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Abstract: A family of lifetime distributions is considered which covers many distributions as 

its special cases. Two measures of reliability are studied, 𝑅(𝑡) = 𝑃(𝑋 > 𝑡) and 𝑃 = 𝑃(𝑋 >

𝑌). Assuming the availability of some prior information on the parameter of interest, 

shrinkage estimators are developed for the powers of the scale parameter and reliability 

functions based on records. These proposed estimators are compared with the maximum 

likelihood estimators and uniformly minimum variance unbiased estimators of the parametric 

functions in terms of their relative efficiency. We establish that all the proposed estimators 

outperform the usual estimators as the true value of parameters approaches their hypothesised 

value. 
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1. Introduction 

 The reliability function 𝑅(𝑡)  is defined as the probability of failure-free operation 

until time 𝑡. Thus, if the random variable 𝑋 denotes the lifetime of an item or system, then 

𝑅(𝑡) = 𝑃(𝑋 > 𝑡). Another measure of reliability under stress strength setup is the probability 

𝑃 = 𝑃(𝑋 > 𝑌) which represents the reliability of an item or system of random strength 𝑋 

subject to random stress 𝑌. A lot of work has been done in the literature for the point 

estimation and testing of 𝑅(𝑡) and 𝑃. Inferences have been drawn for 𝑅(𝑡) and 𝑃 for a family 

of lifetime distributions by Chaturvedi and Malhotra (2016, 2017).  

 Many a times, an experimenter may possess some prior knowledge about the 

experimental conditions based on some past experience of the system under consideration. 

Thus, he may be able to give an initial guess on the parameter of interest. Given a prior 

estimate of the parameter, the aim is to obtain an estimator which incorporates this known 

information. Thompson (1968) introduced the concept of 'shrinkage estimators' wherein a 

standard estimator can be improved upon, in terms of reduction in its MSE, by shrinking it 



towards its natural origin on multiplying it by a shrinking factor. The idea is to obtain an 

estimator which is better near the natural origin and possibly worse when farther away. A lot 

of work has been done in the literature in the direction of shrinkage estimations. Pandey 

(1983) proposed various shrinkage estimators for the mean of exponential distribution. Siu-

Keung and Geoffrey (1996), Baklizi (2003) and Baklizi and Abu Dayyeh (2003) proposed 

shrinkage estimators of 𝑅(𝑡) and 𝑃 for one-parameter exponential distribution. 

 No one can resist being interested in record values. Records hold value in life-testing 

experiments. Some examples of record values can be the hottest day ever, the longest 

winning streak in professional basketball, the lowest stock market figure and so on. Chandler 

(1952) introduced the concept of record values. Based on records, inferential procedures for 

the parameters of different distributions have been developed by Habibi et al. (2006), Arashi 

and Emadi (2008), Razmkhah and Ahmadi (2011), Belaghi et al. (2015) and others. To the 

best of the knowledge of authors, no inferential procedures are available in literature for the 

shrinkage estimation of reliability functions based on records.  

 Let a random variable (𝑟𝑣) 𝑋 follow a distribution with probability density function 

(𝑝𝑑𝑓) 

 𝑓(𝑥; 𝑎, 𝜆, 𝜃) =
𝐺′(𝑥; 𝑎, 𝜃)

𝜆
𝑒𝑥𝑝 (−

𝐺(𝑥; 𝑎, 𝜃)

𝜆
) ; 𝑥 > 𝑎 ≥ 0, 𝜆 > 0 

(1.1) 

and cumulative distribution function (𝑐𝑑𝑓) 

 𝐹(𝑥; 𝑎, 𝜆, 𝜃) = 1 − 𝑒𝑥𝑝 (−
𝐺(𝑥; 𝑎, 𝜃)

𝜆
) ; 𝑥 > 𝑎 ≥ 0, 𝜆 > 0. (1.2) 

Here, 𝐺(𝑥; 𝑎, 𝜃) is a function of 𝑥 and may also depend on the parameters 𝑎 and 𝜃. 𝜃 may be 

vector valued. Moreover, 𝐺(𝑥; 𝑎, 𝜃) is a monotonically increasing function in 𝑥 

with 𝐺(𝑎; 𝑎, 𝜃) = 0, 𝐺(∞; 𝑎, 𝜃) =  ∞  and 𝐺′(𝑥; 𝑎, 𝜃) denotes the derivative of  

𝐺(𝑥; 𝑎, 𝜃) with respect to 𝑥. 𝜆 is a scale parameter for this family of lifetime distributions.  

 If we make the transformation 𝐺(𝑥; 𝑎, 𝜃) = −𝑙𝑜𝑔(1 − 𝐻(𝑥)), then  

𝑓(𝑥; 𝜆) =
𝐻′(𝑥)

𝜆
[1 − 𝐻(𝑥)]

1
𝜆

−1
 

which is the well-known proportional hazard rate model where 𝐻′(𝑥) =
𝑑

𝑑𝑥
𝐻(𝑥). Thus, the 

proportional hazard rate model considered by Ahmadi et al. (2016) and Basirat et al. (2016) is 

a particular case of our model in (1.1) and the results of this paper can be extended to the 

proportional hazard model. 



We note that equation (1.1) represents a family of lifetime distributions since it covers the 

following lifetime distributions as specific cases: 

I. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥 and 𝑎 = 0, we get the one-parameter exponential distribution 

[Johnson and Kotz (1970, p.166)]. 

II. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝑝, 𝜃 = 𝑝, 𝑝 > 0  and 𝑎 = 0, it turns out to be Weibull distribution 

[Johnson and Kotz (1970, p.250)]. 

III. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥2  and 𝑎 = 0, it gives Rayleigh distribution [Sinha (1986, p. 200)]. 

IV. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔(1 + 𝑥𝑏) , 𝜃 = 𝑏, 𝑏 > 0,  and 𝑎 = 0, it leads us to  Burr 

distribution [Burr (1942) and Cislak and Burr (1968)]. 

V. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔 (
𝑥

𝑎
) and 𝑎 > 0, we get Pareto distribution [Johnson and Kotz 

(1970, p.233)]. 

VI. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔 (1 +
𝑥

𝜈
) , 𝜃 = 𝜈, 𝜈 > 0 and 𝑎 = 0, it is called Lomax (1954) 

distribution. 

VII. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔 (1 +
𝑥𝑏

𝜈
) , 𝜃 = (𝑏, 𝜈), 𝑏 > 0, 𝜈 > 0 and 𝑎 = 0, it becomes Burr 

distribution with scale parameter  𝜈 [Tadikamalla (1980)]. 

VIII. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝛾 𝑒𝑥𝑝(𝜈𝑥) , 𝜃 = (𝛾, 𝜈), 𝛾 > 0, 𝜈 > 0 and 𝑎 = 0, it gives the 

modified Weibull distribution of Lai et al. (2003). 

IX. For 𝐺(𝑥; 𝑎, 𝜃) = (𝑥 − 𝑎) +
𝜈

𝛾
𝑙𝑜𝑔 (

𝑥+𝜈

𝑎+𝛾
) , 𝜃 = (𝛾, 𝜈), 𝜈 > 0, 𝛾 > 0, we get the 

generalised Pareto distribution of  Ljubo (1965). 

X. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑏𝑥 +
𝜈

2
𝑥2, 𝜃 = (𝑏, 𝜈) 𝜈 > 0, 𝑏 > 0 and 𝑎 = 0, we get the linear 

exponential distribution [Mahmoud and Al-Nagar (2009)].  

XI. For 𝐺(𝑥; 𝑎, 𝜃) = (1 + 𝑥𝑏)𝜈 − 1, 𝜃 = (𝑏, 𝜈), 𝑏 > 0, 𝜈 > 0 and 𝑎 = 0, we get the 

generalised power Weibull distribution [Nikulin and Haghighi (2006)]. 

XII. For 𝐺(𝑥; 𝑎, 𝜃) =
𝛽

𝑏
(𝑒𝑏𝑥 − 1), 𝜃 = (𝑏, 𝛽), 𝛽 > 0, 𝑏 > 0 and 𝑎 = 0, we get the 

Gompertz distribution [Khan and Zia (2009)]. 

XIII. For 𝐺(𝑥; 𝑎, 𝜃) = (𝑒𝑥𝑏
− 1) , 𝜃 = 𝑏, 𝑏 > 0 and 𝑎 = 0, this gives Chen (2000) 

distribution. 

XIV. For 𝐺(𝑥; 𝑎, 𝜃) = (𝑥 − 𝑎), we get the two-parameter exponential distribution 

[Ahsanullah (1980)]. 



We note from Chaturvedi and Malhotra (2016) that the reliability function at time 𝑡 is given 

by 

 𝑅(𝑡) = 𝑒𝑥𝑝 (
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
) 

(1.3) 

and for independent 𝑟𝑣𝑠 𝑋 and 𝑌 belonging to the same family of distribution, i.e. 

𝐺(𝑥; 𝑎, 𝜃) = 𝐺(𝑦; 𝑎, 𝜃) with 𝑝𝑑𝑓 𝑓(𝑥; 𝑎, 𝜆1, 𝜃 ) and 𝑓(𝑦; 𝑎, 𝜆2, 𝜃),  

 𝑃 =
𝜆1

𝜆1 + 𝜆2
. (1.4) 

 Let 𝑋1, 𝑋2, … be an infinite sequence of independent and identically distributed 

(𝑖𝑖𝑑) 𝑟𝑣𝑠  from (1.1). An observation 𝑋𝑗 will be called an upper record value (or simply a 

record) if its value exceeds than all previous observations. Thus 𝑋𝑗 is a record if 𝑋𝑗 > 𝑋𝑖 for 

every 𝑖 < 𝑗. The record time sequence {𝑇𝑛 , 𝑛 ≥ 0} is defined as 

{
𝑇0 = 1           ; 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1

𝑇𝑛 = 𝑚𝑖𝑛{𝑗 ∶ 𝑋𝑗 > 𝑋𝑇𝑛−1
} ; 𝑛 ≥ 1

 

and the record value sequence {𝑅𝑛} is then defined as 

𝑅𝑛 = 𝑋𝑇𝑛
 ; 𝑛 = 0,1,2, … 

Assuming the parameters 𝑎 and 𝜃 are known, the likelihood function of the parameter 𝜆 

given the first 𝑛 + 1 upper record values 𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛 is 

𝐿(𝜆|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) = 𝑓(𝑅𝑛; 𝑎, 𝜆, 𝜃) ∏
𝑓(𝑅𝑖; 𝑎, 𝜆, 𝜃)

1 − 𝐹(𝑅𝑖; 𝑎, 𝜆, 𝜃)

𝑛−1

𝑖=0

. 

It is easy to see that 

 
𝐿(𝜆|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) =

𝑒𝑥𝑝 (
−𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆
)

𝜆𝑛+1
∏ 𝐺′(𝑅𝑖; 𝑎, 𝜃

𝑛

𝑖=0

). 
(1.5) 

Chaturvedi and Malhotra (2016) proved using equation (1.5) and the factorization theorem 

that 𝐺(𝑅𝑛; 𝑎, 𝜃) is a complete and sufficient statistic for 𝜆 with 𝑝𝑑𝑓 

 ℎ(𝐺(𝑟𝑛; 𝑎, 𝜃)|𝜆) =
𝐺(𝑟𝑛; 𝑎, 𝜃)

𝑛

𝛤(𝑛 + 1)𝜆𝑛+1
𝑒𝑥𝑝 {

−𝐺(𝑟𝑛; 𝑎, 𝜃)

𝜆
} 

(1.6) 

and hence they derived the MLES and UMVUES of the parameter 𝜆 and reliability 

functions  𝑅(𝑡) and 𝑃.  

 The purpose of this paper is many-fold. We consider a family of lifetime distributions, 

which covers as many as fourteen distributions as its specific cases. Assuming the parameters 

𝑎 and 𝜃 are known, in Section 2 we propose shrinkage estimators for the powers of the scale 

parameter 𝜆. We consider estimation of powers of the parameter because they come in 



expressions for the moments of different distributions and hazard-rate. In Sections 3 and 4, 

respectively, we develop shrinkage estimators of reliability functions 𝑅(𝑡) and 𝑃. In Section 

5, numerical findings are presented to compare the performance of the proposed shrinkage 

estimators with the existing MLES and UMVUES. Finally, in Section 6 we discuss the case 

when all the parameters 𝜆, 𝑎 and 𝜃 are unknown and in Section 7 we discuss and conclude 

our study. 

 

2. Shrinkage Estimators of Powers of 𝝀 

 Let us suppose that the prior guess value of 𝜆 is 𝜆𝑜 and we want to test the hypothesis 

𝐻𝑜: 𝜆 = 𝜆𝑜 

𝐻1: 𝜆 ≠ 𝜆𝑜 . 

We define the shrinkage estimator of 𝜆𝑝, 𝑝 ∈ (−∞, ∞) and 𝑝 ≠ 0 based on its MLE as 

 𝜆�̂̂� = 𝛼1𝜆�̂� + (1 − 𝛼1)𝜆𝑜
𝑝 ;  0 ≤ 𝛼1 ≤ 1, 

(2.1) 

where 𝛼1 is obtained by minimising the MSE of 𝜆�̂̂� and is given by 

 

 
𝛼1 =

(𝜆𝑝 − 𝜆𝑜
𝑝)(𝐸(𝜆�̂�) − 𝜆𝑜

𝑝)

𝐸(𝜆2�̂�) + 𝜆𝑜
2𝑝

− 2𝜆𝑜
𝑝

𝐸(𝜆�̂�)
. (2.2) 

where, 

𝐸(𝜆�̂�) =  (
𝜆

𝑛 + 1
)

𝑝 𝛤(𝑛 + 1 + 𝑝)

𝛤(𝑛 + 1)
 

and 

𝐸(𝜆2�̂�) =  (
𝜆

𝑛 + 1
)

2𝑝 𝛤(𝑛 + 1 + 2𝑝)

𝛤(𝑛 + 1)
. 

Since 𝜆𝑝 is unknown, we estimate it by its MLE,  𝜆�̂� = (
𝐺(𝑅𝑛;𝑎,𝜃)

𝑛+1
)

𝑝

. Next, we propose 

another shrinkage estimator of 𝜆𝑝 based on its MLE and using the likelihood ratio test. From 

Chaturvedi and Malhotra (2016), 2𝜆ₒ−1𝐺(𝑅𝑛; 𝑎, 𝜃)~𝜒2(𝑛+1)
2  and the critical region of the test 

is given by 

{0 < 𝐺(𝑅𝑛; 𝑎, 𝜃) < 𝑘ₒ} ∪ {𝑘ₒ′ < 𝐺(𝑅𝑛; 𝑎, 𝜃) < ∞}, 

where 𝑘ₒ  and 𝑘ₒ′ are obtained such that 𝑘ₒ =
𝜆ₒ

2
𝜒2(𝑛+1)

2 (
𝛼

2
) and 𝑘ₒ′ =

𝜆ₒ

2
𝜒2(𝑛+1)

2 (1 −
𝛼

2
). 

We state that these critical values are conventional and divide the significance level 𝛼 

equally. Let 𝜏1 be the observed value of 
2𝐺(𝑅𝑛;𝑎,𝜃)

𝜆𝑜
. Then, 𝑝 −value for this test is 



𝑧1 = 2 𝑚𝑖𝑛 {1 − 𝐹(𝜏1), 𝐹(𝜏1)},  

where 𝐹(𝜏1) is the 𝑐𝑑𝑓 of 𝜒2 distribution with 2(𝑛 + 1) degrees of freedom at the point 𝜏1. 

Since a large value of 𝑧1 indicates that 𝜆 is close to the guess value 𝜆𝑜 [see Siu-Keung and 

Geoffrey (1996)], we can use 𝑧1 to form the shrinkage estimator of 𝜆𝑝 as 

 𝜆𝑧1

�̂̂� = (1 − 𝑧1)𝜆�̂� + 𝑧1𝜆𝑜
𝑝.  

(2.2) 

Now, we propose a shrinkage estimator of 𝜆𝑝 based on its UMVUE as 

 𝜆�̃̃� = 𝛼2𝜆�̃� + (1 − 𝛼2)𝜆𝑜 
𝑝 ;  0 ≤ 𝛼2 ≤ 1,  

(2.3) 

where 𝛼2 is obtained by minimising the MSE of 𝜆�̃̃� and is given by 

 

𝛼2 =
(𝜆𝑝 − 𝜆𝑜

𝑝)(𝐸(𝜆�̃�) − 𝜆𝑜
𝑝)

𝐸(𝜆2�̃�) + 𝜆𝑜
2𝑝

− 2𝜆𝑜
𝑝

𝐸(𝜆�̃�)
 

                                         =  
(𝜆𝑝 − 𝜆𝑜

𝑝)
2

{
𝛤(𝑛 + 1)𝛤(𝑛 + 2𝑝 + 1)

𝛤2(𝑛 + 𝑝 + 1)
} 𝜆2𝑝 + 𝜆𝑜

2𝑝 − 2𝜆𝑜
𝑝𝜆𝑝

. 

(2.4) 

Since 𝜆𝑝 is unknown, we estimate is by its UMVUE, 𝜆�̃� =
𝛤(𝑛+1)

𝛤(𝑛+𝑝+1)
𝐺(𝑅𝑛; 𝑎, 𝜃)

𝑝
. Also, we 

can define another shrinkage estimator of 𝜆𝑝 based on its UMVUE using the 𝑝 −value 𝑧1 

defined above as 

 𝜆𝑧1

�̃̃� = (1 − 𝑧1)𝜆�̃� + 𝑧1𝜆𝑜
𝑝. 

(2.5) 

3. Shrinkage Estimators of 𝑹(𝒕) 

 Let us suppose that the prior guess value of 𝑅(𝑡) is 𝑅𝑜 and we want to test the 

hypothesis 

𝐻𝑜: 𝑅(𝑡) = 𝑅𝑜 

𝐻1: 𝑅(𝑡) ≠ 𝑅𝑜 . 

We define the shrinkage estimator of 𝑅(𝑡) based on its MLE as 

 �̂̂�(𝑡) =  𝛼3�̂�(𝑡) + (1 − 𝛼3)𝑅𝑜  ;   0 ≤ 𝛼3 ≤ 1, 
(3.1) 

where 𝛼3 is obtained by minimising the MSE of �̂̂�(𝑡) and is given by 



 𝛼3 =
(𝑅(𝑡) − 𝑅𝑜) (𝐸 (�̂�(𝑡)) − 𝑅𝑜)

𝐸 ((�̂�(𝑡))
2

) + 𝑅𝑜
2 − 2𝑅𝑜𝐸 (�̂�(𝑡))

. (3.2) 

We get from Chaturvedi and Malhotra (2016) that 

𝐸 (�̂�(𝑡)) =  
2

𝑛!
[
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
]

𝑛+1
2

𝐾𝑛+1 (2√
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
), 

where  𝐾𝑟(. ) is modified Bessel function of second kind of order 𝑟 . Similarly,  

𝐸 ((�̂�(𝑡))
2

) =  
2

𝑛!
[2

(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
]

𝑛+1
2

𝐾𝑛+1 (2√2
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
). 

Since 𝑅(𝑡) is unknown, we estimate it by its MLE, �̂�(𝑡) = 𝑒𝑥𝑝 (−(𝑛 + 1)
𝐺(𝑡;𝑎,𝜃)

𝐺(𝑅𝑛;𝑎,𝜃)
). It is 

worth mentioning here that Baklizi (2003) obtained approximate expressions for 𝐸 (�̂�(𝑡)) 

and 𝐸 ((�̂�(𝑡))
2

)whereas we have derived their exact expressions. We may note that testing 

𝑅(𝑡) = 𝑅𝑜 is equivalent to testing 𝜆 = 𝜆𝑜 where 𝜆𝑜 =
𝐺(𝑡;𝑎,𝜃)

𝑙𝑜𝑔 (
1

𝑅𝑜
)
. Thus, testing  

𝐻𝑜: 𝑅(𝑡) = 𝑅𝑜 

𝐻1: 𝑅(𝑡) ≠ 𝑅𝑜 

is equivalent to  

𝐻𝑜: 𝜆 = 𝜆𝑜  

 𝐻1: 𝜆 ≠ 𝜆𝑜  

where 𝜆𝑜 =
𝐺(𝑡;𝑎,𝜃)

𝑙𝑜𝑔 (
1

𝑅𝑜
)
. On substituting this value of 𝜆𝑜 in the likelihood ratio test in Section 2,  

the critical region of the test is given by 

{0 < 𝐺(𝑅𝑛; 𝑎, 𝜃) < 𝑘ₒ} ∪ {𝑘ₒ′ < 𝐺(𝑅𝑛; 𝑎, 𝜃) < ∞}, 

where 𝑘ₒ  and 𝑘ₒ′ are obtained such that 

𝑘ₒ =
𝐺(𝑡;𝑎,𝜃)

2𝑙𝑜𝑔 (
1

𝑅𝑜
)

𝜒2(𝑛+1)
2 (

𝛼

2
) and 𝑘ₒ′ =

𝐺(𝑡;𝑎,𝜃)

2𝑙𝑜𝑔 (
1

𝑅𝑜
)

𝜒2(𝑛+1)
2 (1 −

𝛼

2
). 



Let 𝜏2 be the observed value of 
2𝐺(𝑅𝑛;𝑎,𝜃)𝑙𝑜𝑔 (

1

𝑅𝑜
)

𝐺(𝑡;𝑎,𝜃)
. Then, 𝑝 −value for this test is 

𝑧2 = 2 𝑚𝑖𝑛 {1 − 𝐹(𝜏2), 𝐹(𝜏2)},  

where 𝐹(𝜏2) is the 𝑐𝑑𝑓 of 𝜒2 distribution with 2(𝑛 + 1) degrees of freedom at the point 𝜏2. 

Since a large value of 𝑧2 indicates that 𝑅(𝑡) is close to the guess value 𝑅𝑜, we can use 𝑧2 to 

form the shrinkage estimator of 𝑅(𝑡) as 

 �̂̂�(𝑡)𝑍2
= (1 − 𝑧2)�̂�(𝑡) + (𝑧2)𝑅𝑜 . 

 

(3.3) 

Now we propose shrinkage estimator of 𝑅(𝑡) based on its UMVUE as 

 �̃̃�(𝑡) = 𝛼4�̃�(𝑡) + (1 − 𝛼4)𝑅𝑜 ;  0 ≤ 𝛼4 ≤ 1, 
 

(3.4) 

where  𝛼4 is obtained by minimising the MSE of �̃̃�(𝑡)  and is given by 

 

𝛼4 =
(𝑅(𝑡) − 𝑅𝑜) (𝐸 (�̃�(𝑡)) − 𝑅𝑜)

𝐸(�̃�(𝑡)2) + 𝑅𝑜
2 − 2𝑅𝑜𝐸 (�̃�(𝑡))

 

=
(𝑅(𝑡) − 𝑅𝑜)2

𝐸(�̃�(𝑡)2) + 𝑅𝑜
2 − 2𝑅𝑜𝑅(𝑡)

. 

(3.5) 

We get from Chaturvedi and Malhotra (2016) that 

𝐸(�̃�(𝑡)2) =
1

𝑛!
{

𝐺(𝑡; 𝑎, 𝜃)

𝜆
}

(𝑛+1)

𝑒𝑥𝑝 {
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
} [

𝜆𝑎𝑛

𝐺(𝑡; 𝑎, 𝜃)

− 𝑎𝑛−1𝑒𝑥𝑝 {
𝐺(𝑡; 𝑎, 𝜃)

𝜆
} 𝐸𝑖 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

+ ∑ 𝑎𝑖 { ∑
(𝑚 − 1)!

(𝑛 − 𝑖 − 1)!

𝑛−𝑖−1

𝑚=1

(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛−𝑖−𝑚−1𝑛−2

𝑖=0

−
1

(𝑛 − 𝑖 − 1)!
(

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛−𝑖−1

𝑒𝑥𝑝 (
𝐺(𝑡; 𝑎, 𝜃)

𝜆
) 𝐸𝑖 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)}

+ ∑ 𝑎𝑖(𝑖 − 𝑛)! (
𝜆

𝐺(𝑡; 𝑎, 𝜃)
)

2𝑛

𝑖=𝑛+1

𝑖−𝑛+1

∑
1

𝑟!

𝑖−𝑛

𝑟=0

(
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑟

] 

Since 𝑅(𝑡) is unknown, we estimate is by its UMVUE,  



 

�̃�(𝑡) = {
[1 −

𝐺(𝑡; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
]

𝑛

 ;    𝐺(𝑡; 𝑎, 𝜃) < 𝐺(𝑅𝑛; 𝑎, 𝜃)

0             ;         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 Also, we can define another shrinkage estimator of 𝑅(𝑡) based on its UMVUE using 

𝑝 −value 𝑧2 defined above as 

 �̃̃�(𝑡)𝑧2
= (1 − 𝑧2)�̃�(𝑡) +  𝑧2𝑅𝑜 . 

 

(3.6) 

4. Shrinkage Estimators of 𝑷 

 Let us suppose that the prior guess value of 𝑃 is 𝑃𝑜 and we want to test the hypothesis 

𝐻𝑜: 𝑃 = 𝑃𝑜 

𝐻1: 𝑃 ≠ 𝑃𝑜 . 

For 𝑘 =
𝑃𝑜

1−𝑃𝑜
, this hypothesis is equivalent to 

𝐻𝑜: 𝜆1 = 𝑘𝜆2 

𝐻1: 𝜆1 ≠ 𝑘𝜆2. 

We define the shrinkage estimator of 𝑃 based on its MLE as 

 �̂̂� = 𝛼5�̂� + (1 − 𝛼5)𝑃𝑜  ;   0 ≤ 𝛼5 ≤ 1, 
 

(4.1) 

where  𝛼5 is obtained by minimising the MSE of �̂̂� and is given by 

 𝛼5 =
(𝑃 − 𝑃𝑜)(𝐸(�̂�) − 𝑃𝑜)

𝐸(�̂�2) + 𝑃𝑜
2 − 2𝑃𝑜𝐸(�̂�)

. (4.2) 

In order to obtain 𝐸(�̂�) and 𝐸(�̂�2), we first obtain the 𝑝𝑑𝑓 of  �̂�. For this we re-write the 

MLE of 𝑃 from Chaturvedi and Malhotra (2016) as: 

�̂� = (1 +
𝜆2̂

𝜆1̂

)

−1

 

                                 = (1 +
𝜆2

𝜆1
𝐹(2(𝑚+1),2(𝑛+1)))

−1

, 



where the 𝑟𝑣 𝐹(2(𝑚+1),2(𝑛+1))  follows 𝐹 −distribution with (2(𝑚 + 1), 2(𝑛 + 1)) degrees of 

freedom and has 𝑝𝑑𝑓: 

𝑓(𝐹) =
(

𝑚 + 1
𝑛 + 1 )

𝑚+1

𝛽(𝑚 + 1, 𝑛 + 1)

𝐹𝑚

[1 +
𝑚 + 1
𝑛 + 1 𝐹]

𝑚+𝑛+2   ; 0 ≤ 𝐹 ≤ ∞. 

Making the transformation 

(1 +
𝜆2

𝜆1
𝐹(2(𝑚+1),2(𝑛+1)))

−1

= �̂�, 

 the 𝑝𝑑𝑓of �̂� comes out to be 

𝑓(�̂�) =
(

𝜆2

𝜆1

(𝑛 + 1)
(𝑚 + 1)

)
𝑛+1

𝛽(𝑚 + 1, 𝑛 + 1)

�̂�𝑛(1 − �̂�)
𝑚

[1 + �̂� (
𝜆2

𝜆1

(𝑛 + 1)
(𝑚 + 1)

− 1)]
𝑚+𝑛+2   ; 0 ≤ �̂� ≤ 1. 

If 𝜆1(𝑚 + 1) = 𝜆2(𝑛 + 1), 

𝑓(�̂�) =  
1

𝛽(𝑚 + 1, 𝑛 + 1)
�̂�𝑛(1 − �̂�)

𝑚
  ;   0 ≤ �̂� ≤ 1 

and 

𝐸(�̂�𝑙) =
𝛽(𝑛 + 𝑙 + 1, 𝑚 + 1)

𝛽(𝑚 + 1, 𝑛 + 1)
. 

If 𝜆1(𝑚 + 1) ≠ 𝜆2(𝑛 + 1), then 

𝐸(�̂�𝑙) =
(

𝜆2

𝜆1

(𝑛 + 1)
(𝑚 + 1)

)
𝑛+1

𝛽(𝑚 + 1, 𝑛 + 1)
∫

�̂�𝑛+𝑙 (1 − �̂�)
𝑚

[1 + �̂� (
𝜆2

𝜆1

(𝑛 + 1)
(𝑚 + 1)

− 1)]
𝑚+𝑛+2

1

0

  𝑑�̂�. 

Putting 1 + �̂� (
𝜆2

𝜆1

(𝑛+1)

(𝑚+1)
− 1) = 𝑢, 

𝐸(�̂�𝑙) =
(

𝜆2

𝜆1

(𝑛 + 1)
(𝑚 + 1)

)
𝑛+1

𝛽(𝑚 + 1, 𝑛 + 1)
(

𝜆2

𝜆1

(𝑛 + 1)

(𝑚 + 1)
− 1)

−𝑙−𝑛−𝑚−1

∫ 𝑢−𝑛−𝑚−2(𝑢 − 1)𝑙+𝑛 (
𝜆2

𝜆1

(𝑛 + 1)

(𝑚 + 1)
− 𝑢)

𝑚

𝑑𝑢

𝜆2
𝜆1

(𝑛+1)
(𝑚+1)

1

 



               =
1

𝛽(𝑚 + 1, 𝑛 + 1)
(

𝜆1(𝑚 + 1)

𝜆2(𝑛 + 1)
)

𝑙

[1 −
𝜆1(𝑚 + 1)

𝜆2(𝑛 + 1)
]

−𝑙−𝑚−𝑛−1

 ∑(−1)𝑗 (
𝑚

𝑗
)

𝑚

𝑗=0

(
𝜆1(𝑚 + 1)

𝜆2(𝑛 + 1)
)

𝑗

 

                   ∑(−1)𝑘 (
𝑛 + 𝑙

𝑘
)

 𝑛+𝑙

𝑘=0

𝐼 (
𝜆2

𝜆1

(𝑛 + 1)

(𝑚 + 1)
, 𝑗 + 𝑘 − 𝑛 − 𝑚 − 2), 

where 𝐼(𝑐, 𝑝) = ∫ 𝑡𝑝𝑑𝑡 = {
𝑐𝑝+1−1

𝑝+1
 ; 𝑝 ≠ −1

log(𝑐) ; 𝑝 = −1

𝑐

1
. 

Since 𝜆1 and  𝜆2 are unknown, we estimate them by their MLES. Next, we propose another 

shrinkage estimator of 𝑃 based on the MLE and using the likelihood ratio test. From 

Chaturvedi and Malhotra (2016),  

𝐺(𝑅𝑛; 𝑎, 𝜃)

𝐺(𝑅𝑚
∗ ; 𝑎, 𝜃)

~
(𝑛 + 1)𝜆1

(𝑚 + 1)𝜆2
𝐹2(𝑛+1),2(𝑚+1), 

and the critical region is given by  

{
𝐺(𝑅𝑛; 𝑎, 𝜃)

𝐺(𝑅𝑚
∗ ; 𝑎, 𝜃)

< 𝑘2} ∪ {
𝐺(𝑅𝑛; 𝑎, 𝜃)

𝐺(𝑅𝑚
∗ ; 𝑎, 𝜃)

> 𝑘2′}, 

where 𝑘2 =
𝑘(𝑛+1)

(𝑚+1)
𝐹2(𝑛+1),2(𝑚+1) (

𝛼

2
) and 𝑘2′ =

𝑘(𝑛+1)

(𝑚+1)
𝐹2(𝑛+1),2(𝑚+1) (1 −

𝛼

2
). We state that 

these critical values are conventional and divide the significance level 𝛼 equally.Let 𝜏3 be the 

observed value of (
𝐺(𝑅𝑛;𝑎,𝜃)

𝑘𝐺(𝑅𝑚
∗ ;𝑎,𝜃)

) (
𝑚+1

𝑛+1
). Then, 𝑝 −value for this test is 

𝑧3 = 2𝑚𝑖𝑛{1 − 𝐹(𝜏3), 𝐹(𝜏3)}, 

where 𝐹(𝜏3) is the 𝑐𝑑𝑓 of  𝐹 −distribution with (2(𝑛 + 1), 2(𝑚 + 1)) degrees of freedom at 

the point 𝜏3. Since a large value of 𝑧3 indicates that 𝑃 is close to the guess value 𝑃𝑜, we can 

use 𝑧3 to form the shrinkage estimator of 𝑃 as 

 �̂̂�𝑧3
= (1 − 𝑧3)�̂� + 𝑧3𝑃𝑜 . 

 

(4.3) 

Now, we propose a shrinkage estimator of 𝑃 based on UMVUE as 

 �̃̃� = 𝛼6�̃� + (1 − 𝛼6)𝑃𝑜   ;   0 ≤ 𝛼6 ≤ 1, 
 

(4.4) 

where 𝛼6 is obtained by minimising the MSE of  �̃̃� and is given by 



 

𝛼6 =
(𝑃 − 𝑃𝑜)(𝐸(�̃�) − 𝑃𝑜)

𝐸(�̃�2) + 𝑃𝑜
2 − 2𝑃𝑜𝐸(�̃�)

 

=
(𝑃 − 𝑃𝑜)2

𝐸(�̃�2) + 𝑃𝑜
2 − 2𝑃𝑜𝑃

. 

(4.5) 

To obtain the expression for 𝐸(�̃�2), from Chaturvedi and Malhotra (2016) we get 

𝐸(�̃�2) = ∑ ∑ 𝑎𝑖𝑎𝑗𝐸 [(
𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

𝐺(𝑅𝑚; 𝑎2, 𝜃2)
)

𝑖+𝑗+2

𝐼 (𝐺 (𝑅𝑛; 𝑎1, 𝜃1) < 𝐺(𝑅𝑚; 𝑎2, 𝜃2))]

𝑚−1

𝑗=0

𝑚−1

𝑖=0

 

             + ∑ ∑ 𝑏𝑖𝑏𝑗

𝑛−1

𝑗=0

𝑛−1

𝑖=0

 𝐸 [(
𝐺(𝑅𝑚; 𝑎2, 𝜃2)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
)

𝑖+𝑗

𝐼 (𝐺(𝑅𝑚; 𝑎2, 𝜃2) < 𝐺 (𝑅𝑛; 𝑎1, 𝜃1))], 

where 𝑎𝑖 =
(−1)𝑖𝑚!𝑛!

(𝑚−1−𝑖)!(𝑛+𝑖+1)!
 and 𝑏𝑖 =

(−1)𝑖𝑚!𝑛!

(𝑚+𝑖)!(𝑛−𝑖)!
. We have for a 𝑟𝑣  𝐹 following 

𝐹 −distribution with (2(𝑛 + 1), 2(𝑚 + 1)) degrees of freedom,  

𝐸 [(
𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

𝐺(𝑅𝑚; 𝑎2, 𝜃2)
)

𝑖+𝑗+2

𝐼 (𝐺 (𝑅𝑛; 𝑎1, 𝜃1) < 𝐺(𝑅𝑚; 𝑎2, 𝜃2))] 

=
(

𝜆1

𝜆2
)

𝑖+𝑗+2

(
𝑛 + 1
𝑚 + 1)

𝑖+𝑗+𝑛+3

𝛽(𝑛 + 1, 𝑚 + 1)
∫

𝐹𝑛+𝑖+𝑗+2

[1 + (
𝑛 + 1
𝑚 + 1) 𝐹]

𝑛+𝑚+2 𝑑𝐹 .

1

0

 

Similarly,  

𝐸 [(
𝐺(𝑅𝑚; 𝑎2, 𝜃2)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
)

𝑖+𝑗

𝐼 (𝐺(𝑅𝑚; 𝑎2, 𝜃2) < 𝐺 (𝑅𝑛; 𝑎1, 𝜃1))] 

=
(

𝜆2

𝜆1
)

𝑖+𝑗

(
𝑚 + 1
𝑛 + 1 )

𝑖+𝑗+𝑚+1

𝛽(𝑚 + 1, 𝑛 + 1)
∫

𝐹𝑚+𝑖+𝑗

[1 + (
𝑚 + 1
𝑛 + 1 ) 𝐹]

𝑛+𝑚+2 𝑑𝐹 .

1

0

 

Since 𝜆1 and  𝜆2 are unknown, they are estimated by their UMVUES. Finally, we propose a 

shrinkage estimator of 𝑃 based on its UMVUE using the 𝑝 −value 𝑧3 defined above as 



 �̃̃�𝑧3
= (1 − 𝑧3)�̃� + 𝑧3𝑃𝑜 .   

 

(4.6) 

5. Numerical Findings 

 In this section we investigate the performance of the proposed estimators in previous 

sections through Monte Carlo simulation. First, we compare the shrinkage estimators of 𝜆𝑝 

with its MLE, 𝜆�̂� and UMVUE, 𝜆�̃�. Since the family of lifetime distributions in (1.1) has 

fourteen distributions as special cases, thus in order to obtain generalised results using the 

distribution property of records in equation (1.6), we simulate random numbers from the 

distribution of the complete and sufficient statistic of the family (1.1) for a specified number 

of records 𝑛 + 1 and scale parameter 𝜆 [see Arnold et al. (1998)]. In this regard, we simulate 

1000 random numbers from gamma distribution with shape parameter 𝑛 + 1 = 5 and scale 

parameter 𝜆 where 𝜆 is sequence from 1,2, … ,15. For each value of 𝜆, we calculate the 

average estimate of the MLE and UMVUE of 𝜆𝑝 which in turn are used to calculate the 𝛼1 

and 𝛼2 respectively. Using these values we calculate the MSE of proposed shrinkage 

estimators of 𝜆𝑝. The results are shown in Table 1. 

 

Table 1: Shrinkage estimators of 𝜆 when the hypothesised value of 𝜆 is 𝜆𝑜 = 3. 

𝜆 �̂� �̃� �̂̂� �̂̂�𝑧1
 �̃̃� �̃̃�𝑧1

 

2.000 2.017543 2.017543 2.800457 2.450565 2.423054 2.450565 

2.500 2.521929 2.521929 2.985296 2.896483 2.915205 2.896483 

2.995 3.021270 3.021270 3.000001 3.002600 3.000006 3.002600 

2.996 3.022279 3.022279 3.000001 3.002738 3.000007 3.002738 

2.997 3.023288 3.023288 3.000001 3.002877 3.000008 3.002877 

2.998 3.024297 3.024297 3.000001 3.003017 3.000009 3.003017 

2.999 3.025306 3.025306 3.000002 3.003159 3.000011 3.003159 

3.000 3.026314 3.026314 3.000002 3.003302 3.000012 3.003302 

3.001 3.027323 3.027323 3.000002 3.003446 3.000013 3.003446 

3.002 3.028332 3.028332 3.000002 3.003591 3.000015 3.003591 

3.003 3.029341 3.029341 3.000002 3.003738 3.000017 3.003738 

3.004 3.030349 3.030349 3.000003 3.003886 3.000018 3.003886 

3.005 3.031358 3.031358 3.000003 3.004035 3.000020 3.004035 

3.500 3.530700 3.530700 3.010248 3.219778 3.063353 3.219778 

4.000 4.035086 4.035086 3.058176 3.652327 3.292993 3.652327 

 



We observe from Table 1 that when the true value of parameter 𝜆 is close to 𝜆𝑜, the shrinkage 

estimators are more accurate than the MLES and UMVUES but are less accurate when 𝜆 is 

far away from 𝜆𝑜. 

 Suppose the prior guess value of 𝜆 is 𝜆𝑜 = 4.5. In other words, we want to test the 

hypothesis  

𝐻𝑜: 𝜆 = 4.5 

𝐻1: 𝜆 ≠ 4.5. 

Let us define 𝜙 =
𝜆

𝜆𝑜
. Table 2 shows the relative efficiencies of the shrinkage estimators with 

respect to the usual MLES and UMVUES of 𝜆𝑝 for different values of 𝜆 and its powers 𝑝. 

These are obtained by the following formula: 

𝑅𝐸(𝜗, 𝜗𝑆𝐸) =
𝑀𝑆𝐸(𝜗)

𝑀𝑆𝐸(𝜗𝑆𝐸)
, 

where 𝜗 is the MLE (UMVUE) of the parameter and 𝜗𝑆𝐸  is the shrinkage estimator of the 

parameter based on MLE (UMVUE). 

Table 2: Relative Efficiency of Shrinkage estimators of 𝜆𝑝 with respect to MLE and 

UMVUE of 𝜆𝑝 for 𝑛 + 1 = 5, 𝜆 ∈ (1,2, … , 15) and 𝜆𝑜 = 4.5. 

    𝑝 = −1     𝑝 = 1     𝑝 = 2   

𝜙 �̂̂� �̂̂�𝑧1
 �̃̃� �̃̃�𝑧1

 �̂̂� �̂̂�𝑧1
 �̃̃� �̃̃�𝑧1

 �̂̂� �̂̂�𝑧1
 �̃̃� �̃̃�𝑧1

 

0.22 1.728 0.974 1.355 0.961 0.977 0.984 0.986 0.984 0.990 0.954 0.997 0.988 

0.44 2.319 1.287 1.707 1.182 0.977 1.066 1.070 1.066 0.990 0.865 1.030 0.908 

0.67 4.753 3.341 2.814 2.397 0.996 1.601 1.610 1.601 1.349 1.360 1.378 1.325 

0.89 35.324 39.113 20.929 19.733 10.880 11.452 11.508 11.452 14.227 13.138 8.969 10.959 

1.11 32.400 6.738 7.613 7.505 17.003 7.490 17.812 7.490 30.648 9.271 20.077 7.859 

1.33 3.673 1.895 2.230 2.101 2.976 2.214 3.712 2.214 6.843 2.570 4.688 2.326 

1.56 1.486 1.250 1.487 1.356 1.631 1.429 2.331 1.429 4.386 1.541 3.101 1.475 

1.78 0.957 1.063 1.247 1.119 1.218 1.164 1.887 1.164 3.593 1.210 2.567 1.191 

2.00 0.839 0.997 1.139 1.023 1.039 1.056 1.678 1.056 3.225 1.081 2.310 1.077 

2.22 0.929 0.972 1.081 0.982 0.948 1.009 1.559 1.009 3.018 1.027 2.164 1.030 

2.44 0.960 0.964 1.047 0.964 0.899 0.990 1.483 0.990 2.886 1.005 2.070 1.010 

2.67 0.960 0.961 1.025 0.956 0.873 0.982 1.431 0.982 2.795 0.995 2.006 1.002 

2.89 0.960 0.960 1.009 0.953 0.859 0.979 1.393 0.979 2.728 0.992 1.961 0.999 

3.11 0.960 0.960 0.998 0.952 0.853 0.978 1.364 0.978 2.677 0.990 1.926 0.997 

3.33 0.960 0.960 0.990 0.952 0.853 0.977 1.342 0.977 2.635 0.990 1.900 0.997 

 



We observe from Table 2 that when 𝜙 is close to 1, i.e. as 𝜆 approaches 𝜆𝑜, all the proposed 

shrinkage estimators of 𝜆𝑝 have relative efficiency greater than 1. This fact can also be 

illustrated in the following Figure 1. We see that all the shrinkage estimators are highly 

efficient in the neighbourhood of 𝜙 = 1, i.e. when the true value of 𝜆 is close to the 

hypothesised value 𝜆𝑜. 

 

Figure 1: Relative Efficiency of Shrinkage estimators of 𝜆2.5 with respect to MLE and 

UMVUE of 𝜆2.5. 

 Now, on similar lines we compare the performance of shrinkage estimators of 𝑅(𝑡) 

with its MLE, �̂�(𝑡) and UMVUE, �̃�(𝑡) [Chaturvedi and Malhotra (2016)]. For several values 

of 𝜆, a specified time 𝑡 = 2 and number of records 𝑛 + 1 = 5,  we calculate the average 

estimate of MLE and UMVUE of 𝑅(𝑡). Using these values we compute 𝛼3 and 𝛼4 and hence 

obtain the shrinkage estimators of 𝑅(𝑡). Table 3 shows the estimators of 𝑅(𝑡) developed in 

(3.1), (3.3), (3.4) and (3.6). 

Table 3: Shrinkage estimators of 𝑅(𝑡) when the hypothesised value of 𝑅(𝑡) is 𝑅𝑜 = 0.7. 

𝑅(𝑡) �̂�(𝑡) �̃�(𝑡) �̂̂�(𝑡) �̂̂�(𝑡)𝑧2
 �̃̃�(𝑡) �̃̃�(𝑡)𝑧2

 
0.200 0.202819 0.213184 0.236487 0.205404 0.700000 0.215716 

0.400 0.403200 0.440096 0.474326 0.422841 0.700000 0.457296 

0.695 0.697202 0.733462 0.699980 0.699756 0.700000 0.702915 

0.696 0.698197 0.734389 0.699992 0.699829 0.700000 0.703258 

0.697 0.699191 0.735316 0.699998 0.699917 0.700000 0.703617 

0.698 0.700186 0.736243 0.700000 0.700020 0.700000 0.703989 

0.699 0.701180 0.737169 0.700000 0.700139 0.700000 0.704377 

0.700 0.702174 0.738095 0.700000 0.700273 0.700000 0.704780 

0.701 0.703169 0.739020 0.700000 0.700422 0.700000 0.705198 



0.702 0.704163 0.739945 0.700000 0.700587 0.700000 0.705630 

0.703 0.705157 0.740870 0.700000 0.700767 0.700000 0.706078 

0.704 0.706152 0.741794 0.700000 0.700963 0.700000 0.706540 

0.705 0.707146 0.742718 0.700000 0.701174 0.700000 0.707018 

0.800 0.801554 0.828764 0.755687 0.785215 0.700033 0.808048 

0.900 0.900825 0.915941 0.900825 0.900805 0.915941 0.915920 

 

We observe from Table 3 that when the true value of parameter 𝑅(𝑡) is close to 𝑅𝑜, the 

shrinkage estimators are more accurate than the MLES and UMVUES but are less accurate 

when 𝑅(𝑡) is far away from 𝑅𝑜. 

 Suppose the prior guess value of 𝑅(𝑡) is 𝑅𝑜 = 0.7, i.e. we want to test the hypothesis  

𝐻𝑜: 𝑅(𝑡) = 0.7 

𝐻1: 𝑅(𝑡) ≠ 0.7. 

As explained in Section 3, this is similar to testing 

𝐻𝑜: 𝜆 = 𝜆𝑜 

𝐻1: 𝜆 ≠ 𝜆𝑜 

and we proceed as above. In Table 4 we show the relative efficiencies of shrinkage estimators 

of 𝑅(𝑡) with respect to its MLE and UMVUE for several values of 𝜆. In particular we display 

results for records from one-parameter exponential distribution and Rayleigh distribution. 

Table 4: Relative Efficiency of Shrinkage estimators of 𝑅(𝑡) with respect to MLE and 

UMVUE of 𝑅(𝑡) for 𝑛 + 1 = 5. 

  𝜆 = (1,2, … ,20), 𝜆𝑜 = 5.6, 𝐺(𝑡; 𝑎, 𝜃) = 𝑡   𝜆 = (6,7, … ,25), 𝜆𝑜 = 11.21, 𝐺(𝑡; 𝑎, 𝜃) = 𝑡2  

𝜙 �̂̂�(𝑡) �̂̂�(𝑡)𝑧2
 �̃̃�(𝑡) �̃̃�(𝑡)𝑧2

 𝜙 �̂̂�(𝑡) �̂̂�(𝑡)𝑧2
 �̃̃�(𝑡) �̃̃�(𝑡)𝑧2

 
0.18 0.989 0.975 0.039 0.584 0.54 2.056 1.678 0.644 1.422 

0.36 1.345 1.111 0.220 1.064 0.62 2.771 2.363 1.115 1.852 

0.54 2.056 1.678 0.644 1.422 0.71 4.191 3.769 2.106 2.751 

0.71 4.191 3.769 2.106 2.751 0.80 7.845 7.469 4.778 5.207 

0.89 23.670 23.675 16.863 17.173 0.89 23.670 23.675 16.863 17.173 

1.07 51.348 10.871 44.187 12.632 0.98 699.629 133.775 567.156 104.388 

1.25 4.683 2.485 3.752 2.884 1.07 51.348 10.871 44.192 12.632 

1.43 2.073 1.492 1.337 1.682 1.16 10.497 4.138 8.861 4.845 

1.61 1.435 1.190 0.692 1.296 1.25 4.683 2.485 3.755 2.884 

1.78 1.197 1.068 0.426 1.126 1.34 2.860 1.824 2.089 2.089 

1.96 1.088 1.014 0.291 1.043 1.43 2.073 1.492 1.340 1.682 

2.14 1.032 0.988 0.212 1.000 1.52 1.668 1.305 0.938 1.446 

2.32 1.001 0.977 0.162 0.977 1.61 1.435 1.190 0.697 1.296 

2.50 0.984 0.971 0.128 0.966 1.69 1.291 1.117 0.541 1.196 

2.68 0.974 0.969 0.105 0.960 1.78 1.197 1.068 0.435 1.126 



2.85 0.969 0.967 0.088 0.957 1.87 1.133 1.036 0.361 1.078 

3.03 0.966 0.967 0.076 0.956 1.96 1.088 1.014 0.308 1.043 

3.21 0.966 0.966 0.069 0.955 2.05 1.056 0.999 0.277 1.018 

3.39 0.966 0.966 0.072 0.954 2.14 1.032 0.988 0.287 1.000 

3.57 0.965 0.965 0.954 0.954 2.23 1.014 0.981 0.183 0.987 

 

We observe from Table 4 that when 𝜙 is close to 1, i.e. as 𝑅(𝑡) approaches 𝑅𝑜, all the 

proposed shrinkage estimators of 𝑅(𝑡) have relative efficiency greater than 1. This fact can 

also be illustrated in the following Figure 2. We see that all the shrinkage estimators are 

highly efficient in the neighbourhood of 𝜙 = 1, i.e. when the true value of 𝑅(𝑡) is close to 

the hypothesised value 𝑅𝑜. 

 

Figure 2: Relative Efficiency of Shrinkage estimators of 𝑅(𝑡) with respect to MLE and 

UMVUE of 𝑅(𝑡). 

 Next, we compare the performance of shrinkage estimators of 𝑃 with its MLE, �̂� and 

UMVUE, �̃� [Chaturvedi and Malhotra (2016)]. Let 𝑋 and 𝑌 be two independent 𝑟𝑣𝑠 from the 

same family of distributions and with scale parameter 𝜆1 and 𝜆2 respectively. For fixed 

number of records (𝑛 + 1 and 𝑚 + 1) and fixed scale parameters, we generate 1000 random 

numbers each from the distribution of the complete and sufficient statistic of 𝜆1 and 𝜆2. 

Using (1.4), we compute 𝑃(𝑋 > 𝑌) and calculate the average estimate of MLE and UMVUE 

of 𝑃. Using these values we compute 𝛼5 and 𝛼6 and hence obtain the shrinkage estimators of 

𝑃. Table 5 shows the various estimators of 𝑃 developed in equations (4.1), (4.3), (4.4) and 

(4.6).  

Table 5: Shrinkage estimators of 𝑃 when the hypothesised value of 𝑃 is 𝑃 = 0.8. 



𝑃 �̂� �̃� �̂̂� �̂̂�𝑧3
 �̃̃� �̃̃�𝑧3

 
0.600 0.602970 0.628312 0.678909 0.637763 0.628312 0.658630 

0.700 0.702596 0.735551 0.765819 0.747674 0.800000 0.765378 

0.795 0.797012 0.828839 0.799981 0.799963 0.800000 0.800358 

0.796 0.798005 0.829773 0.799992 0.799960 0.800000 0.800590 

0.797 0.798997 0.830706 0.799998 0.799973 0.800000 0.800837 

0.798 0.799990 0.831638 0.800000 0.800000 0.800000 0.801098 

0.799 0.800983 0.832569 0.800000 0.800041 0.800000 0.801374 

0.800 0.801975 0.833499 0.800000 0.800098 0.800000 0.801665 

0.801 0.802968 0.834428 0.800000 0.800170 0.800000 0.801970 

0.802 0.803960 0.835356 0.800000 0.800257 0.800000 0.802291 

0.803 0.804953 0.836283 0.800000 0.800359 0.800000 0.802626 

0.804 0.805945 0.837209 0.800000 0.800476 0.800000 0.802977 

0.805 0.806938 0.838134 0.800000 0.800608 0.800000 0.803342 

0.850 0.851573 0.878723 0.806843 0.823061 0.800000 0.835201 

0.900 0.901110 0.921484 0.868841 0.881681 0.800000 0.898140 

 

We observe from Table 5 that when the true value of parameter 𝑃 is close to 𝑃𝑜, the shrinkage 

estimators are more accurate than the MLES and UMVUES but are less accurate when 𝑃 is 

far away from 𝑃𝑜. 

 Suppose the prior guess value of 𝑃 is 𝑃𝑜 = 0.8, i.e. we want to test the hypothesis  

𝐻𝑜: 𝑃 = 𝑃𝑜 

𝐻1: 𝑃 ≠ 𝑃𝑜 . 

As explained in Section 4, this is equivalent to testing  

𝐻𝑜: 𝜆1 = 𝑘𝜆2 

𝐻1: 𝜆1 ≠ 𝑘𝜆2. 

We define 𝜙 =
𝜆1

𝑘𝜆2
. In Table 6 we show the relative efficiencies of shrinkage estimators of 𝑃 

with respect to its MLE and UMVUE for several values of 𝜆1. 

Table 6: Relative Efficiency of Shrinkage estimators of 𝑃 with respect to MLE and UMVUE 

of 𝑃 based on records. 𝜆1 is sequence from 10 to 40, 𝜆2 = 7, 𝑛 + 1 = 3 and 𝑚 + 1 = 5. 

𝜙 �̂̂� �̂̂�𝑧3
 �̃̃� �̃̃�𝑧3

 
0.36 0.409 0.373 0.348 0.381 

0.39 0.499 0.448 0.395 0.449 

0.43 0.607 0.538 0.445 0.529 

0.46 0.740 0.646 1.093 0.624 

0.50 0.905 0.778 1.330 0.740 

0.54 1.114 0.944 1.625 0.882 



0.57 1.384 1.156 2.000 1.063 

0.61 1.739 1.431 2.484 1.297 

0.64 2.218 1.800 3.127 1.609 

0.68 2.885 2.310 4.003 2.037 

0.71 3.847 3.041 5.238 2.649 

0.75 5.295 4.140 7.056 3.567 

0.79 7.601 5.898 9.885 5.033 

0.82 11.556 8.958 14.620 7.583 

0.86 19.093 14.969 23.423 12.614 

0.89 35.975 29.274 42.628 24.731 

0.93 86.184 77.483 98.046 67.103 

0.96 372.883 384.559 400.381 358.514 

1.00 Inf 554.555 Inf 470.029 

1.04 432.829 151.667 415.851 172.286 

1.07 111.049 60.148 105.789 73.236 

1.11 50.593 31.659 47.799 39.175 

1.14 29.141 19.535 27.311 24.225 

1.18 19.078 13.303 17.741 16.453 

1.21 13.823 9.681 12.496 11.918 

1.25 10.557 7.390 9.305 9.047 

1.29 8.366 5.846 7.216 7.115 

1.32 6.811 4.755 5.772 5.752 

1.36 5.661 3.955 4.730 4.754 

1.39 4.781 3.349 3.954 4.001 

1.43 4.090 2.879 3.358 3.419 

 

We observe from Table 6 that when 𝜙 is close to 1, i.e. as 𝑃 approaches 𝑃𝑜, all the proposed 

shrinkage estimators of 𝑃 have relative efficiency greater than 1. This fact can also be 

illustrated in the following Figure 3. We see that all the shrinkage estimators are highly 

efficient in the neighbourhood of 𝜙 = 1, i.e. when the true value of 𝑃 is close to the 

hypothesised value 𝑃𝑜 or when 𝜆1 is close to 𝑃𝑜(1 − 𝑃𝑜)−1𝜆2. 



 

Figure 3: Relative Efficiency of Shrinkage estimators of 𝑃 with respect to MLE and 

UMVUE of 𝑃. 

 

6. Shrinkage Estimators of 𝝀, 𝑹(𝒕)and 𝑷 when all the Parameters are Unknown 

 In this section we discuss the case when all the parameters of the family of lifetime 

distributions in (1.1) are unknown. Thus, the log-likelihood equation of the parameters 𝜆, 𝑎 

and 𝜃 given the 𝑛 + 1 upper record values 𝑅0, 𝑅1, … , 𝑅𝑛 is 

𝑙(𝜆, 𝑎, 𝜃|𝑅0, 𝑅1, … , 𝑅𝑛) = −(𝑛 + 1)𝑙𝑜𝑔(𝜆) −
𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆
+ ∑ 𝑙𝑜𝑔 (𝐺′(𝑅𝑖; 𝑎, 𝜃))

𝑛

𝑖=0

 

Since the derivative of the log-likelihood function with respect to the parameters 𝜆, 𝑎 and 𝜃 

respectively does not have a simultaneous closed form solution, we proceed with our 

discussion through an illustrative example. We consider the case of Weibull distribution by 

taking 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝑝 , 𝑎 = 0 and 𝜃 = 𝑝. The MLES of the unknown parameters 𝜆 and 𝑝 are 

the solutions of the following two simultaneous equations: 

−(𝑛 + 1)

𝜆
+

𝑅𝑛
𝑝

𝜆2
= 0 

and 

−𝑅𝑛
𝑝

𝜆
𝑙𝑜𝑔(𝑅𝑛) + ∑

𝑝 𝑙𝑜𝑔(𝑅𝑖) + 1

𝑝
= 0.

𝑛

𝑖=0

 



Since these non-linear equations don't have a closed form solution, therefore we apply 

Newton Raphson algorithm to obtain the MLES of 𝜆 and 𝑝 as �̂� and �̂� respectively.  

 Now we propose shrinkage estimators of powers of 𝜆, 𝑅(𝑡) and 𝑃 based on their 

respective MLES using the likelihood ratio test. 

 For testing 𝐻𝑜: 𝜆 = 𝜆𝑜 against 𝐻1: 𝜆 ≠ 𝜆𝑜, the shrinkage estimator of 𝜆𝑞 , 𝑞 ∈ (−∞, ∞) 

and 𝑞 ≠ 0, based on 𝑝 −value 𝑧1 is defined as 

𝜆𝑧1

�̂̂� = (1 − 𝑧1)𝜆�̂� + 𝑧1𝜆𝑜
𝑞 , 

where 𝜆�̂� = (
𝑅𝑛

�̂�

𝑛+1
)

𝑞

 is the MLE of 𝜆𝑞 with �̂� obtained as the MLE of 𝑝 from Newton-

Raphson algorithm. For 𝜏1 =
2𝑅𝑛

�̂�

𝜆𝑜
,  

𝑧1 = 2 𝑚𝑖𝑛 {1 − 𝐹(𝜏1), 𝐹(𝜏1)},  

where 𝐹(𝜏1) is the 𝑐𝑑𝑓 of 𝜒2 distribution with 2(𝑛 + 1) degrees of freedom at the point 𝜏1. 

 Next, for testing 𝐻𝑜: 𝑅(𝑡) = 𝑅𝑜 against 𝐻1: 𝑅(𝑡) ≠ 𝑅𝑜, the shrinkage estimator of 

𝑅(𝑡) based on 𝑝 −value 𝑧2 is defined as 

�̂̂�(𝑡)𝑍2
= (1 − 𝑧2)�̂�(𝑡) + (𝑧2)𝑅𝑜, 

where �̂�(𝑡) = 𝑒𝑥𝑝 (
−(𝑛+1)𝑡�̂�

𝑅𝑛
�̂� ) the MLE of 𝑅(𝑡) obtained by invariance property of MLE. For 

𝜏2 =
2𝑅𝑛

�̂�
𝑙𝑜𝑔(

1

𝑅𝑜
)

𝑡�̂� ,  

𝑧2 = 2 𝑚𝑖𝑛 {1 − 𝐹(𝜏2), 𝐹(𝜏2)},  

where 𝐹(𝜏2) is the 𝑐𝑑𝑓 of 𝜒2 distribution with 2(𝑛 + 1) degrees of freedom at the point 𝜏2. 

 Finally, consider the independent 𝑟𝑣𝑠 𝑋 and 𝑌 belonging to the same family of 

distributions, say Weibull distribution with 𝑝𝑑𝑓 𝑓(𝑥; 𝜆1, 𝑝1 ) and 𝑓(𝑦; 𝜆2, 𝑝2). Let 

𝑅0, 𝑅1, … , 𝑅𝑛 and 𝑅0
∗, 𝑅1

∗, … , 𝑅𝑚
∗  be the record value sequences from the distribution of 𝑋 and 

𝑌 respectively. Then, for testing 𝐻𝑜: 𝑃 = 𝑃𝑜 against 𝐻1: 𝑃 ≠ 𝑃𝑜, the shrinkage estimator of  𝑃 

based on 𝑝 −value 𝑧3 is defined as 



�̂̂�𝑧3
= (1 − 𝑧3)�̂� + 𝑧3𝑃𝑜 , 

where �̂� =
𝜆1̂

𝜆1̂+𝜆2̂
 is the MLE of 𝑃 with 𝜆1̂ =

𝑅𝑛
𝑝1̂

𝑛+1
 and 𝜆2̂ =

𝑅𝑚
∗ 𝑝2̂

𝑚+1
 . For 𝜏3 =

𝑅𝑛
𝑝1̂

𝑘𝑅𝑚
∗ 𝑝2̂

(
𝑚+1

𝑛+1
), 

𝑧3 = 2𝑚𝑖𝑛{1 − 𝐹(𝜏3), 𝐹(𝜏3)}, 

where 𝐹(𝜏3) is the 𝑐𝑑𝑓 of  𝐹 −distribution with (2(𝑛 + 1), 2(𝑚 + 1)) degrees of freedom at 

the point 𝜏3. 

The procedure of obtaining shrinkage estimators of parametric functions discussed 

above can be easily generalised for any model of this family for which all the model 

parameters are unknown. The log-likelihood equation can be iteratively solved for MLES of 

the unknown parameters and using some prior information on the parameters, shrinkage 

estimators can easily be developed. In order to avoid repetition of the above procedure, we 

restrict ourselves to one example on Weibull distribution having more than one unknown 

parameters. 

 Note that the UMVUES of 𝜆𝑞 , 𝑅(𝑡) and 𝑃  do not exist under this case and hence we 

cannot define their respect shrinkage estimators when all the parameters are unknown. 

An Example 

 Let us simulate 1000 random numbers each from the distribution of 𝑋~Weibull(𝜆1 =

2, 𝑝1 = 2) and 𝑌~Weibull(𝜆2 = 5, 𝑝2 = 1). Then based on 𝑛 + 1 = 7 record values from the 

distribution of 𝑋 and 𝑚 + 1 = 10 record values from the distribution of 𝑌, the MLES of the 

parameters 𝜆1, 𝑝1, 𝜆2 and 𝑝2obtained from Newton Raphson algorithm are 𝜆1̂ = 2.9517, 𝑝1̂ =

1.4400, 𝜆2̂ = 4.9274 and 𝑝2̂ = 1.2194 respectively. The MLE of 𝑅(𝑡) based on sample 𝑋 is 

�̂�(𝑡) = 0.5650 and the MLE of 𝑃 = 𝑃(𝑋 > 𝑌) is �̂� = 0.3746.  

 Now, suppose for sample 𝑋, the prior guess value of 𝜆1 is 𝜆𝑜 = 3. Then the shrinkage 

estimator of 𝜆1 based on 𝑝 −value 𝑧1 = 0.1500 is 𝜆1̂
̂ = 2.9590. Similarly, if the prior guess 

value of 𝑅(𝑡) based on sample 𝑋 is 𝑅𝑜 = 0.4, then the shrinkage estimator of 𝑅(𝑡) based on 

𝑝 −value 𝑧2 = 0.1500 is �̂̂�(𝑡) = 0.5409. Finally, if the prior guess value of 𝑃 is 𝑃𝑜 = 0.4, 

then the shrinkage estimator of 𝑃 based on 𝑝 −value 𝑧3 = 0.1552 is �̂̂� = 0.3785. 

7. Discussion 



 In this paper we proposed several shrinkage estimators of powers of the scale 

parameter 𝜆 and reliability functions 𝑅(𝑡) and 𝑃 of the family of lifetime distributions in 

(1.1) under the assumption that parameters 𝑎 and 𝜃 are known. This study is of particular 

interest in cases where we have record data and some prior knowledge of the parameters of 

our model. We conducted extensive simulation studies in Section 5 to investigate the 

performance of these shrinkage estimators in comparison to the MLES and UMVUES based 

on records. On the basis of relative efficiencies computed for these shrinkage estimators, we 

can conclude that all of the proposed estimators of the parametric functions are way more 

efficient than the usual MLES and UMVUES based on record values  in the neighbourhood 

of the null its hypothesis, i.e. when the true value of the parameter close to its prior guess 

value. Thus, we were able to establish improved estimators of various parametric functions. 

In Section 6, we developed a technique of obtaining shrinkage estimators of parametric 

functions in the case when all the parameters of the family of distributions are unknown. 
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