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Abstract

Background: Non-pharmaceutical interventions (NPIs) are used to reduce transmission of SARS coronavirus 2
(SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, empirical evidence of the effectiveness of
specific NPIs has been inconsistent. We assessed the effectiveness of NPIs around internal containment and closure,
international travel restrictions, economic measures, and health system actions on SARS-CoV-2 transmission in 130
countries and territories.

Methods: We used panel (longitudinal) regression to estimate the effectiveness of 13 categories of NPIs in reducing
SARS-CoV-2 transmission using data from January to June 2020. First, we examined the temporal association between
NPIs using hierarchical cluster analyses. We then regressed the time-varying reproduction number (Rt) of COVID-19
against different NPIs. We examined different model specifications to account for the temporal lag between NPIs and
changes in Rt, levels of NPI intensity, time-varying changes in NPI effect, and variable selection criteria. Results were
interpreted taking into account both the range of model specifications and temporal clustering of NPIs.

Results: There was strong evidence for an association between two NPIs (school closure, internal movement
restrictions) and reduced Rt. Another three NPIs (workplace closure, income support, and debt/contract relief)
had strong evidence of effectiveness when ignoring their level of intensity, while two NPIs (public events
cancellation, restriction on gatherings) had strong evidence of their effectiveness only when evaluating their
implementation at maximum capacity (e.g. restrictions on 1000+ people gathering were not effective,
restrictions on < 10 people gathering were). Evidence about the effectiveness of the remaining NPIs (stay-at-
home requirements, public information campaigns, public transport closure, international travel controls,
testing, contact tracing) was inconsistent and inconclusive. We found temporal clustering between many of
the NPIs. Effect sizes varied depending on whether or not we included data after peak NPI intensity.
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Conclusion: Understanding the impact that specific NPIs have had on SARS-CoV-2 transmission is complicated by
temporal clustering, time-dependent variation in effects, and differences in NPI intensity. However, the effectiveness of
school closure and internal movement restrictions appears robust across different model specifications, with some
evidence that other NPIs may also be effective under particular conditions. This provides empirical evidence for the
potential effectiveness of many, although not all, actions policy-makers are taking to respond to the COVID-19
pandemic.

Keywords: Non-pharmaceutical interventions, Policy evaluation, COVID-19, SARS-CoV-2, Public health intervention,
Pandemic, Quantitative, Health impact assessment, Longitudinal analysis

Background
Coronavirus disease 2019 (COVID-19) is an infectious
disease caused by severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2). The virus is easily transmis-
sible between humans, with a basic reproduction
number around 2–4 depending on the setting [1, 2]. To
date, no vaccine or highly effective pharmaceutical treat-
ment exists against COVID-19. Countries have used a
range of non-pharmaceutical interventions (NPIs) such
as testing suspected cases followed by isolation of con-
firmed cases and quarantine of their contacts, physical
distancing measures such as schools and workplaces clo-
sures, income support for households affected by COVID-
19 and associated interventions, and domestic and inter-
national travel restrictions [3]. These interventions aim to
prevent infection introduction, contain outbreaks, and re-
duce peak epidemic size so that healthcare systems do not
become overwhelmed. However, these interventions come
at a cost. Testing and contact tracing require laboratory
and public health resources to be successful at scale, gov-
ernment subsidies affect national budgets, while physical
distancing disrupts economic activities and daily life [4].
Hence, the psychological, social, and economic cost of in-
terventions needs to be balanced against their potential ef-
fectiveness in reducing SARS-CoV-2 spread.
Modelling studies suggest that travel restrictions [5, 6],

contact tracing and quarantine [7, 8], and physical distan-
cing [9, 10] may delay SARS-CoV-2 spread, based on as-
sumptions about how they may change transmission
between individuals in populations. However, the effect-
iveness of such interventions depends on factors such as
societal compliance (e.g. the extent to which people re-
duce their daily contacts following government restric-
tions) that are difficult to prospectively measure.
Empirical evidence about the effectiveness of specific pol-
icy interventions has been limited (see Additional file 1:
Table S8 for a review) [11–37]. While several countries
have seen disease incidence peak and fall [38], ascribing
changes in transmission to particular interventions is diffi-
cult since countries tend to impose combinations of policy
changes at different levels of stringency in close temporal
sequence.

Several global databases of COVID-19-related policy
interventions have been compiled [39]. Here, we used
the regularly updated Oxford COVID-19 Government
Response Tracker (OxCGRT) [3] and conducted panel
analysis to understand the association between policy
interventions and time-varying reproduction numbers
(Rt), a measure of the rate of transmission of an in-
fectious disease in a population. We also explore
whether this relationship is modulated by definitions
of policy interventions, temporal lags, and population
characteristics in different countries.

Methods
Data on NPIs and Rt
Data on COVID-19-related NPI intensity from 1 January
to 22 June 2020 was extracted on 5 July 2020 from version
5 of OxCGRT, based on the codebook version 2.2 (22
April 2020) [3]. This version contains publicly available in-
formation from 178 countries and territories on 18 NPI
categories. We further divided these countries and terri-
tories into seven regions according to the World Bank
classification [40]. Note that these 18 NPI categories are
broad, so many specific policy interventions (e.g. facial
covering mandates) are not independently coded in the
database. See Additional file 1: Table S1 for further
metadata.
From this database, we removed (i) “miscellaneous”

policies as they contained no data at the time of our data
extraction; (ii) “giving international support” and “invest-
ment in vaccines” policies as they did not on face validity
have a causal pathway to influence local SARS-CoV-2
transmission within the timescale of the analysis; (iii)
“fiscal measures” and “emergency investment in health-
care” policies as both the start and the duration of their
effect is often unclear (e.g. the announcement of an in-
vestment may be implemented weeks later; funding that
is allocated may be spent over a long time); and (iv) data
after 22 June 2020 because > 10% of countries and terri-
tories have missing data after this date (see Additional
file 1: Figure S1) [3]. Missing data fields on or before 22
June 2020 were imputed by (a) carrying forward or back-
wards the next or last non-missing observation when
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missingness occurred at the two tails of the time-series
or (b) linearly interpolating using non-missing observa-
tions when missingness does not occur at the two tails
of the time series. We divided the remaining 13 policy
interventions into four policy groups roughly consistent
with the original database (Table 1).
Most NPIs in the database are measured on ordinal

scales that capture intensity (e.g. 0 = no contact tracing;
1 = limited contact tracing; 2 = comprehensive contact
tracing). Since the intervals between categories are not
necessarily equally spaced, we converted NPI history
into binary variables under two scenarios: (i) any effort
scenario: all zero records were converted to 0, and non-
zero records were converted to 1, and (ii) maximum ef-
fort scenario: all non-maximum records were converted
to 0, and all records at maximum levels were converted
to 1 (see Table 1).
Transmission of SARS-CoV-2 is routinely measured

using the time-varying reproduction number (Rt), a
metric which represents the mean number of secondary
cases that arise from one index case. We used the me-
dian Rt estimates available through EpiForecasts [https://
epiforecasts.io/], a publicly available repository of Rt esti-
mates for many countries. The estimation process is
based on reported incidence while accounting for a
range of uncertainties surrounding the incubation
period, the delays between symptom onset and reporting
[41]. The underlying method has been detailed in Cori
et al. [42]. In short, the transmission rate of an infectious
disease is approximated by the ratio between new infec-
tions at time t and the infectious individuals at time t −
w where w is the associated time window. In EpiFore-
casts, a weekly time window is used. This measure is ex-
pected to fall when effective NPIs reduce the rate of
SARS-CoV-2 transmission. Since the effects of some
NPIs may take time to become evident, we explored a
range of temporal lag effects between NPI implementa-
tion and Rt changes.
Between 1 January and 22 June 2020, data on NPIs

and Rt are simultaneously available for 130 countries

and territories, all of which are used in the panel analysis
described below.

Understanding the temporal patterns
The effect of an NPI on Rt may vary over time as a result
of the evolving epidemic dynamics (e.g. decreasing num-
ber of susceptibles) or time-varying factors such as pub-
lic compliance (e.g. the proportion of shoppers wearing
facial coverings after government mandates). To exam-
ine this effect, we split up the time series of NPIs and Rt

values into two parts: before and after peak NPI inten-
sity. This was a sensitivity analysis to examine the ro-
bustness of NPIs’ effectiveness in reducing COVID-19
transmission over time.
We used OxCGRT’s stringency index (SI), a combined

metric of several behaviour-related NPI measures, to de-
termine peak NPI intensity. We then fitted a Gaussian
generalised additive model (GAM) with cubic splines,
using SI as the response variable and date as the sole ex-
planatory variable for each World Bank region (i.e. the
predicted regional SI is informed by all stringency index
time-series within it). The peak of the predicted SI
splines for each region was then examined to derive an
average peak across all the regions. We then constructed
two time-series: (i) the full time series and (ii) the trun-
cated time series up to the time of peak SI.
We examined temporal clustering among different

NPIs to identify potential structural confounding. If two
effective NPIs are temporally clustered, one may be re-
moved due to multicollinearity, which should not by any
means be interpreted as that NPI being ineffective. Simi-
larly, if one effective and one ineffective NPI are tempor-
ally clustered, the statistical association between the
effective NPI and reductions in Rt may create a statistical
artefact whereby the ineffective NPI may also appear to
be associated with reductions in Rt. Either way, the exist-
ence of temporal clustering could cause misinterpret-
ation of the regression results unless it is accounted for.
To investigate the temporal clustering patterns, we

conducted hierarchical cluster analysis using Ward’s

Table 1 Thirteen types of NPIs from OxCGRT, their general categorisations, and the coding schema used in our analysis to quantify
their intensity

NPI groups Specific NPIs Coding schema

Internal
containment
and closure

School closure; workplace closure; cancellation of public events; limits
on gathering sizes; closure of public transport; stay-at-home require-
ment; internal movement restriction

Any effort scenario:
NPIs are binary variables, considered “present” as long as
any (non-zero) effort is made.

Maximum effort scenario:
NPIs are binary variables, considered “present” only if the
maximum effort is made.

For example, an intervention X has levels 0–3. A record
at level 2 is converted to 1 under any effort and 0 under
maximum effort scenarios.

International
travel
restrictions

International movement restriction

Economic
policies

Income support; debt/contract relief for households

Health systems
policies

Public information campaign; testing policy; contact tracing
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method [43], which minimises within-cluster variance,
under the any effort scenario and the maximum effort
scenario. The inputs of the hierarchical clustering
process were 13 vectors (one for each NPI under consid-
eration), with each vector element corresponding the
NPI status aligned by a unique time and location.
Euclidean distance was used as the distance function be-
tween each pair of NPIs, using all available data (i.e. the
full time-series for each NPI). We chose this method to
compare the entire time-series of the NPIs, without hav-
ing to select time-series summary metrics (e.g. the tim-
ing when an NPI was implemented) a priori. We then
used multi-scale bootstrapping (n = 10,000) to test the
statistical significance of the identified clusters, defined
using approximate unbiased p values less than 0.05 [44].
The complete implementation of this method can be
found in the GitHub repository at [https://github.com/
yangclaraliu/COVID19_NPIs_vs_Rt].

Panel analyses
We used panel (or longitudinal) regression to study the
association between NPI intensity and Rt, treating the
time-series of NPI intensity and Rt in each country as
observations of an individual in a panel. We used a lin-
ear fixed effects model:

Rit ¼ αi þ
X

βXit þ uit

where Rit is the time-varying reproduction number of lo-
cation i at time t, αi is a location-specific intercept (as-
sumed to remain constant over the timescale of the
analysis), βXit represents the 13 NPIs and their corre-
sponding coefficients, and uit is the error term. The deci-
sion to use a fixed-effects model with individual
intercept (as opposed to a random-effects model) was
based on the results of the Durbin-Wu-Hausman test
[45]. In other words, there is insufficient evidence to
support a random effect model based on global data,
and the effects of each NPI on Rt can be characterised
by fixed estimators.
We investigated the appropriate temporal lag between

NPI intensity and Rt. To do this, we calculated the devi-
ance (natural logarithm of the sum of squared residuals
divided by the number of data points) assuming errors
are normally distributed for temporal lags of 1 to 21
days. Smaller deviances indicate temporal lags that pro-
vide better model fits. A temporal lag of k days regresses
on Rt a particular day against NPIs implemented k days
before (i.e. Xi(t − k)). This analysis was carried out at both
the regional and global levels. Data from North America
and South Asia were excluded from region-specific tem-
poral lag analyses due to small sample sizes.
Stepwise backwards variable selection based on Akaike

and Bayesian Information Criterion (AIC or BIC) was

then used to choose the most parsimonious model. Be-
ginning with the full model (13 independent variables,
one for each NPI), independent variables were removed
one at a time sequentially. We also validate our results
using univariable analyses and a forward variable selec-
tion algorithm.

Statistical interpretation
For both the any effort and the maximum effort scenar-
ios, we examined a range of model specifications includ-
ing (i) different variable selection criteria: AIC and BIC,
(ii) different temporal lags between the timing of NPIs
and changes in Rt (selected based on deviance from the
analysis of temporal patterns), and (iii) different time
series lengths: one ending on 22 June 2020 and the other
truncated to 13 April 2020, when NPI intensity peaked
(on average). We then defined categories of “evidence
strength” behind each association according to Table 2.
For example, if an NPI has significantly negative effects
on Rt in all but one model set-up (i.e. one of model se-
lection criteria, temporal lags, and time-series length
mentioned above), that NPI is considered to have mod-
erate strength evidence, as long as no other NPI in the
same temporal cluster has significantly positive effects
on Rt. Allocating each NPI to an evidence category was
done independently by two authors (YL and MJ), with
differences resolved by discussion.

Software
All analyses were conducted using R version 4.0.0 [46],
with packages “plm” and “pvclust” [47, 48]. Code is
available at https://github.com/yangclaraliu/COVID19_
NPIs_vs_Rt.

Results
Trends in NPI intensity
Temporal trends in COVID-19-related NPI intensity
measured using the OxCGRT SI are relatively consistent
across regions (Fig. 1). Following the initial imposition
of NPIs in China, almost all regions experienced an ini-
tial increase in policy stringency in early February 2020.
The East Asia and Pacific region had the highest SI up
to mid-March, but by April had the lowest SI. From
March, other regions registered rapid increases in their
stringency indices. The stringency index peaked in mid-
April for all regions, and so 13 April 2020 was used as
the time of peak NPI intensity (see Additional file 1:
Table S2). All regions and nearly all countries had a
higher stringency index in June compared to February.
Figure 2 shows how the intensity of specific NPI

groups varies in each region relative to the time of peak
intensity. Under both any and maximum effort scenarios,
“Health System Policies” was the first NPI group to in-
crease across all regions. It was also the most commonly
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used NPI group. This was followed by “Internal Contain-
ment and Closures” and then “Economic Policies”, al-
though “International Travel Restrictions” sometimes
came before “Internal Containment and Closures”. NPI
intensity increased only as the first case was detected in
each region, except for sub-Saharan Africa where many
countries took action before the first detected case.
While the stringency index has decreased across all re-
gions (Fig. 1), the decreasing trends were not apparent
in most NPI groups apart from International Travel Re-
strictions (Fig. 2).
Hierarchical cluster analysis shows that, given the

any effort scenario, all the NPIs are contained in two
significant temporal clusters (Fig. 3). These temporal
clusters align well with the broad categorisations de-
fined in the OxCGRT, i.e. countries tend to start
implementing the same categories of NPI simultan-
eously. However, under the maximum effort scenario,
there are three significant temporal clusters and sev-
eral NPIs are not in any cluster, i.e. countries reach

their maximum level of intensity for NPIs at very dif-
ferent times. Specific cluster assignments are also pre-
sented in Additional file 1: Table S2–3. Direct visual
representation of the association between dates when
pairs of NPIs were implemented and lifted can be
found in Additional file 1: Figure S4–5.

Panel analyses
We examined the goodness-of-fit (based on deviance) of
the panel regression model in all scenarios both at the
regional and global level to identify the most appropriate
temporal lag (see Additional file 1: Figure S4–5) [3]. For
both the full and truncated time series (ending on 22
June and 13 April 2020, respectively), we identified tem-
poral lags to be longest in East Asia and Pacific (between
5 and 10 days), followed by Europe and Central Asia (ap-
proximately 5 days), and the shortest in Latin America
and the Caribbean (below 5 days) (see Additional file 1:
Figure S4–5) [3]. The results from the Middle East and
North Africa and sub-Saharan were not consistent

Table 2 Expert interpretation of evidence from the statistical associations of each NPI with reductions in Rt
Evidence
strength

Effect estimates Temporal cluster

Strong Selected and significant with intended effect signs (i.e. negative) regardless of model
specifications (i.e. variable selection criteria, temporal lags, and time-series lengths).

Not in a temporal cluster with any NPI
with significantly positive effect
estimates.

Moderate Selected and significant with intended effect sign (i.e. negative) in two of three model
specification dimensions (i.e. variable selection criteria, temporal lags, and time-series lengths),
and non-selected or non-significant in the remaining dimension.*

Weak Not strong or moderate

*For the moderate category, all the model specifications that were non-significant or non-selected were examined to see if they had a value in common across
one of the three criteria, e.g. all of them had a lag of 10 days. Significance was assessed using ⍺ = 0.05

Fig. 1 Temporal changes in NPI stringency index (range = 0-100) by region. Countries with available data are assigned corresponding geographical
regions based on the World Bank classification.
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between scenarios, and there was no clear indication of
the most appropriate temporal lag when countries were
all combined in a global analysis. Due to the observed
heterogeneity in the temporal lags, we examined three
different lag values (1, 5, and 10 days) in the regression
analyses for both full and truncated time-series.
The NPIs in the models selected based on AIC and

BIC are shown in Fig. 4. Although we present the back-
ward variable selection process in the main text under
the assumption that all NPIs may explain variation in Rt,
the final models were unaltered when a forward variable
selection algorithm was used. Effect validation based on
univariable panel analyses can be found in Additional
file 1: Figure S6–7.

Under the any effort scenario, the most consistently
excluded NPIs were contact tracing, restrictions on gath-
erings, and international travel restrictions. Public infor-
mation campaigns and testing policies were excluded
using the truncated but not the full time-series; stay-at-
home requirements were excluded using the full but not
the truncated time-series. Under the maximum effort
scenario, the most consistently excluded NPIs were con-
tact tracing, international travel restrictions, and closure
of public transportation. Public information campaigns
were excluded by one model using the truncated time
series but were always included by models using the full
time-series. NPIs may be excluded from models either
because (i) they do not affect Rt or (ii) their effects were

Fig. 2 The proportions of countries implementing NPIs in each group by region. Colours indicate different NPI groups: dark blue—internal
containment and closure, red—international travel restrictions, green—economic measures, and light blue—health system policies; n values
represent the total number of countries in each World Bank region; the y-axis shows the proportion of countries implementing NPIs per category,
e.g. one means every country in the region is implementing some measures from the NPI group. The turning point of 13 April is shown as a
dotted-and-dashed vertical line.

Fig. 3 Dendrogram from the hierarchical cluster analysis of NPI time-series by scenario. The height of the node connecting two NPIs on the
dendrogram represents the degree of similarity between their time-series. For example, under the Maximum Effort Scenario, the time-series of
“restrictions on internal movement” is more similar to that of “restrictions on gatherings” (linked at point A), compared to that of “close public
transport” (linked at point B). The hierarchical clustering analysis relies on Ward’s method and Euclidean distances. The colour of the text boxes
corresponds to the group each NPI is in; red dashed boxes indicate statistically significantly temporal clusters identified through bootstrapping.
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fully captured by other NPIs in the same temporal clus-
ters, and thus, they were removed by the variable selec-
tion process.
Effect size estimates for the selected models in Fig. 4

are shown in Fig. 5. A few NPIs have statistically

significantly positive effects: “closure of public trans-
port”, “stay-at-home requirements”, and “contact tra-
cing”. These results indicate that the NPIs are associated
with increased Rt. While it is not inconceivable that
some NPIs may be transiently associated with increased

Fig. 4 Variable selection results. Optimal models are based on a backward selection process using AIC/BIC. NPIs are colour coded based on their
respective NPI categories. Cell-content represents corresponding p values: > 0.05—ns (i.e. non-significant); ≤ 0.05 and > 0.01—*; ≤ 0.01 and
> 0.001—**; ≤ 0.001 —***.

Fig. 5 Effect sizes for each NPI from the selected models. Points and lines indicate mean and 95% confidence intervals.
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Rt (e.g. increased testing efforts may be associated with
increased Rt because they result in better detection of
COVID-19 cases), variables with positive effects are
likely capturing residual non-random errors for other
NPIs in the same temporal cluster. Hence, they are likely
biasing effect size estimates of other temporal cluster
members, likely away from the null hypotheses. Hence,
NPIs that are temporally related need to be interpreted
within the context of the respective clusters rather than
as individual measures (see also Fig. 3).
We calculated the mean absolute errors (MAE) of the

final models for each country. We found that the largest
residuals (i.e. worst fits) were observed in sub-Saharan
Africa (highest in Zambia and Zimbabwe), East Asia and
Pacific (highest in Mongolia and China), and the Middle
East North Africa regions (highest in Palestine and
Djibouti); the lowest residuals (i.e. best fits) were ob-
served in sub-Saharan Africa (lowest in Namibia and
Mauritania) and Latin America and the Caribbean (low-
est in Colombia and El Salvador). More details can be
found in Additional file 1: Table S5–6.

Interpretation
Of the 13 NPIs in the OxCGRT, we found strong evi-
dence for the association between two of them (school
closure, internal movement restrictions) and Rt, under
both any effort and maximum effort scenarios. Another
three NPIs (workplace closure, income support, and
debt/contract relief) had strong evidence for an associ-
ation under the any effort scenario only, meaning that
the reductions in Rt were associated with the initiation
of these interventions, with no evidence of greater effect
as they were intensified. There was strong evidence for
two other NPIs (public events cancellation, restriction
on gathering) under the maximum effort scenario only,
meaning that a reduction in Rt was only evident when
the NPIs reached their maximum intensity.
In some cases, the sequential order in which NPIs are

implemented may make it more or less likely that par-
ticular NPIs capture the effects of other NPIs or they
may have interactive effects on each other (e.g. one NPI
may boost or reduce the effect of a subsequent NPI). For
example, the back-sampling process used in Abbott
et al. [41] may attribute true Rt reduction to NPIs occur-
ring later. Thus, we verify NPIs rated as being supported
by strong statistical evidence by checking their sequen-
tial ordering in COVID-19 response strategies. Most of
these NPIs were not implemented particularly early or
late in the sequence of NPIs (Additional file 1: Figure
S8–9). Complete school closure and mandatory public
events cancellations are moderately left-skewed, indicat-
ing that they tend to occur first. Some (non-maximum)
levels of income support and debt/contract relief are
right-skewed, making it possible that their observed

effects are statistical artefacts or are dependent on the
imposition of earlier NPIs.
Evidence for the other NPIs was mixed. Stay-at-home

requirements had moderate evidence under the any ef-
fort scenario, while public information campaigns had
moderate evidence under the maximum effort scenario.
Among all NPIs, some (non-maximum) levels of stay-at-
home requirements tended to occur later in the overall
COVID-19 response strategy. The remaining four (pub-
lic transport closure, international travel controls, test-
ing, contact tracing) had only weak evidence for an
association with Rt. Detailed interpretation of the statis-
tics, through which these conclusions were reached, is
presented in Additional file 1: Table S7. Similar methods
were applied to the original raw data, without converting
to any or maximum effort scenarios. However, as no
statistical conclusion can be reasonably drawn, we only
show the results in Additional file 1: Figure S10–11.
We observed variability in effect estimates due to dif-

ferences in time-series and temporal lags used (Fig. 5).
For example, the effect sizes of internal movement re-
strictions are smaller using the truncated time-series
compared to using the full time-series. This suggests
that general adherence to movement restrictions may
have decreased over time. However, this variability may
also be explained by the fact that full-time series include
more observations. The effect sizes of public events
cancellation are higher for longer temporal lags—indi-
cating their impact on Rt may be delayed. These hypoth-
eses need further validation using empirical evidence.

Discussion
Our study used panel regression to examine the tem-
poral association between NPIs that countries intro-
duced in response to the COVID-19 pandemic, and its
rate of transmission in populations, represented by Rt.
We explored how the association is modified according
to the following model specifications: (i) level of NPI in-
tensity (i.e. any vs maximum scenarios), (ii) model selec-
tion criteria (i.e. AIC vs BIC), (iii) varying lag effects, and
(iv) different time-series lengths (i.e. truncated vs. full
time-series).
We found the strength of evidence behind an associ-

ation between NPIs and Rt depended on these model
specifications. Only two NPIs (school closure, internal
movement restrictions) showed unequivocal evidence of
being associated with a decrease in Rt regardless of the as-
sumptions made. Whether schools should stay closed has
attracted debate. Keeping schools closed could potentially
hurt children’s educational development and general well-
being. Resuming schools, on the other hand, may increase
COVID-19 transmission risks for both students and
teachers. Our findings are consistent with much existing
literature—although school closures cannot single-
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handedly suppress an outbreak, they are generally effective
in terms of reducing transmission [49, 50].
We found evidence that internal movement restric-

tions reduced Rt, but no evidence of a similar effect for
international travel restrictions. The latter is consistent
with Russell et al., which shows international movement
restrictions have a limited impact on the epidemic dy-
namics of COVID-19 for most countries [51]. This dif-
ference may be explained by the types of movement
interrupted—internal movement restrictions interrupt
trips of all lengths whereas international movement re-
strictions only disrupt longer trips, which are much less
common. Additionally, internal and international move-
ment restrictions were likely used in different epidemic
contexts—internal movement restrictions tend to be
used more often to prevent outbreaks from escalating
whereas international travel restrictions make more
sense in preventing infection introduction [52]. The lat-
ter effect is not well represented in our data since Rt can
only be estimated in settings with existing COVID-19
outbreaks (i.e. after introduction).
There are differences in the strength and direction of

the effects of some NPIs (such as public transport clos-
ure and stay-at-home requirements) depending on
whether the whole time series of data was used, or only
data up to the date of peak NPI stringency (13 April
2020). This may indicate that these NPIs might have dif-
ferent effects at the start of the pandemic compared to
later on, so when the NPIs were removed (likely after
the peak), Rt did not return to its original level before
the introduction of the NPIs.
The best-fitting models also support a considerable

delay between NPIs and their effect on transmission.
This delay is about a week on average but differs widely
between regions. It could reflect delays between policies
being put in place and actual behaviour change. It could
also reflect delays in reporting, although these are expli-
citly accounted for in the Rt estimation in EpiFore-
casts—the same onset-to-delay distribution is applied in
all countries [41] and hence may not reflect differences
between settings. Delays of up to 3 weeks between policy
changes and changes in reported cases have been docu-
mented [53].
We were not able to find evidence that supports the

effectiveness of contact tracing and testing policies. This
may be because both contact tracing and testing policies
could lead to more cases being reported, as well as inter-
rupting onward transmission, so the overall effect is the
combination of these two opposing effects. While calcu-
lating the Rt, EpiForecasts does not explicitly account for
changes in reporting rate [41]. Another potential explan-
ation is the way NPIs are reported in the OxCGRT,
which largely relies on publicly available data sources,
such as news articles. Contact tracing and test policies

are both well-known public health intervention tools
and have minimal impacts on the lives of those who are
not potentially infected. Thus, they may be less likely to
receive media coverage, compared to more disruptive
NPIs such as workplace closures.
We focused our discussion on the direction and rela-

tive magnitude of the estimated effect of different NPIs,
within the context of their temporal clusters during the
on-going COVID-19 pandemic. The actual values of
NPI-specific effect sizes, which were found to be greater
for “School Closures” and “Workplace Closures” under
the any effort scenario and for “Cancellation of Public
Events” and “Income Support” under the maximum ef-
fort scenario, should be interpreted with caution. Given
the statistical approach and the ecological design of the
study, these numerical values are difficult to interpret
due to structural confounding. For example, when a
temporal cluster was effective in reducing Rt, we were
not able to confidently attribute the effects to particular
NPIs within the cluster. As the pandemic progresses,
data on more diverse NPI implementation profiles and
outcomes may become available, enabling more precise
determination of effect sizes.
Many other papers have explored the impact of phys-

ical distancing measures on SARS-CoV-2 transmission.
Prospective mechanistic transmission models have expli-
citly modelled contacts relevant to viral transmission be-
tween individuals in different subgroups (e.g. ages), as
well as the impact that NPIs may have on these contacts.
Such studies mainly use data from a single location only
such as Wuhan [9], Hong Kong [54], the USA [55], and
the UK [50]. They suggest that physical distancing inter-
ventions can have a large impact on transmission. While
the impact of income-related interventions has been less
well studied, country reports suggest that they often play
an important role in ensuring adherence to distancing
measures [56].
Another group of studies have used empirical data to

retrospectively examine whether NPIs have been effect-
ive in reducing transmission, using either statistical
methods or mechanistic epidemiological models. Many
such studies look at single interventions such as travel
restrictions [25] or “lockdowns” [22, 27]. Therefore, they
are less useful to policy-makers wanting to establish
which of a basket of NPIs are most effective.
Only a small number have looked at multiple interven-

tions across multiple countries (see Additional File 1:
Table S8 for a review). These relate NPIs from databases
to proxies of transmission such as Rt estimated from
cases and/or deaths [18, 21, 37], or the rate of change in
cases directly [13, 16, 57]. Our work demonstrates the
major challenges that all such studies (including ours)
face—NPI introductions are highly correlated in time, so
it is difficult to independently identify the effect of each
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NPI due to structural confounding. A few studies par-
tially account for this using techniques such as examin-
ing whether the number of NPIs that had already been
implemented affects the impact of subsequent NPIs [11]
or excluding statistically non-significant variables after
all NPIs are included initially [12].
Our study extends previous work to address this prob-

lem in several ways. Firstly, we use data across a larger
number of countries and territories and longer time
series (January–June 2020), enhancing the power to de-
tect independent effects even when there is partial col-
linearity. Second, instead of assuming that all NPIs
tested have an effect like previous work, we conduct
variable selection to identify only those NPIs that are
retained in parsimonious models. Third, we conduct
cluster analysis to explicitly identify temporal correla-
tions, and use this in our interpretation of the strength
of evidence behind each intervention. Fourth, we have
conducted sensitivity analyses across a range of model
specifications around the variable selection criteria, tem-
poral lag between NPIs and change in transmission,
temporal truncation, and the way NPI intensity is coded.
Nonetheless, our study also has several limitations. First,

besides the information bias in the NPIs database dis-
cussed above, the coding scheme may also introduce po-
tential bias. For example, NPIs coded as “comprehensive
contact tracing for all identified cases” may have different
implications in different countries. Effectiveness of contact
tracing in places like Singapore [58] may be masked by
seemingly similar but realistically non-comparable contact
tracing programmes elsewhere. Second, compared to daily
incidence, Rt estimates are much more suitable for cross-
country comparisons and thus are used as the metric for
COVID-19 transmission in this study. However, these es-
timates are based on a series of assumptions that may not
always be appropriate. For example, the underlying
methods assume constant case ascertainment rates over
the 12-week time window (March–June 2020) over which
our analysis takes place. Consequently, declines in Rt over
time may have been obscured by improvements in case as-
certainment, leading to some effective NPIs appearing in-
effective in our analyses. We have partially adjusted for
this by giving weight in our interpretation only to NPIs
whose effect direction is robust to changes in the time-
series length. Another limitation is that our model also
does not propagate uncertainty around Rt estimates.
Third, although we examined a wide range of NPIs, we
did not include any potential interactions in the current
model. Such interaction is a possibility, e.g. more people
may comply with workplace closures when receiving in-
come support. Future research should look into these rela-
tionships. Last but not the least, although OxCGRT is one
of the most comprehensive databases of COVID-19-
related NPIs to our knowledge, it does not capture

individual behaviour such as face-covering use in public
spaces. Thus, we were not able to assess the effectiveness
of such measures in reducing COVID-19. Such behav-
ioural measures may prove crucial to controlling COVID-
19 epidemics, so analyses of datasets that capture adher-
ence to these measures (e.g. survey of public behaviours
[59]) may yield important insights in the future.

Conclusions
In conclusion, evidence from a panel of 130 countries and
territories provides evidence about the effectiveness of
school closure and internal movement restrictions in re-
ducing SARS-CoV-2 transmission. Despite the inherent
limitations of observational and ecological data, our study
provides the broadest empirical evaluation on the relative
effectiveness of NPI in reducing COVID-19 transmission,
while addressing the issue of structural confounding due
to temporal clustering.
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