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Reducing the burden of late-life morbidity requires an understanding of the mechanisms of ageing-
related diseases (ARDs), defined as diseases that accumulate with increasing age. This has been
hampered by the lack of formal criteria to identify ARDs. Here, we present a framework to identify
ARDs using two complementary methods consisting of unsupervised machine learning and actuarial
techniques, which we applied to electronic health records (EHRs) from 3,009,048 individuals in
England using primary care data from the Clinical Practice Research Datalink (CPRD) linked to the
Hospital Episode Statistics admitted patient care dataset between 1 April 2010 and 31 March 2015
(mean age 49.7 years (s.d. 18.6), 51% female, 70% white ethnicity). We grouped 278 high-burden
diseases into nine main clusters according to their patterns of disease onset, using a hierarchical
agglomerative clustering algorithm. Four of these clusters, encompassing 207 diseases spanning
diverse organ systems and clinical specialties, had rates of disease onset that clearly increased with
chronological age. However, the ages of onset for these four clusters were strikingly different, with
median age of onset 82 years (IQR 82-83) for Cluster 1, 77 years (IQR 75-77) for Cluster 2, 69 years
(IQR 66-71) for Cluster 3 and 57 years (IQR 54-59) for Cluster 4. Fitting to ageing-related actuarial
models confirmed that the vast majority of these 207 diseases had a high probability of being ageing-
related. Cardiovascular diseases and cancers were highly represented, while benign neoplastic, skin
and psychiatric conditions were largely absent from the four ageing-related clusters. Our framework
identifies and clusters ARDs and can form the basis for fundamental and translational research into
ageing pathways.

Genetic association studies and experimental trials in humans and animal models have revealed that mechanisms
of ageing contribute to the aetiology of the diseases of older age'~®. Processes such as DNA damage, mitochon-
drial and stem cell dysfunction, impaired proteostasis and cellular senescence are each present in the aetiology
of multiple diseases, potentially contributing to overlapping aetiology?*.
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A deeper understanding of the shared and distinct mechanisms leading to the diseases of ageing requires
empirical speci cation of which diseases are ageing-related. Furthermore, an accurate classi cation of disease
onset could identify clusters of diseases with common contributions from the ageing process. A starting point
should include a framework for identifying diseases that become more common in the older members of the
population, and an approach for detecting di erent patterns of disease incidence with increasing age.

e majority of studies on ageing refer to “age-related” or “ageing-related” diseases without specifying how
the terms were derived, nor how such diseases were identi ed®°, One study measuring population ageing using
the Global Burden of Disease Study 2017 de ned “age-related diseases” as those with incidence rates among
the adult population that increased quadratically with age'®. s study did not use directly measured incidence
data, but was based on estimates derived from a statistical model. Another study used medical claims data from a
Brazilian insurance company to cluster age density patterns of raw ICD-10 codes but did not speci cally identify
diseases that increased with age.

Large-scale, population-based EHRs from universal cradle-to-grave health systems provide the optimal set-
ting to measure and discover patterns of disease incidence with age. In order to capture the population experi-
ence of age-related diseases, we analysed the relationship of 289 diseases that involve intensive use of health-care
resources, using aggregated data from Electronic Health Records (EHRs) for 3,009,048 individuals in a large,
representative-population dataset in England between 1 April 2010 and 31 March 2015,

We propose a standard terminology and methodology to de ne diseases that increase in frequency with
age. We use a standardised term—"ageing-related diseases” (ARDs)—to refer to diseases that accumulate with
increasing age, and the term “age-related” to refer to diseases that occur within speci ¢ age ranges'?*3. We used
two complementary approaches to distinguish diseases of ageing from diseases for which increasing age is not
a risk factor. First, we applied cluster analysis in order to group diseases with similar disease onset patterns with
respect to age.  is identi ed nine main disease clusters, four of which consisted of diseases that increased in
incidence with age, although with strikingly di erent age-related patterns, suggestive of di ering aetiologies.
Second, we assessed how well the observed age-speci ¢ disease onset rates from the EHR data corresponded to
actuarial models in order to determine the likelihood that a disease was ageing-related.

Methods

Dataset. We used the Clinical Practice Research Datalink (CPRD), a large, clinically representative primary
care database linked to the Hospital Episode Statistics admitted patient care (HES-APC) dataset in England that
has previously been validated for epidemiological research'*. Individuals were included in the study if they had
been registered for at least a year in a participating general practice between 1 April 2010 and 31 March 2015,
were aged above 20 years during this period, and their individual and practice records met research standards
set by the CPRD.

e study was approved by the Independent Scienti ¢ Advisory Committee for the Medicines and Healthcare
products Regulatory Agency (protocol 16_022). CPRD has ethics approval from the Health Research Authority
to support research using anonymised patient data. Primary care practices provide consent for CPRD to collect
de-identi ed primary care data from their practice. Individual patients can opt-out of sharing their data for
research and CPRD does not collect data for these patients.  erefore, informed consent is given at the time of
data collection and does not need to be repeated for each study. We con rm that data were analysed in accord-
ance with the relevant guidelines and regulations.

Disease selection. e selection process for diseases was based on the number of Hospital Episode Statis-
tics (HES) nished consultant episodes (FCES) (the time spent under the care of one consultant whilst admitted
to hospital) in England, prevalence estimates and clinical importance as described in a previous study**. Brie ',
diseases that had more than 10,000 FCEs were included. If a disease had fewer than 10,000 FCEs, it was included
in the study if the prevalence was higher than 0.01% and it was considered to be clinically important by a panel
of clinicians!t. Phenotyping algorithms de ning these diseases were based on clinical measurements recorded
in CPRD, or diagnosis and procedural codes recorded in CPRD and HES.  ese algorithms are available on the
CALIBER platform (https://portal.caliberresearch.org and https://github.com/spiros/chronological-map-pheno
types)t1516, A er excluding pregnancy-related conditions, symptoms, signs, abnormal clinical and laboratory

ndings, external causes of morbidity and mortality, congenital diseases and perinatal conditions, 289 diseases
were analysed in this study. Diseases were organised into 15 categories corresponding closely to International
Classi cation of Diseases, tenth revision (ICD-10) chapters (Supplementary Table S1).

Age of disease onset. e age of disease onset was approximated by the age at which an individual was

rst recorded with a speci c condition. e age at rst reported diagnosis was the earliest age at which the
criteria in a phenotyping algorithm for a speci ¢ condition were met from any source in the EHRs prior to 31
March 2015. In order to exclude diseases that may have occurred as a result of developmental processes from
childhood through to puberty, we omitted diagnoses for ages 20 years and lower, in line with the WHO's de ni-
tion of adolescence as the period between 10 and 19 years of age'’*8, We also excluded new diagnoses made a er
the age of 85 years because of the low onset of previously undiagnosed disease above this age. Individuals alive
beyond this age may be subject to survival bias, representing an unusually robust subset of the population who
are less susceptible to ARDs?.

Rate of disease onset. e rate of disease onset was represented by the rate at which the rst reported

diagnosis appeared in the pooled electronic health records (EHR). e terms “rate of disease onset”, “rate of
disease diagnosis” and “rate of rst recorded diagnosis” are used interchangeably in this report.
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For integer year of age x=21,..., 84, we calculated q,, the age-speci c rate of disease onset for each disease:
qx = dx /Ly, Q)

where, d,=number of patients rst recorded with the disease at age x, [, =number of patients with no record
for the disease at age x.

Clustering the age-specific rate of disease onset curves. e rate of rst recorded diagnosis was
plotted against age to summarise an age-speci c disease onset curve between 20 to 85 years for each of the 289
conditions studied (Supplementary Figs. S1-S10). For each disease, the rate of disease onset at each year of age
was standardised by dividing it by the sum of the age-speci c¢ rates of disease onset from age x=21,..., 84:

qx 9
?izl qi @

Standardised age-specific rate of disease onset : g, =

Euclidean distances between the standardised rates of disease onset for every disease pair were calculated at
each year of age. We explored four di erent clustering techniques for the age-speci c rate of disease onset curves:
hierarchical agglomerative clustering; k-means clustering; k-medioid clustering (partitioning around medioids
(PAM)); and spectral clustering®®-22,

In hierarchical clustering, the dissimilarity between two clusters can be measured using di erent linkage
methods. Using the cophenetic correlation coe cient, we determined that the average linkage method was
optimal for hierarchical clustering of the age-speci c rate of disease onset curves (see Supplementary Notes,
Supplementary Table S2). e optimal number of clusters for each of the four clustering algorithms we explored
was ascertained using the gap statistic proposed by Tibshirani et al.?.  ese were: 18 clusters for hierarchical
agglomerative clustering with average linkage, 9 for k-means, 18 for PAM and 10 for spectral clustering (see
Supplementary Notes, Supplementary Table S3). Finally, we used the Dunn validation index?* to select the
optimal clustering algorithm out of the four that we tested (see Supplementary Notes, Supplementary Table S3).

e hierarchical agglomerative clustering algorithm with average linkage and 18 clusters had the highest Dunn
value. e results from this algorithm are reported in this article. e 18 clusters were separated into nine “main”
clusters with three or more diseases in each cluster, and nine “outlier” clusters containing just one or two diseases.

Modelling the relationship between rate of disease onset and age. ARDs should, by de nition,
have rates of disease onset that increase with age. Physiological decline with advancing age, or senescence, is
manifested in populations as an increase in mortality rate at older ages. is physiological decline is caused by
ageing processes that lead to diseases that result in death®.  erefore, assuming that the distribution function of
disease onset for ARDs resembles that for mortality, we applied the Gompertz function (an actuarial model that
was originally designed to describe human mortality)?S:

ax = ae™ ®3)

where, g, =age-speci c rate of disease onset at age x (from Eq. (1)), « =baseline rate of disease onset at age x=21,
B=senescent (age-dependent) component (rate of disease onset increase over age).
Under the Gompertz model, log (q,) is a linear function of age x:

log (g<) = loga + Bx 4)

If 8, the coe cient of the age variable in the Gompertz model is negative, the curve is downward sloping, and
hence the rate of disease onset decreases with age, indicating that the disease is not ageing-related.

Some diseases may not have rates of onset that increase monotonically with age, but could still be considered
ageing-related. Examples include diseases with one or more small local peaks earlier in life followed by a much
greater increase with advancing age, or those with an exponential increase preceding a subsequent decline or
levelling o in later life. In these circumstances, an exponential-polynomial model, such as the Gompertz—Make-
ham (GM) model?, may t the data better:

qx = exp{pol(x)} ®)

Here we de ne pol(x) as a quadratic term such that
log (gx) = loga + bx + cx* (6)
Goodness-of-fit of the Gompertz—Makeham model. e R-squared (R?), a statistical measure of

how close the data are to the tted regression line, is 0 en used to assess how well a model ts the data. In
this study, it is the proportion of variation in the independent age variable that is explained by the model. e
R-squared increases with the addition of each new independent variable to the model.  erefore, the polyno-
mial Gompertz—Makeham model with the additional quadratic age term will always have a higher R? than
the Gompertz model. e adjusted R? is a modi cation of the R? that increases only if an additional variable
improves the model more than would be expected by chance and decreases when the improvement is less than
expected by chance. We used the adjusted R? to determine whether the Gompertz—Makeham model was a good
t for the observed epidemiological data.
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Step 1: Fit Gompertz Model: log (¢.) =log a + fix

p<0 p>0

Step 2: Fit Gompertz-Makeham Model: log (¢) = log a + bx + cx?

|
Higher adjusted R’ values = Higher likelihood of being ageing-related

l<

Low likelihood of being High likelihood of being
ageing-related ageing-related

Figure 1. Algorithm for determining the likelihood that a disease is ageing-related.  is depends on 3, the age
coe cient of the Gompertz model and the adjusted R? of the Gompertz—Makeham model for each disease. g, is
the age-speci c rate of disease onset at age x. «, f, a, b, and ¢ are constants.

Algorithm for assigning the likelihood that a disease is ageing-related. e following step-wise
algorithm was applied to determine the likelihood that a condition was ageing-related (Fig. 1):

1. First, the Gompertz model (Eq. (4)) was tted to the empirical data. If 8, the coe cient of the age variable
in the Gompertz model was negative, indicating that the disease onset decreased with increasing age, the
condition was considered to have a very low likelihood of being ageing-related.

2. Next, the Gompertz—Makeham (GM) model (Eq. (6)) was tted to the empirical data. Higher values of the
adjusted R? of the GM model were deemed to have higher likelihoods of being ageing-related.

We demonstrated which diseases were more likely to be ageing-related based on di erent bands of adjusted
R? with thresholds of 0.95, 0.90, 0.85 and 0.80 so that readers can observe the likelihood that a disease is ageing-
related across a gradient.

All analyses were performed using R 3.5.0.

Results

Sample characteristics. We studied 3,009,048 individuals in a large, representative, population dataset in
England between 1 April 2010 and 31 March 2015. e mean age was 49.7 years (standard deviation 18.6 years),
51% were female, and 70% were of white ethnicity. e median follow-up was 3.7 years (IQR: 1.5-5.0 years). e
number of cases and median (interquartile range (IQR)) age of rst recorded diagnosis above 20 years for 289
diseases is reported in Supplementary Table S1.

Disease clusters defined by age-specific onset. Nine main clusters of disease onset patterns consist-
ing of three or more diseases were identi ed for 278 diseases using a hierarchical, agglomerative clustering algo-
rithm applied to standardised rate of disease onset curves for 289 diseases (Fig. 2a).  is algorithm was selected
following an evaluation of four di erent clustering methods using a set of objective criteria. e remaining eleven
diseases fell into nine outlier clusters with two or fewer diseases each (Supplementary Table S1, Supplementary
Fig. S1). Diseases that exemplify the di erent main clusters are shown in Fig. 2b. Supplementary Table S1 lists the
main and outlier clusters to which each of the 289 diseases was assigned. Supplementary Figs. S2-S10 illustrate
the age-speci c rates of onset for each disease in the nine main clusters.

Diseases in Clusters 1, 2, 3 and 4 increased in incidence with age. e 5 diseases in Cluster 1 and 21 diseases
in Cluster 2 had low age-speci c rates of disease onset early in life followed by exponential growth at later ages,
with a steeper rate of increase in Cluster 1 starting at a later age. Cluster 3 had 91 diseases that also showed
exponential growth, but with disease onset rates that increased at an earlier age than in Clusters 1 and 2. Cluster
4 contained 90 diseases with rising rates of disease onset, but the increase was more linear and gradual, and
started earlier than in Clusters 1, 2 and 3.

e relationship between age and disease onset in Cluster 5 was less clear. Most of the 51 curves in this het-
erogeneous cluster showed a small initial increase in rates of onset from the age of 20 years which levelled out
or began to decline around the age of 40 years or later.
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Figure 2. (a) In a data-driven approach, hierarchical clustering techniques were used to derive nine clusters

of standardised age-speci c rate of disease onset curves. e y-axis scales di er for each cluster. N (number

of conditions in each cluster) is indicated in each cluster plot. (b) Age-speci c rate of onset curves (not
standardised) for examples from each cluster. e y-axis scales di er for each disease. e number of individuals
between the ages of 20 and 85 years with the disease (n) is indicated in each plot.
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Figure 3. e relationship between disease category and age curve cluster for 278 diseases: (a) Diseases in
each age cluster by disease category. (b) Diseases in each disease category by age curve cluster. e number of
diseases in each disease category and age curve cluster is shown in Table 1.

All seven diseases in Cluster 6 declined in onset between the ages of 20 to 50 years. Cluster 7 consisted of
three diseases with relatively high rates of disease onset in young adulthood that declined steadily till the age of
60 years before increasing again. e seven diseases in Cluster 8 and three diseases in Cluster 9 all declined with
age. e rate of decline in Cluster 9 was sharper than in Cluster 8.

Scientific Reports | (2021) 11:2938 | https://doi.org/10.1038/s41598-021-82459-y nature portfolio



www.nature.com/scientificreports/

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 | Total
Cardiovascular 2 11 16 9 38
Cancers 1 26 10 2 1 40
Respiratory 1 8 1 6 16
Eye 2 4 4 2 12
Musculoskeletal 1 1 5 10 6 23
Endocrine 1 1 7 2 11
‘:H;ematological or Immunologi- 1 5 7 2 15
Infections 2 10 5 6 1 2 25
Ear 1 2 3
Neurological 4 6 3 1 14
Genitourinary 1 4 7 2 3 17
Digestive 5 17 7 1 30
Benign neoplasms 1 2 3 1 7
Skin 1 3 5 1 2 12
Psychiatric 2 5 1 5 1 14
Total 5 21 91 90 51 7 3 7 3 278

Table 1. e relationship between disease category and age curve cluster for 278 diseases. e number of
diseases is shown for each age curve cluster and disease category.

Clusters 1, 2 and 3 were the most strongly associated with ageing. Cluster 1 comprised dementia, delirium,
cardiac conduction de cits including trifascicular block and bifascicular block, as well as hip fracture. Cardio-
vascular diseases (CVDs) made up the highest proportion of the diseases in Cluster 2, and cancers the highest
proportion in Cluster 3. Cluster 4 was also associated with ageing, with digestive system diseases comprising
the largest category. Diseases spanning a wide range of disease categories were represented in these four clusters
(Fig. 3a, Table 1). All CVDs studied, all ear diseases, and 37 out of 41 cancers were in Cluster 1,2,3or4. e
three disease categories with the lowest proportion of diseases in Clusters 1 to 4 were benign neoplastic, skin
and psychiatric diseases (Fig. 3b, Table 1).

Median age of first recorded diagnosis. e median age of rst recorded diagnosis above the age of
20 years was highest for diseases in Cluster 1 (82y (82-83)), followed by those in Cluster 2 (77y (75-77)), Clus-
ter 3 (69y (66—71)), Cluster 4 (57y (54-59)), Cluster 5 (42y (39.5-46)), Cluster 6 (35y (35-36)), Cluster 7 (33y
(32.5-35)), Cluster 8 (32y (31.5-34)), and Cluster 9 (29y (28-29)) (Fig. 4a).

CVDs had the highest median age of diagnosis above the age of 20 years (median age, (interquartile range
(IQR)): 71y (64-76)), followed by malignant (68y (61—71)), respiratory (67y (44-73)), eye (64y (48-71)), mus-
culoskeletal (57y (49-62)), endocrine (57y (51-59)), haematological or immunological (57y (51-61)), infec-
tious (57y (40-64)), ear (56y (55-59)), neurological (56y (44—65)), genitourinary (56y (40-64)), digestive (55y
(52-59)), benign neoplastic (50y (44-58)), skin (43y (36—46)), and psychiatric (38y (34—40)) diseases (Fig. 4b).

e median age of diagnosis above the age of 20 years for every disease in Clusters 1, 2, 3 and 4 is displayed in
Fig. 5. Dementia and delirium in Cluster 1 had the highest median age of diagnosis (83y for both). Supplementary
Table S4 shows the median age of diagnosis above the age of 20 years (median age, (interquartile range (IQR))
for diseases strati ed by category and cluster.

Gompertz and Gompert-Makeham models. We next employed an actuarial method to determine
whether a disease was ageing-related. We developed an algorithm which applied mortality models to age-speci ¢
rates of disease onset for 289 diseases as described in Fig. 1. e Gompertz function, which is monotonic, was
used to Iter diseases with rates of onset that decreased with age. e goodness-of- t of the Gompertz—Make-
ham (GM) model, which is exponential-polynomial, and hence may be used to t non-monotonic curves, was
assessed to evaluate whether a disease was ageing-related. Higher values of the adjusted R? of the GM indicated
a better t, and therefore a higher likelihood that the disease was ageing-related.

35 conditions had a negative coe cient of the age variable in the Gompertz model (Eg. 4) and could therefore
be considered to have a very low likelihood of being ageing-related. Of the remaining 254 diseases, the majority
(210) had adjusted R? of the GM model above 0.95, indicating a very high likelihood of being ageing-related.
193 of these 210 diseases were in Clusters 1-4 (Table 2).

All 26 diseases in Clusters 1 and 2 had a very high likelihood of being ageing-related, with adjusted R? values
for the GM model above 0.95. e adjusted R? of the GM model was above 0.95 for 87 out of 91 diseases in Cluster
3, and between 0.90 and 0.95 for four diseases (secondary bowel cancer, primary prostate cancer, mesothelioma
and iron de ciency anaemia). Similarly, in Cluster 4, the majority of diseases had adjusted R? of the GM model
above 0.95 (80 out of 90 diseases), albeit a smaller proportion than in Clusters 1, 2 and 3. e adjusted R? of
the GM model was below 0.90 for three conditions in Cluster 4—parasitic infection (0.88021), hyposplenism
(0.88019) and primary thyroid cancer (0.85776) (Table 2, Fig. 6, Supplementary Table S1).
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Figure 4. Median age of onset for 278 diseases in each curve cluster and disease category: (a) Box and whisker
plots of the median age of rst recorded diagnosis above the age of 20 years for diseases in each curve cluster;
(b) Box and whisker plots of the median age of rst recorded diagnosis (above the age of 20 years) for the 289
conditions grouped into 15 disease categories. e horizontal line inside the boxes represents the median, the
upper and lower edges of the boxes represent the 25th and 75th percentiles, and the end-points of the upper and
lower whiskers represent the highest and lowest values within 1.5*IQR, where IQR is the interquartile range.
Numbers above the boxes indicate the median (25th percentile, 75th percentile).

Twelve diseases in Cluster 5 had a negative coe cient of the age variable in the Gompertz model, with a
very low probability of being ageing-related. Of the remaining 39 diseases, the adjusted R? of the GM model
was above 0.95 for 16 conditions, between 0.90 and 0.95 for four conditions and below 0.90 for 19 conditions

(Table 2, Fig. 6).

All conditions in Clusters 6 to 9 were unlikely to be ageing-related. With the exception of schizophrenia spec-
trum, all conditions in these clusters had a negative coe cient of the age variable for the Gompertz model.
adjusted R? of the GM model for schizophrenia spectrum was 0.70529, indicating a poor t for the GM model,
had hence a very low likelihood of being ageing-related (Table 2, Fig. 6, Supplementary Table S1).
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Figure 5. Median age of rst recorded diagnosis above the age of 20 years for diseases in (a) Cluster 1, (b)
Cluster 2, (c) Cluster 3 and (d) Cluster 4. Diseases are arranged in descending order of median age of rst
recorded diagnosis. AAA =abdominal aortic aneurysm; AKI =acute kidney injury; AV =atrioventricular;
Benign Neo =benign neoplasm; CHD =coronary heart disease; CKD =chronic kidney disease; COPD =chronic
obstructive pulmonary disease; DM =diabetes mellitus; dz =disease; GORD = gastroesophageal re ux

disease; GU =genitourinary; HDL = high density lipoprotein cholesterol; HOCM = hypertrophic obstructive
cardiomyopathy; HTN =hypertension; ID =infectious disease; LBBB=1Ie bundle branch block; LDL =low
density lipoprotein cholesterol; LRTI=lower respiratory tract infection; MGUS =monoclonal gammopathy of
undetermined signi cance; nos=not otherwise speci ed; PAD =peripheral arterial disease; Pri Ca=primary
cancer; RBBB =right bundle branch block; Sec Ca=secondary cancer; SIADH =syndrome of inappropriate
antidiuretic hormone; SVT =supraventricular tachycardia; T2DM =type 2 diabetes; TIA =transient ischaemic
attack; UTI=urinary tract infection; VTE (Excl PE) =venous thromboembolism excluding pulmonary
embolism.

Discussion

We grouped 278 high-burden diseases into nine main clusters using unsupervised machine-learning. Four
of these clusters consisted of diseases that increased with age, albeit with strikingly di erent age trajectories
and median ages of disease onset (82y, 77y, 69y and 57y for Clusters 1, 2, 3 and 4, respectively), indicating that
di erent aetiologies may drive each cluster. Diseases in these four clusters spanned diverse organ systems and
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>0 >0 p>0 >0 >0
Adjusted R? (x) x>0.95 | 0.9<x<0.95 | 0.85<x<0.9 |0.8<x<0.85 |x<0.8 |p<0
Number of conditions | 210 17 8 2 17 35
Cluster 1 5 0 0 0 0 0
Cluster 2 21 0 0 0 0 0
Cluster 3 87 4 0 0 0 0
Cluster 4 80 7 3 0 0 0
Cluster 5 16 4 4 2 13 12
Cluster 6 0 0 0 0 0 7
Cluster 7 0 0 0 0 1 2
Cluster 8 0 0 0 0 0 7
Cluster 9 0 0 0 0 0 3
Outlier 1 1 0 0 0 0 0
Outlier 2 0 1 0 0 0 0
Outlier 3 0 1 0 0 0 0
Outlier 4 0 0 0 0 1 0
Outlier 5 0 0 1 0 1 0
Outlier 6 0 0 0 0 0 1
Outlier 7 0 0 0 0 1 0
Outlier 8 0 0 0 0 0 2
Outlier 9 0 0 0 0 0 1

Table 2. e number of conditions in each age-related and outlier cluster for di erent thresholds of adjusted
R? (x) (with a positive B (coe cient of the age variable) in the Gompertz model), and the number of conditions

with a negative B.

751

Number of conditions

Adjusted Rsq bands
p>0 &AdjRsq>0.95
B >0 &AdjRsq0.90-0.95
f>0 &AdjRsq0.85- 0.90
B>0 &AdjRsq0.80-0.85
B>0 &AdjRsq < 0.90
p<o0

_ NEEN

Figure 6. Number of diseases in each curve cluster for di erent adjusted R? bands where j3 is positive, and
number of diseases where § is negative. 3 is the coe cient of the age variable in the Gompertz model and the
adjusted R? value measures the goodness-of- t of the Gompertz—Makeham model.
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clinical specialties. Cluster 1 consisted of dementia, delirium, hip fracture, bifascicular and trifascicular heart
blocks. Cardiovascular diseases were most highly represented in Cluster 2, cancers in Cluster 3, and diseases of
the digestive system in Cluster 4. Benign neoplastic, skin and psychiatric disorders, the three disease categories
with the lowest median age of disease onset (50y, 43y and 38y, respectively), were largely absent from these four
clusters. Four clusters (Clusters 6, 7, 8 and 9) were clearly not ageing-related. Cluster 5 comprised diseases with
varying age-related disease onset patterns.

Next, we applied actuarial techniques to assess whether diseases were ageing-related according to how well the
rate of disease onset data tted the Gompertz and Gompertz—Makeham models. While this method was based
on very di erent principles from the clustering algorithm, the results were highly concordant (Table 2, Fig. 6)
indicating that these two data-driven approaches can be used synergistically to identify ARDs.

All diseases in Clusters 1 and 2 were highly likely to be ageing-related. A small number of diseases in Clusters
3and 4 tslightly less well with the actuarial models. Unlike clustering techniques, parametric methods such
as the Gompertz and GM models rely on su cient sample sizes to assess how well the model ts a particular
distribution. Where sample sizes are small (i.e. data is sparse), the goodness-of- t statistics are lower, re ecting
the lower degree of certainty with which the assumed model tsthe data. e relationship with age for diseases
in Cluster 5 was more complex than for diseases in the other clusters. Given the heterogeneity in the age-speci ¢
rate of disease onset curves in this cluster, the actuarial method was useful in di erentiating diseases which
were likely to be ageing-related, such as erectile dysfunction, from those that were not, such as irritable bowel
syndrome (Supplementary Fig. S6).

Clustering of age density patterns of ICD-10 codes on medical claims from an insurance company in Brazil
has been described previously?®, but to our knowledge, this is the rst report of clustering of age-speci c rates
of disease onset of curated disease phenotypes in a representative population set, with the results corroborated
using an independent parametric method, namely actuarial models. Unlike data from a universal healthcare
system such as the National Health Service (NHS) in England, insurance claims data may be biased and not
representative of a population of interest as they exclude individuals without health insurance, and data collected
primarily for nancial purposes may not be suitable to assess epidemiological measures such as prevalence and
incidence of disease?®%, Furthermore, the previous study did not provide details of which ICD-10 codes fell
into each cluster, while in this study we present the age-speci c rate of onset curves for 289 diseases and their
respective clusters so that readers can observe how disease incidence progresses with age.

In its latest version of the International Classi cation of Diseases, ICD-11, the World Health Organisation
(WHO) has implemented an extension code for “ageing-related” diseases (XT9T), de ned as those “caused by
pathological processes which persistently lead to the loss of organism's adaptation and progress in older ages”.

is study provides an objective method for identifying candidate diseases to which this extension can be applied.

e ARDs we identi ed extend across the full range of conventional classi cations of disease, which are
based on organ systems, as re ected in the International Classi cation of Diseases. We introduce an alternative
paradigm for the classi cation of ARDs based on the age of disease onset patterns. e analytic approaches in this
study can be applied to any of the thousands of phenotyped health conditions in any representative population
setting to identify and categorise ARDs according to the relationship between age and rate of disease onset. Our

ndings facilitate the organisation of clinical specialties, particularly geriatric medicine, around the prevention
or care of clusters of ARDs.

e identi cation of ARDs, and the presentation of age incidence curves in particular, enable clinicians to
assess the likelihood of di erent diseases occurring atdi erentages. is information can be used to formulate
a list of di erential diagnoses when assessing individual patients. Conditions in Cluster 1 such as dementia,
delirium and hip fracture were more likely to occur in the most elderly patients, while conditions in Cluster 2,
consisting mainly of cardiovascular diseases, occurred at a slightly younger age, and those in Cluster 3, such as
cancers, occurred earlier yet.  ese ndings have resource implications as well. Health care providers will need to
allocate more resources to diseases in Clusters 1 and 2 as populations get older.  ese include increased funding
towards social care and allied health professional support such as physiotherapists and occupational therapists
to address the functional implications of cognitive loss in dementia.  ese ndings should also prompt increased
provision of cardiac rehabilitation services to improve the quality of life of individuals who experience heart
failure and arrhythmias as a result of insults to the cardiovascular system at an earlier age. Our results can also
guide health services to target preventive measures for ARDs in the di erent clusters at di erent ages over the
lifecourse, such as providing occupational health assessments for individuals above the age of 80 years to prevent
falls leading to hip fractures. e ndings from this study also give basic science researchers a perspective on the
incidence of ARDs over the lifecourse and demonstrate which ARDs have similar patterns of disease onset with
age, thereby informing research into how long various hallmarks or mechanisms of ageing may take to cause
ARDs inthe di erent clusters. Future research is needed to investigate whether diseases in the same cluster share
common mechanisms or risk factors of ageing.

ARD:s that occur together more o en than expected by chance may share common biological mechanisms.
If so, existing drugs targeting these mechanisms could be repurposed for other ARDs with similar molecular
pathways. For example, interleukin 6 (IL6), an in ammatory cytokine, has been implicated in the pathogenesis
of rheumatoid arthritis®?, coronary heart disease®, atrial brillation® and abdominal aortic aneurysm®. Drugs
such as tocilizumab, which inhibits the IL6-receptor and is already licensed for the treatment of rheumatoid
arthritis and giant cell arteritis, might therefore be e ective in treating these other diseases. New drugs can
also be developed to modulate the biological pathways for multiple ARDs based on common genetic or other
molecular risk factors.

ARD:s such as alcoholic liver disease, COPD, cirrhosis, cancers, peptic ulcer, and actinic keratosis are caused
by the cumulative damage of exogenous substances including alcohol, smoking, medications, deleterious dietary
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compounds, and radiation. Research into environmental causes and public health campaigns that target these
are important to prevent ARDs amenable to lifestyle and public policy changes.

We identi ed ARDs using methods that relied on large population EHR datasets. Replication in independent
representative population cohorts would validate the application of these methods to big data with de ned disease
phenotypes (not just ICD-10 or other billing codes) from other healthcare systems that are representative of the
general population.  is would pave the way to comparisons of how diseases may vary with age across high,
medium and low-income countries, and countries with di erent population age structures.

One potential limitation of our analysis was that the age of disease onset was represented by the age of rst
recorded diagnosis for each individual'*. is could introduce biases in the rate of disease onset for several
reasons. Diseases such as chronic obstructive pulmonary disease (COPD) are clinically silent for long periods,
leading to delays between each of the following events: disease onset, presentation to a clinician, diagnosis and
documentation in the EHR. Other conditions such as hypertension, dyslipidaemia or obesity were more likely
to be diagnosed in individuals aged 40—74 years because of the NHS Health Checks programme which began in
2009 with the aim of reducing CVD risks®. Conditions that are usually asymptomatic, such as chronic kidney
disease, were more likely to be detected in individuals already diagnosed with co-existing morbidities than in
individuals having no contact with health services. Other factors, such as screening, may also a ect recorded
diagnosis rates. An example is breast cancer, where small spikes in the rate of disease onset curve are apparent at
the ages of 50 and 70, which correspond to the ages between which breast screening takes place (Supplementary
Fig. S5a). However, given that disease onset is 0 en latent with minimal clinical features, and that diagnosis
from clinical manifestation in this current age of medicine in high-income countries such as England is usually
time-e cient, EHRs present us with the best available proxy for age of disease onset, for the widest spectrum of
disease, in the form of age at rst recorded diagnosis.

Variable patterns of consultation could also a ect the accuracy of the records. Disease frequency estimates
for conditions which can be self-managed by over-the-counter medications or conditions a ecting individuals
at the mild end of the symptom spectrum may be underestimated using EHRs. Another limitation of this study
is that we did not use free text comments to supplement the phenotyping algorithms for disease de nition. is
could have led to missing diagnoses for conditions that might not be well coded®”. However, studies have shown
that most diseases, including cancers, in ammatory bowel diseases, asthma, cataract, glaucoma and autism
are reliably captured using diagnosis codes in primary care CPRD data linked to HES secondary care data®®-*,
Finally, we did not evaluate the data quality of the CPRD linked dataset*, but the use of diagnostic codes in the
CPRD dataset for research purposes has previously been validated'*,

In conclusion, we have developed a protocol to identify and classify ARDs from any EHR dataset repre-
sentative of the general population. Our ndings can be used to explore which ARDs co-occur more 0 en than
expected by chance and the common endogenous or environmental drivers behind them, leading to further
research investigating the most suitable interventions to prevent or treat multiple ARDs e ectively.  is work
is therefore the rst, critical step towards tackling the challenges of ageing and ARDs, which are emerging as
costlya ictions in the modern world.

Data availability

e data that support the ndings of this study are available from CPRD and access is subject to approval from
an Independent Scienti ¢ Advisory Committee (ISAC). e data were used under license for the current study,
and so are not publicly available.
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