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Abstract 

Background:  The current study shows the results of three years of IRS entomological monitoring (2016, before inter-
vention; 2017 and 2018, after intervention) performed in Alibori and Donga, northern Benin.

Methods:  Mosquito collections were performed on a monthly basis using human landing catches and pyrethrum 
spray catches in six districts including four treated with Actellic 300 CS (Kandi, Gogounou, Djougou and Copargo) 
and two untreated (Bembèrèkè and Kouandé) which served as control sites. Key transmission indicators of Anopheles 
gambiae (s.l.) as well as the residual activity of Actellic 300 CS assessed through WHO cone tests, were determined.

Results:  The residual efficacy duration of Actellic 300 CS after the two IRS campaigns (2017 and 2018) was 
4–5 months (May–September). The parity rate and the sporozoite index of An. gambiae (s.l.) were 36.62% and 0.71%, 
respectively, after the first spray round in treated areas compared to 57.24% and 3.7%, respectively, in the control 
areas (P < 0.0001). The same trend was observed after the second spray round. After the first spray round, each person 
received 1.6 infective bites/month (ib/m) in the treated areas against 12.11 ib/m in the control areas, resulting in a 
reduction rate of 86.78%. Similarly, the entomological inoculation rate was 1.5 ib/m after the second spray round in 
the treated areas vs 9.75 ib/m in the control areas, corresponding to a reduction of 84.61%. A decrease in the parity 
rate (46.26%), sporozoite index (85.75%) and EIR (87.27%) was observed for An. gambiae (s.l.) after the first round of IRS 
(June–October 2017) compared to the pre-intervention period (June–October 2016). The density of An. gambiae (s.l.) 
ranged between 0.38–0.48 per house in treated areas vs 1.53–1.76 An. gambiae (s.l.) per house respectively after the 
first and second IRS rounds.

Conclusions:  This study showed the positive impact of IRS in reducing key entomological parameters of malaria 
transmission in Alibori and Donga. However, the considerable blood-feeding rate of An. gambiae (s.l.) in spray areas, 
stress the need for the population to sleep under long-lasting insecticidal nets (LLINs) in addition, to prevent from 
mosquito bites which did not succeed in resting on sprayed walls.
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Background
Over the past decade, progress has been made in malaria 
control, through the promotion of indoor residual spray-
ing (IRS) and long-lasting insecticidal nets (LLINs) [1–5]. 
Indeed, the proportion of the population with access 
to LLINs or having benefited from IRS in sub-Saharan 
Africa increased significantly from 2% in 2000 to 59% in 
2014 [5]. According to the World Health Organization 
(WHO), of the 663 million malaria cases prevented in 
sub-Saharan Africa between 2001 and 2015 through vec-
tor control interventions, 79% were through LLINs and 
IRS [5]. This historic progress in the fight against malaria 
is partly due to the efforts of the USA Government 
through the Presidentʼs Malaria Initiative (PMI) [6].

In Benin, IRS to control malaria vectors was introduced 
due to the expansion of pyrethroids resistance [7–10] 
which was the only insecticide class approved for the 
impregnation of LLINs. The strategy first implemented 
with bendiocarb (2008–2010) in the Oueme region 
(south Benin) and then, transferred to the Atacora region 
(north Benin) with the use of the same product (2011–
2013) later replaced by pirimiphos-methyl (2014–2016), 
was very successful [11–13]. Indeed, Atacora region 
offers a good cost-effectiveness ratio insofar as a single 
IRS round is sufficient to cover its short transmission 
period, which favored the relocation of the intervention 
to that region. In addition, the decrease in susceptibility 
of mosquitoes to bendiocarb in the same region [14] has 
favored the switch from this insecticide to pirimiphos-
methyl, which showed good performance in experimen-
tal huts trials [15].

After six years of IRS implementation in the Ata-
cora region, the National Malaria Control Programme 
(NMCP), in agreement with various partners, decided to 
partially withdraw the intervention from some districts 
of this region and relocate it to two other regions (Ali-
bori and Donga). This decision not only falls within the 
framework of the implementation of the national insecti-
cide resistance management plan, but provides opportu-
nity for coverage in two high burden regions [16] which 
have never benefitted from this intervention. In prepara-
tion for this relocation, prior studies have shown that An. 
gambiae (s.l.), the main malaria vector in the two target 
regions [17, 18], was susceptible to pirimiphos-methyl 
[19, 20], an organophosphate insecticide and potential 
candidate for the IRS campaigns in Alibori and Donga.

In 2017 and 2018, all houses in Djougou, Copargo and 
Ouake (Donga region) and Kandi, Gogounou and Seg-
bana districts in the Alibori region were treated with 
Actellic 300CS (pirimiphos-methyl). The present study 
shows the results of the IRS entomological monitor-
ing conducted in both regions. Thus, the impact of the 
strategy on key entomological indicators of malaria 

transmission as well as, the residual efficacy duration of 
Actellic 300CS on the different type of sprayed walls were 
evaluated.

Methods
Study area
In 2017, Benin’s NMCP relocated IRS to six districts 
of northern Benin, including three districts (Kandi, 
Gogounou and Segbana) in the Alibori region and three 
other (Djougou, Copargo, Ouake) in the Donga region 
(Fig. 1). A total of 1,226,161 and 1,287,469 persons were 
protected with Actellic 300 CS (pirimiphos-methyl) 
respectively in 2017 and 2018. For the entomological 
monitoring of the intervention, 4 districts were sur-
veyed including Djougou (09°42′10″N, 01°40′55″W) 
and Copargo (09°50′19″N, 01°32′39″W) in northwest of 
Benin and, Kandi (11°07′29″N, 2°56′9″W) and Gogou-
nou (10°50′30″N, 2°50′20″W) in northeast of the country 
(Fig.  1). Adjacent districts served as controls including 
Kouande (10°19′54″N, 1°41′29″W) which is close to the 
IRS districts of Djougou and Copargo and, Bembereke 
(10°13′30″N, 02°40′05″W) that is next to the IRS districts 
of Kandi and, Gogounou (Fig. 1).

The climate is Sudano-Guinean in the Donga region 
and Sudanese in the Alibori region. These two regions are 
dry savannah areas, with six months rainy season (mid-
April to mid-October) and a dry season which spans the 
remainder of the year. Overall, average annual rainfall 
ranges between 700–1200 mm and 1200–1300 in Alibori 
and Donga, respectively.

The incidence of simple and severe malaria in 2016 was 
26.4% in Donga region and 13.3% in Alibori [16].

Adult mosquito collections
In each evaluation district, a central site and a periph-
eral site were selected. On each site, human landing 
catches (HLC) were conducted from 21:00 h to 5:00 h 
in 2 houses randomly selected at each field visit, with 
one collector sitting indoor and a second outdoor, 
amounting to a total of 4 collectors/hour/site and 8 col-
lectors/hour/district over each sampling night. On each 
site, the 4 persons who collected the mosquitoes from 
21:00  h to 1:00  h were replaced by 4 other collectors 
from 1:00  h to 5:00  h. They were rotated between the 
different houses to avoid bias related to their ability to 
capture mosquitoes or, their individual attractiveness. 
This sampling method allowed to evaluate the human-
biting rate (HBR) of the Anopheles vectors, which were 
then analyzed by ELISA circumsporozoite protein 
(CSP) to determine their sporozoite index (SI). The 
morning collection (from 6:00  h to 7:00  h) of indoor 
resting mosquitoes using pyrethrum spray catch (PSC) 
was carried out in 20 houses per district (10 selected 
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from each central and peripheral site). This sampling 
technique allowed us to estimate the mean indoor vec-
tor density.

Mosquito identification and processing
Morphological identification of vectors species
After each collection, mosquitoes were counted and mor-
phologically identified using the taxonomic key of Gillies 
& Meillon [21]. About 40–50% of the Anopheles vectors 
captured through HLC were dissected to assess their 
physiological age [22]. Those collected by PSC were clas-
sified according to the physiological state (unfed, feed, 
half-gravid and gravid) of their abdomen. Each specimen 
was then stored in a labeled Eppendorf tube containing 
silica gel and cotton for further molecular analyses.

Molecular analyses
To detect the presence of P. falciparum, heads and tho-
races of all females An. gambiae (s.l.) were analyzed 
by ELISA CSP according to the protocol described by 
Wirtz et al. [23]. The abdomens, legs and wings of 20 to 
50 specimens of An. gambiae (s.l.), randomly selected 
in each district each month, were analyzed by PCR 
according to the protocol of Santolamazza et  al. [24], 
for molecular species identification.

WHO cone bioassays
The residual activity of Actellic 300 CS on treated walls 
was evaluated after each IRS campaign using WHO 
cone bioassays [25]. These bioassays were carried out 
with females of An. gambiae Kisumu, a laboratory 

Fig. 1  Map of study area located within the northern region of Benin
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susceptible strain reared and maintained at the Centre 
de Recherche Entomologique de Cotonou (CREC).

Cone bioassay procedure
From 2017 to 2018, monthly cone bioassays [T0 (May), 
T1 (June), T2 (July), T2 (July), T3 (August), T4 (Septem-
ber), T5 (October) and T6 (November)] were conducted 
on treated walls of 20 houses randomly selected in the 
Donga and Alibori regions. The surfaces of the untreated 
walls were used as a control. These bioassays aimed not 
only to evaluate the quality of the treatment applications 
but also to monitor the residual effect of Actellic 300 
CS on the treated walls. The bioassays were performed 
on the cement and mud walls encountered in the study 
area. Using a mouth aspirator, 15 females An. gambiae 
Kisumu aged 2–5 days-old were carefully introduced into 
each cone, fixed at three different heights (0.5 m, 1 m and 
1.5  m) of the treated walls. Mosquitoes were exposed 
to the sprayed walls for 30 min; then removed from the 
cones and transferred to labeled sterile cups and pro-
vided with 10% sugar solution. After 24 h of observation 
at a temperature of 27 ± 2  °C and a relative humidity of 
80 ± 10%, the mortality rate was determined. When the 
control mortality was between 5–20%, corrected mor-
tality was performed accordingly using Abottʼs formula 
[26]; when the control mortality was higher than 20%, the 
bioassay was considered invalid and repeated.

Estimation of entomological parameters
In this study, entomological parameters measured before 
(May 2016–April 2017) and after IRS (June 2017–August 
2018) include: (i) human-biting rate (HBR), number of 
bites of An. gambiae (s.l.) per unit of time (HBR = No. of 
specimens of An. gambiae (s.l.) collected/No. of collec-
tors/No. of nights of sampling); (ii) sporozoite index (SI), 
proportion of An. gambiae (s.l.) with circumsporozoite 
protein of P. falciparum (SI = (No. of positive thoraces/
Total no. of analyzed thoraces) × 100); (iii) parity rate 
(PR), percentage of parous An. gambiae (s.l.) (PR = (No. 
of parous mosquitoes/Total no. of dissected mosqui-
toes) × 100); (iv) indoor vector density (IVD), mean num-
ber of An. gambiae (s.l.) collected per house (Total no. of 
An. gambiae (s.l.) collected indoors by PSC/Total no. of 
surveyed houses); (v) blood-feeding rate, proportion of 
An. gambiae (s.l.) having blood-fed [BFR = (No. of blood-
fed and half-gravid vectors collected by PSC/Total no. of 
vectors collected by the same method) × 100]; (vi) ento-
mological inoculation rate (EIR), level of malaria trans-
mission by An. gambiae (s.l.) (EIR = HBR × SI).

Data analysis
Data were analyzed with the statistical R software, ver-
sion 2.8. using the stats package [27]. The Poisson method 

was used to estimate and compare the confidence inter-
vals of indoor vector density and EIRs of An. gambiae 
(s.l.) [28]. The Chi-square test of comparison of propor-
tions was used to compare blood-feeding rate, sporozoite 
index, and parity rate of An. gambiae (s.l.). These differ-
ent parameters were compared before and after IRS and 
then between the treated and control areas.

Results
Residual effect of Actellic 300 CS on treated walls 
from 2017 and 2018
Figure  2 shows the monthly variation of mortality rates 
in 2017 (Fig. 2a) and 2018 (Fig. 2b), after exposure of An. 
gambiae Kisumu to cement and mud walls sprayed with 
Actellic 300CS in the districts of Djougou and Copargo. 
In 2017 and 2018, cone bioassays revealed full suscep-
tibility (100% mortality) of An. gambiae Kisumu to all 
sprayed walls (cement and mud), one-week post-IRS 
intervention (Fig. 2a, b). Overall, monthly data collected 
in 2017 and 2018 showed mortality rates of ≥ 80% (WHO 
efficacy threshold) between May and September/October 
regardless the district or the type of tested wall, giving an 
efficacy duration of 4–5 months (Fig. 2a, b).

Vector species composition
A total of 8776 Anopheles specimens belonging to seven 
species were collected through HLC over the study 
period in Alibori and Donga (treated areas from 2017), 
as well as in Bembereke and Kouande (control areas). 
Anopheles gambiae (s.l.) (98.05%, 8605/8776) was the 
most abundant species found, followed by An. funestus 
(1.59%, 140/8776). Only 15 An. pharoensis (0.17%), 9 An. 
coustani (0.10%), 5 An. ziemanni (0.05%), 1 An. paludis 
and 1 An. nili (0.01%) were collected (Table 1).

Of the 2774 specimens of An. gambiae (s.l.) analyzed 
by PCR over the whole study period, three sibling species 
[An. gambiae (65.60%, n = 1820), An. coluzzii (33.42%, 
n = 927) and An. arabiensis (0.98%, n = 27)] were detected 
(Table 2). Overall, the same trend (predominance of An. 
gambiae) was observed before and post-IRS in all locali-
ties (treated and control) (Table  2). Seasonal variation 
in the frequency of An. gambiae and An. coluzzii was 
observed during the study (Fig. 3). Overall, out of a total 
of 628 mosquito specimens analyzed in the dry season, 
77.7% (n = 488) of An. coluzzii were detected vs 22.3% 
(n = 140) of An. gambiae. In contrast, in the rainy season, 
An. gambiae was predominant (79.28%, 1680/2119) com-
pared to An. coluzzii (20.72%, 439/2119) (Fig. 3).

Impact of IRS on the longevity of An. gambiae (s.l.)
Overall, Table 3 and Fig. 4 show the impact of IRS on the 
longevity of An. gambiae (s.l.) The parity rate of An. gam-
biae (s.l.) was 70.04% (996/1422) before IRS and 37.64% 



Page 5 of 14Salako et al. Parasites Vectors          (2019) 12:612 

(457/1214) after the first round of IRS in Alibori and 
Donga, equating to a 46.25% reduction in vector longev-
ity (P < 0.0001) (Table 3).

The trend was the same when comparing the parity 
rates obtained in the treated and control areas during 
the efficacy period of Actellic 300 CS. Indeed, between 
June and September, the parity rates of An. gambiae (s.l.) 
in the treated areas (Alibori and Donga) were 36.62% 
(364/994) in 2017 and 48.36% (353/730) in 2018 against 
57.24% (257/449) and 62.96 (289/459) in the control 

areas (χ2 = 52.798, df = 1, P < 0.0001 for 2017; χ2 = 23.621, 
df = 1, P < 0.0001 for 2018) (Fig. 4).

Impact of IRS on the biting location of An. gambiae (s.l.)
Before IRS, the biting rate of An. gambiae (s.l.) was higher 
indoors [9.03 bites per person per night (b/p/n)] than 
outdoors (7.83 b/p/n) (P = 0.00098, RR=1.153 (95% CI: 
1.06–1.26). Similarly, the biting activity of An. gambiae 
(s.l.) was more pronounced indoors than outdoors in the 
control areas after both the first (13.04 b/p/n indoors vs 

Fig. 2  Mortality rate of Anopheles gambiae Kisumu (laboratory susceptible strain) after 30 min exposure to cement and mud walls treated with 
pirimiphos-methyl in 2017 (a) and 2018 (b). The red line indicates the WHO efficacy threshold (mortality of 80%) of an insecticide
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8.58 outdoors; RR = 1.52 (95% CI: 1.35–1.72), P < 0.0001) 
and the second IRS rounds (14.2 b/p/n indoors vs 7.83 
outdoors; RR = 1.81 (95% CI: 1.58–2.09), P < 0.0001) 
(Table 4). However, the opposite trend was observed after 
the first (4.86 b/p/n indoors vs 10.27 outdoors; RR = 2.11 
(95% CI: 1.91–2.34), P < 0.0001) and the second (7.49 
b/p/n indoors vs 8.03 outdoors; RR=1.07 (95% CI: 0.96–
1.2), P = 0.233) rounds of IRS in the areas targeted by the 
strategy (Table 4).

Impact of IRS on SI and EIR of An. gambiae (s.l.)
A total of 8603 head-thoraces of An. gambiae (s.l.) were 
analyzed by ELISA CSP over the study period. After the 
ELISA CSP tests, a mean SI of 8.4% (95% CI: 7.25–9.63%; 
181 positive samples out of 2158 tested) was obtained 
before IRS (June–October 2016) compared to 1.2% (95% 
CI: 0.8–1.8%; 26 positive samples out of 2122 tested) 
after the first round of IRS (June–October 2017), cor-
responding to a reduction rate of 85.71% (χ2 = 117.69, 
df = 1, P < 0.0001). Similarly, an 87.27% reduction in EIR 
was observed after the first round of IRS (2.7 infective 
bites/person/month) as compared to the pre-interven-
tion period (21.21 ib/p/month) in Alibori and Donga 
(RR = 7.83 (95% CI: 5.17–12.31), P < 0.0001) (Table 5).

This reduction in the SI and EIR of An. gambiae (s.l.) 
was also observed in the treated areas as compared to 
the control ones during the efficacy period of Actellic 
300 CS in 2017 and 2018. Indeed, after the first round of 
IRS (June–September 2017), a mean SI of 0.7% (95% CI: 
0.36–1.2%; 12 positive samples out of the 1697 tested) 
was obtained in the treated areas compared to 3.7% (95% 
CI: 2.7–5.01%; 42 positive samples out of 1124 tested) in 
the control areas (χ2 = 31.45, df = 1, P < 0.0001) (Table 6). 
During the same period, a person received a mean 12.11 
ib/month in control areas against 1.6 ib/month in the 
treated areas (RR = 7.53 (95% CI: 3.89–12.73), P < 0.0001), 
which equals to an 86.78% reduction in malaria transmis-
sion. Moreover, the mosquitoes tested after the second 

IRS round (June–August 2018) showed a mean SI of 
0.64% (95% CI: 0.27–1.2%; 8 positive samples out of 1241 
tested) in the treated areas against 3% (95% CI: 1.9–4.2%; 
26 positive samples out of 881 tested) in the control areas 
(χ2 = 15.954, df = 1, P < 0.0001) (Table 6). During the same 
period a significant reduction (84.61%) in the EIR in the 
treated areas (1.5 ib/p/month) was observed compared to 
the control areas (9.37 ib/p/month) (RR = 6.25 (95% CI: 
2.73–16.03), P < 0.0001) (Table 6).

Figure  5 shows the dynamics of EIR from May 2016 
to November 2018. The lowest EIRs were observed dur-
ing the dry periods (January 2017 to April 2017 and 
November 2017 to March 2018) in both treated and 
control areas. After IRS implementation, lower monthly 
EIRs were observed in the treated areas compared to the 
control areas between June and October 2017 and 2018, 
which equals to 4 months of impact each year (Fig. 5).

Impact of IRS on IVD in treated and control areas
Table  7 shows the mean indoor density of An. gam-
biae (s.l.) before IRS and during Actellic 300 CS efficacy 
periods. Mean densities of 1.64 An. gambiae (s.l.) and 
0.41 An. gambiae (s.l.) per room were recorded before 
(June–October 2016) and after (June–October 2017) 
IRS in Alibori and Donga, respectively, equating to a 75% 
reduction (RR = 4.04 (95% CI: 3.53–4.64), P < 0.0001) 
(Table 7). In addition, after the first IRS campaign (June–
September 2017), 1.53 An. gambiae (s.l.) per room was 
recorded in control areas compared to 0.38 An. gambiae 
(s.l.) in treated areas, equating to a reduction of 75.16% 
(RR = 4.03 (95% CI: 3.34–4.88), P < 0.0001) (Table 7). The 
trend was the same after the second round of IRS (June–
August 2018) where a significant reduction of 72.72% in 
mean indoor density of An. gambiae (s.l.) in the treated 
areas (0.48 An. gambiae (s.l.) per room) compared to 
the control areas (1.76 An. gambiae (s.l.) per room) was 
observed (RR = 3.64 (95% CI: 2.84–4.67), P < 0.0001) 
(Table 7).

Table 1  Anopheles species composition in surveyed areas before and after IRS

Species Before IRS (May 
2016–April 2017)

After 1st round of IRS 
(June 2017–March 2018)

Control 
(Bembereke, 
Kouande)

After 2nd round of IRS (June 
2018–November 2018)

Control 
(Bembereke–
Kouande)

Total

An. gambiae (s.l.) 2465 2379 1546 1286 929 8605

An. funestus 54 54 16 9 7 140

An. coustani 9 0 0 0 0 9

An. pharoensis 3 2 5 2 3 15

An. paludis 1 0 0 0 0 1

An. nili 0 0 0 1 0 1

An. ziemanni 2 2 0 1 0 5

Total 2534 2437 1567 1299 939 8776
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Impact of IRS on blood‑feeding rate of An. gambiae (s.l.) 
in treated districts
Overall, blood-feeding decreased significantly after 
IRS intervention in the study regions. Prior to the 
intervention (June–October 2016), the blood-feeding 
rate of An. gambiae (s.l.) was 96.20%. After the first 
round of IRS (June–October 2017), this rate decreased 
to 63.37% in the treated areas, representing a reduc-
tion rate of 34.12% (χ2 = 236.03, df = 1, P < 0.0001) 
(Table  8). Similarly, a 22.6% reduction in the blood-
feeding rate of An. gambiae (s.l.) was also observed in 
the treated areas (62.5%) compared to the control areas 
(80.74%) during the Actellic 300 CS persistence period 
(June–September 2017) (χ2 = 17.76, df = 1, P < 0.0001) 
(Table 8).

Discussion
The persistence of an insecticide applied to walls is one 
of the key indicators for determining the effectiveness of 
IRS [29, 30]. In the Alibori and Donga regions, the persis-
tence of Actellic 300 CS used for the two IRS campaigns 
was 4–5 months (May–September/October). These 
results corroborate those obtained by Chanda et al. [31] 
in Zambia and Tchicaya et al. [32] in Mbe (Côte d’Ivoire) 
who observed a residual efficacy of Actellic 300 CS of 
4–5 months on mud and cement walls. However, persis-
tence of Actellic 300 CS observed in this study is lower 
than that observed in Zanzibar (8 months) by Haji et al. 
[33] for the same product. These differences in commu-
nity persistence of Actellic 300CS from one country to 
another could be due to the influence of several variable 

Fig. 3  Seasonal variation of sibling species (An. coluzzii and An. gambiae) in the study area. Abbreviations: DS, dry season; RS, rainy season

Table 3  Parity rates of Anopheles gambiae (s.l.) collected before and after the first round IRS

IRS area Variable Before IRS (June–October 
2016)

After 1st round of IRS (June–
October 2017)

χ2-value P-value

Alibori-Donga No. dissected 1422 1214 – –

No. parous 996 457 – –

Parous (%) 70.04 37.64 276.57  < 0.0001
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Fig. 4  Parity rate of Anopheles gambiae (s.l.) collected in treated and control areas

Table 4  Biting location of An. gambiae (s.l.) in IRS and control areas

Abbreviations: HBR, human biting rate; b/p/n, bite/person/night

Period Area Location No. collected Person/night HBR (b/p/n) P-value

Before IRS (June–October 2016) Future IRS Indoor 1156 128 9.03 0.00098

Outdoor 1002 128 7.83

After 1st IRS round (June–September 2017) IRS Indoor 544 112 4.86 < 0.0001

Outdoor 1150 112 10.27

Control Indoor 678 52 13.04 < 0.0001

Outdoor 446 52 8.58

After 2nd IRS round (June–August 2018) IRS Indoor 599 80 7.49 0.233

Outdoor 642 80 8.03

Control Indoor 568 40 14.2 < 0.0001

Outdoor 313 40 7.83

Table 5  Human-biting rate, sporozoite index and entomological inoculation rate in Alibori and Donga regions (IRS areas) before and 
after the first round of IRS 2017

Abbreviations: SI, sporozoite index; HBR, human-biting rate; EIR, entomological inoculating rate; ib, infected bite

Region Variable Before IRS (June–October 
2016)

After 1st round of IRS (June–
October 2017)

Reduction (%)

IRS areas (Alibori, Donga) HBR/night 8.43 7.37 –

SI (%) 8.4 1.2 85.71

EIR (ib/person/night) 0.707 0.09 –

EIR (ib/person/month) 21.21 2.7 87.27
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factors such as, the environmental conditions (tempera-
ture, relative humidity, exposure to ultraviolet rays) 
[34–38], the composition and characteristics (porosity 
and pH) of treated walls [39–41] and/or the human inter-
ferences with treated surfaces (washing of treated walls) 
[42].

Two malaria vectors have been encountered in treated 
and control areas, An. gambiae (s.l.) (98.05%), which rep-
resents the most predominant species, followed by An. 
funestus (1.59%). These data corroborate previous stud-
ies performed by Gnanguenon et al. [17] in Kandi (north-
east Benin) and Aikpon et  al. [43] in Atacora, a region 

Table 6  Human-biting rate, sporozoite index and entomological inoculation rate in IRS and control areas

Abbreviations: SI, sporozoite index; HBR, human-biting rate; EIR, entomological inoculation rate; ib, infective bite

Variable After 1st IRS campaign (June–September 2017) After 2nd IRS campaign (June–August 2018)

IRS areas 
(Alibori–Donga)

Control areas 
(Bembereke–Kouande)

Reduction (%) IRS areas 
(Alibori–Donga)

Control areas 
(Bembereke–Kouande)

Reduction (%)

HBR/night 7.56 10.81 – 7.76 11.01 –

SI (%) 0.71 3.7 80.81 0.6 3 80

EIR (ib/person/night) 0.053 0.403 – 0.05 0.325 –

EIR (ib/person/month) 1.6 12.11 86.78 1.5 9.75 84.61

Fig. 5  Dynamics of EIR before and after IRS campaigns in treated and control areas from May 2016 to November 2018

Table 7  Indoor density of An. gambiae (s.l.) in IRS and control areas

Period Area No. of rooms No. collected Density/room P-value

Before IRS (June–October 2016) Baseline 610 1001 1.64 < 0.0001

After 1st round of IRS (June–October 2017) After IRS areas 673 273 0.41

After 1st round of IRS (June–September 2017) After IRS areas 551 208 0.38 < 0.0001

Control areas 160 244 1.53

After 2nd round of IRS (June–August 2018) After IRS areas 242 117 0.48 < 0.0001

Control areas 88 155 1.76
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neighboring Donga (northwest Benin). Molecular iden-
tification of the sibling species of the An. gambiae (s.l.) 
complex revealed that An. gambiae (65.60%), An. coluzzii 
(33.42%) and An. arabiensis (0.98%) live in sympatry. The 
predominance of An. gambiae in the study area, particu-
larly during rainy season, confirms that dry savannah 
areas where many temporary breeding sites are formed 
after rains, are conducive to the development this spe-
cies. This was highlighted by previous studies carried 
out in similar bio-ecological areas in Nigeria [44], Cam-
eroon [45] and Burkina Faso [46]. As previously found 
by Simard et al. [47] and Kudom et al. [48], the predomi-
nance of An. coluzzii in the dry season during this study 
could be due to the presence of permanent and semi-per-
manent breeding sites such as dams and, watering places 
that are the major larval habitats during this period. 
Deforestation and increasingly long dry seasons in the 
study area, are suspected to be unfavorable conditions for 
the development of An. arabiensis, as reflected by the low 
number recorded in the present study (n = 27).

Overall, after the first round of IRS, significantly 
lower density, SI, blood-feeding and parity rates were 
observed compared to the pre-intervention period. 
Similarly, after the first and second rounds of IRS, 
levels of these indicators were significantly lower in 
treated areas compared to the control ones. Indeed, 
treated areas had probably become difficult to live in 
for the Anopheles vectors that fled treated houses. This 
observation is highlighted here by the low indoor rest-
ing density and the more pronounced outdoor biting 
rate of An. gambiae (s.l.) which were observed post-
IRS intervention in the targeted localities. Thus, only 
a small proportion of vectors could succeed in taking 
their blood meals inside treated houses as observed 
by Sy et  al. [49] in west-central Senegal. The reduced 
blood-feeding rate of the vectors had certainly induced 
a lower parity rate in treated areas since success in tak-
ing a blood meal conditions the maturation of ovaries 
[50]. In addition, the lethal effect of Actellic 300 CS 
might not have favored incubation of parasite in vec-
tors before they died, resulting in their low infectiv-
ity in the treated areas compared to the control areas. 
These results confirm the findings by Coleman et  al. 

[51] in northern Ghana and Mashauri et al. [52] in Lake 
Victoria basin of Tanzania, who also described a signifi-
cant decrease in the SI of An. gambiae (s.l.) after IRS 
with Actellic 300 CS.

Before intervention, the EIR of An. gambiae (s.l.) was 
21.21 ib/p/month in Alibori and Donga. However, after 
the first round of IRS (June–October 2017), a substan-
tial decrease to 2.7 ib/person/month was detected, which 
represents a reduction of 87.27%. The high decrease 
in EIR in sprayed areas compared to the control areas 
(86.78% in 2017 and 84.61% in 2018) could be due to a 
high IRS coverage in treated areas (more than 91% IRS 
coverage in 2017 and 92% in 2018). Indeed, similar results 
were obtained in Zambia [31], Zimbabwe [53], Tanzania 
[52] and Uganda [54] where more than 85% IRS coverage 
with Actellic 300 CS was achieved. In parallel, the results 
of an epidemiological study conducted in 2017 after IRS 
revealed that the decrease of EIR was accompanied by an 
8% decrease of incidence among children under five years 
of age in the treated area of Donga [55]. EIR reduction 
(86.78% in 2017 and 84.61% in 2018) in our study area is 
lower than that previously observed by Akogbéto et  al. 
[11] (94.4% in Oueme, southern Benin), Aikpon et al. [12] 
(99.24% in Atacora, northwest Benin) and Sy et  al. [49] 
(92.59% in central-west Senegal).

Although blood-feeding rates and SI of Anopheles were 
significantly lower in the treated areas compared to the 
control areas, they remained considerable in these areas. 
This highlights the need to support IRS campaigns with 
information, education and communication campaigns 
to aware the population on the necessity of sleeping 
under LLINs, even in sprayed houses to avoid bites of 
mosquitoes which do not succeed in resting on walls due 
to the insecticide effect.

Currently, pirimiphos-methyl CS is the only product 
used in IRS in Benin due to the emergence of resistance 
of An. gambiae (s.l.) to bendiocarb and pyrethroids [14]. 
Since resistance is a dynamic phenomenon, its emergence 
to organophosphates over time cannot be ruled out. Con-
sidering this, the use of new generation insecticides such 
as SumiShield® 50WG and Fludora® Fusion which have 
a persistence of approximately 8 to 10 months [56, 57] 
and which have been recently approved by WHO, may be 

Table 8  Blood-feeding rates in An. gambiae (s.l.) in treated and control areas

Period Area No. collected Unfed Fed Gravid Half-gravid Blood-
feeding 
rate %

P-value

Before IRS: June–October 2016 IRS areas 1001 26 922 12 41 96.20 < 0.0001

After 1st round of IRS: June–October 2017 273 99 171 1 2 63.37

After 1st round of IRS: June–September 2017 IRS areas 208 78 129 0 1 62.5 < 0.0001

Control areas 244 16 187 31 10 80.74
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considered. This will allow covering the entire duration 
of malaria transmission (approximately 6 months) in the 
two surveyed regions.

The present study has some limitations. Indeed, the 
discontinuation of the cone bioassays in September 2018 
when Actellic 300CS was still effective meant the exact 
persistence duration of the product could not be deter-
mined. Moreover, the mosquito collections which started 
at 21:00  h did not allow collecting information on early 
mosquito biting in the evening.

Conclusions
The reduction of key entomological indicators of malaria 
transmission in the treated regions shows the positive 
impact of the IRS programme. However, this strategy 
must be complemented with a high use of LLINs for 
greater effectiveness in vector control.
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