methods

Data source

The study used data from the ARPEC project, which was co-
funded by the European Commission DG Sanco through the
Executive Agency for Health and Consumers [20, 21].

ARPEC collected anonymised data on antimicrobial resis-
tance between January 2011 and December 2012 from 19
European laboratories located in 12 different countries, each
processing samples for one paediatric department or hospital.
ARPEC requested that participating laboratories reported
AST results for isolates of a specified set of bacterial species,
and that, where possible, laboratories report on specific anti-
biotics. These included antibiotics required for the European
Antimicrobial Resistance Surveillance Network (EARS-Net)
2010 reporting protocol plus some additional antibiotic cate-
gories (Table 1) [12, 22]. The AST results for each antibiotic
tested were reportable as susceptible/intermediate/resistant
(S/I/R) using breakpoints defined by either:

(1) European Committee on Antimicrobial Susceptibility
Testing (EUCAST),

(2) Clinical and Laboratory Standards Institute (CLSI),
(3) British Society for Antimicrobial Chemotherapy

(BSAC) or
(4) Société Française de Microbiologie standards,

depending on which standards were used in each country
[23–27]. Minimal inhibitory concentrations of antibiotics
were not collected. Duplicate isolates (same species with same
antibiogram from the same patient) identified within 4 weeks
of the original isolate were excluded as part of the data collec-
tion protocol.

Target bacteria

This study examined MDR patterns for three GNB, namely
Escherichia coli, Klebsiella pneumoniae and Pseudomonas
aeruginosa.

Interpretation of reported antibiotic susceptibility

Individual antibiotics were grouped into antibiotic classes as
defined by the MDR classification algorithms (Table 1) [11].
Isolates reported as I or R to an antibiotic representative of an
antibiotic class were classified as non-susceptible to that class.
In the case of AST results for multiple antibiotics representa-
tive of one class, the isolate was classified as non-susceptible
if they were reported as I or R to any of the antibiotics tested
from that class. Isolates were defined as MDR-GNB if they
were non-susceptible to ≥3 relevant antibiotic classes [11].

Identification of MDR-GNB bacterial isolates

The proportion of isolates of each of the three species consid-
ered to show MDR was then calculated using three sets of
antibiotic classes (Table 1):

(1) ARPEC set: MDR status was defined by applying the
MDR algorithm and based on information from all clas-
ses reported to ARPEC;

(2) EARS-Net set: MDR status was defined by applying the
MDR algorithm, but based solely on information for
classes included in the EARS-Net protocol;

(3) Routine set: MDR status was defined by applying the
MDR algorithm, and based on antibiotic classes with a
high level of reported results across all ARPEC labora-
tories. Classes were included in this set if AST informa-
tion was available for at least 85% of isolates. The level
of required reporting was chosen to reflect classes rou-
tinely tested for the bacteria of interest in the majority of
laboratories.

As both the EARS-Net and routinely tested classes are
subsets of the ARPEC classes, an isolate classified as MDR
on the basis of either set was also considered to beMDR based
on the ARPEC set.

Evaluation of single PACCs

It was also assessed whether specific PACCs, suggested to be
critical indicators of MDR by European, US and global pro-
fessional and/or public health bodies (Table 1), could identify
MDR-GNB as detected on the basis of all available data; that
is, the ARPEC set [7, 13–15].

The specific PACCs of interest were E. coli and higher-
generation cephalosporins, fluoroquinolones, aminoglycosides
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and carbapenems, K. pneumoniae and higher-generation cepha-
losporins and carbapenems, andP. aeruginosa and carbapenems.

We defined its sensitivity as the proportion of isolates clas-
sified as susceptible for each PACC among those flagged as
MDR from the ARPEC set, and its specificity as the propor-
tion of isolates classified as non-susceptible for each PACC
that was identified as not MDR from the ARPEC set.

Statistical analysis

All statistical analyses were carried out using Stata® v12.1,
StataCorp, College Station, TX, USA. Whenever 95% confi-
dence intervals (CIs) are given for proportions, these were
calculated by applying an exact method for binomial data.

Results

In total, 685 isolates were included in the analysis (375E. coli,
176 K. pneumoniae, 134 P. aeruginosa).

Antibiotic classes included in the Routine set

The classes with reported AST results for the participating
centres were very diverse, and there was no consistent pattern
of classes among hospitals located in the same geographical
region (data not shown). No laboratory consistently reported
on all classes that were included in the ARPEC protocol.
There was more consistency for the subset of EARS-Net an-
tibiotic classes, with AST results available for at least 85% of
isolates of all three species.

There were several classes for which AST data were also
available for at least 85% of isolates. The additional frequently
tested PACCs includedE. coli andK. pneumoniaeAST results
for penicillins/beta-lactamase inhibitor (91 and 96% of iso-
lates), folate pathway inhibitors (86 and 86%) and
antipseudomonal penicillins/beta-lactamase inhibitor (85 and
85%). These were then included in the Routine set (Table 1).
The only additional ARPEC antibiotic class relevant for
P. aeruginosa MDR classification was monobactams, for
which AST results were reported for only 47% of isolates.

Identification of MDR status according to the EARS-Net,
Routine and ARPEC sets

The proportion of MDR isolates based on the most complete
ARPEC set was 30% (95% CI 27–34%) for all three GNB.
Figure 1 shows the number of isolates classified as MDR
using the EARS-Net set, the Routine set and the ARPEC
set, and the overall proportion estimated as MDR for each
pathogen.

Table 2 shows the proportion estimated as MDR for each
set. Extending the set from the limited EARS-Net set to the

Routine set identified an additional 96 MDR isolates, more
than doubling the estimate of MDR-GNB from 13% (95% CI
11–16%) to 27% (95% CI 24–31%). This was most marked
for E. coli and K. pneumoniae isolates (Fig. 1 and Table 2). A
similar underestimation on the basis of the EARS-Net set was
not observed for P. aeruginosa.

For E. coli andK. pneumoniae, extending assessment to the
Routine set meant that their MDR classification was based on
three additional antibiotic classes (Table 1). The Routine set-
based MDR status performed much better than categorisation
based on the EARS-Net set alone. In contrast, comparing the
Routine and ARPEC sets’ MDR status, only very few addi-
tional isolates were identified as MDR when the more com-
plete ARPEC set was used.

Identification of MDR status based on specific
pathogen–drug combinations

The specific PACCs of interest were E. coli and higher-
generation cephalosporins, fluoroquinolones, aminoglyco-
sides and carbapenems (reported for 98, 99, 98 and 97% of
isolates, respectively), K. pneumoniae and higher-generation
cephalosporins and carbapenems (reported for 99 and 99% of
isolates, respectively), and P. aeruginosa and carbapenems
(reported for 98% of isolates).

Escherichia coli had the following PACC non-
susceptibility profiles based on reported AST results: 13%
(95% CI 9–16%) for third- and fourth-generation cephalospo-
rins, 13% (95% CI 10–18%) for fluoroquinolones, 13% (95%
CI 10–17%) for aminoglycosides and <1% (95% CI 0.1–2%)
for carbapenems. For K. pneumoniae, resistance percentages
for third- and fourth-generation cephalosporins were 32%
(95% CI 25–40%) and for carbapenems 6% (95% CI 3–
11%). Pseudomonas aeruginosa isolates showed 30%
antipseudomonal cephalosporin resistance (95% CI 22–
38%) and 31% carbapenem resistance (95% CI 24–40%).
Resistance to higher-generation cephalosporins was 21%
(95% CI 18–24%) for all three species. The corresponding
resistance percentage for carbapenems was 8% (95% CI 6–
11%).

Figure 2 displays the number and percentage of isolates
that would be appropriately classified as MDR for each
PACC. Isolates are classified as MDR on the basis of the
ARPEC set.

For E. coli, resistance to the specified PACCs failed to
correctly identify MDR status for more than half of the iso-
lates. Aminoglycosides had the best sensitivity (i.e. ability to
identify MDR when it was present) of 41% (Table 3).
Escherichia coli carbapenem resistance was very rare in the
ARPEC dataset, in contrast to MDR E. coli, and was of very
little value in identifying MDR E. coli.

For K. pneumoniae, both cephalosporin and carbapenem
resistance were more strongly associated with MDR status

842 Eur J Clin Microbiol Infect Dis (2017) 36:839–846 
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than for E. coli isolates. Third- or fourth-generation cephalo-
sporin resistance had a sensitivity of 85%. However, again,
carbapenem resistance was not predictive of MDR
K. pneumoniae (sensitivity 21%).

For P. aeruginosa, both cephalosporin and carbapenem re-
sistance showed a sensitivity of more than 85% for detecting
MDR isolates. For all three GNB, the specificity (the ability to
exclude MDR when it was absent) of the selected pathogen–
drug combinations was above 90%. Thus, the rate of false
classification of isolates as not MDR based on the absence
of resistance to the PACCs reviewed was low.

Discussion

The surveillance definition of MDR requires the availability
of a large number of susceptibility testing results for the cor-
rect classification of isolates [11]. If monitoring and compar-
ison of the prevalence of MDR-GNB is to be an aim for on-
going surveillance activities collecting routine microbiology
AST data, the optimal strategy for detecting MDR organisms
from such data needs to be established. Current surveillance
activities tend to request the AST results for a limited subset of
antibiotic classes listed by the expert MDR classification al-
gorithm [12].

In our dataset, the percentage of MDR-GNB isolates was
significantly lower (13%) when based on a more limited set of
antibiotic classes, such as that used by EARS-Net, compared
with the full set available (30%). Utilising the full set of anti-
biotic classes reportable as part of the ARPEC project, the
proportion of paediatric MDR E. coli, K. pneumoniae and
P. aeruginosa isolates was around 30% and similar for all
three pathogens. Such high levels of isolates with resistance
to multiple drugs are concerning and of interest for tracking
the epidemiology of resistant GNB over time.

Our study raises several important points regarding the
potential of capturing MDR-GNB based on currently avail-
able routine microbiology data purely for surveillance:

(1) Routine reporting of AST data by the 19 European lab-
oratories participating in ARPEC only variably included
results for requested antibiotic classes that are part of the
classification algorithms for E. coli, K. pneumoniae and
P. aeruginosa. A direct application of the MDR algo-
rithms is, therefore, not possible.

(2) Limited AST result data also cannot be used to reliably
estimate the proportion of MDR-GNB. As the ARPEC
dataset includes only European isolates, the performance
of the current European surveillance system was evalu-
ated. The EARS-Net set of antibiotic classes appeared to
lack sensitivity for detecting MDR-GNB. Inclusion of
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Fig. 1 Number and percentage of
isolates classified as MDR based
on different sets of antibiotic
classes (see Table 1 for definitions
of the sets). The total number of
isolates for each bacterial species
is shown at the top of each bar

Table 2 MDR-GNB percentages based on the EARS-Net, Routine and ARPEC sets (see Table 1 for definitions of the sets)

Total no. of
isolates

MDR isolates

% MDR based on EARS-Net set
(95% CI)

% MDR based on Routine set
(95% CI)

% MDR based on full ARPEC set
(95% CI)

E. coli 375 9.3 (6.6–12.7) 28.5 (24.0–33.4) 31.2 (26.5–36.2)

K. pneumoniae 176 13.6 (8.9–19.6) 27.3 (20.8–34.5) 29.6 (22.9–36.9)

P. aeruginosa 134 24.6 (17.6–32.8) n/a 28.4 (20.9–36.8)

All GNB 685 13.4 (11.0–16.2) 27.4 (24.1–31.0) 30.2 (26.8–33.8)
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additional frequently tested and reported antibiotic clas-
ses increased the detection of MDR E. coli and
K. pneumoniae (from 30% detected by the EARS-Net
set to 90% based on the Routine set for E. coli and from
46 to 92% for K. pneumoniae). This was in contrast to
P. aeruginosa, for which the ARPEC set included only
one additional antibiotic class compared with EARS-Net
reporting.

(3) A small number of individual PACCs currently repre-
sent the typical method for reporting antimicrobial re-
sistance surveillance internationally. Disappointingly,

resistance detected in individual PACCs was not reli-
able in detecting MDR isolates. This was especially
marked for E. coli isolates, for which resistance to
higher-generation cephalosporins, for example, had a
sensi t ivi ty of only 36% for detect ing MDR.
Escherichia coli is the GNB with the largest number
of antibiotic classes in the MDR classification algo-
rithm and in ARPEC reporting. This may increase the
detection of many different resistance combinations,
especially if multiple different resistance phenotypes
occur.

Table 3 Detection of MDR-GNB when specific PACC antimicrobial susceptibility testing results are assumed to represent MDR status. The
percentage of isolates misclassified as MDR or not MDR based on PACC results is compared with MDR based on all ARPEC antibiotic categories
(see Table 1)

MDR classification

No. of MDR correctly
identified

Sensitivity of PACC in
% (95% CI)

No. of not MDR
correctly identified

Specificity of PACC in
% (95% CI)

E. coli Third- or fourth-generation
cephalosporins

41/114 36.0 (27.2–45.5) 254/259 98.1 (95.6–99.4)

Fluoroquinolones 46/115 40.0 (31.0–49.6) 255/258 98.8 (96.6–99.8)

Aminoglycosides 48/116 41.4 (32.3–50.9) 253/259 97.7 (95.0–99.1)

Carbapenems 2/117 1.7 (0.2–6.0) 245/245 100.0 (98.5–100.0)

K. pneumoniae Third- or fourth-generation
cephalosporins

44/52 84.6 (71.9–93.1) 123/135 91.1 (85.0–95.3)

Carbapenems 11/52 21.2 (11.1–34.7) 122/122 100.0 (97.0–100.0)

P. aeruginosa Antipseudomonal
cephalosporins

34/38 89.5 (75.2–97.1) 96/102 94.1 (87.6–97.8)

Carbapenems 33/38 86.8 (71.9–95.6) 96/105 91.4 (84.4–96.0)
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combinations (PACCs). The white stacks correspond to isolates neither
resistant to the PACC nor identified as MDR on the basis of the ARPEC
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bacterial species are shown underneath. 3/4GC third- or fourth-generation
cephalosporin, QUIN fluoroquinolone, AMG aminoglycoside, CPM car-
bapenem. For P. aeruginosa, only cephalosporins with antipseudomonal
activity were considered
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Some of the challenges may be explained by the fact that
surveillance collects data primarily generated to inform clini-
cal decision-making: approaches to AST are likely to be guid-
ed by the need to optimally inform patient therapy rather than
by the need to generate a complete AST dataset for MDR
classification. This type of selective AST based on clinical
needs could introduce bias when these data are interpreted
for public health purposes [28]. Bias could be magnified when
laboratories engage in so-called first- and second-line testing:
some antibiotic classes are evaluated only when resistance to
antibiotics included in a first-line panel is detected [16].

Several limitations need to be considered when interpreting
the ARPEC data. ARPEC does not cover all antibiotic classes
recommended in the recent expert proposal [11]. It is, there-
fore, possible that some isolates identified as not MDR in
ARPEC would, in fact, be MDR if AST data for all relevant
classes were available. It is also possible that antibiotic classes
tested for some of the reported isolates were suppressed dur-
ing ARPEC data entry. This seems unlikely, given the relative
uniformity of reporting for each species by each laboratory.

The actual percentages of MDR-GNB reported in this
study should be interpreted with caution, as hospitals
reporting to ARPEC were tertiary institutions with a patient
population not representative of patients in other inpatient
settings and potentially at higher risk of MDR-GNB [20,
21]. Pooling of data prohibits the identification of any differ-
ences between individual participating centres, some of which
may have had higher or lower than average MDR-GNB per-
centages. Finally, the burden of MDR-GNB cannot be esti-
mated because data are presented as resistance percentages
rather than infection prevalence or incidence [29].

All isolates represent neonatal or paediatric blood
cultures. The antibiotics used to treat bloodstream infec-
tions in neonates and children may differ from treatment
choices for adults. This could be reflected in the antibi-
otic classes selected for AST, potentially limiting the
transferability of the results to isolates from adults.
However, most laboratories process microbiological
samples from both adult and childhood patients. It is
unlikely that AST strategies will be relevantly different
for neonatal and paediatric isolates in these settings.

Surveillance of antimicrobial resistance patterns and trends
is necessary to target interventions to reduce the selection and
spread of resistant bacteria, and often relies on routine samples
collected as part of on-going clinical care. The limitations and
biases associated with the use of routine microbiology data in
surveillance have been widely discussed [8, 28, 29].
Resistance percentages of individual PACCs and the EARS-
Net set currently in use in Europe do not, on the whole, pro-
vide reliable MDR estimates. This study shows that, if MDR
surveillance is to be added to the task list of on-going interna-
tional surveillance, interpretation of the new algorithm will be
limited by the variability in AST strategies in microbiological

laboratories. MDR-GNB detection could be immediately im-
proved by added surveillance of antibiotic classes already
widely tested as part of clinical care. As demonstrated, a larger
percentage of MDR-GNB isolates is likely to be identified
with such an approach.
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5. Basing empiric antibiotic regimens for childhood bloodstream 
infection on adult data 

This chapter consists of a published paper that addresses whether empiric antibiotic 

regimens for bloodstream infections in children can be usefully informed by data on adult 

bloodstream isolates. The key advantage of using such data, for example in the estimation of 

coverage from a WISCA, would be a greatly increased sample size with more precise 

estimates.  

Concerning children, it must be noted that despite a very large remit of some existing 

surveillance activities, data on neonatal and paediatric isolates is likely to be very limited 

accounting for less than 10% of reported isolates (18, 69). If both relative incidence of 

bacteria and their resistance patterns are comparable between children and adults, then the 

selection of empiric regimens could be usefully informed by adult-dominated data. If, 

however, they are not comparable then disaggregation of data is necessary at least by age 

group (70, 71). Further stratification may be necessary within the neonatal and paediatric 

population to define empiric regimens for defined subgroups (72).  

ARPEC data and publicly available data from the European Antimicrobial Resistance 

Surveillance Network (EARS-Net) were used to compare resistance percentages for bacteria 

and antibiotics included in both databases for the same period and countries. EARS-Net 

includes only all-age data, of which around 10% are estimated to come from children (73). In 

addition to the comparative analysis of children and adults, the paper also compares 

resistance percentages between children up to 1 year of age and those 1 year or older within 

the ARPEC database to evaluate potential differences within the paediatric population. If 

demonstrated, this could indicate the need for further age-stratification for estimating 

coverage within the paediatric population.  
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ANTIMICROBIAL REPORTS

Background: Surveillance of antimicrobial resistance (AMR) is central 
for defining appropriate strategies to deal with changing AMR levels. It is 
unclear whether childhood AMR patterns differ from those detected in iso-
lates from adult patients.
Methods: Resistance percentages of nonduplicate Staphylococcus aureus, 
Streptococcus pneumoniae, Enterococcus faecalis, Enterococcus faecium, 
Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa 
bloodstream isolates from children less than 18 years of age reported to the 
Antibiotic Resistance and Prescribing in European Children (ARPEC) project 
were compared with all-age resistance percentages reported by the European 
Antimicrobial Resistance Surveillance Network (EARS-Net) for the same 
pathogen–antibiotic class combinations, period and countries. In addition, 
resistance percentages were compared between ARPEC isolates from chil-
dren less than 1 year of age and children greater than or equal to1 year of age.
Results: Resistance percentages for many important pathogen–antibiotic 
class combinations were different for ARPEC isolates compared with 
EARS-Net. E. coli and K. pneumoniae fluoroquinolone resistance per-
centages were substantially lower in ARPEC (13.4% and 17.9%) than 
in EARS-Net (23.0% and 30.7%), whereas the reverse was true for all 
pathogen–antibiotic class combinations in P. aeruginosa (for example, 
27.3% aminoglycoside resistance in ARPEC, 19.3% in EARS-Net, 32.8% 
carbapenem resistance in ARPEC and 20.5% in EARS-Net), and for S. 
pneumoniae and macrolide resistance. For many Gram-negative pathogen–
antibiotic class combinations, isolates from children greater than or equal 
to 1 year of age showed higher resistance percentages than isolates from 
children less than 1 year of age.
Conclusions: Age-stratified presentation of resistance percentage estimates 
by surveillance programs will allow identification of important variations in 
resistance patterns between different patient groups for targeted intervention.

Key Words: antimicrobial resistance, surveillance, routine data, age  
differences

(Pediatr Infect Dis J 2015;34:734–741)

The recent World Health Organization global report on surveil-
lance has confirmed increasing levels of antimicrobial resist-

ance (AMR) as a serious threat to public and individual patient 

health.1 The report noted that international surveillance is a key 
element in developing strategies to deal with changing AMR lev-
els.1–4 Robust surveillance data are crucial for public health inter-
ventions and for empiric treatment choices in clinical practice.1,5 
Age-specific data are not routinely available from the great major-
ity of existing surveillance programs, making focused interventions 
in this key age group difficult.

In Europe, the European Antimicrobial Resistance Surveil-
lance Network (EARS-Net) collects antimicrobial susceptibility 
data for isolates from routine blood and cerebrospinal fluid cul-
tures.6 Data are summarized and published in annual reports and 
can be accessed online. Patient age to the nearest year is requested 
as part of the EARS-Net reporting protocol,7,8 but is not mandatory 
and therefore may not be available for all isolates. EARS-Net data 
are not routinely presented stratified by age.

Overall, only very limited information on childhood AMR 
in Europe is available.9–12 Over 95% of EARS-Net data are from 
adult isolates.9 If there are true differences between childhood and 
adult AMR patterns, it is unlikely that currently reported pooled 
surveillance data can be used to adequately describe antibiotic sus-
ceptibility of neonatal and pediatric bloodstream isolates.

Here, we present AMR data for bloodstream isolates col-
lected from neonates and children as part of the Antibiotic Resist-
ance and Prescribing in European Children (ARPEC) project and 
compare them with EARS-Net resistance percentages from adults 
and children combined for the same period and countries. We also 
compare resistance percentages between infants (less than 1 year 
of age) and children (greater than 1 year of age) within ARPEC to 
determine whether further subdivision by age is appropriate.

MATERIALS AND METHODS

The ARPEC Project
The ARPEC project launched in 2010 as a 3-year initiative 

co-funded by the European Commission Directorate General for 
Health & Consumers through the Executive Agency for Health 
and Consumers with the main aim of evaluating and developing 
surveillance methodologies to monitor antimicrobial use and AMR 
in neonates and children.13 Core activities included (1) assessment 
of primary care antimicrobial prescribing to children from routine 
databases, (2) evaluation of a point prevalence survey approach 
toward inpatient childhood antimicrobial use surveillance,14 (3) 
evaluation of bacteremia AMR surveillance for key pathogens 
based on EARS-Net methodology and (4) the collection and com-
parison of antibiotic prescribing guidelines for common childhood 
infections across Europe. Here, we present data collected during 
ARPEC AMR surveillance.

ARPEC AMR Surveillance
Named partners and collaborators of the project were invited to 

participate in ARPEC AMR surveillance. Nineteen hospitals from 12 
countries (Estonia/one center, France/one center, Germany/7 centers, 
Greece/one center, Italy/2 centers, Lithuania/1 center, The Netherlands/
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one center, Portugal/one center, Slovenia/one center, Spain/one center, 
Switzerland/one center, United Kingdom/one center) submitted data 
for specified blood culture isolates from children less than 18 years 
of age identified between January 01, 2011 and December 31, 2012. 
Most of the participating centers were standalone pediatric hospitals or 
neonatal and pediatric departments integrated into large tertiary cent-
ers; most did not participate in EARS-Net surveillance.

ARPEC AMR Data Collection
AMR data from routine susceptibility testing of blood culture 

isolates were collected annually using a custom-made anonymized 
password-protected Microsoft Excel® tool. The ARPEC AMR sur-
veillance protocol was based on the EARS-Net 2010 reporting 
protocol (Table 1).8 Basic information including the availability of 
specialist services and the number of neonatal and pediatric beds 
was also collected from all centers taking part.

EARS-Net Surveillance
EARS-Net data collection has been described in detail else-

where and is summarized in Table 1.8 Only publicly available 2012 
EARS-Net data, including laboratory and denominator data, were 
used for the analysis.15

Definitions
Level of Aggregation

EARS-Net data always refer to isolates from children and adults. Adult 
isolates are expected to contribute more than 95% of the total.9,16

ARPEC AMR data refer to isolates from children less than 18 years of 
age including neonates. ARPEC AMR data were further analyzed 
divided into two age groups: those less than 1 year of age and those 
greater than or equal to 1 year of age. This grouping was chosen 

to allow for an approximation of neonatal and childhood AMR 
patterns, while reflecting the current approach to age coding in 
EARS-Net (1-year bands starting with a 0-year age band). Isolates 
from neonates and infants on neonatal intensive care units (NICU) 
would be expected to contribute substantially to the 0-year group.

Data from Switzerland were excluded, as this country is not 
represented in EARS-Net.

Selected Pathogens
All first bloodstream isolates of Escherichia coli, Klebsiella 

pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, 
Streptococcus pneumoniae, Enterococcus faecalis and Enterococ-
cus faecium were of interest. Any blood cultures from a previously 
included patient positive for the same organism within 4 weeks of 
the original reported isolate were defined as duplicates and excluded.

Susceptibility Testing Results
Susceptibility test results were reportable for a predefined list 

of antibiotic classes.8 Test results were reportable as the final inter-
pretation of susceptibility testing (sensitive—S, intermediate—I or 
resistant—R); minimum inhibitory concentrations were not col-
lected. Centers used EUCAST, CLSI or BSAC breakpoints to iden-
tify isolates as S, I or R. In addition to AMR data, the number of blood 
culture sets processed during the reporting period was requested.

Resistance Percentages
Isolates reported as I or R to at least one antibiotic of an anti-

biotic class of interest were classified as resistant to that class. From 
this information, resistance percentages for specific pathogen–anti-
biotic class combinations were calculated. For EARS-Net, crude 
resistance percentages for specific pathogen-antibiotic class combi-
nations were derived from publicly accessible EARS-Net 2012 data.

TABLE 1. Variables Requested for EARS-Net (Based on Reference 8) and ARPEC AMR Surveillance at Isolate Level

EARS-Net ARPEC

Isolate information
        Specimen type Blood; cerebrospinal fluid (M) Only blood collected, therefore NR
        Pathogen Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia 

coli, Klebsiella pneumoniae, Pseudomonas aeruginosa (M)
        Antibiotic Defined list of antibiotics requested for 

each pathogen (M)
Same list of antibiotics as for EARS-Net, additional options 

based on2 (M)
        SIR Final interpretation of susceptibility testing requested (M)
        ESBL status Requested (O)
        PCR mecA, PBP2a-agglutination,  

    S. pneumoniae serotype,  
    carbapenemase detection

(O) NR

Source patient information
        Gender Male, female, other, unknown (W) NR
        Age In years in integers from 0 (W) Calculated locally before submission by data collection tool 

macro, coded in days up to 30 days of age, in months up to 23 
months of age, in years thereafter (M)

        Patient type Inpatient, outpatient, other (including 
emergency department), unknown (W)

Community-acquired: blood culture taken <2 hours after hos-
pitalization, hospital-acquired: blood culture taken ≥2 days 
after hospitalization; calculated locally from date of birth and 
date of hospitalization before data transfer (see age and date 
of hospitalization)

        Hospital unit For pediatrics: pediatric ward, pediatric 
intensive care (including neonatal 
intensive care), unknown (W)

Pediatric ward, pediatric intensive care, neonatal intensive care, 
other (including emergency department), unknown (W)

        Date of hospitalization YYYY-MM-DD (O) Calculated locally before submission by data collection tool 
macro as number of days from date of hospitalization to blood 
culture (W)

        Presence of chronic underlying  
    disease

NR Yes, no, unknown (O)

        Outcome at 30 days after isolate  
    identified

NR Died, inpatient, discharged alive, unknown (O)

M indicates mandatory; SIR, susceptible, intermediate, resistant; ESBL, extended-spectrum beta-lactamases; W, warning—data can be submitted, but warning generated;  
O, optional; NR, not requested.
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The numbers of reported isolates were low for some of the 
pathogens in ARPEC. To increase power, data were pooled for 2011 
and 2012. As the EARS-Net dataset includes a large number of iso-
lates and resistance estimates are expected to be very precise, 95% 
confidence intervals are not presented for EARS-Net and only data 
from a single year (2012) were used.

Rates of Positive Blood Cultures
The rates of blood cultures obtained per 1000 occupied 

bed days (OBD) and the rate of blood cultures positive for the 
pathogens of interest per 1000 OBD were assessed. The num-
ber of OBD was estimated from the number of beds surveyed 
and from the average bed occupancy reported by EARS-Net 
for 2012 as number of beds*365*Paverage bed occupancy.

15 Where bed 
occupancy was not available from EARS-Net, this was assumed 
to be 78%, reflecting the average occupancy for OECD  
countries in 2011.17

Statistical Analysis
ARPEC and EARS-Net resistance percentages were com-

pared using χ2 test or Fisher’s exact test, as appropriate. A P value 

of less than 0.05 was taken to indicate statistically significant differ-
ences. Ninety-five percent confidence intervals were calculated by 
applying an exact method for binomial data. All statistical analyses 
were undertaken using STATA® 13.1.

Ethical Approval
The ARPEC protocol was submitted to the responsible 

research ethics committee of the coordinating center. Formal 
evaluation by a research committee was not required, as the 
study was classified as surveillance aiming to develop a stand-
ardized methodology. Participating centers were responsible for 
identifying the need for local ethical review and obtaining this, 
if required.

RESULTS

ARPEC AMR Surveillance Dataset
In total, 1441 relevant isolates from neonatal or pediatric 

blood cultures processed between January 01, 2011 and December 
31, 2012 were reported from 18 centers in 11 countries. The distri-
bution of isolates is shown in Table 2 and Figure 1.

TABLE 2. Distribution of Isolates in ARPEC Dataset (2011/2012) by Age Group and Overall.

Pathogen
<1 Year of age ≥1 Year of age Total

n % n % n %

Escherichia coli 226 27.9 122 19.3 348 24.2
Klebsiella pneumoniae 107 13.2 63 10.0 170 11.8
Pseudomonas aeruginosa 49 6.1 79 12.5 128 8.9
Staphylococcus aureus 198 24.5 191 30.2 389 27.0
Streptococcus pneumoniae 44 5.4 103 16.3 147 10.2
Enterococcus faecalis 141 17.4 28 4.4 169 11.7
Enterococcus faecium 44 5.4 46 7.3 90 6.3
All isolates 809 100 632 100 1441 100

The total column percentages may not add up to exactly 100% due to rounding.
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S. aureus and E. coli were the commonest pathogens in 
all ages, accounting for 51.2% of the available isolates (n = 389, 
27.0% and n = 348, 24.2%, respectively). Overall, K. pneumoniae 
(n = 170, 11.8%) and Enterococcus faecalis (n = 169, 11.7%) were 
the third and fourth most commonly reported pathogens out of the 
7 target bacterial species. The patterns differed for isolates for chil-
dren less than 1 year of age and children greater than or equal to 1 
year of age (Table 2).

Information on hospital unit and community- or hospital-
acquisition of isolates was available for 88% and 82% of Gram-
negative isolates in ARPEC. 23.9% of E. coli, 38.8% of K. pneumo-
niae and 29.0% of P. aeruginosa isolates were from intensive care 
units (ICUs). However, 48% of E. coli, 17% of K. pneumoniae and 
30.0% of P. aeruginosa isolates were community-acquired.

There was variation in the total number of isolates contrib-
uted from different countries in the ARPEC dataset and in the dis-
tribution of bacterial species of interest across countries (Fig. 1). 
Overall, Gram-positive isolates made up 50–65% of isolates.

Comparing EARS-Net and ARPEC
Characteristics of Participating Hospitals/
Laboratories and Blood Culturing Practices

Characteristics of participating hospitals/laboratories are 
shown in Tables 3 and 4. In the ARPEC dataset, 95% of participating 
centers were tertiary level and a substantial proportion of neonatal 

and pediatric inpatient beds were ICU beds. In contrast, only 36% 
EARS-Net hospitals in 2012 were tertiary level. Although blood cul-
ture rates in ARPEC were higher than in EARS-Net, the rate of blood 
cultures growing at least one of the pathogens of interest was lower.

Resistance Percentages in Surveyed Bacterial 
Species

The crude resistance percentages for EARS-Net and ARPEC 
are shown in Table 5 and Figure 2A and B for Gram-negative and 
Gram-positive pathogens, respectively.

Fluoroquinolone resistance in E. coli and K. pneumoniae 
was much lower in ARPEC than in EARS-Net isolates (13.4% 
vs. 23.0% for E. coli, 17.9% vs. 30.7% for K. pneumoniae). 
Conversely, aminopenicillin and aminoglycoside resistance 
percentages for E. coli isolates were higher in ARPEC than in 
EARS-Net isolates (67.9% and 14.6% vs. 57.2% and 11.3%). 
The resistance percentages for 4 of the 5 pathogen–antibiotic 
class combinations for P. aerguinosa isolates (piperacillin/tazo-
bactam, ceftazidime, aminoglycosides and carbapenems) were 
also higher for ARPEC compared with EARS-Net isolates. For 
Gram-positive bacteria, macrolide resistance percentages in 
S. pneumoniae were higher in ARPEC isolates compared with 
EARS-Net. No relevant differences were detected for the other 

TABLE 3. Characteristics of Hospitals Reporting to EARS-Net and ARPEC, Including Number of Beds Surveyed, 
Proportion of ICU Beds in Participating Hospitals (in %) and Annual Occupancy Rate

Country
Total n Beds Surveyed % ICU Beds Annual Occupancy  

Rate (%)*EARS-Net ARPEC EARS-Net ARPEC

Estonia No data 111 No data 8 -(78†)
France 127,423 231 6 33 81
Germany 18,700 633 7 21 79
Greece No data 336 No data 11 -(78†)
Italy 14,892 687 No data 11 80
Lithuania 12,423 450 4 5 74
The Netherlands No data 101 No data 25 -(78†)
Portugal 8228 94 6 13 74
Slovenia 7377 271 5 21 70
Spain 26,646 191 4 39 79
United Kingdom 18,849 118 No data 36 79

*From reference 15.
†Assumed 78% occupancy from reference 17.

TABLE 4. Estimated Blood Culturing Rates and Estimated Rates of Bacteraemia Caused 
by the Pathogens  
of Interest

Country

Estimated Blood Culturing 
Rate/1000 OBD

Estimated Rate of Bacterae-
mia/1000 OBD

EARS-Net ARPEC EARS-Net ARPEC

Estonia No data No data No data 0.4
France No data 109 0.4 1.8
Germany 17 130 1.8 1.2
Greece No data 58 No data 0.8
Italy No data 85 1.6 1
Lithuania 6 16 0.6 0.3
The Netherlands No data 54 No data 1.3
Portugal 51 100 2.6 1.1
Slovenia 31 54 1.5 1.0
Spain 40 No data 1.6 1.3
United Kingdom 34 No data 2.5 0.9
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pathogen–antibiotic class combinations assessed for Gram- 
positive bacteria.

Comparing Infants and Children
Of 1441 isolates in the ARPEC dataset, 809 (56%) were 

from children less than 1 year of age and 489 (34%) were from 
neonates or infants hospitalized on NICU. The resistance percent-
ages for ARPEC isolates from children less than 1 year of age and 
children greater than or equal to 1 year of age are shown in Table 6 
for Gram-negative and Gram-positive bacteria, respectively.

Overall, resistance percentages were lower in isolates from 
children less than 1 year of age than in isolates from children greater 
than or equal to 1 year of age. A notable exception to this was mac-
rolide nonsusceptibility in S. pneumoniae isolates, with the highest 
resistance percentages observed among isolates from children less 
than 1 year of age (45.5%) compared with isolates from children 
greater than or equal to 1 year of age (28.4%). A similar trend was 
observed for penicillin nonsusceptibility in S. pneumoniae. There 
was no difference in the proportion of S. aureus isolates identified 
as MRSA (17.0% in those less than 1 year of age, 15.9% in those 
greater than or equal to 1 year of age).

When resistance percentages for ARPEC stratified by age 
and EARS-Net were considered together, Gram-negative isolates 
from children greater than or equal to 1 year of age were often those 
with the highest levels of resistance. For example, the difference 

in P. aeruginosa piperacillin/tazobactam resistance percentages 
between EARS-Net isolates (17.6%) and ARPEC isolates (36.0%) 
was strongly influenced by very high resistance percentages in iso-
lates from children greater than or equal to 1 year of age (49.3%). 
Conversely, the lower ARPEC carbapenem resistance percentages 
in K. pneumoniae (6.5% compared with 13.5% in EARS-Net) were 
due to a very low carbapenem resistance percentage in isolates 
from the youngest age group (1.9%). Isolates from children greater 
than or equal to 1 year of age had a similar carbapenem resistance 
percentage to that observed in EARS-Net (14.3%).

DISCUSSION
ARPEC adapted the EARS-Net approach to survey AMR 

in neonatal and pediatric centers across 12 European countries. 
Resistance percentages for many important pathogen–antibiotic 
class combinations, especially for Gram-negative bacteria but also 
for macrolide resistance in S. pneumoniae, were higher in ARPEC 
data compared with EARS-Net data. Higher resistance percentages 
in ARPEC isolates were largely due to very high resistance levels 
in isolates from children greater than or equal to 1 years of age, 
with the exception of S. pneumoniae, for which the highest levels 
of resistance were observed in isolates from children less than 1 
year of age. Alarmingly high resistance percentages were observed 
in Gram-negative isolates from children greater than or equal to 1 
year of age (for example, aminoglycoside resistance of 16.7% for 
E. coli, 41.2% for K. pneumoniae and 35.4% for P. aeruginosa), 
including carbapenem resistance in K. pneumoniae (14.3%) and P. 
aerguinosa (36.7%).

TABLE 5. Comparison of EARS-Net and ARPEC 
Resistance Percentages for Key Pathogen–Antibiotic 
Class Combinations for Gram-negative and Gram-
positive pathogens

Pathogen and Antibiotic Class EARS-Net ARPEC

Gram-negative pathogens
        Escherichia coli
         Aminopenicillins* 57.2% 67.9% (62.6–73.1)
         Third generation cephalo-

sporins
11.9% 12.9% (9.3–16.5)

         Aminoglycosides* 11.3% 14.6% (10.9–18.4)
         Fluoroquinolones* 23.0% 13.4% (9.8–17.0)
         Carbapenems* 0.1% 0.6% (0.07–2.1)
        Klebsiella pneumoniae
         Third generation cephalo-

sporins
31.6% 32.5% (25.5–40.2)

         Aminoglycosides 27.6% 31.8% (24.8–39.3)
         Fluoroquinolones* 30.7% 17.9% (12.4–24.5)
         Carbapenems* 13.5% 6.5% (3.3–11.4)
        Pseudomonas aeruginosa
         Piperacillin (± tazobac-

tam)*
17.6% 36.0% (27.1–45.7)

         Ceftazidime* 14.8% 25.8% (18.5–34.3)
         Aminoglycosides* 19.3% 27.3% (19.8–35.9)
         Fluoroquinolones 23.1% 23.4% (16.4–31.7)
         Carbapenems* 20.5% 32.8% (24.7–41.8)
Gram-positive pathogens
        Staphylococcus aureus
         Methicillin resistance 21.2% 16.4% (12.7–20.8)
        Streptococcus pneumoniae
         Penicillin nonsusceptibility 10.8% 13.4% (7.9–20.9)
         Macrolide nonsusceptibil-

ity*
15.3% 33.1% (24.8–42.2)

        Enterococcus faecalis
         High level gentamicin 30.5% 29.5% (21.0–39.2)
        Enterococcus faecium
         Vancomycin 8.3% 9.0% (3.7–17.6)

For ARPEC, the proportion of resistant isolates is shown with the 95% confidence 
interval.

*Difference between EARS-Net and ARPEC resistance percentages is statistically 
significant (P < 0.05).

TABLE 6. Comparison of ARPEC Resistance 
Percentages for Isolates from Children Less than 1 Year of 
Age and Children Greater than or Equal to 1 Year of Age

Pathogen and Antibiotic Class Age <1 Year Age ≥1 Year

Gram-negative pathogens
        Escherichia coli
         Aminopenicillins 64.5% (57.8–71.2) 74.1% (65.7–82.5)
         Third generation  

  cephalosporins
10.7% (6.6–14.8) 17.0% (10.2–24.0)

         Aminoglycosides 13.5% (9.0–18.0) 16.7% (9.9–23.4)
         Fluoroquinolones* 8.5% (4.8–12.2) 22.5% (14.9–30.1)
         Carbapenems 0% (0–1.7) 1.7% (0.2–5.9)
        Klebsiella pneumoniae
         Third generation  

  cephalosporins
29.9% (21.4–39.5) 37.1% (25.2–50.3)

         Aminoglycosides* 26.2% (18.1–35.6) 41.2% (29.0–54.4)
         Fluoroquinolones* 7.5% (3.3–14.3) 35.5% (23.7–48.7)
         Carbapenems* 1.9% (0.2–6.7) 14.3% (6.7–25.4)
        Pseudomonas aeruginosa
         Piperacillin (± tazobactam)* 14.3% (5.4–28.5) 49.3% (37.0–61.6)
         Ceftazidime* 12.2% (4.6–24.8) 34.2% (23.8–45.7)
         Aminoglycosides 14.3% (5.9–27.2) 35.4% (25.0–47.0)
         Fluoroquinolones* 16.2% (7.3–29.7) 27.8% (18.3–39.1)
         Carbapenems 26.1% (14.3–41.1) 36.7% (26.1–48.3)
Gram-positive pathogens
        Staphylococcus aureus
         Methicillin resistance 17.0% (11.7–23.4) 15.9% (10.8–22.2)
        Streptococcus pneumoniae
         Penicillin nonsusceptibility 20.6% (8.7–37.9) 10.6% (5.0–19.2)
         Macrolide nonsusceptibility* 45.5% (28.1–63.6) 28.4% (19.3–39.0)
        Enterococcus faecalis
         High level gentamicin* 25.3% (16.7–35.5) 57.1% (28.9–82.3)
        Enterococcus faecium
         Vancomycin 7.9% (1.7–21.4) 10.0% (2.8–23.7)

The 95% confidence intervals for point estimates are shown.
*Difference between age group resistance percentages is statistically significant 

(P < 0.05).
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The observed differences between ARPEC and EARS-Net 
could partially be explained by different patterns of antibiotic use 
between adults and children. For example, ARPEC fluoroquinolone 
resistance percentages in E. coli and K. pneumonia were remarkably 
low compared with EARS-Net. Fluoroquinolone use in children is 
still rare. Only 2% of antibiotic prescriptions to ambulatory children 
in the United States involve quinolones, compared with 25% for 
adults.18,19 Similarly, inpatient point prevalence surveys in Europe 
have shown that that only 1.7% of all prescriptions in children 
involved fluoroquinolones, in contrast to 9.1% in adults for whom 
this was the second most commonly prescribed antibiotic class.20,21

For other pathogens, such as S. pneumoniae, a complex inter-
play of antibiotic utilization, levels of colonization, pneumococcal 
immunization and other factors likely leads to differences in resist-
ance observed between ARPEC and EARS-Net. Nasopharyngeal 

carriage of S. pneumoniae is much more common in children than 
in adults and colonizing isolates have been shown to have fourfold 
higher rates of macrolide resistance.22

Within ARPEC, isolates from children less than 1 year of 
age were overrepresented compared with isolates from children 
greater than or equal to 1 year of age, presumably reflecting much 
higher rates of bloodstream infections in the youngest children, 
especially neonates.23 The highest resistance percentages, how-
ever, were generally observed for isolates from children greater 
than or equal to 1 year of age. Our data support the observation 
that isolates from infants on NICUs are less likely to be identi-
fied as resistant compared with isolates from adults on intensive 
care made by Ariffin et al.24 Because of the higher incidence of 
bloodstream infections in children less than 1 year of age, the 
overall burden of resistant bloodstream infections could still be 

A

B
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highest in this group including NICU infants despite lower resist-
ance percentages.

Why were such high resistance percentages observed in 
ARPEC isolates from children greater than or equal to 1 year 
of age compared with EARS-Net isolates, especially in Gram-
negative pathogens? First, the source patient populations showed 
important differences between ARPEC and EARS-Net. ARPEC 
surveillance almost exclusively involved tertiary hospitals with a 
high proportion of ICU beds. In line with this, the overall propor-
tion of Gram-negative pathogens from ICU patients was 43%. In 
contrast, an epidemiological review of Gram-negative pathogens in 
EARS-Net published in 2012 reported that only 7% of E. coli, 20% 
of K. pneumoniae and 25% of P. aeruginosa isolates were from 
ICU patients.16 Isolates from ICU patients may be expected to have 
higher levels of resistance than isolates from non-ICU patients.25

Given such a high proportion of ICU isolates, it may be 
expected that a very low proportion of Gram-negatives were commu-
nity-acquired. Surprisingly, however, 32% of ARPEC Gram-negative 
isolates including a third of P. aeruginosa isolates were community-
acquired, contrasting with only 13% of E. coli and 8% each of K. 
pneumoniae and P. aeruginosa isolates reported as community-
acquired in EARS-Net.16 P. aeruginosa has previously been reported 
to be predominantly a nosocomial pathogen.26–28 Most likely the rela-
tively high proportion of community-acquired Gram-negative iso-
lates reflects that children with serious underlying chronic diseases 
are overrepresented in ARPEC. These patients are at increased risk 
of both community-acquired and hospital-acquired invasive bacte-
rial infections, including infections with a fatal outcome.29–31 Many 
community-acquired episodes in children with comorbidities have 
been demonstrated to be healthcare-associated,23 and are known to 
resemble hospital-acquired infections in terms of resistance pat-
terns.32 High carbapenem resistance percentages observed in Gram-
negative bacteria in ARPEC could be due to this phenomenon. Our 
observation of the likely contribution of children with underlying 
diseases to episodes of community-acquired bloodstream infections 
also highlights the fact that selection of empiric antibiotic choices for 
this vulnerable group of patients is likely to be challenging.

Several limitations need to be considered when interpreting 
ARPEC and EARS-Net data. EARS-Net reports emphasize that 
(1) variable population coverage; (2) the focus on invasive isolates; 
(3) differences in blood culturing practices and (4) variability in 
laboratory methods can all be important sources of bias.15 Several 
differences of hospitals contributing to ARPEC and those reporting 
to EARS-Net, and the likely impact on observed AMR levels have 
been discussed. In addition, ARPEC centers had a higher rate of 
blood culture than EARS-Net hospitals, potentially increasing the 
detection rate of bloodstream infections. At the same time, relevant 
isolates were observed at a lower rate in ARPEC hospitals. The high 
blood-culturing rate with lower positivity rate could lead to lower 
resistance percentage estimates, because it is less likely to be biased 
(for example, to patients not responding to empiric therapy).15

We were unable to compare ARPEC resistance percentages 
with EARS-Net estimates based on adult isolates only. Because 
ARPEC data were collected from tertiary hospitals with specialist 
pediatric services, resistance percentages are likely to largely reflect 
the microbiological epidemiology in children with multiple comor-
bidities cared for at highly specialized centers. Overall, ARPEC data 
should therefore not be used as a basis for empiric treatment selection 
for otherwise healthy children with community-acquired infection.

Our analysis demonstrates the importance of presenting 
resistance percentage estimates stratified by age and potentially by 
other variables, for example separately for intensive care and nonin-
tensive care settings, and of clearly defining the source population for 
resistance data. In Europe, there is an existing surveillance network 
that could present such up-to-date childhood data. Many countries 

taking part in EARS-Net may not at present have the infrastructure 
or financial means for local evaluations of age-stratified resistance 
patterns. EARS-Net could provide an important service and should 
consider publication of age-stratified data to help neonatal and pedi-
atric healthcare providers understand the epidemiology of AMR in 
their population. Future World Health Organization led global AMR 
surveillance programs should also include, where possible, age-strat-
ified data. Failure to consider AMR patterns in this manner means 
that differences in resistance between different patient groups may go 
undetected and important opportunities for intervention are missed.

ACKNOWLEDGMENTS
The authors thank all contributors to the ARPEC bacterae-

mia antimicrobial resistance data collection. Contributors are as 
follows: C. Berger, MD, University Children’s Hospital Zurich, 
Zürich, Switzerland; S. Esposito, MD, PhD, E. Danieli, MBiol and 
R. Tenconi, MD, Pediatric Clinic 1, Department of Pathophysiol-
ogy and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale 
Maggiore Policlinico, Milano, Italy; L. Folgori, MD, Department 
of Pediatrics (DPUO), University of Rome Tor Vergata, Bambino 
Gesù Children’s Hospital, IRCCS, Rome, Italy; P. Bernaschi, MD, 
Unit of Microbiology, Laboratory Department, Bambino Gesù 
Children’s Hospital, IRCCS, Rome, Italy; B. Santiago, MD and  
J. Saavedra, MD, PhD, Pediatric Infectious Diseases Division, 
 Gregorio Marañón Hospital, Madrid, Spain; E. Cercenado, 
PharmD, Servicio de Microbiologia y Enfermedades Infecciosas, 
Gregorio Marañón Hospital, Madrid, Spain; A. Brett, MD and  
F. Rodrigues, MD, Infectious Diseases Unit and Emergency Service, 
Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário 
de Coimbra, Coimbra, Portugal; M. Cizman, MD, PhD, Depart-
ment of Infectious Diseases, UMC Ljubljana, Ljubljana, Slovenia;  
J. Jazbec, MD, PhD, Children's Hospital, UMC Ljubljana, 
 Ljubljana, Slovenia; J Babnik, MD and Maja Pavčnik, MD, PhD, 
UMC Ljubljana, Ljubljana, Slovenia; M Pirš(Pirs), MD, PhD and 
M. Mueller Premrov, MD, PhD, Institute of Microbiology and 
Immunology, Medical Faculty, University of Ljubljana, Ljubljana, 
Slovenia; M Lindner, PhD and M. Borte, MD, Hospital St. Georg, 
Leipzig, Germany; N. Lippmann, MD and V. Schuster, MD, Uni-
versity Hospital Leipzig, Leipzig, Germany; A. Thürmer, MD and  
F. Lander, MD, University Hospital Dresden, Dresden, Ger-
many; J. Elias, MD and J. Liese, MD, MsC, University Hospital 
Würzburg, Würzburg, Germany; A. Durst, MD and S. Weichert, 
MD, University Hospital Mannheim, Mannheim, Germany;  
C.  Schneider, MD and M. Hufnagel, MD, University Medical 
Center Freiburg, Freiburg im Breisgau, Germany; A. Rack, MD and 
J. Hübner, MD, University Hospital München, Munich, Germany;  
F. Dubos, MD, PhD and M. Lagree, MD, Peadiatric Emergency Unit 
and Infectious Diseases, Université Lille Nord-de-France, UDSL, 
CHRU Lille, Lille, France; R. Dessein, Laboratory of Microbiol-
ogy, Pathology-Biology Center, Lille-2 University, UDSL, CHRU 
Lille, Lille, France; P. Tissieres, MD, PhD, Pediatric and Neona-
tal ICU, AP-HP Bicetre Hospital, France; G. Cuzon, MD, PhD, 
Departement of Bacteriology, AP-HP Bicetre Hospital, France;  
V. Gajdos MD, PhD, Pedriatric Department, Antoine Béclère 
Hospital, Assistance Publique – Hôpitaux de Paris, Paris Sud 
University, Clamart, France; F. Doucet-Populaire, Laboratory of 
Microbiology and Infection Control, Antoine-Béclère Hospital, 
Assistance Publique – Hôpitaux de Paris, Paris Sud University, 
Clamart, France; V. Usonis, MD, PhD, Vilnius University Clinic 
of Children Diseases, Vilnius, Lithuania and Children’s Hospi-
tal, Affiliate of Vilnius University Hospital Santariskiu Klinikos,  
Vilnius, Lithuania; V. Gurksniene, MD, and  Genovaite 
 Bernatoniene, MD, Children’s Hospital, Affiliate of Vilnius Univer-
sity Hospital Santariskiu Klinikos, Vilnius, Lithuania; M. Tsolia, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65 Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

5IF�1FEJBUSJD�*OGFDUJPVT�%JTFBTF�+PVSOBM� t� 7PMVNF���
�/VNCFS��
�+VMZ����� Antibiotic Resistance

© 2015 Wolters Kluwer Health, Inc. All rights reserved. www.pidj.com | 741

MD, PhD and N. Spyridis, MD, PhD, Second Department of Pae-
diatrics, National and  Kapodistrian University of Athens School of 
Medicine, Athens, Greece; E. Lebessi, MD, PhD and A. Doudou-
lakakis, MD, Department of Microbiology, “P. and A. Kyriakou” 
Children’s Hospital, Athens, Greece; I. Lutsar, MD, PhD and S. 
Kõljalg, MD, PhD, University of Tartu, Tartu, Estonia; T. Schülin, 
MD, PhD, Department of Medical Microbiology, Radboud Univer-
sity Medical Center, Nijmegen, The Netherlands; A. Warris, MD, 
PhD, Department of Paediatric Infectious Diseases, Radboud Uni-
versity Medical Center, Nijmegen, The Netherlands.

REFERENCES
 1. World Health Organization. Antimicrobial Resistance: global report on sur-

veillance. World Health Organization: Geneva, Switzerland; 2014.

 2. Cornaglia G, Hryniewicz W, Jarlier V, et al; ESCMID Study Group for 
Antimicrobial Resistance Surveillance. European recommendations for 
antimicrobial resistance surveillance. Clin Microbiol Infect. 2004;10:349–
383.

 3. Giske CG, Cornaglia G; ESCMID Study Group on Antimicrobial Resistance 
Surveillance (ESGARS). Supranational surveillance of antimicrobial resist-
ance: the legacy of the last decade and proposals for the future. Drug Resist 
Updat. 2010;13:93–98.

 4. O’Brien TF, Stelling J. Integrated multilevel surveillance of the world’s 
infecting microbes and their resistance to antimicrobial agents. Clin 
Microbiol Rev. 2011;24:281–295.

 5. Rempel OR, Laupland KB. Surveillance for antimicrobial resistant 
organisms: potential sources and magnitude of bias. Epidemiol Infect. 
2009;137:1665–1673.

 6. European Centre for Disease Prevention and Control. About EARS-Net. 
Available at: http://ecdc.europa.eu/en/activities/surveillance/EARS-Net/
about_network/Pages/about_network.aspx. Accessed August 27, 2014.

 7. European Centre for Disease Prevention and Control. Reporting Protocol, 
EARS-Net 2013. ECDC: Stockholm, Sweden; 2013.

 8. European Centre for Disease Prevention and Control. Reporting Protocol, 
EARS-Net 2010. ECDC: Stockholm, Sweden; 2010.

 9. Diaz Högberg L, Bielicki J, Sharland M, Heuer O, EARS-Net participants. 
Antimicrobial resistance in invasive Klebsiella pneumoniae isolates: total 
population-level resistance percentages do not reflect resistance percentages 
in childhood isolates. 31st ESPID Annual Conference. Milan, Italy; 2013.

 10. Wilson J, Elgohari S, Livermore DM, et al. Trends among pathogens 
reported as causing bacteraemia in England, 2004-2008. Clin Microbiol 
Infect. 2011;17:451–458.

 11. Oteo J, Baquero F, Vindel A, Campos J, et al. Antibiotic resistance in 3113 
blood isolates of Staphylococcus aureus in 40 Spanish hospitals participat-
ing in the European Antimicrobial Resistance Surveillance System (2000–
2002). J Antimicrob Chemother. 2004;53:1033–1038.

 12. Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resist-
ance pattern comparisons among bloodstream infection isolates from 
the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn 
Microbiol Infect Dis. 2004;50:59–69.

 13. Henderson KL, Muller-Pebody B, Johnson AP, Goossens H, Sharland M; 
Group A. First set-up meeting for antibiotic resistance and prescribing in 
European Children (ARPEC). Euro Surveill. 2009;14(45).

 14. Versporten A, Sharland M, Bielicki J, et al; ARPEC Project Group Members. 
The antibiotic resistance and prescribing in European Children project: a 

neonatal and pediatric antimicrobial web-based point prevalence survey in 
73 hospitals worldwide. Pediatr Infect Dis J. 2013;32:e242–e253.

 15. European Centre for Disease Prevention and Control. Antimicrobial 
resistance surveillance in Europe 2012. Annual Report of the European 
Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC: 
Stockholm, Sweden; 2013.

 16. European Centre for Disease Prevention and Control. Antimicrobial 
resistance surveillance in Europe 2011. Annual Report of the European 
Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC: 
Stockholm, Sweden; 2012.

 17. OECD. Health at a Glance 2013: OECD Indicators 2013. Available at: 
http://dx.doi.org/10.1787/health_glance-2013-en. Accessed July 17, 2014.

 18. Hersh AL, Shapiro DJ, Pavia AT, et al. Antibiotic prescribing in ambulatory 
pediatrics in the United States. Pediatrics. 2011;128:1053–1061.

 19. Shapiro DJ, Hicks LA, Pavia AT, et al. Antibiotic prescribing for adults in ambu-
latory care in the USA, 2007-09. J Antimicrob Chemother. 2014;69:234–240.

 20. Bielicki J, Versporten A, Planche T, Goossens H, Sharland M; ARPEC 
Project. Gram-negative bacterial bloodstream isolates from neonates and 
children in 10 European centres: strikingly low quinolone resistance. 23rd 
ECCMID. Berlin, Germany; 2013.

 21. Zarb P, Amadeo B, Muller A, et al; ESAC-3 Hospital Care Subproject Group. 
Identification of targets for quality improvement in antimicrobial prescrib-
ing: the web-based ESAC Point Prevalence Survey 2009. J Antimicrob 
Chemother. 2011;66:443–449.

 22. Regev-Yochay G, Raz M, Dagan R, et al. Nasopharyngeal carriage of 
Streptococcus pneumoniae by adults and children in community and family 
settings. Clin Infect Dis. 2004;38:632–639.

 23. Laupland KB, Gregson DB, Vanderkooi OG, et al. The changing burden of 
pediatric bloodstream infections in Calgary, Canada, 2000–2006. Pediatr 
Infect Dis J. 2009;28:114–117.

 24. Ariffin N, Hasan H, Ramli N, et al. Comparison of antimicrobial resistance 
in neonatal and adult intensive care units in a tertiary teaching hospital. Am 
J Infect Control. 2012;40:572–575.

 25. Kuster SP, Ruef C, Zbinden R, et al. Stratification of cumulative antibio-
grams in hospitals for hospital unit, specimen type, isolate sequence and 
duration of hospital stay. J Antimicrob Chemother. 2008;62:1451–1461.

 26. Iversen BG, Brantsaeter AB, Aavitsland P. Nationwide study of invasive 
Pseudomonas aeruginosa infection in Norway: importance of underlying 
disease. J Infect. 2008;57:139–146.

 27. Parkins MD, Gregson DB, Pitout JD, et al. Population-based study of the 
epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream 
infection. Infection. 2010;38:25–32.

 28. Schechner V, Nobre V, Kaye KS, et al. Gram-negative bacteremia upon hos-
pital admission: when should Pseudomonas aeruginosa be suspected? Clin 
Infect Dis. 2009;48:580–586.

 29. Ladhani S, Pebody RG, Ramsay ME, et al. Continuing impact of infectious 
diseases on childhood deaths in England and Wales, 2003-2005. Pediatr 
Infect Dis J. 2010;29:310–313.

 30. Ladhani SN, Slack MP, Andrews NJ, et al. Invasive pneumococcal disease 
after routine pneumococcal conjugate vaccination in children, England and 
Wales. Emerg Infect Dis. 2013;19:61–68.

 31. Le Doare K, Nichols AL, Payne H, et al; CABIN Network. Very low rates of 
culture-confirmed invasive bacterial infections in a prospective 3-year popula-
tion-based surveillance in Southwest London. Arch Dis Child. 2014;99:526–531.

 32. Lenz R, Leal JR, Church DL, et al. The distinct category of healthcare 
associated bloodstream infections. BMC Infect Dis. 2012;12:85.

 



 66 

6. Selecting empiric antibiotic regimens for childhood 
bloodstream infection based on a WISCA 

This chapter presents a paper on the development of a Bayesian WISCA.  It re-formulates 

the WISCA as a decision tree model (see figure in published paper). The decision to start 

empiric antibiotic treatment is represented by the first node (square) with the regimen 

choices represented by the next nodes (circle). Subsequent branches describe chance 

events, including the range of possible bacteria causing the target infection syndrome and 

the susceptibility percentages for each pathogen to the regimen. The combination of 

probabilities along the decision tree branches corresponds to the expected coverage for 

each regimen. 

Combining this intuitive approach towards estimating coverage with a Bayesian approach 

has two key advantages. Firstly, it naturally allows for the calculation of credible intervals for 

the regimen coverage estimates. In the standard weighted average interpretation of 

coverage, a confidence interval is derived by pooling the variances of the expected values of 

susceptibility parameters to estimate the variance of the expected coverage. The key 

limitation of this approach is that it treats the relative frequencies of bacteria as fixed weights, 

and therefore fails to incorporate uncertainty about their estimated values. When the isolate 

sample size for estimating coverage is small, this will lead to the precision of expected 

coverage being overestimated.  

The Bayesian perspective allows for the incorporation of uncertainty about estimates of both 

bacterial incidence and susceptibility to regimens. Adopting such a perspective, the values of 

incidence and regimen susceptibility parameters for each regimen are defined using an 

appropriate probability distribution. For the relative incidence of bacteria, the observed data 

were assumed to be drawn from a multinomial distribution with y possible outcomes (y 

corresponding to the number of bacterial species or types of bacteria contributing to the 

WISCA). A non-informative uniform conjugate prior, specified as a Dirichlet (1,1,1,…1) 

distribution was selected to result in a Dirichlet posterior distribution (1+n1, 1+n2,. . ., 1+n9). 
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This is the continuous equivalent to the discrete multinomial distribution, and is the 

generalisation of the Beta distribution to situations described by more than two categories. 

For regimen susceptibility, the data were assumed to be drawn from a Binomial distribution. 

A Beta(1,1) distribution was used as a non-informative prior, except for WISCA calculations 

at hospital level with expected small sample size when a Beta(0.5,0.5) distribution was used 

to reduce the dominance of the prior.  

A consequence of describing uncertainty about parameters with the Dirichlet and conjugate 

Beta probability distributions is that there is no closed form equation for deriving the interval 

within which the true value of the coverage is likely to be. The calculation of this interval 

requires Monte Carlo simulation, which involves running a large number of experiments 

(1000 runs were used) and combining their results. In each experiment, parameter values for 

the parameters of interest (relative incidence and pathogen-regimen susceptibility) are 

randomly drawn from their specified distributions. The values of each parameter are then 

combined to derive a coverage estimate. Together, the individual coverage estimates from all 

the experiments give the posterior distribution for the coverage parameter. The 95% 

“uncertainty” interval, or 95% credible interval, is then calculated as the interval between 

2.5% and 97% percentile of this distribution. 

In addition to the incorporation of uncertainty for both bacterial incidence and regimen 

susceptibility parameters, the Bayesian perspective improves handling of missing data, 

supports correct interpretation of antimicrobial susceptibility testing data for coverage 

estimating, and allows the integration of evidence from multiple sources. The latter feature is 

particularly useful when the sample size is small, for example when considering an individual 

hospital, and there is other information available to augment it. 

The second advantage of the Bayesian perspective is an appropriate reflection of intrinsic 

resistance as informative priors. For bacteria-antibiotic combinations where this was the 

case, the prior for regimen susceptibility was specified as a Beta(1,9999). This has a 

standard deviation of 0.01%, regardless of the availability of susceptibility testing information. 
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Similarly, for bacteria expected to be always susceptible to a specific regimen, the prior for 

regimen susceptibility was specified as a Beta(9999, 1).  

ARPEC data on antimicrobial resistance for nearly 2000 isolates were used for parameter 

estimation in WISCA calculations. However, this paper demonstrates the limitations of using 

hospital-level data on bloodstream isolates and antimicrobial resistance for selection of 

empiric antibiotic regimens: Despite nearly 2000 isolates overall and despite coverage being 

based on data for multiple species, the total number of isolates for this calculation per 

hospital is low (range by country: 25-389 with multiple hospitals contributing to countries with 

higher isolate numbers). Data used for this paper were therefore pooled over two years. 

Even so, the regimen coverage estimates at hospital level were often imprecise, with the 

estimated coverage rates having overlapping 95% credible intervals for almost all considered 

regimens in the two exemplar hospitals. 

To improve precision and therefore discrimination of estimated coverage between regimens, 

WISCAs were also calculated based on the pooled ARPEC dataset. The reliability of these 

pooled coverage estimates for the two exemplar hospitals was evaluated using a funnel plot 

technique. Optimal discrimination between regimens to establish which regimen offers the 

best coverage in this analysis was only possible when coverage estimates were based on 

pooled data.  
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Objectives: The objective of this study was to evaluate the ability of weighted-incidence syndromic combination
antibiograms (WISCAs) to inform the selection of empirical antibiotic regimens for suspected paediatric blood-
stream infections (BSIs) by comparing WISCAs derived using data from single hospitals and from a multicentre
surveillance dataset.

Methods: WISCAs were developed by estimating the coverage of five empirical antibiotic regimens for childhood
BSI using a Bayesian decision tree. The study used microbiological data on !2000 bloodstream isolates collected
over 2 years from 19 European hospitals. We evaluated the ability of a WISCA to show differences in regimen
coverage at two exemplar hospitals. For each, a WISCA was first calculated using only their local data; a second
WISCA was calculated using pooled data from all 19 hospitals.

Results: The estimated coverage of the five regimens was 72%–86% for Hospital 1 and 79%–94% for Hospital 2,
based on their own data. In both cases, the best regimens could not be definitively identified because the differ-
ences in coverage were not statistically significant. For Hospital 1, coverage estimates derived using pooled data
gave sufficient precision to reveal clinically important differences among regimens, including high coverage pro-
vided by a narrow-spectrum antibiotic combination. For Hospital 2, the hospital and pooled data showed signs of
heterogeneity and the use of pooled data was judged not to be appropriate.

Conclusions: The Bayesian WISCA provides a useful approach to pooling information from different sources to
guide empirical therapy and could increase confidence in the selection of narrow-spectrum regimens.

Introduction
Bloodstream infections (BSIs) are associated with significant mor-
tality and morbidity1,2 and patients with suspected BSI should
receive effective antibiotic treatment rapidly.3 At present, early
therapeutic decisions for suspected BSI usually remain empirical
as the causative pathogen and its resistance phenotype are
unknown at the start of therapy.4 Consequently, broad-spectrum
agents may be used preferentially in the assumption that this will
ensure effective treatment.

Cumulative hospital antibiograms provide information on the
locally observed in vitro susceptibility of individual species or gen-
era of bacteria to particular antibiotics.5 During empirical treat-
ment (ET), however, the causative pathogen is unknown as
many different bacteria may cause the same clinical infection

syndrome.4 In contrast, syndromic metrics aim to give the
expected coverage of an ET regimen defined as the probability
that a regimen will be active against relevant potential causative
pathogens.6 – 10 An important syndromic metric, the weighted-
incidence syndromic combination antibiogram (WISCA), provides
coverage estimates for a range of ET regimens as a weighted aver-
age of the pathogen susceptibilities, with the weights defined by
the relative incidence of the pathogens. However, practical issues
relating to the construction of a WISCA from routinely available
antimicrobial resistance (AMR) data for use in day-to-day practice
remain unexplored. For infections with a relatively low incidence, a
major challenge is how to deal with uncertainty associated with
small sample sizes. In this paper, we describe a Bayesian version
of the WISCA, which helps to address various issues that arise
because of the comparatively low incidence of childhood BSI.

# The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
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Using AMR data for bloodstream isolates collected as part of the
Antibiotic Resistance and Prescribing in European Children (ARPEC)
project,11 we focus on the potential benefit of pooling data from
multiple centres and examine whether this improves clinicians’
ability to select ET regimens with high coverage.

Methods
Development of a Bayesian WISCA
The WISCA was developed as a decision tree (Figure 1), with the first node
(square) representing the clinical decision to initiate ET being linked to
nodes (circles) that represent the regimen choices and subsequent
branches describing chance events. These were the range of bacterial spe-
cies causing paediatric BSI, their relative frequency and the proportions (as
percentages) of each pathogen susceptible to each antibiotic regimen. The
end branches (triangular nodes) correspond to concordant or discordant
therapy. The expected coverage for each regimen is the combination of
the probabilities along the regimen tree branches. A Bayesian perspective
was then adopted in which the value of the pathogen incidence and
pathogen –regimen susceptibility parameters for each regimen were

defined as a probability distribution that reflected the uncertainty in its
value.12,13

Data sources
First blood culture isolates of Streptococcus pneumoniae, Staphylococcus
aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli,
Klebsiella pneumoniae, Enterobacter spp. and Pseudomonas aeruginosa
from children aged 0–18 years reported to the ARPEC surveillance project
(19 participating centres in 12 European countries from 1 January 2011 to
31 December 2012) were analysed.11 Any blood cultures from a previously
included patient and positive for the same organism within 4 weeks of the
original reported isolate were excluded as duplicates. Participants were
also asked to report counts of positive blood cultures of Streptococcus pyo-
genes (group A streptococci), Streptococcus agalactiae (group B strepto-
cocci), Neisseria meningitidis, Haemophilus influenzae, Salmonella
enterica and Acinetobacter baumannii. Data on the AMR of these bacteria
were not collected.

The study also used information on the distribution of pathogens from
positive blood cultures from children 0–18 years of age in the PHE commu-
nicable diseases second-generation surveillance system (SGSS) database.

Suspected
infection

Empirical regimens of interest

ET regimen 1:
amoxicillin/gentamicin S. aureus

S. pneumoniae

E. faecalis

E. faecium

E. coli

Enterobacter spp.

K. pneumoniae

P. aeruginosa

Other bacteria with high
b-lactam susceptibility

Other bacteria with
variable b-lactam
susceptibility

ET regimen 2:
ceftriaxone

Suspected BSI
requiring
antibiotic
treatment

ET regimen 3:
cefotaxime/gentamicin

ET regimen 4:
piperacillin/tazobactam

ET regimen 5:
meropenem

Proportion of episodes accounted for by each
pathogen (1)

Proportion of episodes 
susceptible to regimen (2)

Susceptible

Resistant
Susceptible

Resistant

Figure 1. Decision tree for estimating ET regimen coverage.
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This distribution was based on all relevant deduplicated isolates reported
for 2014 from England, Wales and Northern Ireland and was compared
with the pathogen distribution within the ARPEC data.

Parameter estimation
Five ET regimens (amoxicillin/gentamicin, ceftriaxone, cefotaxime/genta-
micin, piperacillin/tazobactam and meropenem) reported as in use for
suspected BSI in the hospitals participating in ARPEC were selected for
evaluation of coverage estimated based on the decision tree described
above.14

The WISCA distinguished between 10 categories of bacteria that could
lead to a paediatric BSI. These consisted of the eight core ARPEC bacterial
species and two additional groups of bacterial species for which AMR infor-
mation was not collected as part of ARPEC surveillance. For these latter
two groups, pathogens were grouped according to likely b-lactam suscep-
tibility, because all five regimens contained a b-lactam. CoNS and non-
pyogenic streptococci were not included in this analysis, as identification
of clinically relevant bloodstream isolates would require application of
additional algorithms as BSI caused by these pathogens is unlikely to be
life-threatening in a great majority of cases (therefore not needing cover-
age during early ET).15,16

The estimated susceptibility of the eight ARPEC organisms to each
regimen was determined directly from ARPEC AMR surveillance data. For
monotherapy regimens, isolates reported as intermediate or resistant to
any antibiotic representative of the antibiotic class were classified as
resistant. Standard algorithms were applied to infer susceptibility from
testing results as appropriate, e.g. when different antibiotics were consid-
ered equivalent or when interpretive algorithms were available.17,18

Isolates were classified as susceptible to a combination when they
were reported as susceptible to at least one of the antibiotics in the
combination.

In addition, for bacteria that would be expected to have intrinsic resist-
ance [and for which there was selective (non-)testing], we assumed
expected susceptibility values of 0%, regardless of the availability of
antimicrobial susceptibility testing (AST) information.17,18 Where AMR
data were not available in the ARPEC database, susceptibility for grouped
bacteria was estimated based on surveillance data from the bacteraemia
surveillance programme sponsored by the BSAC for 2012.19

In the framework of the Bayesian decision tree, the observed pathogen
data were assumed to be drawn from a multinomial distribution with 10
possible outcomes. We selected a non-informative uniform prior, specified
as the Dirichlet(1, 1, 1,. . ., 1) distribution. The Dirichlet distribution is the
conjugate prior for data from a multinomial distribution and results in a
posterior distribution of the form Dirichlet(1+n1, 1+n2,. . ., 1+n10)
where nj are the observed number of each type of pathogen.12,13 Using
a non-informative prior meant the posterior distribution was predomin-
ately determined by the data.

Susceptibility percentages were assumed to be drawn from a binomial
distribution. The prior distributions for the susceptibility parameters were
defined using the conjugate beta distribution, thus resulting in the poster-
ior being a beta distribution.12,13 For most regimens, we had no strong prior
beliefs about resistance patterns and used a non-informative prior, the
beta(0.5, 0.5) distribution. For bacteria that would be expected to have
intrinsic resistance, we specified the prior as a beta(1, 9999), which gave
a 99.8% coverage interval for susceptibility of 0%–0.1%, dominating any
AST results. All modelling was undertaken using Microsoft Excelw 2010.

Scenario analysis
We developed a series of scenarios to examine the difference in coverage
estimates produced using data from single hospitals and from all 19
ARPEC centres and how this affected clinicians’ ability to select ET regi-
mens with high coverage.

Single hospital data scenario
The first scenarios examined the usefulness of a WISCA derived using data
from single hospitals. Two hospitals were selected from the 19 ARPEC par-
ticipants based on their number of reported bloodstream isolates being
near to the median number of isolates reported across all participating
hospitals. Using their local data, we estimated the expected coverage of
the five regimens applying the decision tree model.

Surveillance data scenario
The second scenario evaluated the extent to which using data from all 19
hospitals increased the precision of the coverage estimates at the two hos-
pitals and hence the usefulness of the resulting WISCA. To determine
whether the single centre could be regarded as being representative of
the group of hospitals, we adopted a technique that could be used
when both single hospital and pooled results were available. We first
examined whether the patterns of AMR at the single hospital were sub-
stantially different from the pattern of AMR in the pooled data using a fun-
nel plot technique.20 This corresponds to testing whether AMR patterns at
a hospital differed from the average across all hospitals only by an amount
consistent with the influence of random variation alone. We considered it
acceptable to substitute the overall average for the hospital average if the
estimate from the single hospital fell within the 95% inner and outer con-
trol limits of the funnel displayed as a bullet graph. For the incidence esti-
mates, we used a x2 test to evaluate whether the incidence estimates of
bacteria at the single hospital data differed markedly from the other
ARPEC hospitals, and considered it acceptable to use the incidence esti-
mates from all hospitals if the P value was .0.05.

Results
The full ARPEC dataset contained 1704 isolates with complete
susceptibility testing information and 232 isolates for which no
AMR data were recorded. As specified above, the likely AMR pat-
terns for the latter 232 isolates were simulated based on BSAC
surveillance data.19

Parameter table for WISCA estimation
Table 1 shows the parameter estimates for the Bayesian WISCA
needed to estimate coverage for the ET regimen combining
amoxicillin and gentamicin for the two single hospitals and the
full dataset. Table 1 also includes the 95% credible interval from
the posterior distributions to illustrate the uncertainty associated
with each parameter estimate. For the data from the single hos-
pitals, the 95% credible interval widths for the susceptibility para-
meters varied from 11% to 85%, reflecting the small numbers of
some pathogens identified and/or subjected to susceptibility test-
ing. Table 1 also illustrates that the number of isolates tested was
often less than the number of pathogens recorded.

Single hospital coverage
Figures 2 and 3 present the BSI coverage estimates for the five
antibiotic regimens using data from the two selected single hos-
pitals with estimates based on the full surveillance dataset shown
for comparison. For Hospital 1, the coverage estimates ranged
from 72% (for ceftriaxone) to 86% (for amoxicillin/gentamicin).
For Hospital 2, the estimates ranged from 79% (for piperacillin/
tazobactam) to 94% (for meropenem). For both hospitals, there
was a marked degree of overlap of the 95% credible intervals
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Table 1. Parameter table for surveillance simulation with data sources indicated; see the Methods section for further information on parameter
definition and pathogen grouping

Incidence

Hospital 1 Hospital 2 Full ARPEC dataset

n % 95% CrIa n % 95% CrIa n % 95% CrIa

S. aureus 20 22% 14%–31% 23 18% 12%–25% 449 23% 21%–25%
S. pneumoniae 5 6% 2%–12% 13 11% 6%–17% 163 9% 7%–10%
E. faecalis 10 11% 6%–18% 3 3% 1%–6% 175 9% 8%–10%
E. faecium 3 4% 1%–9% 1 2% ,1%–4% 95 5% 5%–6%
E. coli 18 20% 12%–28% 24 19% 13%–26% 380 20% 18%–21%
Enterobacter spp. 3 4% 1%–9% 3 3% 1%–7% 122 6% 5%–8%
K. pneumoniae 7 8% 4%–14% 14 11% 7%–17% 183 10% 8%–11%
P. aeruginosa 2 3% 1%–7% 0 0% 0%–3% 137 7% 6%–8%
Other bacteria with high susceptibility 17 19% 12%–27% 35 28% 21%–35% 175 9% 8%–10%
Other bacteria with variable susceptibility 2 3% 1%–7% 5 5% 2%–9% 57 3% 2%–4%
Total 87 100% 148 100% 1936 100%

Amoxicillin/gentamicin resistance

Hospital 1 Hospital 2 Full ARPEC dataset

n % susceptible 95% CrIb n % susceptible 95% CrIb n % susceptible 95% CrIb

S. aureus 14 90% 71%–99% 22 98% 89%–100% 421 97% 94%–98%
S. pneumoniae 5 92% 62%–100% 8 94% 73%–100% 152 97% 93%–99%
E. faecalis 10 95% 78%–100% 3 63% 17%–97% 160 93% 89%–97%
E. faecium 3 37% 4%–82% 1 24% 0%–85% 86 15% 8%–23%
E. coli 18 82% 63%–95% 24 82% 66%–94% 378 88% 85%–91%
Enterobacter spp. 3 88% 47%–100% 3 63% 18%–97% 121 90% 85%–95%
K. pneumoniae 7 81% 50%–98% 14 23% 7%–46% 183 75% 68%–80%
P. aeruginosa 2 83% 32%–100% — — — 137 76% 69%–82%
Other bacteria with high susceptibility 9 91% 74%–99% 33 96% 87%–100% 164 96% 92%–98%
Other bacteria with variable susceptibility 2 84% 37%–100% 5 92% 65%–100% 56 98% 94%–100%

CrI, credible interval.
aBased on a Dirichlet posterior distribution that combines the observed data with a non-informative prior, Dirichlet(1, 1, 1,. . ., 1).
bBased on a beta posterior distribution that combines the observed data with a non-informative prior, beta(0.5, 0.5).
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72% 74%

80%
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AMX/GEN CRO CTX/GEN
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TZP MEM AMX/GEN CRO CTX/GEN
Surveillance

TZP MEM

Figure 2. BSI coverage estimates for different ETregimens based on single centre data for Hospital 1 or on the pooled surveillance data. The 95% credible
intervals are shown as bars. AMX/GEN, amoxicillin/gentamicin; CRO, ceftriaxone; CTX/GEN, cefotaxime/gentamicin; TZP, piperacillin/tazobactam; MEM,
meropenem.
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for coverage estimates, indicating that the estimates derived from
a single hospital’s data could not generally provide robust infor-
mation on the relative performance of the regimens.

Using pooled surveillance data to improve coverage
estimates
The impact of using the pooled data from all 19 hospitals to esti-
mate coverage is shown in Figures 2 and 3. As a result of the much
larger sample, coverage estimates were more precise and this
revealed clear differences between the regimens. The right-hand
column of Table 1 gives the parameter values for the amoxicillin/
gentamicin regimen based on the pooled ARPEC data, with the

improved precision being reflected by the smaller 95% credible
intervals of the parameter values.

Establishing whether pooled surveillance data are
applicable to a specific hospital
For Hospital 1, we found no evidence that this hospital had a dif-
ferent pattern of pathogen incidence (P¼0.57) compared with
the remaining 18 centres or that the regimen susceptibility dif-
fered significantly from that of the overall cohort of all 19 hospi-
tals. This indicated that the hospital was unlikely to be an outlier
and using the pooled data was appropriate. Figure 4 shows how
the values of the susceptibility parameters for individual
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Figure 3. BSI coverage estimates for different ETregimens based on single centre data for Hospital 2 or on the pooled surveillance data. The 95% credible
intervals are shown as bars. AMX/GEN, amoxicillin/gentamicin; CRO, ceftriaxone; CTX/GEN, cefotaxime/gentamicin; TZP, piperacillin/tazobactam; MEM,
meropenem.
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Figure 4. Susceptibility parameters (%) for the amoxicillin/gentamicin regimen for individual pathogens from Hospital 1 and the overall ARPEC cohort of
19 hospitals. The graph shows bullet plots derived from the individual funnel plots. The grey bars indicate the standard inner and outer control limits (dark
grey, 95% control limits; light grey, 99.8% control limits) around the overall ARPEC cohort value.
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pathogens from Hospital 1 compared with the values of the
pooled data for the amoxicillin/gentamicin regimen. In the bul-
let plots, the bars indicate the position of the 95% and 99.8%
control limits and reveal that each value falls within the 95%
limits.

For Hospital 2, however, patterns for both pathogen incidence
(P¼0.001) and regimen susceptibility (Figure 5 for amoxicillin/
gentamicin) differed from the overall cohort. This would indicate
that coverage estimates from pooled surveillance data should not
be regarded as representative for Hospital 2 and it would not be
appropriate to substitute the values from the pooled data for the
hospital values.

Discussion
The critical question when initiating empirical antibiotic treatment
for any infection is which regimens provide the highest coverage.4

This paper focuses on whether coverage provided by different
regimens can be reliably estimated using a WISCA derived from
local data when the incidence of the infection being studied is
low. While our study used data from the ARPEC paediatric BSI pro-
ject, this general approach is pertinent not only to neonates and
children, but also to a range of other defined patient populations
especially if further stratification, such as by age or ward, is
desirable.11,21

This study clearly demonstrates the value of data pooling to
improve confidence in the selection of an optimal regimen for
ET of low-incidence infections. In the single hospital scenarios
(Figures 2 and 3), true differences in ET regimen coverage for
paediatric BSI were undetectable due to the small sample size.
Estimating coverage using local data, as widely recommended,
may therefore not result in clinically useful information.22

Pooling microbiological information over a longer period is one
potential solution, but both pathogen incidence and AMR levels

are known to change over time.23 An alternative strategy is to
combine data from multiple hospitals often available as pooled
AMR estimates, e.g. from surveillance programmes.

Nonetheless, this approach involves a number of steps that
require careful consideration. First, it is necessary to ensure the
local patterns of AMR and pathogen incidence are not significantly
different from the figures derived from pooled data. We demon-
strated a simple method for doing this that can be applied
when local and overall figures are available. If information is avail-
able from multiple sources, alternative methods of evidence syn-
thesis could be used to assess the degree of heterogeneity across
the different data.24

Second, the results will be sensitive to the choice of prior distri-
butions.13 We chose non-informative priors (except for pathogens
with inherent resistance), but alternatives could have been
selected. For example, if susceptibility was expected to be
between 60% and 80%, a weakly informative prior such as a
beta(50, 20) distribution could have been used. Information to
support these decisions might be drawn from various sources
(expert opinion, research studies and results from different
regions) and the best source of evidence will depend on the par-
ticular circumstances of each application. We recommend that
the sensitivity of the results in relation to the choice of prior distri-
butions is always assessed.

Achieving a high degree of certainty about difference and
equivalence in ET regimen coverage is an important consideration
in clinical decision-making. Clinicians require tools to reject ETregi-
mens that are clearly inferior and to enable them to select
amongst regimens with equivalent coverage, after which a deci-
sion might be guided by additional clinical considerations (such as
potential toxicity or pharmacokinetic/pharmacodynamic consid-
erations for specific infections).25 In particular, there is a need to
identify when narrow-spectrum single or combination therapy
regimens can be used safely in order to conserve critically import-
ant antimicrobials.
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Figure 5. Susceptibility parameters (%) for the amoxicillin/gentamicin regimen for individual pathogens from Hospital 2 and the overall ARPEC cohort of
19 hospitals. The graph shows bullet plots derived from the individual funnel plots. The grey bars indicate the standard inner and outer control limits (dark
grey, 95% control limits; light grey, 99.8% control limits) around the overall ARPEC cohort value.
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We used data from multiple hospitals across Europe, which
may be expected to differ in incidence of pathogens (e.g. due to
differences in vaccine programmes) and AMR prevalence. Other
sources could be considered, including isolates cultured from
samples other than blood or isolates from other age groups.
Resistance patterns differ between different sample types, e.g.
for S. pneumoniae isolated from sputum and blood or for
Gram-negative bacteria isolated from complicated versus uncom-
plicated urinary tract infections.26,27 Similarly, the epidemiology of
BSI differs between adults and children in terms of both bacterial
incidence and antibiotic resistance.11,28 – 32 While each of these
alternative sources may be appropriate in a specific context, a
thorough assessment of heterogeneity is therefore required,
which could take a similar approach to that presented here for
data pooling between geographically disparate hospitals. When
surveillance data are used, pooling between hospitals within a
specified region or between hospitals whose case mix is broadly
similar will likely reduce the risk of identifying heterogeneity.

Adopting a decision analysis framework and Bayesian model-
ling to explicitly consider whether pooled data can in some cases
be substituted for local data has various benefits. First, it allows for
the integration of evidence from multiple sources when the local
sample size is small, but there is other information available to
augment it. This can be modelled by combining prior beliefs
about parameter values with observed data. The use of priors
also enables a Bayesian WISCA to explicitly incorporate knowl-
edge about intrinsic resistance, maximizing the amount of
data that is available to inform the selection of ET regimens.
Similarly, a Bayesian WISCA can handle differentially missing
data, e.g. when laboratories operate a selective susceptibility test-
ing approach for specific antibiotics. Additional benefits arise from
the separate consideration of incidence and susceptibility para-
meters, as uncertainty about the estimates of both can be incor-
porated into the model. Importantly, the proposed WISCA
framework can be further extended to cover clinical outcomes,
e.g. mortality, by expanding the decision tree to include a further
branch that captures the outcome of treatment in patients with
infection caused by susceptible and resistant bacteria.

There are various limitations in our analysis of coverage that
arise from the ARPEC dataset. We included information on all
reported bacteria causing BSI in our scenarios to demonstrate
the structure of the model. Overall, excluding likely contaminants,
the bacterial species surveyed by ARPEC account for !82% of
bloodstream isolates reported in the UK (Table 2). AMR patterns
were unavailable for two groups of bacteria for which they
would be expected to vary across the different hospitals. ARPEC
centres used EUCAST, CLSI, BSAC and other national interpretive
guidelines to determine susceptibility, which could result in incon-
sistent breakpoints. Further work is necessary to evaluate the util-
ity of the Bayesian WISCA for informing clinical practice using an
independent dataset with more complete and homogeneous
pathogen incidence, resistance prevalence and clinical outcome
data. Finally, we did not incorporate stratification by key patient
characteristics (such as age) or episode characteristics (e.g.
community- and hospital-acquired BSI) in our analysis. These
could be incorporated into the Bayesian WISCA as additional deci-
sion tree branches, but stratification has the disadvantage of fur-
ther decreasing sample size.

In conclusion, the WISCA has the potential to support clinical
decision-making by clearly identifying differences or equivalence

of potential empirical regimens for childhood BSI through data-
driven estimation of coverage presented with a measure of preci-
sion. When this method is applied, it becomes apparent that the
limitations imposed by small sample sizes in single hospitals or for
special patient groups must be overcome to support evidence-
based regimen selection. A Bayesian WISCA achieves this by
transparently handling missing data and combining data from dif-
ferent sources. The Bayesian WISCA and its potential extensions
therefore provide a way to maximize the clinical utility of AMR sur-
veillance data to inform the selection of empirical antibiotic treat-
ment for critically ill patients while helping to conserve critically
important antibiotics.
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7. Application of the WISCA-based evaluation of regimen 
coverage to neonatal sepsis across Asian countries 

Neonatal sepsis is an important driver of sustained high global neonatal mortality and is 

therefore also a key focus for the optimised selection of empiric antibiotic regimens (74). 

Current international guidelines include two regimens recommended for empiric treatment of 

neonatal sepsis: a first-line combination of a penicillin (usually benzylpenicillin or ampicillin) 

and gentamicin, and a second-line third-generation cephalosporin regimen (usually 

ceftriaxone or cefotaxime) (9). However, high levels of antimicrobial resistance in blood 

culture isolates in neonatal blood culture isolates have been noted in several regions, 

including in Asia (75-77). 

This chapter consists of a paper demonstrating the application of the method described in 

chapter 6 to the specific scenario of empiric antibiotic regimens used for neonatal sepsis in 

Asian countries. Publications presenting data on the relative bacterial incidence and 

resistance patterns of blood culture isolates from babies on neonatal units were 

systematically identified and used to estimate parameters for calculating WISCAs. The 

coverage of three commonly used empiric regimens was estimated by country. Additional 

data from a feasibility survey conducted in preparation for a large international cohort study 

of neonatal sepsis were not included in the accepted manuscript but are provided at the end 

of the chapter for reference and comparison. 

In addition to the assumptions and algorithms described previously relevant to estimating 

parameters for regimen susceptibility, the selection of bacteria for inclusion is of key 

importance. In general, relative incidence of bacteria can be directly derived from any 

observed data. However, inclusion of likely contaminants or low-grade pathogens, such as 

coagulative-negative staphylococci, could unduly influence coverage estimates.  Some of 

these bacteria have high levels of resistance to many antibiotics commonly included in 

empiric antibiotic regimens for childhood sepsis, and it is unclear that covering them with 

empiric antibiotics improves outcomes. Similarly, inclusion of very rarely isolated bacteria is 
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unlikely to lead to relevant changes in coverage estimates. Therefore a specific approach 

towards selecting species contributing to coverage estimation based on observed reporting 

patterns, but excluding coagulase-negative staphylococci, was taken.  

WISCA-based estimation of country-level coverage for neonatal sepsis included several 

further assumptions. For example, although the systematic review for identifying relevant 

publications was limited to those published after 2014, some eligible publications contained 

microbiological data from isolates collected before 2010. Limiting the search to more recent 

publications would have dramatically reduced the number of isolates to inform WISCA 

calculation for some countries. However, extending the time frame meant that isolates may 

not reflect the current profile of antimicrobial resistance in included countries. The impact of 

temporal changes was therefore explored for India, the country with the largest number of 

isolates, by splitting the relevant data into three periods: studies reporting on data with a start 

period for collection before 01 January 2011 (time period 1), those reporting on data 

collected 01 January 2011 to 31 December 2012 (time period 2) and those reporting on data 

collected after 31 December 2012 (time period 3).  

Some variation in coverage estimates was indeed observed (table c). This was mainly 

influenced by differences in relative incidence of bacteria rather than by differences in 

susceptibility of the bacteria to the regimens.  

Table c: Estimated coverage of three regimens (AMPGEN: ampicillin plus gentamicin, TGC: ceftriaxone or 
cefotaxime, MEM: meropenem) with 95% credible intervals for India by study period. 

Study period N AMPGEN TGC MEM 
% 95%CrI % 95%CrI % 95%CrI 

<01Jan2011 789 44.3 40.8-47.9 16.9 14.5-19.6 74.9 71.8-77.7 
01Jan2011-
31Dec2012 

305
6 

43.9 42.0-45.9 32.9 31.3-34.5 58.7 56.9-60.5 

>31Dec2012 990 50.7 47.6-53.8 33.2 30.5-36.0 70.0 67.2-72.8 

For example, the contribution of Acinetobacter spp. varied from 13% in time period 1 to 26% 

in time period 2 and 9% in time period 3. Variation in estimated coverage over time therefore 

appeared to be strongly related to shifts in the predominantly observed bacteria and, 

potentially, bias in reporting and publication. 
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In addition to the potential impact of temporal changes, I explored challenges related to data 

pooling for countries with small sample sizes. Specifically, I investigated the merits of 

informative empirical Bayesian priors for antimicrobial resistance data derived from 

metaanalysis. In fact, applying this approach to the data presented in the manuscript, there 

was no improvement in coverage estimates due to considerable between-country 

heterogeneity and residual high levels of uncertainty due to small country-level sample size 

for the relative incidence of bacteria.  

A similar problem would be encountered at hospital level: The use of even more granular 

hospital-level data to determine differences in coverage between hospitals within a country 

will be challenging due to even smaller expected sample sizes. This will be exacerbated 

when it is desirable to base coverage specifically on recent data to reflect the current (and 

potentially shifting) microbiological epidemiology of neonatal sepsis. Further development of 

the meta-analytical approaches for deriving informative empirical Bayesian priors may 

include combining data pooling with a classification approach as described in chapter 6 for 

antimicrobial resistance data. Meta-analysis for antimicrobial resistance would then be 

carried out for isolates collected from relatively homogenous patient groups, for example 

within a country, effectively controlling coverage estimates for case-mix. This could reduce 

heterogeneity, result in meaningful empirical Bayesian priors and improve hospital-level 

coverage estimates.  
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Evaluation of the Coverage of 3 Antibiotic Regimens for Neonatal Sepsis
in the Hospital Setting Across Asian Countries
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Abstract

IMPORTANCE High levels of antimicrobial resistance in neonatal bloodstream isolates are being
reported globally, including in Asia. Local hospital antibiogram data may include too few isolates to
meaningfully examine the expected coverage of antibiotic regimens.

OBJECTIVE To assess the coverage offered by 3 antibiotic regimens for empirical treatment of
neonatal sepsis in Asian countries.

DESIGN, SETTING, AND PARTICIPANTS A decision analytical model was used to estimate coverage
of 3 prespecified antibiotic regimens according to a weighted-incidence syndromic combination
antibiogram. Relevant data to parameterize the models were identified from a systematic search of
Ovid MEDLINE and Embase. Data from Asian countries published from 2014 onward were of interest.
Only data on blood culture isolates from neonates with sepsis, bloodstream infection, or bacteremia
reported from the relevant setting were included. Data analysis was performed from April 2019 to
July 2019.

EXPOSURES The prespecified regimens of interest were aminopenicillin-gentamicin, third-
generation cephalosporins (cefotaxime or ceftriaxone), and meropenem. The relative incidence of
different bacteria and their antimicrobial susceptibility to antibiotics relevant for determining
expected concordance with these regimens were extracted.

MAIN OUTCOMES AND MEASURES Coverage was calculated on the basis of a decision-tree model
incorporating relative bacterial incidence and antimicrobial susceptibility of relevant isolates. Data
on 7 bacteria most commonly reported in the included studies were used for estimating coverage,
which was reported at the country level.

RESULTS Data from 48 studies reporting on 10 countries and 8376 isolates were used. Individual
countries reported 51 (Vietnam) to 6284 (India) isolates. Coverage varied considerably between
countries. Meropenem was generally estimated to provide the highest coverage, ranging from
64.0% (95% credible interval [CrI], 62.6%-65.4%) in India to 90.6% (95% CrI, 86.2%-94.4%) in
Cambodia, followed by aminopenicillin-gentamicin (from 35.9% [95% CrI, 27.7%-44.0%] in
Indonesia to 81.0% [95% CrI, 71.1%-89.7%] in Laos) and cefotaxime or ceftriaxone (from 17.9% [95%
CrI, 11.7%-24.7%] in Indonesia to 75.0% [95% CrI, 64.8%-84.1%] in Laos). Aminopenicillin-
gentamicin coverage was lower than that of meropenem in all countries except Laos (81.0%; 95%
CrI, 71.1%-89.7%) and Nepal (74.3%; 95% CrI, 70.3%-78.2%), where 95% CrIs for aminopenicillin-
gentamicin and meropenem were overlapping. Third-generation cephalosporin coverage was lowest
of the 3 regimens in all countries. The coverage difference between aminopenicillin-gentamicin and
meropenem for countries with nonoverlapping 95% CrIs ranged from −15.9% in China to −52.9%
in Indonesia.

(continued)

Key Points
Question What is the antibiotic
coverage offered by empirical neonatal
sepsis treatment with aminopenicillin-
gentamicin, third-generation
cephalosporins (cefotaxime or
ceftriaxone), and meropenem in Asian
countries?

Findings In this decision analytical
model based on a decision tree, 8376
isolates from 10 countries were used to
estimate coverage. Meropenem
generally had the highest coverage
(from 64.0% in India to 90.6% in
Cambodia) followed by aminopenicillin-
gentamicin (from 35.9% in Indonesia to
81.0% in Laos) and cefotaxime or
ceftriaxone (from 17.9% in Indonesia to
75.0% in Laos); in all countries except
Laos and Nepal, meropenem coverage
was higher than that of the other 2
regimens.

Meaning The findings suggest that
noncarbapenems may provide limited
empirical neonatal sepsis coverage in
many Asian countries.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE This study’s findings suggest that noncarbapenem antibiotic
regimens may provide limited coverage for empirical treatment of neonatal sepsis in many Asian
countries. Alternative regimens must be studied to limit carbapenem consumption.

JAMA Network Open. 2020;3(2):e1921124. doi:10.1001/jamanetworkopen.2019.21124

Introduction
Although overall maternal and child mortality have substantially declined worldwide since the early
2000s, neonatal mortality associated with bacterial infection has remained high, with nearly half a
million estimated annual deaths due to neonatal sepsis.1 Most of these deaths occur in low- and
middle-income countries (LMICs), including many thousands in Asia.2

In a recent prospective cohort study3 of more than 13 500 live births in India, the case-fatality
rate of culture-positive neonatal sepsis episodes was nearly 50%. Recent systematic reviews4-7

indicate a high level of bacterial resistance to World Health Organization (WHO)–recommended
empirical treatment regimens for serious neonatal and pediatric infections in LMICs, especially in
bloodstream isolates. Globally, antimicrobial resistance is estimated to be implicated in up to
one-third of neonatal sepsis deaths annually.8

Clinicians and guideline-setting bodies can be assisted in selecting optimal empirical antibiotic
regimens by knowing the coverage of alternative regimens.9 Regimen coverage refers to the
proportion of infection episodes that would be treated by the regimen at a stage when the causative
pathogen is not yet known, therefore incorporating the frequencies of different causative bacteria
and their resistance patterns. Several techniques are available to estimate coverage. One example is
the weighted-incidence syndromic combination antibiogram (WISCA),9-11 which estimates coverage
by accounting for the relative incidence of different bacteria and their resistance patterns for a
specific infection syndrome, in this case neonatal sepsis. Coverage can be estimated for both single-
drug and combination treatment regimens.

International guidelines provide recommendations for the empirical antibiotic treatment of
neonatal bacterial infections and should aim to provide adequate coverage in target settings,
especially LMICs.12 The objective of this decision analytical model study was, therefore, to evaluate
the coverage offered by 3 prespecified antibiotic regimens according to WISCAs and focusing on Asia,
a region with a high prevalence of bacterial resistance.

Methods
We estimated coverage using data on antimicrobial resistance that were used to create WISCAs for
each country with reported data,9 as identified by a systematic review of the literature. Because only
published data were used in the analysis, no formal ethical review was required according to
guidance by the NHS Health Research Authority. This study follows the Consolidated Health
Economic Evaluation Reporting Standards (CHEERS) reporting guideline, because it is broadly applicable
to any decision-model based analyses (eAppendix in the Supplement).13

Regimens Selected for Coverage Estimation
The 3 regimens evaluated in this study were aminopenicillin-gentamicin (WHO-recommended first-
line treatment; alternatives, benzylpenicillin or cloxacillin plus gentamicin), third-generation
cephalosporins (WHO-recommended second-line treatment, assumed to be cefotaxime or
ceftriaxone, not ceftazidime), and meropenem.12 The last regimen was evaluated because it has now
been reported to be the most commonly used empirical treatment in LMICs for neonatal sepsis.14
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Identification of Relevant Data for Parameter Estimation
A systematic search of the literature was conducted in Ovid MEDLINE and in Embase on January 23,
2019. Using both free-text and MeSH terms, publications on “sepsis” and “antibiotic resistance” and
(“neonates” or infants”) and “Asia” were identified (eAppendix in the Supplement). Given increasing
antimicrobial resistance, and to obtain contemporaneous estimates, we arbitrarily limited the search
to articles published from 2014 onward. No additional limits were applied. Studies were reviewed
against prespecified eligibility criteria, and data were extracted using a standardized prepiloted form
implemented in REDCap15 (eAppendix in the Supplement).

Extracted data for WISCA calculation included information on the total number of bacterial
isolates from relevant blood cultures, the number of isolates of specific bacterial species or genera,
the number of isolates tested for susceptibility to the antibiotics relevant for establishing coverage
offered by the prespecified regimens of interest, and the number of isolates found to be susceptible
to these antibiotics. We excluded bacteria known to frequently represent contamination rather than
true infection, most importantly coagulase-negative staphylococci.16 The exclusion of coagulase-
negative staphylococci is likely to result in the overestimation of coverage for β-lactam–based
regimens because of very high expected rates of methicillin resistance of 66% to more than 90%.17,18

Estimation of WISCA Parameters
Tables containing the parameter values required for coverage estimation were created by country
and regimen. The relative incidence parameters were based only on bacteria reported as
contributing to neonatal sepsis in more than 50% of the eligible studies. This meant that estimated
coverage was based on the most important and frequent pathogens identified in blood cultures from
neonates in the target region. Including rare pathogens within the WISCA would have a minimal
impact on the estimated coverage, and including those likely to be contaminants or unusual
pathogens (potentially observed as part of unidentified outbreaks) could introduce substantial bias.
For the bacteria identified in this way, their relative incidence was based on the frequency reported
in the studies. Similarly, regimen susceptibility was derived directly from reported data with the
number of tested isolates representing the denominator. Details of the assumptions for determining
susceptibility of pathogens to each regimen are provided in the eAppendix in the Supplement.

Statistical Analysis
Regimen coverage was estimated using a previously described Bayesian WISCA.9 This approach has
various advantages. It addresses the typical clinical approach of treating an infection syndrome, often
with incomplete knowledge about the frequency of causative bacteria and their susceptibilities. The
Bayesian WISCA also explicitly deals with intrinsic resistance and handles imprecision attributed to a
small sample size or incomplete susceptibility testing data.

In brief, the WISCA gives the expected levels of therapeutic coverage for an antibiotic
regimen—in our case, regimens used to treat neonates with sepsis. The WISCA can be represented as
a decision tree (eFigure 1 in the Supplement). Combining the probabilities along the regimen tree
branches generates coverage estimates from relative bacterial incidence and proportions of each
included pathogen susceptible to the antibiotic regimen. In essence, the WISCA is a weighted mean
of the susceptibilities of the bacteria, with the weights defined by their relative incidence.

The observed data on pathogen incidence and their susceptibility to the 3 regimens were
combined with an appropriate Bayesian prior distribution that corresponded to our prestudy beliefs
about these parameters. We had no strong prior belief about the relative incidence of the pathogens
or for the majority of what level of susceptibility there might be within a country, and a
noninformative prior was used in these cases. However, in some circumstances, specific pathogens
were expected to have intrinsic resistance to the regimen and, consequently, not to have
susceptibility regardless of reported susceptibility testing results.19,20 In these situations, an
informative prior was used to dominate the observed data. On the basis of European Committee for
Antimicrobial Susceptibility Testing (EUCAST) recommendations,19,20 enterococci, as well as
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Acinetobacter species and Pseudomonas species, were assumed to be intrinsically resistant to
recommended third-generation cephalosporins and therefore not susceptible to third-generation
cephalosporins.

The value of the pathogen incidence and pathogen regimen-susceptibility parameters were
defined as probability distributions to reflect the uncertainty in their respective values. The relative
incidence of pathogens was modeled using a Dirichlet distribution, and the susceptibility parameters
were defined as beta distributions; 95% credible intervals (95% CrIs) for the coverage estimates
were calculated using Monte Carlo simulations, based on 1000 runs (eAppendix in the Supplement).
All modeling was undertaken using Stata statistical software version 13.1 (StataCorp) and Excel
spreadsheet software version 2010 (Microsoft Corp). Data analysis was performed from April 2019
to July 2019.

Results

Description of Data Set
The literature review included data from 48 publications (eFigure 2 in the Supplement) representing
52 centers in 10 Asian countries (1 center in Cambodia, 5 in China, 33 in India, 1 in Indonesia, 1 in Laos,
1 in Malaysia, 6 in Nepal, 2 in Pakistan, 1 in Taiwan, and 1 in Vietnam). Of the 52 centers, 34 were
university or tertiary hospitals, 10 were nonteaching or district hospitals (9 in India and 1 in China),
and 8 were maternity or pediatric hospitals (1 in Cambodia, 2 in China, 4 in Nepal, and 1 in Vietnam).

Ten articles were published in 2014, 13 in 2015, 10 in 2016, 8 in 2017, 6 in 2018, and 1 in 2019. For
32 of 48 publications, the observation period started in 2010 or later, with the earliest start date
being January 1, 1990 (eTable 1 in the Supplement). Five publications did not report calendar dates
for their observation period, but 4 of 5 indicated its duration. The median observation period was 2
years, with the shortest and longest periods being 2 months and 12 years, respectively.

Most publications (33 of 48) reported on bloodstream isolates from neonates with clinical
community-acquired or nosocomial sepsis. Another 12 publications based reporting on
microbiologically defined bacteremia. Only 4 publications focused on either nosocomial or
community-acquired infections (2 each). Reporting of information on sample processing, including
species identification, antibiotic susceptibility testing methods, and interpretive guidelines, was
variable (eTable 2 in the Supplement).

Reported Bloodstream Isolates
Individual publications included between 15 and 2112 isolates, with a median of 98 isolates (eTable 3
in the Supplement). The following bacteria were most frequently reported as contributing to
neonatal sepsis or bacteremia: Escherichia coli (46 of 48 publications), Klebsiella species and
Staphylococcus aureus (45 of 48 publications each), Pseudomonas species (35 of 48 publications),
Acinetobacter species (32 of 48 publications), Enterobacter species (26 of 48 publications), and
Enterococcus species (25 of 48 publications). In addition, coagulase-negative staphylococci were
reported in 40 of 48 publications. All other bacteria, including Citrobacter species and Streptococcus
agalactiae, were reported in less than one-half of the publications. On the basis of the prespecified
criteria, E coli, Klebsiella species, S aureus, Pseudomonas species, Acinetobacter species, Enterobacter
species, and Enterococcus species were selected for antibiotic regimen coverage estimation.

Parameter Values: Isolates Reported and Susceptibility
In total, 11 467 isolates were reported, with the greatest number coming from India (6284), China
(2043), Pakistan (1875), and Nepal (640) (Table 1). Given the small number of reported isolates from
Taiwan (36) and Malaysia (29), antibiotic regimen coverage was not estimated for these 2 countries.
Most reported isolates (8584 of 11 467 [74.9%]) were from university or tertiary hospitals, with
nonteaching or district hospitals contributing 11.5% (1319 of 11 467) and maternity or pediatric
hospitals contributing another 13.6% (1564 of 11 467).
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In total, 8376 isolates from 10 countries were used to estimate coverage. The proportion of
reported isolates contributing to antibiotic regimen coverage estimation ranged from 91.9% (1723 of
1875) in Pakistan to 44.2% (905 of 2043) in China. Disregarding coagulase-negative staphylococci,
the proportion of reported bacterial isolates contributing to coverage estimation ranged from 98.0%
(51 of 52) in Vietnam to 69.5% (905 of 1302) in China.

Availability of susceptibility testing information for aminopenicillin-gentamicin coverage ranged
from 68.8% (623 of 905) in China to 100% in Indonesia (Table 2). For third-generation
cephalosporins, this was available for 100% in Cambodia and Indonesia and 76.5% (39 of 51) in
Vietnam (Table 3). For meropenem, available susceptibility testing information ranged from 100%
in Indonesia to 60.3% (295 of 489) in Nepal (Table 4).

Coverage Estimates at Country Level
Coverage was consistently lowest for third-generation cephalosporin monotherapy, with some
variation across the individual countries, ranging from 56.6% (95% CrI, 52.2%-60.7%) in Nepal to
17.9% (95% CrI, 11.7%-24.7%) in Indonesia (Figure). Similarly, although meropenem had the highest
estimated coverage in each country, the proportion of neonates for whom it would be effective
empirical treatment varied considerably, from 90.6% (95% CrI, 86.2%-94.4%) in Cambodia to
64.0% (95% CrI, 62.6%-65.4%) in India (Figure). Aminopenicillin-gentamicin offered the second
highest level of coverage within each country behind meropenem. Nonetheless, there was again
considerable variability in country-level estimates, from 74.3% (95% CrI, 70.3%-78.2%) in Nepal to
35.9% (95% CrI, 27.7%-44.0%) in Indonesia (Figure).

Aminopenicillin-gentamicin coverage was higher than that offered by third-generation
cephalosporins in China (60.6% [95% CrI, 54.2%-67.5%] vs 44.2% [95% CrI, 40.9%-47.9%]), India
(45.1% [95% CrI, 43.7%-46.6%] vs 30.4% [95% CrI, 29.2%-31.6%]), Indonesia (35.9% [95% CrI,
27.7%-44.0%] vs 17.9% [95% CrI, 11.7%-24.7%]), and Nepal (74.3% [95% CrI, 70.3%-78.2%] vs
56.6% [95% CrI, 52.2%-60.7%]). There was greater uncertainty about whether the differences
observed for Cambodia (47.4% [95% CrI, 38.1%-56.6%] vs 32.6% [95% CrI, 25.8%-39.9%]), Laos
(81.0% [95% CrI, 71.1%-89.7%] vs 75.0% [95% CrI, 64.8%-84.1%]), Pakistan (42.2% [95% CrI,
39.1%-45.0%] vs 37.4% [95% CrI, 34.4%-40.3%]), and Vietnam (36.2% [95% CrI, 24.5%-49.0%] vs
21.5% [95% CrI, 12.0%-32.9%]) were due to chance variation.

Table 1. Relative Incidence Data

Pathogen

Isolates, No. (%)a

Cambodia
(n = 185)

China
(n = 2043)

India
(n = 6284)

Indonesia
(n = 225)

Laos
(n = 75)

Malaysia
(n = 29)

Nepal
(n = 640)

Pakistan
(n = 1875)

Taiwan
(n = 36)

Vietnam
(n = 75)

Total
(N = 11 467)

Contributing to WISCA

Escherichia coli 25 (16) 300 (33) 671 (14) 0 8 (13) 6 (33) 50 (10) 976 (57) 11 (92) 2 (4) 2049 (24)

Klebsiella species 60 (39) 264 (29) 1065 (22) 49 (40) 9 (14) 1 (6) 45 (9) 159 (9) 1 (8) 18 (35) 1671 (20)

Enterobacter species 18 (11) 58 (6) 167 (3) 20 (17) 4 (6) 0 30 (6) 0 0 6 (12) 303 (4)

Acinetobacter species 16 (10) 27 (3) 992 (21) 21 (17) 2 (3) 0 63 (13) 0 0 17 (33) 1138 (14)

Pseudomonas species 6 (4) 53 (6) 430 (9) 31 (26) 1 (2) 1 (6) 25 (5) 199 (12) 0 4 (8) 750 (9)

Staphylococcus aureus 33 (21) 112 (12) 1235 (26) 0 37 (58) 10 (55) 261 (53) 388 (23) 0 4 (8) 2080 (25)

Enterococcus species 0 91 (10) 275 (6) 0 3 (5) 0 15 (3) 1 (<1) 0 0 385 (5)

Total reported during observation period

Total contributing
to WISCA

158 (85) 905 (44) 4835 (77) 121 (54) 64 (85) 18 (62) 489 (76) 1723 (92) 12 (33) 51 (68) 8376 (73)

Other
(not contributing
to WISCA)

27 (15) 1138 (56) 1449 (23) 104 (46) 11 (15) 11 (38) 151 (24) 152 (8) 24 (67) 24 (32) 3091 (27)

Coagulase-negative
staphylococci
(not contributing
to WISCA)

0 741 (36) 980 (16) 63 (28) 0 0 137 (21) 28 (1) 0 23 (31) 1972 (17)

Abbreviation: WISCA, weighted-incidence syndromic combination antibiogram.
a Percentages may not add to 100% because of rounding.
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Meropenem coverage was higher than aminopenicillin-gentamicin coverage in Cambodia
(90.6% [95% CrI, 86.2%-94.4%] vs 47.4% [95% CrI, 38.1%-56.6%]), China (76.5% [95% CrI, 71.8%-
80.9%] vs 60.6% [95% CrI, 54.2%-67.5%]), India (64.0% [95% CrI, 62.6%-65.4%] vs 45.1% [95%
CrI, 43.7%-46.6%]), Indonesia (88.8% [95% CrI, 83.2%-93.6%] vs 35.9% [95% CrI, 27.7%-44.0%]),
Pakistan (88.1% [95% CrI, 85.6%-90.3%] vs 42.2% [95% CrI, 39.1%-45.0%]), and Vietnam (84.1%
[95% CrI, 73.2%-92.6%] vs 36.2% [95% CrI, 24.5%-49.0%]) on the basis of nonoverlapping 95%
CrIs. The largest percentage differences in coverage were observed in Indonesia (52.9%), Pakistan
(45.9%), and Cambodia (43.2%); the smallest was in China (15.9%). For meropenem and third-
generation cephalosporins, the percentage difference was largest for Indonesia (70.9%), Vietnam
(62.6%), and Cambodia (58.0%). Of note, for Laos and Nepal, imprecision around estimated
meropenem coverage, which was comparable with that of aminopenicillin-gentamicin with
overlapping 95% CrIs, was largely because of low proportions of isolates (62.5% [40 of 64] for Laos
and 60.3% [295 of 489] for Nepal) contributing to the meropenem susceptibility parameter.

Discussion
We estimated the coverage offered by 3 antibiotic regimens—aminopenicillin-gentamicin (WHO-
recommended first-line regimen), third-generation cephalosporins (WHO-recommended second-
line regimen), and meropenem—in Asian countries for the empirical treatment of neonatal sepsis
caused by 7 specified bacteria. The coverage estimates were based on a systematic review of recent
studies reporting on the relative incidence of common bacteria and their resistance.

In general, coverage estimates supported the identification of better-performing or worse-
performing regimens for most countries. Coverage offered by aminopenicillin-gentamicin (WHO-
recommended first-line regimen) was less than 50% for Cambodia, India, Indonesia, Pakistan, and
Vietnam and less than 75% for China and Nepal. Even lower coverage was offered by the
WHO-recommended second-line third-generation cephalosporin monotherapy regimen: below 50%

Figure. Coverage Estimates for 8 Asian Countries
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Point estimates are shown with 95% credible intervals, as denoted by error bars.
Nonoverlapping 95% credible intervals indicate likely within-country differences in
regimen coverage. Countries are shown together with the overall number of isolates
used for estimating coverage.
a The highest coverage offered by meropenem was in Cambodia (90.6%), China

(76.5%), India (64.0%), Indonesia (88.8%), Pakistan (88.1%), and Vietnam (84.1%).

b The highest coverage offered by aminopenicillin-gentamicin combination was in Laos
(81.0%) and Nepal (74.3%).
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in all represented countries except Laos (75.0%) and Nepal (56.6%). Meropenem coverage was
generally highest and was greater than 80% in Cambodia, Indonesia, Pakistan, and Vietnam, but
lower than 80% in China, Laos, and Nepal and as low as 64.0% in India. Considerable between-
country differences were observed for all 3 regimens, even for countries bordering each other, such
as Cambodia, Laos, Thailand, and Vietnam.

Coverage estimates are clinically highly relevant for the development of local and national
empirical treatment guidelines, incorporating both the relative incidence of bacteria and their
susceptibility.9 This concept has not, to our knowledge, been previously applied to neonatal sepsis in
LMICs. Instead, reports have focused on susceptibility for individual pathogen-drug combinations,
an approach that does not directly incorporate the spectrum of causative bacteria.4,6,7

One important question is whether global setting-independent recommendations for empirical
neonatal sepsis treatment can be supported in an era of changing and highly variable epidemiology.
In some settings, difficult-to-treat pathogens and multidrug-resistant isolates now contribute
considerably to neonatal sepsis.3 Stratified guidance moving between recommended regimens
according to microbiology and coverage by patient-level factors (eg, presence of certain underlying
conditions or timing of sepsis onset) or setting, may be a solution. One challenge will be the lack of
defined coverage thresholds to move between regimens.21 Given sufficiently large data sets,
coverage estimates could help inform such shifting by supporting inferences about true differences
between regimens.

Limitations
This study has some limitations. Our coverage estimates were based on data from predominantly
university or teaching hospitals. Infants with complex medical issues and those at higher risk of
nosocomial bloodstream infections may, therefore, be overrepresented. At the same time,
microbiology data from infants managed in district hospitals are lacking precluding confirmation that
presented coverage estimates are applicable to them as well. Clinicians applying WHO
recommendations to infants with nosocomial infection or those managed in tertiary hospitals would,
on the basis of our observations, need to consider alternatives for this population.

We chose to estimate coverage according to the pathogens frequently reported across included
studies, which are likely to be associated with severe neonatal sepsis and the so-called ESKAPE
organisms (ie, Enterococcus faecium, S aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and
Pseudomonas aeruginosa), which are known to be problematic in terms of emerging antimicrobial
resistance.22 Inclusion of other pathogens would be expected to have a variable influence on the
expected coverage of considered antibiotics, leading to either higher or lower estimates. This may be
particularly important in individual hospitals with ongoing outbreaks where a single bacterial strain
is dominant. In such situations, regional coverage estimates may not be applicable.

Coverage estimation requires a number of assumptions to be made when calculating the
susceptibility parameters, such as the incorporation of intrinsic resistance, extrapolations from
susceptibility testing for 1 representative of an antibiotic class to other members of this class, and the
interpretation of multiple testing for 1 antibiotic class. We based our calculations of regimen
susceptibility on EUCAST algorithms and, whenever possible, used susceptibility testing information
for the specific drug of interest.19 Importantly, however, all included studies used versions of Clinical
and Laboratory Standards Institute interpretive criteria,23 which may diverge from EUCAST in terms
of both break points and assumptions about intrinsic resistance. Debate about the merits and
challenges of switching from Clinical and Laboratory Standards Institute to EUCAST and about the
implications of such a transition for interpretation of routine data in the context of surveillance
is ongoing.23,24

To support coverage estimation, it is important that the microbiological data used are collected
in equivalent ways. However, the data used for this analysis may have been subject to various
random or systematic errors that could bias the coverage estimates. Possible sources of error include
duplicate isolates, contaminants, nonstandardized susceptibility testing, combining data from
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different patient populations (children and adults), and reflex susceptibility testing based on
resistance identified in a first-line testing panel.25 These requirements have important implications
for global surveillance initiatives, such as the Global Antimicrobial Resistance Surveillance System,26

if data collected are to be used at the interface between surveillance and clinical practice.

Conclusions
Recently, machine learning approaches and more elaborate multivariable Bayesian models using
clinical and demographic information combined with microbiological data have been proposed as
optimizing the selection of empirical antibiotic treatment for sepsis.27,28 Although these models may
help in selecting patient-adapted regimens, the approach used in our study only requires estimates
of pathogen incidence and susceptibility and could already substantially improve clinical decision-
making based on routine microbiological data alone, provided that the data used to produce these
estimates are of sufficient quality. Our analysis indicates that the recommendation for third-
generation cephalosporin monotherapy as a second-line regimen may no longer be valid for many
infants receiving treatment for neonatal sepsis in several Asian countries. Our findings could explain
the high reported empirical meropenem use in this population in Asia.14,29 Evaluation of potential
alternatives will be essential to reducing consumption of last-resort antibiotics for the empirical
treatment of neonatal sepsis in settings with a high prevalence of antimicrobial resistance.
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eAppendix. Supplemental Methods  
 
Search strategy for systematic literature review 
 
Ovid MEDLINE® 1946 to April 25 2019 

1 exp SEPSIS/ or exp NEONATAL SEPSIS/ 
2 exp BACTEREMIA 
3 bacter?emia.mp. [mp=title, abstract, original title, name of substance word, subject heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

4 (blood?stream adj3 infect*).mp. [mp=title, abstract, original title, name of substance word, subject 
heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary 
concept word, unique identifier, synonyms] 

5 (blood adj2 culture adj2 (positive* or isolat*)).mp. [mp=title, abstract, original title, name of substance 
word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier, synonyms] 

6 1 or 2 or 3 or 4 or 5 
7 ((anti?biotic* or anti?infect* or anti?microb*) adj2 (resist* or suscep* or sensitive*)).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, keyword heading word, protocol 
supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] 

8 exp Drug Resistance, Microbial/ 
9 7 or 8 
10 exp infant/ or exp infant, newborn/ 
11 (infant* or neonat* or new?born).mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary 
concept word, unique identifier, synonyms] 

12 10 or 11 
13 6 and 9 and 12 
14 Exp ASIA/ 
15 13 and 14 
16 LimiW 15 Wo \U=´2014-CXUUenW´ 

 
Embase 1974 to 2019 Week 16 

1 exp bacteremia/ 
2 exp sepsis/ or newborn sepsis/ 
3 bacter?emia.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, 

drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] 
4 (blood?stream adj2 infect*).mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term 
word] 

5 (blood adj2 culture adj2 (positive* or isolate*)).mp. [mp=title, abstract, heading word, drug trade name, 
original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 
word, candidate term word] 

6 1 or 2 or 3 or 4 or 5 
7 ((anti?biotic* or anti?infect* or anti?microb*) adj2 (resist* or suscep* or sensitiv*)).mp. [mp=title, 

abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device 
trade name, keyword, floating subheading word, candidate term word] 

8 exp antibiotic resistance/ 
9 7 or 8 
10 infant/ 
11 newborn/ 
12 (infant or new?born or neonat*).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

13 10 or 11 or 12 
14 6 and 9 and 13 
15 14  
16 14 and 15 
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17 limit 16 Wo \U=´2014-CXUUenW´ 
 
 
Systematic review of the literature: selection of publications 
Studies were eligible for inclusion if they examined blood culture isolates and (i) provided information specific to 
newborns up to 28 days of age or infants managed on neonatal units, (ii) reported on the relative incidence of different 
bacteria at species or genus level during the indicated surveillance period and (iii) included data on antimicrobial 
resistance for at least one bacterial species or genus. Publications reporting on isolates from sources other than blood, 
and those from which data for neonatal blood cultures (e.g. reporting pooled data across age groups) could not be 
extracted were excluded. Equally studies focusing on single organisms from which the relative incidence of other 
bacteria could not be obtained were excluded. Further we excluded studies presenting only aggregate data by region or 
internationally. 
 
After exclusion of duplicates, titles or abstracts of retrieved studies were reviewed by one author (JB) to identify those 
meeting inclusion criteria. A random subset of retrieved studies was reviewed by a second author (MS) to ensure 
consistency in selection based on the pre-specified inclusion and exclusion criteria with no disagreements. 
 
Selected publications were primarily used to inform parameter estimation for calculating coverage. Additional 
extracted data included contextual information (namely the year of publication, the country from where the data 
originated, the surveillance/reporting period, and the number and type of hospitals surveyed), and whether studies 
reported on blood culture isolates from community-acquired infections, hospital-acquired infections or both. Early 
onset of neonatal sepsis defined as infection occurring in the first 3 days of life was considered a community-acquired 
infection. We also extracted information on approaches to species identification, susceptibility testing and evaluation 
of testing results, if provided. Species identification and susceptibility testing results were recorded as reported. As the 
study was focused on the reporting of routine microbiological or surveillance data, we did not undertake a formal 
grading of the quality of the studies or an evaluation of the appropriateness of microbiological approaches. 
 
Assumptions for determining susceptibility of pathogens to pre-specified regimens 
x Aminopenicillin susceptibility was based on either ampicillin or amoxicillin susceptibility testing results, 

whichever was available.  
x Gentamicin susceptibility was based on results for gentamicin rather than other aminoglycosides whenever 

possible, because susceptibility to gentamicin cannot be reliably inferred from results for other aminoglycosides. 
If no gentamicin susceptibility data were provided, data from other aminogylcosides (mostly amikacin) were used. 

x Third-generation cephalosporin susceptibility was based on either cefotaxime or ceftriaxone, whichever was 
available.  

x Meropenem susceptibility was based on results for meropenem rather than other carbapenems whenever possible, 
because susceptibility to meropenem cannot be reliably inferred from results for other carbapenems. If no 
meropenem susceptibility data were provided, data from other carbapenems (mostly imipenem) were used.  

x For Staphylococcus aureus, third-generation cephalosporin and meropenem susceptibility was derived from 
information on methicillin resistance, as these antibiotics are not generally specifically tested for S. aureus.  

x For the combined regimen (i), the one with the higher susceptibility was taken to reflect overall susceptibility. For 
example, if Escherichia coli in a specific country exhibited 20% ampicillin susceptibility and 70% gentamicin 
susceptibility, susceptibility to aminopenicillin plus gentamicin for E. coli was assumed to be 70%. 

 
Technical appendix on calculation of the weighted-incidence syndromic combination antibiogram (WISCA) 
In the WISCA decision tree, the first square node represents the clinical decision to start empiric antibiotic therapy 
and the regimen choices. Subsequent circular nodes and branches describe chance events, which are the range of 
relevant bacteria causing neonatal sepsis, their relative incidence and the percentages of each pathogen susceptible to 
each antibiotic regimen. Combining the probabilities along the regimen tree branches provides an estimate of coverage 
for each regimen.  
 
A difficulty in adopting a Bayesian perspective is the specification of the prior distributions for the parameters. The 
value of the relative incidence and pathogen±regimen susceptibility parameters for each regimen were therefore 
defined as probability distributions that reflected the uncertainty in their value. Given that susceptibility percentages 
are simple proportions, we selected a binomial distribution to describe our prior belief defined using the conjugate 
Beta distribution. This approach results in the posterior also being a Beta distribution. The relative incidence data were 
assumed to be drawn from a multinomial distribution with nine possible outcomes. The prior was accordingly 
modeled aV a DiUichleW (1,1,1,«,1) diVWUibXWion. ThiV iV Whe conWinXoXV eTXiYalenW Wo Whe diVcUeWe mXlWinomial 
distribution, and is the generalisation of the Beta distribution to situations described by more than two categories.  
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In Whe abVence of an\ VWUong SUioU beliefV, a common VolXWion iV Wo XVe a ³non-infoUmaWiYe´ XnifoUm SUioU. Doing WhiV 
means that the posterior distribution is largely determined by the observed data. Using the Dirichlet distribution as the 
prior, for example, results in the posterior taking the form Dirichlet (1+n1, 1+n2,. . ., 1+n9). Equally, in most cases, 
when there were no strong prior beliefs about pathogen-regimen susceptibility, the non-informative prior beta(1,1) 
was used. 
 
Adopting a Bayesian perspective allows the use of informative priors for the situation in which a pathogen has 
intrinsic resistance or is assumed to be fully susceptible. For these, we chose a pragmatic posterior Beta distribution, 
chosen to have an appropriate standard deviation. For example, susceptibility for a pathogen with intrinsic resistance 
was specified as a Beta(1,9999), which has a standard deviation of 0.01%.  Sampling from this distribution only gives 
pathogen resistance below 99.9% in 1 in 20000 draws.  
 
The calculation of the 95% credible interval describing the precision of coverage estimates requires Monte Carlo 
simulation, which involves running a large number of experiments (in our case 1000) and combining their results. In 
each experiment, parameter values for the parameters of interest (relative incidence and pathogen-regimen 
susceptibility) are randomly drawn from their specified distributions. The values of each parameter are then combined 
to derive a coverage estimate. Together, the individual coverage estimates from all the experiments give the posterior 
diVWUibXWion foU Whe coYeUage SaUameWeU. The 95% ³XnceUWainW\´ inWeUYal, oU 95% cUedible inWeUYal, iV When calcXlaWed aV 
the interval between 2.5% and 97% percentile of this distribution.  
 
Analytical steps for basic WISCA coverage estimation using a Bayesian decision tree model. 
 

1. Identify the total number of isolates contributing to the infection syndrome of interest for a given setting and 
period. 

2. Select from 1. clinically relevant bacteria contributing to the infection syndrome and with data available to 
define model parameters.  

3. Specify assumptions used for determining susceptibility to the regimen, including extrapolation from standard 
bug-drug susceptibility testing, definitions of intrinsic resistance and, when relevant, intrinsic susceptibility 
(corresponding to unusual resistance phenotypes) 

4. For the bacteria specified in 2. identify the number of isolates contributed by each (to determine relative 
frequency = first circular node and branches) and the number of isolates tested for and susceptible to the 
regimen of interest (second circular node and branches). 

5. Select appropriate informative priors for bacteria with intrinsic resistance or expected susceptibility as set out 
in 3.  

6. Select non-informative priors for relative bacterial incidence and susceptibility with the exceptions as outlined 
in 5.  

7. Use appropriate probability distributions to reflect uncertainty in the relative frequency of bacteria 
(multinomial, Dirichlet distribution) and susceptibility to the regimen (binomial, Beta distribution). 

8. Model coverage by running a Monte Carlo simulation with n experiments sampling parameter values for 
relative bacterial frequency and regimen susceptibility from their specified distributions.  

9. Combine estimates from n experiments to calculate coverage estimates with their 2.5% and 97% percentiles, 
corresponding to the 95% uncertainty or credible interval.  

10. Repeat this process for each regimen of interest, noting that for comparisons within a given setting the 
bacteria included in the WISCA should stay the same (meaning that number of isolates contributed by each 
will be the same), but that the number tested and susceptible will vary by regimen.  
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eFigure 1. Illustration of Decision Tree for Estimating Coverage From Weighted Incidence Syndromic 
Combination Antibiograms for Three Antibiotic Regimens of Interest 
 

 
ET: empiric therapy. Square node: clinical decision to treat; circular node: chance event (causal bacteria and their regimen 
susceptibility). The decision tree is shown for illustration only, and dashed lines indicate where the decision tree has been left 
incomplete. All branches are included in the WISCA calculations to estimate coverage.  
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eFigure 2. Flow Chart: Systematic Review of the Literature 
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eTable 1. Description of Included Publications 

Publication year, First author, Journal Country, City/Town N hospitals, type Observation period start and 
end* 

Infections surveyed 

2014 Adhikari Nepal Medical 
College Journal 

Nepal Thapathali 1 Maternity 01Aug11 31Mar12 Sepsis with positive 
BC 

Anderson Journal of Tropical 
Pediatrics 

Laos Vientiane 1 U/T 01Feb00 01Sep11 Sepsis with positive 
BC 

Javali Journal of Evidence 
Based Medicine & 
Healthcare 

India Raichur 1 NT/D 01Jun13 30Jul13 LONS with positive 
BC 

Khanal Journal of Nepal 
Paediatric Society 

Nepal Kathmandu 1 Maternity 01Dec10 31Mar11 Sepsis with positive 
BC 

Mehta International Journal 
of Biomedical And 
Advance Research 

India Bhanpur 1 U/T 01Jul12 31Dec13 Sepsis with positive 
BC 

Mustafa Journal of Medical and 
Allied Sciences 

India Hyderabad 1 U/T Unknown (1 year) Sepsis with positive 
BC 

Nayak Archives of Medicine 
and Health Sciences 

India Deralakatte 1 U/T 01Jun11 31May12 Sepsis with positive 
BC 

Patel The Indian Journal of 
Pediatrics 

India Karamsad 1 NT/D 01Nov07 31Oct11 Bacteraemia 

Tudu Journal of Evoluation 
of Medical and Dental 
Science 

India Kenduadihi 
 

1 U/T 01Jun13 31Aug13 Sepsis with positive 
BC 

Venkatna
rayan 

Journal of Nepal 
Paediatric Society 

India Pune 1 U/T 01Jan11 01Jul12 Sepsis with positive 
BC 

2015 Agarwal Journal of 
International Medicine 
and Dentistry 

India Mangalore 1 U/T 01Feb14 31Jul14 Sepsis with positive 
BC 

Ambade Journal of Medical 
Science and Clinical 
Research 

India Dhule 1 U/T 01Aug12 31Jul14 Sepsis with positive 
BC 

Chapagai
n 

Journal of the 
Nepalese Health 
Research Council 

Nepal Kathmandu 1 Paediatric 01Aug14 01Aug15 Sepsis with positive 
BC 

Dhanalak
shmi 

Journal of Clinical and 
Diagnostic Research 

India Madurai 1 U/T 01Dec13 30Sep2014 Sepsis with positive 
BC 

Gupta International Journal 
of Pharma and Bio 
Sciences 

India Rohtak 1 NT/D Unknown (1year) Bacteraemia 

Kamble International Journal 
of Current 

India Ambajogai 1 U/T 01Jun08 21Dec10 Sepsis with positive 
BC 
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Microbiology and 
Applied Sciences 

Madavi International Journal 
of Current Research 
and Review  

India Nagpur 1 U/T 01Aug11 01Sep13 Sepsis with positive 
BC 

Marwah Indian Pediatrics India Chandigarh 1 U/T 01Jan08 31Dec12 Bacteraemia 
Muley Journal of Global 

Infectious Diseases 
India Pune 1 NT/D Unknown Bacteraemia 

Ponugoti Journal of Medical 
Science And Clinical 
Research 

India Nellore 1 U/T Unknown (6 months) Sepsis with positive 
BC 

Sarangi International Journal 
of Advances in 
Medicine 

India Bhubaneswar 1 U/T 01Nov12 30Apr14 Sepsis with positive 
BC 

Ting Journal of 
Microbiology, 
Immunology and 
Infection 

Republic 
of 
(Taiwan) 

Taipei 1 U/T 01Jan02 31Dec11 CA bacteraemia, 
limited to 0-7 day-
olds 

Tran Journal of 
Perinatology 

Vietnam Da Nang 1 Maternity/
Paediatric 

01Nov10 31Oct11 Sepsis with positive 
BC 

2016 Abu Medical Journal of 
Malaysia 

Malaysia Baru 
Selayang 

1 U/T 01Jan01 31Dec11 CA bacteraemia 
excluding EOS 

Amin International Journal 
of Pharmaceutical 
Sciences and Research 

India Vadodara 1 U/T 01Apr13 30Sep13 Sepsis with positive 
BC 

DeNIS Lancet Global Health India Delhi 3 U/T 18Jul11 28Feb14 Sepsis with positive 
BC 

Jiang Internal Medicine China Missing 1 Maternity/ 
Paediatric 

01Jan08 31Dec12 Sepsis with positive 
BC 

Lu Journal of Pediatrics 
and Child Health 

China Chongqing 1 Paediatric 01Jan90 31Dec14 Sepsis with positive 
BC 

Mahmood Pakistan Journal of 
Medical and Health 
Sciences 

Pakistan Faisalabad 1 U/T 01Jan13 01Jan15 Bacteraemia 

Pandita International Journal 
of Contemporary 
Pediatrics 

India Dehradun 1 U/T 01Jan13 30Jun15 Sepsis with positive 
BC 

Singh European Journal of 
Pharmaceutical and 
Medical Research 

India Raipur 1 U/T 01Jan13 31Dec13 Sepsis with positive 
BC 

Thakur Indian Journal of 
Medical Microbiology 

India Tanda 1 NT/D 01Apr12 31Mar13 Sepsis with positive 
BC 
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Ullah Archives of Iranian 
Medicine 

Pakistan Peshawar 1 U/T 01Jan12 31Dec15 Bacteraemia 

2017 Dalal International Journal 
of Research in 
Medical Sciences 

India Rohtak 1 U/T 01Jul10 30Sep13 Sepsis with positive 
BC 

Dong BMC Pediatrics China Bengbu 1 NT/D 01Jan10 31Aug14 Sepsis with positive 
BC 

Ingale International Journal 
of Contemporary 
Pediatrics 

India Pune 1 U/T Unknown (1 year) Sepsis with positive 
BC 

Kanodia Journal of College of 
Medical Sciences ± 
Nepal 

Nepal Dharan 1 U/T 01Jan14 31Dec14 Sepsis with positive 
BC 

Panigrahi Journal of 
Perinatology 

India Multiple in 
area of 
Odisha 

2 NT/D 01Apr02 31Mar05 Invasive bacterial 
infections 

Pavan Journal of Family 
Medicine and Primary 
Care 

India Dindigul 1 NT/D 01Oct13 30Sep15 Sepsis with positive 
BC 

Roy Journal of 
Postgraduate Medicine 

India New Delhi 1 U/T 01Jan11 31Dec14 Bacteraemia 

Sari Asian Journal of 
Pharmaceutical and 
Clinical Research 

Indonesi
a 

Yogyakarta 1 U/T 01Jan14 31Dec15 Bacteraemia 

2018 Dhaneria Diseases India Ujjain 1 U/T 01Jun12 31Jan14 Nosocomial 
bacteraemia, 
including EONS and 
LONS 

Fox-
Lewis 

Emerging Infectious 
Diseases 

Cambodi
a 

Siem Reap 1 Paediatric 01Jan07 31Dec16 Invasive bacterial 
infections 

Jajoo PloS One India Delhi 1 NT/D 01Jul11 31Jan15 Sepsis with positive 
BC 

Pokhrel BMC Pediatrics Nepal Lalitpur 1 U/T 15Apr14 15Apr17 Sepsis with positive 
BC 

Wang Journal of Tropical 
Pediatrics 

China Chongqing, 
Henan 

2 U/T 01Jan03 31Dec13 Nosocomial 
bacteraemia 

Yadav BMC Research Notes Nepal Kathmandu 1 Paediatric 01Apr15 30Sep15 Sepsis with positive 
BC 

2019 Li Medicine China Shanghai 1 U/T 01Jan13 31Aug17 Sepsis with positive 
BC 

U/T hospital: University/Tertiary hospital; NT/D hospital: Non-teaching/District hospital 
*Start year of data collection for all studies with exception of Lu et al, 2016 in the 2000s, end year for all studies in the 2000s.  
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eTable 2. Information on Sample Processing Provided in Included Publications 
Publication year, 
First author 

    

Species identification Antibiotic susceptibility 
testing method 

Interpretive guidelines Other comments 

2014 Adhikari Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M2-A9, 2006)  

Anderson No details provided 
(standard blood culture) 

Yes (Disc diffusion) Yes (CLSI M100-S20, 2010) ESBL detection by 
cefpodoxime screening 
with confirmation by 
CLSI-recommended disc 
diffusion methods 

Javali No details provided 
(standard blood culture) 

Yes (Disc diffusion) Yes (CLSI, 2008)  

Khanal Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S16, 2007)  

Methta Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S18, 2010) Meropenem SIR based 
on imipenem 
susceptibility testing 

Mustafa Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI, not specified) ESBL confirmation by 
phenotypic confirmatory 
test 
(ceftazidime/cefotaxime 
+/- clavulanate disc 
diffusion) 

Nayak Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI, not specified) Use of control strains 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Patel Yes (BacT/ALERT, API) Yes (automated API) No details provided  
Tudu Yes (BacT/ALERT, API) Yes (Disc diffusion) Yes (CLSI, no specified) Gentamicin SIR based 

on amikacin 
susceptibility testing, 
meropenem SIR based 
on imipenem 
susceptibility testing 

Venkatnara
yan 

No details provided No details provided No details provided Gentamicin SIR based 
on amikacin 
susceptibility testing 

2015 Agarwal Yes (BacT/ALERT, Vitek 
II) 

Yes (Disc diffusion) Yes (CLSI M02-A11, 2012) ESBL confirmed using 
CLSI-recommended disc 
diffusion methods, 
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MRSA detection using 
cefoxitin disc 

Ambade Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI, not specified)  

Chapagain No details provided No details provided No details provided Gentamicin SIR based 
on amikacin 
susceptibility testing 

Dhanalaksh
mi 

Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) No details provided  

Gupta Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S24, 2014) Use of control strains 

Kamble Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI, not specified) Extensive detail on 
testing for ESBL and 
Metallo-beta-lactamases 
provided 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Madavi No details provided No details provided No details provided Meropenem SIR based 
on imipenem 
susceptibility testing 

Marwah Yes (Standard 
bacteriological techniques) 

No details provided 
(standard methods) 

Yes (CLSI, incorrect 
referencing) 

Meropenem SIR based 
on imipenem 
susceptibility testing 

Muley Yes (standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S21, 2011)   

Ponugoti Yes (standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M2A7 Vol.20 No1 
& 2, 2000)  

Meropenem SIR based 
on imipenem 
susceptibility testing 

Sarangi Yes (BacT/ALERT) Yes (automated API) No details provided  
Ting No details provided No details provided Yes (CLSI, not specified)  
Tran Yes (Standard 

bacteriological techniques) 
Yes (Disc diffusion) No details provided Meropenem SIR based 

on imipenem 
susceptibility testing 

2016 Abu Yes (API/Vitek) Yes (Disc diffusion) Yes (CLSI M100-S24) ESBL confirmation by 
phenotypic confirmatory 
test 
(ceftazidime/cefotaxime 
+/- clavulanate disc 
diffusion) 

Amin Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI, not specified) Microbiology laboratory 
accredited by National 
Accreditation Board for 
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Testing and Calibration 
Laboratory in India 

DeNIS Yes (Standard 
bacteriological techniques) 

No details provided Yes (CLSI M100-S21 & 
M100-S22 & M100-S23, 
2011-2013) 

Flowchart of sample 
handling provided in 
web-extra material 
 

Jiang Yes (BacT/ALERT, 
API/Vitek) 

Yes (Disc diffusion or 
Etests) 

Yes (CLSI, not specified)  

Lu No details provided No details provided No details provided Results recorded based 
on routine laboratory 
testing 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Mahmood No details provided No details provided No details provided Standard procedures for 
sample processing and 
interpretation 

Pandita Yes (Bactec/API) Yes (Disc diffusion) Yes (CLSI M100-S21, 2011) Meropenem SIR based 
on imipenem 
susceptibility testing 

Singh Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S18, 2008) Gentamicin SIR based 
on amikacin 
susceptibility testing 

Thakur Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S21, 2011) Use of control strains, 
MRSA screening using 
cefoxitin disc, ESBL 
screening using 
ceftazidime disc, 
confirmation of ESBL 
by double disc synergy 
test 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Ullah Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI, not specified) Meropenem SIR based 
on imipenem 
susceptibility testing 

2017 Dalal No details provided 
(standard blood culture) 

Yes (Disc diffusion) No details provided Meropenem SIR based 
on ³caUbaSenem´ 
susceptibility testing 

Dong Yes (BacT/ALERT) Yes (Disc diffusion) No details provided Additional information 
on species identification 
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and susceptibility testing 
provided in methods 

Ingale Yes (Bactec/API) Yes (Disc diffusion) Yes (CLSI M100-S23, 2013) Extensive detail on 
microbiological sample 
handling provided 

Kanodia No details provided Yes (Disc diffusion) No details provided  
Panigrahi Yes (Bactec/API) No details provided Yes (CLSI M23-A2, 2001) Extensive detail on 

microbiological sample 
handling provided 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Pavan Yes (Bactec/API) Yes (automated API) No details provided  
Roy Yes (Standard 

bacteriological techniques) 
Yes (Disc diffusion) Yes (CLSI M100-S19, 2009) Extensive detail on 

microbiological sample 
handling provided; 
ESBL confirmation by 
phenotypic confirmatory 
test 
(ceftazidime/cefotaxime 
+/- clavulanate disc 
diffusion); Use of 
control strains; MRSA 
screening using oxacillin 
disc 
Gentamicin SIR based 
on amikacin 
susceptibility testing 

Sari Yes (Vitek) Yes (Disc diffusion) No details provided  
2018 Dhaneria Yes (Standard 

bacteriological techniques) 
Yes (Disc diffusion, 
confirmation using 
Vitek 2) 

Yes (CLSI M100-S21, 2011) Extensive detail on 
microbiological sample 
handling provided 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Fox-Lewis Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion or 
Etests) 

Yes (CLSI, 2012) Meropenem SIR based 
on imipenem 
susceptibility testing 

Jajoo Yes (Bactec/Vitek) No details provided Yes (CLSI M100-S21 & 
M100-S22 & M100-S23, 
2011-2013) 

Aminoglycosides and 
carbapenems grouped in 
susceptibility reporting 

Pokhrel Yes (Bactec) Yes (Disc diffusion) Yes (CLSI M100-S24, 2014)  
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Wang Yes (Vitek/API) Yes (Disc diffusion) Yes (CLSI, 2015) Use of control strains, 
ESBL screening using 
ceftazidime disc, 
confirmation of ESBL 
by combination discs 
Meropenem SIR based 
on imipenem 
susceptibility testing 

Yadav Yes (Standard 
bacteriological techniques) 

Yes (Disc diffusion) Yes (CLSI M100-S23, 2014) Use of control strains 

2019 Li No details provided Yes (Disc diffusion) Yes (CLSI, not specified)  
CLSI: Clinical and Laboratory Standards Institute; ESBL: extended-spectrum beta-lactamases; MRSA: methicillin-resistant Staphylococcus aureus  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 113 

© 2020 Bielicki JA et al. JAMA Network Open. 

eTable 3. Relative Incidence of Bacteria in Included Studies 
Publication year, 
First author 
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O
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2
0
1
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Adhikari 94    57 27    4     1  11       43 100 
Anderson* 75 3 3   11 5 4  12 1   1 1 3 49 3 3 1    85 85 
Javali 32 9   34 13    19       9     9 6 50 77 
Khanal 61    77 10  4  2       7       23 100 
Mehta 169 5  2 9 4  5  14     5  56       89 98 
Mustafa 62    11 23    35     7  24       89 100 
Nayak 67 20  3 5 4  3  31     4  20       82 96 
Patel* 249 5   12 10 10 2  47     6  1      6 81 93 
Tudu 22    5 9  18  9 5      55       91 95 
Venkatnarayan 15    13 20         13 7 47       80 92 

2
0
1
5 

Agarwal* 34 15   9 24 3   27       21       90 100 
Ambade 119 6   10 14    35     13  22       90 100 
Chapagain 30 7   7  3     3     80       90 97 
Dhanalakshmi 41    10 10    68    5 7         85 94 
Gupta 325 12  5 13 8 2 8  13     20  20       83 94 
Kamble 71 14  1 17 7 1 6  23     21  7 1      79 98 
Madavi 103 19  1 16 6 1 7  22     17  5 <1  1   5 77 92 
Marwah 167 15    7    15       47      16 84 84 
Muley 48 10   6 17    35     8  23       93 100 
Ponugoti 188 2  3 15 22 19 1  25     2  12       83 97 
Sarangi 74 3 5  62 11 8          8   3    30 79 
Ting* 36     31    3 8     42       17 34 34 
Tran 75 23   31 3 8   24     5  5     1  68 99 

2
0
1
6 

Abu* 29     21   3 3     3 21 35  3   7 3 62 63 
Amin 101 23   4 12  13  28     8  13       97 100 
DeNIS 998 22   15 14 4 6  17     7 1 12      1 82 98 
Jiang* 131 1 1  43 19 6 5  13 3     1 6     1 1 50 88 
Lu* 929 3   26 14 3 7  12 2    4  6     5 18 49 66 
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Mahmood 341     48  <1  17    9   26 <1      91 91 
Pandita 124 6  6 26 11 6 2  27     3  8     1 4 63 85 
Singh 141    5 27  4  50     8  7       96 100 
Thakur* 188 1  4 19 5 5   10     15 2 40       76 93 
Ullah 1534    2 53    7    6 13  20   <1    93 94 

2
0
1
7 

Dalal 356 15   4 12 1 2  4     47  12       93 100 
Dong* 93    73 6 2 1  11 1    1  2     1 1 23 88 
Ingale 48 13   25 2 6 10  29     13  2       75 100 
Kanodia 327 14  1 2 3 3 4  1     6  62     3  93 96 
Panigrahi* 56     14  2  52       20      12 88 88 
Pavan 28     11    21     4  36     4 24 72 72 
Roy* 2112 21   21 8  5  8       25      12 67 85 
Sari 225 9 9  28  9   22     14      9   54 75 

2
0
1
8 

Dhaneria* 46    17 11    24    9 13  21      5 69 83 
Fox-Lewis* 185 9 2   14 10  1 32   1  3  18 1 9 1    86 85 
Jajoo 300 15 4 1 14 11 8 5 <1 18  <1  1 1 1 6 1 1 <1 <1 <1 12 64 75 
Pokhrel* 69 12   20 4 19   33     3  2    4 2 2 73 90 
Wang 571    39 18 3   17       5 2     16 43 70 
Yadav 59 12  2 10 7 10   15     7  36   2    87 96 

2
0
1
9 

Li* 339 <1   44 10 1 6  9 <1    5 6 5    1 3 10 36 64 

*a priori exclusion of contaminants with or without definitions for exclusion process provided 
1includes A. baumannii, A. lwoffi  
2includes E. cloacae 
3includes K. pneumoniae, K. ornithinolytica, K. oxytoca, K. ozaenae 
4includes P. aeruginosa 
5includes S. marcescens, S. rubidaea 
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7.1 Feasibility survey data coverage estimates  
Additional data not included in the paper were analysed alongside those identified from a 

systematic review of the literature. Coverage based on the feasibility data was estimated 

applying the same methods as presented in the accepted manuscript for data from the 

literature.  

In total, 21 centres in five Asian countries (three Bangladesh, one Cambodia, six China, 

seven India and four Thailand) contributed data from the feasibility survey to this analysis. 

From these, 1066 isolates relevant for regimen coverage estimation were reported with India 

and China contributing the greatest number, 640 and 301 isolates, respectively (Table 4).  

Table d: Parameter table – feasibility survey relative incidence data 

 Bangladesh Cambodia China India Thailand 
 N (% of those contributing to WISCA)* 
E. coli 2 (3%) 4 (36%) 64 (21%) 75 (12%) 10 (18%) 
Klebsiella spp. 32 (54%) 2 (18%) 49 (16%) 191 (30%) 4 (7%) 
Enterobacter spp. 1 (2%) 1 (9%) 34 (11%) 35 (6%) 12 (22%) 
Acinetobacter 
spp. 

18 (31%) 2 (18%) 35 (12%) 86 (13%) 12 (22%) 

Pseudomonas 
spp. 

5 (9%) 0 5 (2%) 23 (4%) 3 (6%) 

S. aureus 1 (2%) 2 (18%) 33 (11%) 158 (25%) 8 (15%) 
Enterococcus 
spp. 

0 0 51 (17%) 53 (8%) 1 (2%) 

GAS 0 0 15 (5%) 2 (<1%) 2 (4%) 
GBS 0 0 15 (5%) 17 (3%) 3 (6%) 
 N (% of total reported during study period) 
Total contributing 
to WISCA 

59 (77%) 11 (26%) 301 (31%) 640 (79%) 55 (31%) 

Other (not 
contributing to 
WISCA) 

18 (23%) 32 (74%) 671 (69%) 172 (21%) 123 (69%) 

* Percentages may not add to 100% due to rounding. 

Among these, information on susceptibility to incorporate into coverage estimation was often 

available for a limited proportion and as few as 10 isolates for Cambodia (Tables 5-7). 

For tables 5-7 the following apply: N indicates the total number of reported isolates for each 

bacterial species specifically requested as part of the feasibility survey reporting; T indicates 

the number of isolates with susceptibility testing available for the regimen of interest. This 

includes susceptibility testing for the antibiotics in the regimen but also any susceptibility 

testing results that support infererences about resistance or susceptibility to the regimen 

based on standard algorithms (see accepted manuscript for detailed description) ; S 

indicates the number of isolates identified as susceptible on testing; *indicates that 

susceptibility is assumed and not based on susceptibility testing; †indicates that resistance is 

assumed due to intrinsic resistance and this is not based on susceptibility testing. 
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Table e: Parameter table - feasibility survey susceptibility testing and resistance data for aminopenicillin plus 
gentamicin 

AMP/GEN Bangladesh Cambodia China India Thailand 
N T S N T S N T S N T S N T S 

E. coli 2 2 2 4 4 0 64 50 31 75 74 44 10 9 8 
Klebsiella spp. 32 32 2 2 2 2 49  39 31 191 190 102 4 3 3 
Enterobacter 
spp. 

1 1 0 1 1 1 34 25 17 35 35 17 12 2 2 

Acinetobacter 
spp. 

18 18 0 2 2 2 35 35 33 86 85 52 12 6 0 

Pseudomonas 
spp. 

5 5 0 0   5 5 5 23  23 19 3 3 2 

S. aureus 1 0  2 1 1 33 26 8 158 133 47 8 7 7 
Enterococcus 
spp. 

0   0   51 24 16 53 13 4 1 1 1 

GAS 0   0   15 15* 15* 2 2* 2* 2 2* 2* 
GBS 0   0   15  15* 15* 17 17* 17* 3 3* 3* 

Table f Parameter table - feasibility survey susceptibility testing and resistance data for ceftriaxone or cefotaxime 

TGC Bangladesh Cambodia China India Thailand 
N T S N T S N T S N T S N T S 

E. coli 2 2 1 4 4 0 64 50 29 75 71 14 10 9 9 
Klebsiella spp. 32 32 1 2 2 1 49  37 4 191 141 28 4 4 2 
Enterobacter 
spp. 

1 1 0 1 1 0 34 25 12 35 35 19 12 12 8 

Acinetobacter 
spp. 

18 18† 0† 2 2† 0† 35 35† 0† 86 86† 0† 12 12
† 

0† 

Pseudomonas 
spp. 

5 5† 0† 0   5 5† 0† 23 23† 0† 3 3† 0† 

S. aureus 1 0  2 1 1 33 26 8 158 133 47 8 7 7 
Enterococcus 
spp. 

0   0   51 51† 0† 53 53† 0† 1 1† 0† 

GAS 0   0   15 15* 15* 2 2* 2* 2 2* 2* 
GBS 0   0   15  15* 15* 17 17* 17* 3 3* 3* 

Table g: Parameter table - feasibility survey susceptibility testing and resistance data for meropenem 

MEM Bangladesh Cambodia China India Thailand 
N T S N T S N T S N T S N T S 

E. coli 2 2 2 4 4 4 64 63 63 75 73 67 10 10 10 
Klebsiella spp. 32 32 5 2 2 2 49  39 32 191 190 154 4 4 4 
Enterobacter 
spp. 

1 1 1 1 1 1 34 31 30 35 31 23 12 12 12 

Acinetobacter 
spp. 

18 18 2 2 2 2 35 33 32 86 85 34 12 11 5 

Pseudomonas 
spp. 

5 5 2 0   5 5 4 23 21 20 3 3 3 

S. aureus 1 0  2 1 1 33 26 8 158 133 47 8 7 7 
Enterococcus 
spp. 

0   0   51 0  53 0  1 0  

GAS 0   0   15 15* 15* 2 2* 2* 2 2* 2* 
GBS 0   0   15  15* 15* 17 17* 17* 3 3* 3* 

 

The coverage estimates are shown in Table 8. Similar to data based on the literature review 

presented in the manuscript above, coverage was consistently lowest for third-generation 

cephalosporin monotherapy. 

Table h: Coverage estimates for three regimens and Asian countries represented in the NeoAMR feasibility 
survey 
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 Total n 

isolates 

Aminopenicillin + 

gentamicin 

Third-generation 

cephalosporin  

Meropenem 

% regimen coverage (95% credible interval) 

Bangladesh 59 16·6 (9·2-26·1) 10·9 (5·0-18·8) 26·7 (17·0-37·0) 

Cambodia 11 53·9 (34·5-72·7) 35·2 (18·1-54·8) 74·5 (55·5-89·8) 

China 301 70·0 (63·9-75·6) 33·4 (27·8-39·0)* 78·5 (68·8-87·7) 

India 640 51·2 (46·8-55·4) 23·3 (20·1-26·7)* 63·2 (57·4-69·1)* 

Thailand 55 66·7 (53·0-79·2) 55·7 (43·6-67·0) 80·1 (69·9-89·2) 

 

Coverage estimates from the three countries represented in both datasets (Cambodia, China 

and India) were broadly comparable for both datasets with the largest difference observed for 

meropenem coverage in Cambodia (literature review 90.6%, feasibility survey 74.5%, 

difference: 16.1%). Differences might be expected due to a slightly different approach to 

inclusion of pathogens for coverage estimation in the two datasets, differences between 

contribution hospitals and case-mix, different timeframes, and the different method of data 

collection. 

Of note, the feasibility data demonstrates the limitations for comparisons of regimen 

coverage due to small sample size. For Cambodia and Bangladesh, country-level estimates 

were not sufficiently precise to conclude that aminopenicillin/gentamicin and meropenem 

gave different levels of coverage. In both datasets, it was only when countries contributed at 

least 300 isolates that coverage estimates became sufficiently precise to reveal potentially 

clinically relevant differences between regimens. 
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8. Identifying drivers of prescribing of last-resort antibiotics in 
childhood sepsis 

This chapter comprises a paper exploring the factors associated with the prescription of 

carbapenems, glycopeptides and linezolid, three last-resort antibiotics that may be used in 

childhood. ARPEC point prevalence survey data on 1281 patients with at least one antibiotic 

prescription for neonatal or paediatric sepsis were used (78, 79).  

Considering hospital-level coverage estimates and the potential need to base selection of 

empiric antibiotic regimens for childhood sepsis on pooled data, it may be important to 

account for patient and episode characteristics in regimen selection. This implies that 

antibiotic regimens should not be primarily selected on the basis of location (hospital) but 

based on patient and episode factors associated with specific bacteria and resistance 

patterns. 

As insufficient data were available within the ARPEC antimicrobial resistance database for 

such an analysis, the research instead explored the influence of patient and episode factors 

on prescribing of three defined last-resort antibiotics using data from ARPEC point 

prevalence surveys. These data describe actual clinician behaviour. Highly variable antibiotic 

prescribing patterns in hospitalised children across different geographical locations were 

noted and have since been confirmed in other datasets, including for childhood sepsis (78-

80). The comparison of figures on prescribing derived from such global data would be 

improved if differences in the case-mix of patients could be taken into account.  

One approach to account for differences in case-mix is to use standard statistical methods to 

identify factors associated with exposure. This approach may result in complex models that 

can be difficult to interpret with limited direct applicability to clinical practice. Another method 

is to apply a stratification system and examine practice within groups of similar patients. An 

example of this method from another area of medical practice is the Robson classification, 

which stratifies pregnant women according to simple and widely available clinical 

characteristics that influence their a priori risk of having a Caesarean delivery (81-83). 
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Maternity units can then identify groups of women with unusually high Caesarean section 

rates, highlighting areas for specific local quality improvement interventions (84, 85).  

In this research, a risk-adjustment model was developed and used to investigate the 

relationship between the exposure to any of the three antibiotics and key patient and 

infection episode characteristics. The results of this multivariable logistic regression model 

were then used to propose a simple classification system. The patient and episode 

characteristics of interest were patient age, type of department where the patient was at the 

time of blood culture, presence of underlying chronic comorbidities, community or hospital 

acquisition of infection and prescribing of empiric or targeted treatment. All variables were 

strongly associated with exposure to last-resort antibiotics. For the classification, the same 

variables were considered to define the following six mutually exclusive and comprehensive 

groups based on their likelihood of receipt of last-resort antibiotics: 

1) Newborns with early sepsis (infants ≤3 days of age) 

2) Community-aquired sepsis in otherwise healthy infants > 3 days of age and children 

3) Community-aquired sepsis in the same age group as 2) but in patients with 

underlying chronic comorbidities 

4) Empiric treatment of hospital-aquired sepsis outside of PICU (any age) 

5) Targeted treatment of hospital-acquired sepsis outside of PICU (any age) 

6) Hospital-acquired sepsis treated in PICU (any age) 

Exposure to last-resort antibiotics in the dataset was high. The risk-adjustment model and 

the classification model demonstrated comparable good discrimination and calibration and 

reduced regional variation in exposure to last-resort antibiotics among children with sepsis, 

improving comparability.   
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RESEARCH ARTICLE

Using risk adjustment to improve the
interpretation of global inpatient pediatric
antibiotic prescribing
Julia A. Bielicki1,2,3
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A. Cromwell2
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Children’s Hospital, Basel, Switzerland, 4 Laboratory of Medical Microbiology, Vaccine & Infectious Disease
Institute (VAXINFECTIO), Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium

* jbielick@sgul.ac.uk

Abstract

Objectives
Assessment of regional pediatric last-resort antibiotic utilization patterns is hampered by

potential confounding from population differences. We developed a risk-adjustment model

from readily available, internationally used survey data and a simple patient classification to

aid such comparisons.

Design
We investigated the association between pediatric conserve antibiotic (pCA) exposure and

patient / treatment characteristics derived from global point prevalence surveys of antibiotic

prescribing, and developed a risk-adjustment model using multivariable logistic regression.

The performance of a simple patient classification of groups with different expected pCA

exposure levels was compared to the risk model.

Setting
226 centers in 41 countries across 5 continents.

Participants
Neonatal and pediatric inpatient antibiotic prescriptions for sepsis/bloodstream infection for

1281 patients.

Results
Overall pCA exposure was high (35%), strongly associated with each variable (patient age,

ward, underlying disease, community acquisition or nosocomial infection and empiric or tar-

geted treatment), and all were included in the final risk-adjustment model. The model dem-

onstrated good discrimination (c-statistic = 0.83) and calibration (p = 0.38). The simple
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classification model demonstrated similar discrimination and calibration to the risk model.

The crude regional pCA exposure rates ranged from 10.3% (Africa) to 67.4% (Latin Amer-

ica). Risk adjustment substantially reduced the regional variation, the adjusted rates ranging

from 17.1% (Africa) to 42.8% (Latin America).

Conclusions
Greater comparability of pCA exposure rates can be achieved by using a few easily col-

lected variables to produce risk-adjusted rates.

Introduction
Antibiotics are among the most commonly used medications for hospitalized children [1]. On
any day, 30% to 60% of children admitted to hospital around the world will receive at least one
antibiotic, with many being prescribed multiple systemic antimicrobials [2,3].

Antimicrobial stewardship interventions can improve antibiotic use in this vulnerable pop-
ulation and are usually implemented at a high level of aggregation, for example at hospital
level [4,5]. It is often desirable to compare the use of antibiotics, especially of last-resort agents,
between hospitals or regions to identify outliers and therefore areas for intervention. However,
merely comparing the overall volume of use or crude proportions for antibiotics of interest is
unlikely to be useful because prescription patterns vary markedly, and this is partially due to
differences in patient case-mix [6–11].

In many areas of infection control, regression models are used to adjust metrics for differ-
ences in patient case-mix [12–14]. However, these risk-adjustment models can easily become
complex, may be based on specific data that are not widely available and/or comparable, and
can require the adoption of extensive, costly data collection processes.

Another method is to apply a stratification system and examine exposure within groups of
similar patients. An example of this method from another area of medical practice is the Rob-
son classification, which stratifies pregnant women according to simple and widely available
clinical characteristics that influence their a priori risk of having a Caesarean delivery [15–17].

We examined whether a risk-adjustment model could be developed from readily available
variables that would facilitate the fair comparison of statistics from point prevalence surveys
(PPS) on the prescribing of antibiotics to children with sepsis/bloodstream infections. We
focused on three “pediatric conserve antibiotics” (pCAs) for severe Gram-negative and Gram-
positive neonatal and pediatric infections. These antibiotics are part of the newly defined World
Health Organization Watch group of antibiotics. This group has been identified to have a higher
resistance potential, and should only be used for specific indications or in infections caused by
bacteria suspected or proven to be resistant to less broad-spectrum options [18]. We evaluated
whether available variables enabled the creation of: (i) a risk-adjustment model to fairly compare
the prevalence rates across world regions, and (ii) a simple stratification system that identified
patient groups who would be expected to have similar exposures due to their characteristics.

Materials and methods
Data collection

The study used data collected as part of the Antibiotic Resistance and Prescribing in European
Children (ARPEC) project global PPS [3]. PPS are simple, standardized tools used widely
internationally to collect data on antimicrobial use to facilitate monitoring within centers and

Risk-adjusted hospital pediatric antibiotic use
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countries [19]. Participating centers were asked to conduct a one-day cross-sectional survey of
antimicrobial prescriptions for inpatients on neonatal and pediatric wards during three peri-
ods in 2011/2012 [2,3]. During each PPS all neonatal and pediatric wards in participating insti-
tutions had to be surveyed once within the defined auditing period. All patients present in the
wards at 8:00 am, and at least since midnight on the day of the survey, were recorded. For each
patient treated with at least one antimicrobial, detailed data on the prescription as well as
about the patient were collected according to a standardized protocol.

The ARPEC PPS were conducted in 226 participating centers located in 41 countries,
which were grouped into continental regions (Africa, Asia, Australia, Europe–East, Europe–
North, Europe–South, Europe-West, Latin/South America and North America) according to
the UN geoscheme classification [2,3].

The PPS methodology and data collection approaches have previously been described in
detail [2,3]. During data collection no unique identifiers, such as hospital numbers or dates of
birth, were recorded. As the PPS was therefore a completely anonymized audit of antimicro-
bial prescribing to inpatient neonates and children, formal ethical review was not a require-
ment. Individual participating centres were asked to ascertain any local requirements for
ethical review. By entering data, centres confirmed that they had taken the required steps
according to their local and national regulatory and legal requirements.

Study population and definition of patient and treatment characteristics

The study used the records of surveyed patients who were prescribed systemic antibiotics (J01)
[20] for the most common indication of suspected or definitive sepsis/bloodstream infection
[3], excluding febrile neutropenia and catheter-related bloodstream infection. A single key
infection syndrome was selected as different factors may drive prescribing of antibiotics
depending on the type of infection being treated. Relevant prescriptions were identified from
the PPS information on “reason for prescription”.

In terms of antibiotic use, we focused on carbapenems (J01DH), glycopeptides (J01XA) and
linezolid (J01XX08). Prescribing of these antibiotics may reflect actual or feared infection
caused by resistant organisms, such as extended-spectrum beta-lactamase producing Gram-
negative bacteria or methicillin-resistant Staphylococcus aureus. The World Health Organiza-
tion confirms these antibiotics, among others, as key targets for national antibiotic stewardship
[18]. Our study is limited to the indicated groups and follows the same approach as a recent
study evaluating the impact of antimicrobial stewardship on antibiotic prescribing in US chil-
dren’s hospital [21]. Exposure to pCAs was defined at the patient level, with a patient classified
as exposed if one or more of the antibiotics listed above was prescribed.

At the patient level, the ARPEC dataset included information on a patient’s age, whether
they had any chronic conditions, and the type of ward the patient was on. Data were also col-
lected on the type of prescription (empiric or targeted). Neither the microbiological results for
individual patients nor hospital antibiograms were available. Finally, timing of prescription
was available as having been issued >48 hours after hospitalization (hospital-acquired) or48
hours after hospitalization (community-acquired). Any prescription for sepsis/bloodstream
infection in the first three days of life was considered neonatal early onset sepsis. Wards were
classified as either a neonatal intensive care unit (NICU, all care levels), pediatric intensive
care unit (PICU) or other pediatric wards. Patients with any recorded underlying disease from
a predefined list including surgical malformations, chronic neurological, gastrointestinal,
endocrine, lung and renal disease as well as congenital heart disease, oncologic/hematologic
diseases, genetic or metabolic disorders, rheumatological or autoimmune disease and chronic
infections were labeled as having underlying disease (S1 File). Patients receiving any targeted

Risk-adjusted hospital pediatric antibiotic use
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prescriptions for a sepsis/bloodstream infection (according to the ARPEC protocol based on
pathogen identification and/or antimicrobial susceptibility testing) were defined as receiving
targeted treatment, even when additional prescriptions were empiric. All other patients were
labeled as receiving empiric treatment.

Statistical analysis

Logistic regression was used to assess the association between pCA exposure and the individ-
ual patient and treatment characteristics. Age was dichotomized into neonates aged 3 days or
younger versus infants aged 4 days or older and children (reflecting clinical differences
between early-onset and late-onset sepsis among neonates).

We then developed a risk model using multivariable logistic regression.
The model was developed by sequentially adding each available patient variable, starting

with the variable that had the strongest univariate association and ending with the weakest. A
Wald test was used to assess the contribution of an added variable to the model and a p value
of 0.05 was used as the threshold for inclusion. Following this, interactions between included
variables were explored. The performance of the model was assessed in terms of its calibration
and discrimination. Calibration describes the level of agreement between the predicted and
observed risks, and was evaluated using the Hosmer-Lemeshow test. Discrimination indicates
the ability of a model to distinguish patients with a lower and higher risk of pCA prescription.
We evaluated this by using the c-statistic (equivalent to the Area under the ROC curve).

The regression model was used to calculate risk-adjusted regional pCA exposure rates.
These were derived using indirect standardization, which involved multiplying the ratio of
observed/expected exposure rates by the mean exposure rate in the whole cohort [9]. Approxi-
mate 95% confidence intervals were derived for proportions and indirectly standardized rates
using the Wilson Score and Byar’s Method, respectively.

As a sensitivity analysis, we repeated the above process using a multilevel logistic model,
which incorporated a random-intercept term for the subregions as well as the explanatory var-
iables. This accounted for any lack of independence in the data due to patients being clustered
within subregions.

Finally, a small number of mutually exclusive and comprehensive patient subgroups were
defined on the basis that they described clinical situations in which we would expect a patient’s
chance of receiving pCA to be similar given the seriousness of the situation and the effective-
ness of current antiobiotics. We used the same variables that were considered in the risk-
model development process because they represented information that is easy to collect and
can be standardized. Inspection of the variables identified six patient groups that were
expected to be associated with different levels of exposure to pCA:

1) Neonatal early onset sepsis (infants3 days of age): High reported coverage provided by
narrow-spectrum regimens [22].

2) Community-acquired sepsis in otherwise healthy infants >3 days of age and children:
Lower levels of colonization and infection by multidrug-resistant pathogens [23].

3) Community-acquired sepsis in infants>3 days of age and children with underlying disease:
Colonization by multidrug-resistant pathogens possible with reported epidemiology simi-
lar to hospital-acquired bloodstream infection [23].

4) Empiric treatment of hospital-acquired sepsis in infants and children of any age outside of
PICU: Colonization by multidrug resistant pathogens possible, but colonization pressure
less than in intensive care [24].

Risk-adjusted hospital pediatric antibiotic use
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5) Targeted treatment of hospital-acquired sepsis in infants and children of any age outside of
PICU: May include patients having been discharged from intensive care to complete treat-
ment after stabilization, therefore likely to partially reflect intensive care epidemiology [25].

6) Hospital-acquired sepsis in infants and children of any age in PICU: Colonization by multi-
drug-resistant bacteria expected with high colonization pressure in intensive care [25].

We examined the ability of these subgroups to reduce the heterogeneity within the patient
population using the measures of discrimination and calibration described above. All statistical
analyses were carried out using Stata/IC 13.11, Statacorp, USA.

Results
Description of cohort

The complete global ARPEC PPS cohort contained data on 11899 prescriptions on 6499
patients. Among these, there were 2668 prescriptions for sepsis, but limiting the cohort to
patients with complete records led to the exclusion of a further 415 prescription records (Fig
1). The final dataset contained 2253 systemic antibiotic prescriptions for 1281 infants and chil-
dren, representing 19% of a total of 11899 recorded prescriptions.

Overall pCA exposure

Of the 1281 included patients, 445 patients (34.7%; 159 children30 days of age of which two
were3 days of age, 286 children >30 days of age) were exposed to pCAs. In total, 18.4%
(235/1281) were receiving carbapenems, 25.4% (325/1281) glycopeptides and 1.2% (16/1281)
linezolid. For each of the patient and treatment characteristics, the proportion of exposed
patients varied across the levels of each variable by at least 10%, as shown in Table 1.

Multivariable logistic regression model for exposure to pCA

Each individual patient and treatment characteristic was found to be associated with antibiotic
use, and improved the performance of the multivariable logistic model when added (Table 1).
There was evidence of an interaction between the variables “ward” and “acquisition of infec-
tion” as well as between the variables “underlying disease” and “type of treatment”. These sepa-
rate variables were replaced by variables that captured the combination of categories. Table 2
shows the results of the model that takes into account these interactions. Overall, the following
were associated with increased odds of pCA exposure: (1) presence of any underlying disease,
(2) treatment in PICU; (3) receiving targeted treatment; (4) treatment for hospital-acquired
infection. Being3 days old was associated with lower odds of pCA exposure.

This final model demonstrated strong discrimination, with a c-statistic of 0.83. There was also
evidence of good calibration (Hosmer-Lemeshow test, p = 0.38, see Fig 2 for calibration plot).

Multilevel random-intercept logistic model for exposure to pCA

The analysis using the multilevel model gave similar results to the main analysis. We found
only modest variation in the random-intercepts of the subregions (variance = 0.21; SE(var) =
0.14) and the coefficients of the explanatory variables were similar to those estimated in the
standard model. In addition, the Pearson correlation coefficient between the predicted risks
for individuals from the two models was 0.97, with the predictions from the multilevel model
producing to almost identical calibration and discrimination figures.

Risk-adjusted hospital pediatric antibiotic use
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Adjusted regional patterns of pCA exposure

Fig 3 demonstrates the impact of using the risk model to adjust for differences in patient char-
acteristics on regional pCA exposure levels. Crude regional exposure rates ranged from 10.3%
(Africa) to 67.4% (Latin America). After adjustment, there was substantially less variation
between the regions, with the adjusted regional exposure rates ranging from 17.1% (Africa) to
42.8% (Latin America). The 95% confidence intervals around adjusted pCA exposure rates

Fig 1. Flow chart of prescription and patient inclusion.

https://doi.org/10.1371/journal.pone.0199878.g001
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indicate that, with the exception of Africa, regional estimates may not differ from the overall
cohort mean pCA exposure level once key characteristics have been taken into account.

pCA exposure in predefined groups

Table 3 shows the characteristics of the six patient groups that were derived from clinical
reasoning.

Table 4 shows the distribution of patient groups by region.
Overall, nearly 50% of children fell into groups 4 to 6, as they were being treated for hospi-

tal-acquired sepsis/bloodstream infection. In terms of the pCA exposure rates, levels were

Table 1. Association of key patient characteristics with exposure to pCA antibiotics (group comparisons using Χ2 testing).

Total patients with sepsis/BSI % in group pCA-exposed % exposed p-value

Age

Neonate3 days of age 123 9.6 2 1.6 p<0.001

Infant or child >3 days of age 1158 90.4 443 38.3

Ward

Pediatric ward 466 36.4 117 25.1 p<0.001

Neonatal intensive care 635 49.6 219 34.5

Pediatric Intensive care 180 14.1 109 60.6

Underlying disease

Absent 311 24.3 32 10.3 p<0.001

Present 970 75.7 413 42.6

Acquisition of infection

Community 649 50.7 78 12.0 p<0.001

Hospital 632 49.3 367 58.0

Type of treatment

Empiric 980 76.5 285 29.1 p<0.001

Targeted 301 23.5 160 53.2

Total 1281 445 34.7

https://doi.org/10.1371/journal.pone.0199878.t001

Table 2. Logistic regression results showing adjusted odds ratios for exposure to pediatric reserve antibiotics
(pCAs) with 95% confidence intervals.

Group Adjusted OR 95%CI

Patients according to ward type and acquisition of infection

Non-ICU / community-acquired Ref -

Non-ICU / hospital-acquired 5.0 3.0–8.3

NICU / community-acquired 0.6 0.3–1.1

NICU / hospital-acquired 5.7 3.7–8.8

PICU / community-acquired 4.2 2.2–8.1

PICU / hospital-acquired 12.7 7.3–22.2

Patients according to underlying disease and type of prescription

No underlying disease / empiric Ref -

No underlying disease / targeted 4.3 1.8–10.0

Underlying disease / empiric 3.8 2.2–6.7

Underlying disease / targeted 7.1 3.9–13.0

Patients according to age

Neonate3 days of age Ref -

Neonate >3 days of age, infant or child 16.9 4.0–70.9

https://doi.org/10.1371/journal.pone.0199878.t002
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Fig 2. Calibration plot for logistic regression risk model of pCA exposure.

https://doi.org/10.1371/journal.pone.0199878.g002

Fig 3. Crude and risk adjusted regional exposure rates for pediatric reserve antibiotics. Bars correspond to crude rates, squares to adjusted rates (shown with 95%
confidence intervals). Data for Eastern Europe have been omitted due to low number of patients surveyed (n = 17) The horizontal line indicates the mean pCA exposure
rate in the whole cohort. Patient numbers for each region are shown at the bottom of each bar.

https://doi.org/10.1371/journal.pone.0199878.g003
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lowest in neonates treated for early onset sepsis (1.6%) and highest in patients with hospital-
acquired sepsis on PICU (75.0%). We assessed the performance of this simple classification by
using a logistic regression model that included only these six predefined groups. The model
had a similar level of performance as the full risk model, with good levels of discrimination
(c-statistic = 0.81) and calibration (Hosmer-Lemeshow test, p = 0.813; Fig 4). The regional dis-
tribution of patients may explain very high crude pCA exposure levels in Latin America:
Nearly 80% of patients in this region fell into groups 4 to 6 compared with maximally 50–60%
in other regions. These patients would be expected to have higher pCA exposure rates than
patients in groups 1 to 3.

Discussion
The data from global point prevalence surveys of inpatient neonatal and pediatric systemic
antibiotic prescriptions for sepsis/bloodstream infection revealed large differences in the crude
pCA prevalence rates across the regions. But, the interpretation of these differences is ham-
pered by the considerable systematic differences between the regions in the patterns of disease,
antimicrobial resistance and population structure. In this study, we demonstrated that having
data on a few easily collected variables related to patient and treatment characteristics, it is pos-
sible to develop a risk adjustment model to produce adjusted pCA exposure rates, thereby

Table 3. Overall proportions of treated patients within predefined group and the expected rate of exposure to pediatric reserve antibiotics (pCAs).

Patient group Total patients (n) % in group Exposed to pCAs (n) % Exposed 95% CI

1 Neonatal early onset sepsis 123 10% 2 1.6% 0.2 to 5.8

2 CA sepsis/BSI in otherwise healthy infants and children 251 20% 17 6.8% 4.0 to 10.6

3 CA sepsis/BSI in infants and children with underlying disease 295 23% 60 20.3% 15.9 to 25.3

4 Empiric treatment of HA sepsis/BSI outside of PICU 327 25% 162 49.5% 44.0 to 55.1

5 Targeted treatment of HA sepsis/BSI outside of PICU 173 13% 120 69.4% 61.9 to 76.1

6 HA sepsis/BSI on PICU 112 9% 84 75.0% 65.9 to 82.7

1281 445 34.7%

CA: community-acquired, HA: hospital-acquired, BSI: bloodstream infection, PICU: pediatric intensive care unit.

https://doi.org/10.1371/journal.pone.0199878.t003

Table 4. Distribution of included patients for 6 predefined groups by region.

Patient group Subregion

Africa Asia Australia Northern
Europe

Southern
Europe

Western
Europe

Latin
America

North
America

n % n % n % n % n % n % n % n %

1 Neonatal early onset sepsis 17 10.3 12 6.1 10 16.7 43 13.0 18 7.1 18 10.7 0 0 5 11.6

2 CA sepsis/BSI in otherwise healthy infants and children 38 23.0 24 12.2 14 23.3 64 19.4 70 27.6 28 16.6 1 2.2 4 9.3

3 CA sepsis/BSI in infants and children with underlying disease 74 44.9 54 27.4 12 20.0 55 16.7 40 15.8 44 26.0 9 19.6 10 23.3

4 Empiric treatment of HA sepsis/BSI outside of PICU 24 14.6 54 27.4 15 25.0 102 30.9 65 25.6 30 17.8 14 30.4 16 37.2

5 Targeted treatment of HA sepsis/BSI outside of PICU 11 6.7 27 13.7 4 6.7 47 14.2 35 13.8 30 17.8 12 26.1 5 11.6

6 HA sepsis/BSI on PICU 1 0.6 26 13.2 5 8.3 19 5.8 26 10.2 19 11.2 10 21.7 3 7.0

Carbapenem exposure 17 10.3 57 28.9 5 8.3 44 13.3 53 20.9 33 19.5 20 43.5 3 7.0

Glycopeptide exposure 12 7.3 59 30.0 12 20.0 74 22.4 75 29.5 56 33.1 19 41.3 17 39.5

Total n 165 197 60 330 254 169 46 43

CA: community-acquired, HA: hospital-acquired, BSI: bloodstream infection, PICU: pediatric intensive care unit. The proportions refer to contributions of each group

for the region in question.

https://doi.org/10.1371/journal.pone.0199878.t004
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allowing a fairer comparison of regions. In addition, the variables could be combined into a
simple patient classification that differentiated various clinical situations in which the expected
pCA exposure rates would be expected to differ. While a risk-adjustment approach based on
logistic regression is preferable for making comparisons against a standard population, the
classification facilitates benchmarking by creating relatively homogenous groups of patients
who would be expected to have similar exposure to pCA due to their clinical circumstances.
When evaluated, both approaches performed well at discriminating between children in terms
of their likely exposure to pCA.

Overall, the average pCA exposure rate was high at 35%. Exposure rates to pCA were higher
among older children, those on PICU, children with underlying disease, and receiving targeted
treatment for hospital-acquired sepsis/bloodstream infection. That targeted treatment was
strongly associated with higher pCA exposure may reflect a high rate of resistant bacteria iden-
tified in those children with culture-confirmed sepsis/bloodstream infection. Given the rep-
orted high rates of antimicrobial resistance in key pathogens globally, but especially in low-
and middle-income countries [26–28], this is a worrying sign of the prevalence of multidrug-
resistant infections, especially among hospital-acquired infections, in this population.

Regional crude prevalence rates varied considerably, the lowest and highest differing by a
factor of 6.5. After adjustment, the prevalence rates varied by a factor of 2.5, demonstrating
that a large proportion of variation arose from differences in the distribution of the measured
patient and prescription characteristics. Previous analyses of case-mix adjustment in bench-
marking of inpatient antibiotic prescribing have used variables that require detailed knowledge
about each patient [7,9] or detailed hospital-level data [8,10,11]. While models based on these
variables may have demonstrated even better discrimination and calibration in this dataset,

Fig 4. Calibration plot for logistic regression classification model of pCA exposure.

https://doi.org/10.1371/journal.pone.0199878.g004
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the value of our study is to demonstrate that pCA prescribing rates from prevalence surveys
can be adequately risk-adjusted using easily collected variables. The effectiveness of this
approach needs to be replicated in other datasets, and the benefit of including other factors
also needs evaluation. Nonetheless, the results underline the importance of focusing on the
complete and accurate measurement of important patient-level variables and treatment char-
acteristics during data collection to enable optimal utilization of PPS data.

The predefined patient groups based on clinical reasoning proved to have a similar level of
performance to the full logistic regression model. In practice, the application of a logistic
regression model to inform quality improvement at a hospital level could be challenging
because it produces a single composite statistic that describes overall performance. In contrast,
a classification-based approach makes it possible to monitor the prevalence of pCA in distinct
types of patients, for which the action required to tackle above average rates is likely to be dif-
ferent. This has been found to be a key issue in the development and use of classification sys-
tems in other circumstances [15,16]. The clinical logic underpinning the classification gives it
a face-validity that suggests it could be applicable in other situations. But, we recommend that,
before it is adopted for use in other infection syndromes and healthcare settings (e.g. adult
care), its performance is evaluated further using data collected in that setting.

Our analysis has a number of limitations. First, despite this being as far as we are aware the
largest neonatal and pediatric antibiotic prescribing PPS database globally, some regions con-
tributed only a small number of patients. With a larger sample size, we would have been able
to better estimate true differences in regional pCA exposure rates. Sample size limitations will
also impact the application of our approach at hospital-level. Assuming that prescribing prac-
tices remain relatively stable, the pooling of data from several PPS may be one approach to
overcome small sample sizes. Second, we only included prescriptions that were recorded as
being for sepsis/bloodstream infection. Patients in our cohort may have received additional
antibiotics for another indication (e.g. lower respiratory tract infection), which we did not
include in our evaluation. Whether the same risk factors are associated with pCA exposure in
patients treated for other infections needs to be tested. Third, data on the causative organism
in targeted treatment were not recorded. We therefore rely on local contributors having cor-
rectly identified the recorded treatment as the most suitable narrow-spectrum antibiotic
option for the target pathogen. In the future, pCA exposure rates should be interpreted
together with information on actual resistance at patient or aggregate levels [29,30] to gauge
whether pCA exposure levels are high in response to high antibiotic resistance rates or are
mainly driven by prescriber behavior. Fourth, PPS data provides no information on duration
of pCA exposure, which may have an important impact on the volume of pCAs used in a spe-
cific setting. Fifth, our analysis would need to be repeated analyzing data from a variety of hos-
pitals. ARPEC PPS participant centers were predominantly tertiary and/or university
hospitals, and the relevance of our findings for benchmarking involving smaller secondary
hospitals would have to be confirmed. Finally, the cluster sizes of the participating centers
were too small to support a multilevel model with centre as the cluster. Instead, we fitted a ran-
dom-intercept logistic model with subregions to take account into account the hierarchical
structure of the data. This did not change the conclusions about each variable and there was
excellent agreement between the predictions from the two models. We therefore chose to pres-
ent the results from the simpler standard logistic model.

In addition to conventional case-mix adjustment approaches, predefined patient groups,
such as those described in our analysis, enable the generation of aspirational targets for aggre-
gate pCA exposure rates, either in local, regional or national settings. These targets could be
based on current average levels of exposures or be based on expert consensus about desirable
practice. This would allow the comparison of (i) overall standardized exposure rates; (ii)
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variations in distribution of patient strata; (iii) variations in exposure rates for specific patient
groups. The advantages of this approach is that evaluations of pCA exposure would take into
account key characteristics of the patients and infection episodes that are highly likely to influ-
ence pCA prescribing decisions and as such reflect justified use of these antibiotics. This may
enable identification of specific target areas for intervention, while taking into account that
what is appropriate may differ between facilities and/or regions. For such comparisons and
target setting treatment and patient characteristics need to be captured, as described in this
manuscript and as is standard during point prevalence surveys. Given the good performance
of the logistic regression classification model in our analysis, the level of detail for the variables
included in the ARPEC PPS may be sufficient for evaluations of childhood antibiotic use.
However, additional or different variables are likely to be useful for similar analyses in other
patient groups.

Case-mix adjustment, preferably using a few easy-to-collect patient and prescription char-
acteristics, is key to accurately and fairly comparing prescribing patterns between health care
providers, regional health care administrations and countries. Furthermore, assessing antibi-
otic exposure rates in a clinically relevant manner within homogenous and easily identifiable
patient groups can be a rich source of information about key areas for intervention to improve
antibiotic prescribing. Quality of antibiotic prescribing could then be assessed in such patient
groups using validated indicators. In this way, interventions that will achieve a safe and reason-
able reduction in the use of critically important antibiotics at aggregate level can be defined
and evaluated.

Supporting information
S1 File. Excerpt of data collection instructions for coding of underlying disease for ARPEC
PPS.
(PDF)
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Supporting Information 

Excerpt of data collection instructions for coding of underlying disease for ARPEC PPS 

[2, 3]. 

 

Underlying diagnoses groups (paediatric patients):  

Surgical disease/Malformations including all problems requiring surgical 

intervention/follow up, e.g. gut malformations/atresia, Urinary malformations, Sacral 

agenesis, Central Nervous System malformations, skin anomalies treated surgically 

including abscesses, any device insertion including gastrostomies, urinary catheter or 

Ventricular-peritoneal shunt, etc. 

Chronic Neurological and Psychiatric disorders including Cerebral Palsy, Global 

Developmental Delay (GDD), all seizure disorders (epilepsy, West syndrome, etc.), 

progressive neurological and neuromuscular syndromes. 

Gastroenterological disease including inflammatory bowel disorders, Gastrooesophageal 

reflux requiring treatment, Celiac disease, chronic non-infectious liver diseases, etc. 

Congenital Heart Disease (CHD) including all the cardiac malformations and acquired 

cardiac disease e.g. Kawasaki syndrome, and cardiac surgery 

Oncologic/Hematologic diseases and Bone Marrow Transplantation except immune 

deficiencies unless after bone marrow transplantation and all Solid Organ 

Transplantation.  

Chronic Endocrinological Diseases including Cushing syndrome, thyroid disorders, 

pituitary gland disorders, etc. 

Chronic Renal Disease, including Vesico-ureteric reflux. 

Chromosomal/Single gene/Metabolic disorders (diabetes). 
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Rheumatological, autoimmune and chronic inflammatory diseases such as LED, 

sarcoidosis etc. 

Chronic lung diseases including cystic fibrosis and chronic lung disease in ex preterm 

patients. 

Chronic infectious diseases such as HIV, tuberculosis with ongoing treatment and 

chronic hepatitis B or C infection or primary immunodeficiencies. 

 

Underlying diagnoses groups (neonatal patients):  

Maternal prolonged rupture of membranes (>18 hours before delivery) or suspected or 

proven maternal peri-partum infection. 

Intra Uterine Growth Retardation/Growth restriction. 

Respiratory: Respiratory Distress Syndrome (RDS), Meconium aspiration syndrome, 

Chronic Lung Disease (Oxygen-dependency beyond 28th day of life). Persistent 

pulmonary hypertension of the newborn.  

Cardiovascular: Congenital Heart Disease (CHD), including treated Patent Ductus 

Arteriosus (PDA). 

Gastrointestinal: Necrotizing Enterocolitis (NEC).  

Surgical problems/Malformation including all the malformations and surgical problems 

with the exception of NEC and CHD, e.g. Gut and central nervous system (CNS) 

Malformations, Cleft Palate, Hydrocephalus (including post hemorrhagic 

hydrocephalus), Ambiguous Genitalia, etc. 

Confirmed or suspected chromosomal/single gene/metabolic disorders. 

Electrolyte/Glycaemia disorders including iatrogenic if requiring active management. 

Neonatal immune deficiency, including haematological malignancies.  
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Neurological conditions including neonatal seizures, severe asphyxia, hypoxic-ischaemic 

encephalopathy etc.  

Haematological disease including indirect hyperbilirubinaemia requiring treatment. 

Toxicological problems, such as monitoring for neonatal abstinence syndrome.  

 

 

 



 138 

9. Discussion 

The research presented in this thesis addressed a number of questions, each relating to the 

overarching challenge of how to use routine bloodstream infection data to inform empirical 

antibiotic prescribing in neonates and children.   

The next section outlines the key findings in relation to the original objectives. Following this, 

the implications of the research for clinical and surveillance practice are outlined, including a 

discussion of the potential benefits and limitations for the use of routine bloodstream infection 

data in decision-making about empiric antibiotic regimens. Finally, implications for future 

work in this area are discussed. 

9.1 Key findings 

The research presented in this thesis addresses the persistent challenge of how to determine 

optimal empiric therapy regimens for the treatment of severe bacterial infections, most 

importantly bloodstream infections, in neonates and children. Empiric therapy should be 

based on the observed microbiological epidemiology of bloodstream infection in this group. 

This can be determined from blood cultures obtained as part of routine patient management.  

Blood culture isolates are already being used to describe the microbiology of bacterial 

infections, for example, as part of hospital antibiograms. This type of cumulative antibiogram 

is the most common format of communicating about the microbiological epidemiology 

observed at a given hospital with clinicians, and also underpins surveillance reporting. By 

focusing on reporting of the susceptibility of particular bacteria to individual antibiotics (so-

called bug-drug combinations), cumulative antibiograms are of limited value for informing 

antibiotic choices when treatment is in the critical empiric phase (when the bug is unknown). 

Empiric regimens need to provide adequate coverage for the overall spectrum of possible 

causative bacteria for the targeted infection. Regimen coverage cannot be directly derived 

from cumulative pathogen-based antibiograms.  

Whether a certain isolate is indeed covered by a given regimen cannot be determined based 

on individual bug-drug combinations alone. Instead, agreed interpretive algorithms can be 

applied to maximise coverage information derived from individual bug-drug combinations. To 

date, few data have been presented on the utility of typically collected and reported data for a 

more comprehensive assessment of coverage.  Chapter 4 demonstrates the impact of 

laboratory methods and the way laboratory data are collected and reported in clinical and 

surveillance cumulative antibiograms on the assessment of multidrug resistance in Gram-

negative bacteria. A robust evaluation of multidrug resistance is not possible if laboratory 
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testing algorithms omit the evaluation (or reporting) of susceptibility for specific antibiotic 

classes of interest. Estimating the prevalence of multidrug resistance from surveillance data, 

typically focused on a few specific bug-drug combinations, is even more problematic 

because resistance in individual or a few combinations is often poorly reflective of multidrug 

resistance. This has implications for coverage estimates because these statistics rely heavily 

on comprehensive microbiological data being available.  

Even when detailed microbiological data on identified bacteria and their antibiotic 

susceptibility are available, sample sizes for paediatric cohorts are expected to be small, 

especially for local guidance. Chapter 5 therefore investigated whether extrapolation from 

adult data could be suitable to improve precision and allow a more frequent assessment of 

coverage at local level. The analysis clearly demonstrated clinically relevant differences in 

resistance prevalence for some key pathogens between adults and children. Therefore, while 

there may be a benefit of augmenting paediatric datasets with information from adult 

datasets, a direct extrapolation approach does not seem suitable.  

Analyses preceding the research in this thesis had already identified the need to reflect 

antibiotic regimen coverage from microbiological data rather than relying on simple 

cumulative antibiograms (53, 55, 86). Coverage can be established in the form of a 

weighted- incidence syndromic combination antibiogram or WISCA (55). In essence, this is a 

clinically relevant multi-pathogen cumulative antibiogram estimating the coverage provided 

by a given regimen for a given infection syndrome.  

Chapter 6 describes an approach towards estimating a regimen WISCA that has several 

important advantages over standard methods: The Bayesian decision tree analytical model 

ensures that data on relative incidence of pathogens and their resistance patterns are 

combined in a robust and reproducible manner. Furthermore, uncertainty resulting from 

limited sample sizes for both can be fully reflected in the coverage estimate through the 

calculation of 95% credible intervals from a Monte Carlo simulation. Lastly, the Bayesian 

approach allows for the incorporation of prior knowledge of susceptibility or resistance (for 

example, intrinsic resistance) through informative priors.  

Chapter 6 focuses on the application of the WISCA derived from a Bayesian decision tree 

analytical model at the hospital level in a set of European paediatric centres. In particular, the 

relationship between WISCAs derived from pooled data compared with local data was 

explored. Even though data from referral centres for neonatology and paediatrics were used, 

precision was limited for individual sites. Pooling improved the ability to detect differences in 

coverage between regimens unlikely to have arisen purely by chance. However, this is 

essentially a meta-analytical approach and as such, it is necessary to identify heterogeneity 

that would indicate that pooling could be inappropriate. In other words, to support pooling, it 
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is necessary to evaluate the degree to which relative incidence and resistance prevalence 

differ between the target hospital for which coverage is to be estimated and the pooled data 

set. For resistance prevalence, this can be done using funnel-plot derived bullet blots as a 

general method to identify outlier hospitals. For these, pooled data should not be assumed to 

reflect local resistance patterns.   

In chapter 7, the Bayesian decision tree analytical model for estimating coverage was 

applied to investigate the likely coverage of commonly used empiric antibiotic regimens for 

neonatal sepsis.  Only published data from countries in Asia, a hotspot of antimicrobial 

resistance in hospitalised neonates, were used.  Coverage for the three investigated 

regimens was found to vary considerably between contributing countries with pooling 

therefore likely inappropriate. At a clinical level, regional coverage estimates and in fact 

national estimates may not be applicable for individual sites, particularly if substantial 

variations in either relative incidence of pathogens or their resistance patterns are expected. 

Worryingly, coverage for the regimen primarily involving a last-resort antibiotic (meropenem) 

was indeed higher than that provided by the investigated narrower-spectrum alternatives.  

Finally, chapter 8 reports on the use of last-resort antibiotics in sepsis or bloodstream 

infection in hospitalised neonates and children. The meropenem regimen evaluated in 

chapter 7 is such a last-resort antibiotic regimen. There was a clear impact of patient 

characteristics on use of last-resort antibiotics, most likely reflecting clinical risk assessment 

for sepsis caused by bacteria not covered by regimens offering a narrower spectrum.  Key 

risk factors for the use of last-resort antibiotics were infections being hospital-acquired and 

patients being treated in an intensive care unit setting. Interestingly, targeted treatment, that 

is treatment that is based on microbiology results, was also more likely to involve last-resort 

antibiotics, potentially indicating that clinicians are observing higher rates of bloodstream 

infection being caused by resistant bacteria. The implications for coverage estimations of the 

findings in chapter 8 are that despite consequent further reductions in sample size, it may be 

important to consider regimen coverage stratified by a priori patient and treatment 

characteristics that are already guiding clinical decision-making. 

9.2 Strengths and limitations 

Strengths and limitation of each individual analysis are discussed in the relevant chapters. 

The following discussion focuses on the strengths and limitations of the described WISCA-

approach for evaluating coverage of empiric antibiotic regimens for neonatal and childhood 

bloodstream infection based on routine microbiological data.  
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9.2.1 Clinically relevant presentation of microbiological data for decision-making 

From on-going discussions about the optimal method to select empiric antibiotic treatment 

regimens for bacterial infections, including for childhood bloodstream infections, it is clear 

that currently available data presentation methods are not clinically informative. Furthermore, 

as demonstrated in chapter 5, extrapolations from adult data are unlikely to be relevant. 

The WISCA utilizes information on the relative incidence of bacteria and their resistance 

patterns to comprehensively reflect the observed microbiological epidemiology of the 

targeted infection in a specific patient population.  As shown in chapters 6 and 7,  routine 

microbiological data can be used to determine likely coverage by generating regimen-specific 

WISCAs based on a straightforward yet extendable decision tree analysis. Data for 

estimating model parameters take a relatively simple form that can easily be extracted from 

electronic laboratory information management systems, potentially supporting an automated 

or semi-automated process. Many laboratories already provide a programmed extract from 

the information systems for surveillance purposes, and it may be feasible to use these 

directly for automated coverage estimates. 

While coverage estimated from a WISCA is likely to be clinically more relevant than data 

presented in a cumulative pathogen-specific hospital antibiogram, it is important to 

emphasize the impact of the selection of pathogens incorporated in the model. Full datasets 

of neonatal and childhood bloodstream isolates from a selection of sites were not available 

for the presented analyses. Rather, these relied on routine data reported to typical 

surveillance databases, many of which continue to focus on selected bacteria. Therefore, the 

WISCAs underpinning coverage estimates in chapters 6 and 7 should be considered specific 

to the selection of bacteria on which they are based. In fact, similar species are incorporated 

in both analyses reflecting bacteria that are considered particularly important not only for 

surveillance but also clinically.  

For example, certain Gram-negative bacteria, such as Klebsiella spp., Enterobacter spp., 

Pseudomonas spp. and Acinetobacter spp., are both commonly isolated from blood cultures 

in patients with sepsis and are associated with a particularly severe clinical picture. The need 

to ensure early concordant therapy for optimised outcomes has been demonstrated in adults.  

It could therefore be important to ensure a regimen has coverage for these pathogens over 

rarer bacterial causes of bloodstream infection. The impact and added value of the inclusion 

or exclusion of certain pathogens is currently unclear, in particular, for bacteria that can 

cause bloodstream infection but are also skin colonizers and therefore may contaminate 

blood cultures, such as coagulase-negative staphylococci.  
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The assumption that concordance is clinically important is at the heart of the discussion 

around selection of optimal treatment, but needs further investigation beyond the scope of 

this thesis. In general, data clearly demonstrating a strong association between concordant 

antibiotic treatment and improved clinical outcomes are lacking for neonates and children.  

9.2.2 Maximising use of data and dealing with imprecision 

The Bayesian WISCA presented in chapters 6 and 7 incorporates several features that may 

result in better validity for coverage estimation compared to alternative described methods.  

Because of the decision tree structure, parameter estimation is explicitly required (and 

separate) for all branches, most importantly the relative incidence and resistance patterns of 

included pathogens. The parameter tables clearly show those based on a small overall 

sample size of isolates or when antibiotic susceptibility testing done in only a subset of 

isolates.  The Bayesian approach also allows uncertainty in both to be fully taken into 

account and 95% credible intervals generated. This is important because it will provide better 

information about differences in coverage between regimens. Considering point estimates 

alone may result in the automatic preference of “higher coverage” regimens by clinicians. 

Displaying these with 95% credible intervals may demonstrate that differences may have 

resulted by chance supporting clinicians in selecting slightly lower coverage regimens 

especially when their negative impacts, for example on resistance selection, are considerably 

lower . 

Earlier publications on WISCAs did not address the issue on imprecision resulting from small 

sample sizes. These can occur when coverage is estimated using data from a specific 

hospital, given that bloodstream infections (either primary or secondary) are a rare event. In 

addition, selective antimicrobial susceptibility testing, for example the use of second line 

panel only when there is resistance to antibiotics in a first line panel, can also have an impact 

when isolates without results to determine concordance or discordance do not contribute to 

parameter estimation of the resistance branch of the decision tree model.  

While the decision tree analysis ensures that imprecision due to sample size limitations is 

made visible, the Bayesian component of the model allows prior knowledge or beliefs about 

either relative incidence of bacteria or their resistance patterns to be incorporated. This is 

particularly important for intrinsic resistance or expected susceptibility (when resistance 

would reflect a highly unusual phenotype, for example vancomycin-resistance for 

streptococci), and counterbalances sample size limitations that result from lacking 

susceptibility testing for such bug-drug combinations. The lack of testing results from the 

results already being “known” and such information can and should be used to define 
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concordance or discordance of isolates and regimens as knowledge of intrinsic resistance 

reflects a strong prior belief.  

Similarly, parameter estimation for the decision tree analytical model enables maximal 

exploitation of all available susceptibility testing data which is not typically reflected in 

hospital antibiograms. In the latter case, bug-drug combinations are usually reported as 

tested. For the WISCA, it is possible to apply all available recommended interpretive criteria 

and algorithms to determine concordance or discordance for included isolates. To do this, it 

is necessary to explicitly adopt a set of interpretive criteria since internationally used 

algorithms and criteria can yield different results for concordance and discordance (87). For 

this thesis, the EUCAST interpretive criteria were used throughout. It is known that for some 

bug-drug combinations different results may be obtained if, for example, CLSI criteria were 

applied (88). Since EUCAST are now engaged in formalised on-going review of the clinical 

breakpoints informing susceptibility testing interpretation, sometimes with substantial shifts, it 

will be important to state the actual version of EUCAST criteria being used going forward.  

Chapter 8 demonstrates that such stratified evaluation of coverage will be necessary to align 

with the on-going clinical practice of prescribing being reflective of a major patient and 

episode characteristics. When coverage is to be calculated for a patient subgroup, for 

example neonates, sample sizes generally become so small that a meta-analytical approach 

becomes necessary to improve precision. The method of WISCA calculation presented in 

this thesis would allow for several approaches towards this. Firstly, straightforward data 

pooling with some evaluation of heterogeneity as presented in chapter 6 could be used.  This 

can support data pooling when the target group or hospital for which coverage estimates are 

being investigated is similar to the pool in both relative incidence and resistance patterns. 

However, it does not resolve the problem of coverage estimates when there is a lot of 

heterogeneity. Other methods, such as the use of true Bayesian priors or empirical Bayesian 

priors from meta-analysis of contributing relative incidence or resistance data, may address 

this, but were not fully explored in this thesis.  

9.2.3 Potential sources of bias 

A major challenge for any coverage assessment based on routine data is that there may be 

inherent bias in the underlying data. This is true also for the Bayesian decision tree analytical 

model for calculating WISCAs. In particular, there may be sampling bias (blood cultures are 

not all patients with the target infection syndrome), multiple counting (poor responders are 

repeatedly cultured and contribute more than one isolate, often a difficult to treat or drug-

resistant pathogen) and bias arising from selective testing.  
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Sampling bias is known to be problematic for lower-acuity infections, in particular urinary 

tract infections for which cultures may be obtained only when the patient is not getting better 

on first-line empiric therapy. Sampling bias should be relatively low for patients presenting 

with probable severe bacterial infections in high-income settings due to the perceived risks of 

missing a bloodstream infection. This is particularly true for neonates and children for whom 

on the whole the blood culture rates in Europe are higher than for adults (see chapter 5). 

However, children frequently present signs of bloodstream infection or sepsis when they are 

already on antibiotics. This is likely to introduce a pre-treatment bias with children who are 

slow responders but are in fact responding to their empiric regimen likely to have negative 

cultures whereas poor responders may have a higher frequency of positive cultures and may 

have episodes caused by difficult to treat bacteria. Similar problems are likely to be 

encountered in LMICs when in some cases blood cultures would only be taken in patients no 

improving on empiric treatment. Information on blood culture rate and antibiotic pre-treatment 

is not generally captured by most surveillance systems or reported for hospital antibiograms 

even though these data would be accessible.  

Multiple counting of episodes can be addressed by methods used in chapters 4, 5, and 6 

when a definition is provided for “an episode”, and isolates constituting a single episode are 

only included once for coverage estimation. This is not done consistently by hospitals when 

producing antibiograms, but is usually requested for surveillance purposes. Queries for 

electronic laboratory information management systems can be automated to ensure that only 

one isolate per episode is reported, but this is more work-intensive if a manual process is 

required.  

Most critical, perhaps, is the issue of bias arising from selective testing. For the WISCA 

approach described, it is desirable to maximise the use of information on susceptibility 

testing to support coverage estimation for a range of potential empiric regimens. Selective 

approaches towards laboratory testing and subsequent interpretation of these data are 

particularly problematic when inferences about susceptibility and resistances are not 

straightforward, as demonstrated in chapter 4. The unbiased application of interpretive 

algorithms can be difficult, in particular when inferences are unidirectional: resistance to 

beta-lactams can be inferred from methicillin-resistance in S. aureus but susceptibility to 

beta-lactams cannot be inferred from lack of methicillin-resistance; susceptibility to 

piperacillin-tazobactam in certain Gram-negative bacteria can be inferred from susceptibility 

to piperacillin, but not vice versa. In the approach for coverage estimation presented in this 

thesis any divergences between number of isolates and number of tested isolates for a given 

pathogen and regimen are visible, allowing  the identification of potential sources of bias, 
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such as reflex susceptibility testing. If present, however, the only method for addressing them 

would be to use informative priors based on observed testing patterns.  

A further bias in susceptibility testing results from this being done to inform clinical decision-

making at the level of the individual patient. Most hospitals have a range of antibiotics and 

therefore regimens that are included in an antibiotic formulary and can be used for patient 

treatment. However, it may be desirable to estimate coverage not only for current regimens 

but for empiric regimens that could potentially be used. Antibiotics not on the current 

formulary are unlikely to be used in susceptibility testing or, if they are used, unlikely to be 

requested or reported for hospital antibiograms or as part of surveillance.  

9.3 Implications and recommendations for future work 

The research presented in this thesis has implications for clinical practice and surveillance, 

as well as resulting in a number of avenues for further research.  

9.3.1 Implications for clinical practice 

Hospital antibiograms continue to be the main method of communicating microbiological data 

to clinicians and others involved in identifying suitable antibiotic regimens for local use. For 

example, the use of hospital antibiograms as means of tracking local resistance and to 

inform antibiotic selection is recommended as one key element of antibiotic stewardship in 

the UK and elsewhere. Based on the work presented in this thesis, the use of alternative 

methods that better reflect clinical reality and the coverage of considered regimens should be 

strongly encouraged.  

Moving to coverage-based metrics at hospital-level has several implications. Most 

importantly, a detailed exchange between clinicians and microbiologists needs to take place 

to address the following aspects:  

• What is the expected number of annual isolates for the target infection syndrome, and 

will this be sufficient to inform coverage estimation?  

• Are there any known algorithms, such as recommendations for obtaining cultures that 

are likely to bias the observed microbiological epidemiology, and can these be 

addressed without undue burden on patients or staff? What is the definition of a 

“clinical episode” to be used to ensure that repeat isolates of the same pathogen from 

the same patient can be eliminated from the source dataset for estimating coverage?  

• Are any susceptibility testing algorithms being used that could limit a full application of 

interpretive algorithms and result in biased coverage estimates?  
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• Is it possible to include antibiotics in susceptibility testing that are not currently used 

but could be of interest as alternatives to currently recommended options?   

Clinicians may feel strongly that recommendations for empiric regimens should be stratified 

by patient and other clinical factors. Suitable stratification factors to support tailoring empiric 

regimens to individual patient groups are likely to be similar across hospitals and include, for 

example, patient age, level of care (general ward or critical care), presence of underlying 

comorbidities (with repeated exposure to the healthcare system), type of infection 

(healthcare-associated or community acquired and so on. Stratification down to unit-level (for 

example, a particular orthopaedic ward in a specific hospital) may not actually be effective in 

supporting decision-making about empiric antibiotics for two reasons: The sample size by 

unit is likely to be extremely small, and important variations in key stratifying variables are 

likely to be lost, meaning that selected empiric regimens are actually insufficiently 

“personalised”. Grouping patients by stratification factors across the hospital for commonly 

targeted infection syndromes may instead adequately reflect any impact of the local 

microbiological epidemiology while still supporting the use of empiric regimens matched to 

risk level for difficult to treat infections.  

9.3.2 Implications for surveillance of antimicrobial resistance 

The purpose of surveillance is to establish antimicrobial resistance prevalence in a given 

setting or location and to track this over time. As outlined, this has traditionally been done by 

collecting data on indicator bacteria focusing on their resistance to specific antibiotic groups. 

In general, this currently relies on routine microbiological data which itself is obtained to 

address clinical problems.  

Surveillance could be modified or augmented to ensure that any data provided is also 

suitable for estimating coverage. To achieve this, the type of required data needs to be 

clearly defined. This would limit the number of programmed enquiries, where surveillance 

asks for data submission in a specific format, or could ensure that data ready to use for 

coverage estimation can be returned to sites, where all microbiology data are unselectively 

“sucked” into a surveillance database. 

Data required for estimating coverage based on the WISCA calculation method presented in 

this thesis have a very simple format: number of isolates (for each pathogen to be included in 

WISCA), number of isolates tested for concordance for the regimen of interest, number of 

isolates concordant for the regimen of interest. These data could easily be extracted from 

laboratory information systems in an automated query or identified from a comprehensive 

hospital microbiology dataset. Importantly, it may be necessary to expand the type and 
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number of surveyed bacteria to ensure that the resulting WISCAs adequately reflect the 

targeted microbiological epidemiology.  

To successfully implement such a strategy, it would be important to collect more 

comprehensive antibiotic susceptibility testing information than is currently done. 

Furthermore, oversight bodies charged with surveillance at a national or international level 

would need to be explicit about any assumptions and underlying algorithms for estimating 

coverage, including which interpretive criteria are used and how changes in criteria are 

addressed. This may have important implications for comparisons across time with sudden 

“jumps” in coverage. Currently, the impact of changes in the interpretation of susceptibility 

testing results is unknown as many surveillance databases do not collect these data. 

Ensuring that regimen coverage can be estimated from the same dataset also used for 

surveillance would increase the clinical relevance of these data, but also be more informative 

on the state of resistance in a given setting: changes in pathogen susceptibility to individual 

antibiotics are much more concerning if they result in reduced coverage compared to the 

next “broader” alternative. In fact, in addition to reporting on pathogen-specific antimicrobial 

resistance, it may be of interest to provide stratified WISCAs, for example by age group or by 

basic patient characteristics, which are generally reportable to surveillance databases as 

well. While coverage estimates at this level of pooling should not be directly used to inform 

clinical practice, they would nonetheless be informative to identify specific patient groups in 

whom antimicrobial resistance is consistently high or low across a range of geographical 

settings.  

9.3.3 Further development of the WISCA tool 

Chapters 4 and 5 addressed the potential limitations of using routine laboratory data or using 

adult data, respectively, to select the optimal empiric treatment regimens for childhood 

bloodstream infection. Chapters 6 and 7 outline an alternative approach to currently used 

cumulative antibiograms that can account for the target of empiric treatment being an 

infection syndrome rather than a specific pathogen, can adequately reflect variations in 

relative incidence and resistance patterns and can fully reflect the impact of limited sample 

size on the precision of coverage estimates.  

The explicit structure of the Bayesian decision tree reveals that coverage estimates may be 

strongly influenced by the selection of bacteria contributing to the WISCA. While it can be 

argued that coverage estimates should primarily be based on clinically important bacteria 

accounting for the majority of isolates in a given infection syndrome, the approach taken in 

chapter 7, it will be necessary to explore the impact of including or excluding certain 

pathogens on coverage estimates. Similarly, the impact of omitting information for infrequent 
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bacteria should be explored to ensure that rare but difficult to treat organisms do not exert a 

strong influence on overall coverage estimates. At the same time, the best and most clinically 

relevant approach towards composing the WISCA for coverage estimation should be 

discussed with clinicians. This should include the clinical validity of a WISCA90% (i.e. based 

on 90% of isolates identified in the target infection) or a Gram-negative/Gram-positive 

WISCA (which could be used to adapt empiric therapy after the causative species has been 

identified but prior to antimicrobial susceptibility data being available). 

The optimal method of meta-analysis for a decision-analytical tree based WISCA needs to be 

further defined. Most importantly, this needs to determine the role of and best approach 

towards data pooling. In particular, the role of empirical data-driven Bayesian priors or full 

Bayesian priors needs to be defined. Hierarchical analytical approaches could be necessary 

but would render coverage less interpretable to practising clinicians. Similarly, the need for 

and additional informational value of stratified coverage estimates should be explored. As 

shown in chapter 8, clinicians are strongly guided by patient characteristics in their decisions 

about whether antibiotics covering difficult to treat bacteria are required or not. Confirming or 

refuting this necessity based on microbiological data may strongly influence empiric regimen 

prescribing patterns.  

The best way of combining information across different patient groups needs to be further 

explored. Direct extrapolation from adults to children is unlikely to be valid, as shown in 

chapter 5. However, it is likely that regions with higher resistance levels in bacteria isolated 

from adults would also have higher resistance levels, albeit potentially affecting different 

bacteria and of a different pattern, in children. Combining data from different patient groups 

could be important to improve accuracy and precision of coverage estimates, but needs to be 

done in a valid and robust way.  

When stratified recommendations are desirable, it may not be possible to estimate coverage 

precisely enough to be informative for clinical decision-making.  In such instances, it would 

be important to pool data across settings with low expected heterogeneity: This could be 

data on antimicrobial resistance in specific organisms within a network of centres with similar 

case-mix, data on relative incidence and resistance of pathogens in a homogenous patient 

group or use of data from multiple sources combined with prior knowledge on the 

epidemiology of the target infectious syndrome for a specific geographical region (89).  

Consideration needs to be given to the optimal method of presentation of WISCA-based 

coverage estimates to be clinically useful. In the first instance, presenting coverage 

estimates in network, regional, national or supranational antimicrobial resistance reports 

would ensure that surveillance outputs include clinically relevant data. Several regions and 
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countries, for example England, Germany, the Netherlands and Switzerland, already offer 

web-based applications summarizing antimicrobial resistance surveillance. The reports 

generated by these applications likely already include data needed to estimate coverage 

given the correct programming. Taking a hospital-based perspective, it may be possible to 

provide simple tools based on the WISCA principle to support coverage estimation from local 

data. 

9.3.4 Addressing limitations and next steps 
 
Coverage estimates based on a WISCA reflect an aggregate analysis, and are based on the 

assumption of a strong association between discordant empiric treatment in severe infection 

and poor clinical outcomes. However, data supportive of this assumption for neonates and 

children are lacking and treatment outcomes in neonatal and childhood infection according to 

concordance or discordance of the eventually cultured bacteria with the empiric regimen 

used need to be evaluated.  It is feasible to extend the decision-tree based coverage 

estimates to include clinical outcomes. This approach could be used to investigate the impact 

of discordant empiric antibiotic therapy on outcomes, but also to ensure that bacteria for 

which an important association between discordant treatment and mortality is demonstrated 

can be appropriately weighted in the WISCA. 

 
The use of clinical decision support systems that use all available data at the patient level to 

predict whether an episode of severe infection is likely to be covered by a given regimen or 

not may supersede WISCA-based coverage estimation in certain settings. Such systems 

have been demonstrated to perform well when detailed information on factors likely to 

influence the probability of a specific pathogen with known expected resistance patterns is 

available electronically, for example from electronic hospital records (90). However, such 

systems rely on available data being complete and accurate to apply complex algorithms and 

machine learning to provide clinical feedback. Coverage estimates based on a WISCA 

already diverge considerably from current clinical practice, but may be more reliable in real 

life, where data completion of routine records can be patchy, and could well be more 

intuitively interpretable to clinicians than an automated alert based on a complex computer 

algorithm.  

Stratified coverage estimates based on the WISCA approach would allow for a risk factor-

based selection of optimal empiric antibiotic therapy. Evaluating coverage accounting for 

simple risk factors, such as patient age, need for intensive care support or infection being 

community- or hospital-acquired as was done in chapter 8 for use of last-resort antibiotics, 

would likely increase the clinical acceptability and relevance of the resulting treatment 

recommendations. 
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It is currently unclear how and when empiric regimens should be adapted in response to 

local outbreaks of difficult to treat bacteria as have been described, for example, for neonatal 

intensive care units. Such outbreaks may be prolonged with the outbreak pathogen 

potentially dominating the microbiological epidemiology in the affected unit for the duration of 

the outbreak. It will be necessary whether there is a threshold at which empiric regimens 

should be shifted to accommodate the “new” epidemiology (and therefore lower coverage of 

“old” regimens) and for shifting back once an outbreak has been brought under control. This 

can result in a unit-level escalation of empiric antibiotic regimens without any method for 

decision-making about unit-level de-escalation. Stratified analyses based on key patient and 

episode factors may be highly beneficial to ensuring that outbreaks do not skew coverage 

estimates at a higher level of aggregation, for example a neonatal intensive care unit 

outbreak having undue influence on coverage estimates for all neonates and children in a 

given hospital.  

Traditional approaches towards microbiological evaluation may soon be transformed by the 

advent of newer, more rapid and potentially more in-depth methods. For example, genotypic 

methods towards establishing antimicrobial resistance are rapidly becoming more available 

and widespread. For some pathogens, for whom there is a strong known association 

between genotype and antibiotic susceptibility phenotype, such as S. aureus, mec gene 

presence and methicillin-resistance, direct testing for the presence of relevant genes is 

already part of mainstay laboratory practice. However, the relationship between genotype 

and susceptibility phenotype can be complex, and this will need to be taken into 

account when coverage estimates are based on genotypic information.   

Even more importantly, the microbiological evaluation of individual critically ill patients is 

laborious, time-intensive, and currently still associated with a substantial delay between the 

identified need for treatment and final determination of the causative pathogen(s) and 

resistance patterns. Despite modern technologies shortening the time to completion of 

various steps, such as more rapid species identification using MALDI-TOF, direct PCR 

diagnostics from blood or other sample types so far have not been found to be reliable 

enough to supersede culture-based diagnostics. However, the fact that many severe 

bacterial infections are most likely caused by pathogens that previously colonize the affected 

host provides a unique opportunity to explore whether coverage estimates based on 

the resistome (i.e. the collection of resistance genes found in important microbiological 

niches) could provide a shortcut to better coverage estimates. Many key colonization sites, 

including the gut, throat and skin, are very accessible and can be sampled in a minimally 

invasive and virtually pain-free way. Some groups are already working to determine the 

relationship between coverage calculated based on invasive isolates and coverage 
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estimated from resistome data, the latter being based on testing of colonizing isolates 

from patients representative of the target population. Initial results are encouraging, but may 

need to address the need to ensure true representativeness of the patients 

providing resistome date of those eventually empirically treated for potential resistant 

infection. For example, basing coverage estimates for neonates on screening of the skin and 

gut resistome of all infants born at a given facility may not reflect the fact 

that newborns subsequently in need of antibiotic treatment may differ from health live-

borns discharged after a short stay on a postnatal ward.   

9.3.5 Conclusion  
 
Clinical decision-making regarding empiric regimens for severe neonatal and paediatric 

bacterial infections needs to take account of the microbiological epidemiology of the targeted 

infection syndrome. Relevant data are readily available for some infections in most high-

income settings, including for bloodstream infections which can present with critical illness 

and require timely concordant antibiotic therapy. Current methods of presenting these data 

are suboptimal in that the relative incidence of bacteria and resistance patterns in the target 

infection syndrome are not generally taken into account. Furthermore, point estimates are 

often presented without an indication of precision, preventing fair comparisons between the 

coverage offered by different empiric regimens.  

 
The weighted incidence syndromic combination antibiogram (WISCA) addresses several of 

these limitations. When interpreted as a Bayesian decision tree, the WISCA can be used to 

estimate coverage, reflect imprecision of these estimates and investigate a range of 

scenarios (inclusion/exclusion of pathogens, non-informative vs. informative priors and 

others). While more sophisticated approaches, such as clinical decision support tools, may 

enable more personalised empiric regimen choices, the decision tree-based WISCA could be 

useful in all settings with established clinical microbiological services. In particular, coverage 

using the presented approach could also be estimated based on other, more easily 

accessible microbiological data, for example from colonizing bacteria. Further development 

of this approach should address best ways of dealing with limited sample size, optimal 

methods for meta-analysis and the added value of stratification
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