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Abstract

Background: Social media has changed the communication landscape, exposing individuals to an ever-growing amount of
information while also allowing them to create and share content. Although vaccine skepticism is not new, social media has
amplified public concerns and facilitated their spread globally. Multiple studies have been conducted to monitor vaccination
discussions on social media. However, there is currently insufficient evidence on the best methods to perform social media
monitoring.

Objective: The aim of this study was to identify the methods most commonly used for monitoring vaccination-related topics
on different social media platforms, along with their effectiveness and limitations.

Methods: A systematic scoping review was conducted by applying a comprehensive search strategy to multiple databases in
December 2018. The articles’ titles, abstracts, and full texts were screened by two reviewers using inclusion and exclusion criteria.
After data extraction, a descriptive analysis was performed to summarize the methods used to monitor and analyze social media,
including data extraction tools; ethical considerations; search strategies; periods monitored; geolocalization of content; and
sentiments, content, and reach analyses.

Results: This review identified 86 articles on social media monitoring of vaccination, most of which were published after 2015.
Although 35 out of the 86 studies used manual browser search tools to collect data from social media, this was time-consuming
and only allowed for the analysis of small samples compared to social media application program interfaces or automated
monitoring tools. Although simple search strategies were considered less precise, only 10 out of the 86 studies used comprehensive
lists of keywords (eg, with hashtags or words related to specific events or concerns). Partly due to privacy settings, geolocalization
of data was extremely difficult to obtain, limiting the possibility of performing country-specific analyses. Finally, 20 out of the
86 studies performed trend or content analyses, whereas most of the studies (70%, 60/86) analyzed sentiments toward vaccination.
Automated sentiment analyses, performed using leverage, supervised machine learning, or automated software, were fast and
provided strong and accurate results. Most studies focused on negative (n=33) and positive (n=31) sentiments toward vaccination,
and may have failed to capture the nuances and complexity of emotions around vaccination. Finally, 49 out of the 86 studies
determined the reach of social media posts by looking at numbers of followers and engagement (eg, retweets, shares, likes).

Conclusions: Social media monitoring still constitutes a new means to research and understand public sentiments around
vaccination. A wide range of methods are currently used by researchers. Future research should focus on evaluating these methods
to offer more evidence and support the development of social media monitoring as a valuable research design.
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Introduction

Although public questioning of vaccination is as old as
vaccination itself [1], continuous advancements in the global
communication landscape, associated with the rise of social
media as an interactive health information ecosystem, have
contributed to the unmediated spread of vaccine hesitancy [2].
This new boundless information ecosystem has shaped the
nature of conversations about vaccination, with evidence
showing that social media can facilitate the quick diffusion of
negative sentiments and misinformation about vaccination [2-6].
Furthermore, individuals have been found to more commonly
engage with negative information around vaccination than
positive content [7-10]. In this context, public trust in
information provided by authorities and experts can decrease
[11-13], influencing vaccine decisions [14]. Recent evidence
has shown that social media users tend to cluster and create
so-called “echo chambers” based on their views toward
vaccination [15]; however, Leask et al [16] highlight that “a
patient’s trust in the source of information may be more
important than what is in the information,” stressing the
importance of reaching individuals, across all clusters, through
trustworthy sources.

Social media monitoring (infoveillance) provides opportunities
to listen, in real time, to online narratives about vaccines, and
to detect changes in sentiments and confidence early [17].
Information gathered from social media monitoring is crucial
to inform the development of targeted and audience-focused
communication strategies to maintain or rebuild trust in
vaccination [17,18]. However, as social media monitoring can
be resource- and time-intensive, and can raise issues of
confidentiality, transparency, and privacy [17,19,20], evidence
of public health communities investing in such listening
mechanisms remains sparse.

The aim of this scoping review was to systematically summarize
the methodologies that have been used to monitor and analyze
social media on vaccination using an innovative three-step
model. The findings presented in this paper come from a broader
European Centre for Disease Prevention and Control (ECDC)
technical report [21]. The aim of the ECDC report was to
provide guidance for public health agencies to monitor and
engage with social media, whereas this paper primarily focuses
on the academic implications of social media monitoring. The
specific objectives of this scoping review were to (1) identify
the methods most commonly used for monitoring different social
media platforms; and (2) identify the extent to which methods
have been evaluated, along with their effectiveness and
limitations.

Methods

Design
Systematic scoping reviews are used to map international
literature with the aim of clarifying “working definitions and
conceptual boundaries of a topic or field” [22] as well as
identifying how research is conducted [22-24]. Systematic
scoping reviews focus on scoping larger, more complex, and
heterogeneous topics than systematic literature reviews. A
systematic scoping review approach was therefore adapted to
fulfill the goal of summarizing study methodologies used to
monitor social media content around vaccination. The
methodology for this scoping review was based on the work of
Arksey et al [23] and Peters et al [24].

Framing Social Media
Kaplan et al [25] define social media as “a group of
internet-based applications that build on the ideological and
technological foundations of Web 2.0, and that allow the
creation and exchange of user generated content.” They further
classify social media into blogs, collaborative projects (eg,
Wikipedia), social networking sites (eg, Facebook), content
communities (eg, YouTube), virtual social worlds (eg, Second
Life), and virtual game worlds (eg, World of Warcraft) [25].

However, social media is not merely an information tool but
also represents a continuously evolving social environment
directly influenced by how individuals produce and share
content, and interact with each other. For the purpose of this
scoping review, we consider social media as not simply a means
of communication but further a space within which individuals
socialize and organize. This review therefore focuses on social
networking sites and content communities, and excludes online
platforms that do not have social interactions as their main
purpose (eg, blogs or websites with a comments section).

Search Strategy and Screening Process
The search strategy for the scoping review was developed by
librarians at ECDC and researchers at the Vaccine Confidence
Project (VCP), and was peer-reviewed to balance feasibility
and comprehensiveness, including both social media and
vaccination-related English keywords (see Multimedia Appendix
1). The search was conducted by one VCP researcher on the
EMBASE database, and was adapted to search the PubMed,
Scopus, MEDLINE, PsycINFO, PubPsych, Open Grey, and
Web of Science databases in December 2018.

Identified articles were exported into Endnote, and duplicates
were removed based on ECDC guidelines consisting of 6 rounds
of deduplication looking for articles with similar author, year,
and title; title, volume, and pages; author, volume, and pages;
year, volume, issue, and pages; title; and author and year. The
automated deduplication function in Endnote was not used, and
articles were compared visually to ensure that only true
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duplicates were removed. Two VCP reviewers independently
screened articles by title and abstract and by full text using a
set of predefined inclusion and exclusion criteria. Disagreements
were resolved by discussion.

Articles were included if they described studies performed to
monitor or analyze data collected from social media around
vaccination. The definition of social media described above was
used as one of the inclusion criteria, limiting results to social
networking sites and content communities. No restrictions were
made with respect to location or language, as a team of official
translators was available at the ECDC.

Articles were excluded if they were published before 2000 or
if they were not about human vaccines. Articles that monitored
online media (eg, news, websites) but did not collect any data
from social media were excluded. The following article types
were also excluded: conference abstracts, editorials,
commentaries, and letters to the editor.

Data Management and Analysis
Two VCP researchers extracted the following data from the
included articles: country, aim, study population, period of
monitoring, vaccine, social media, media monitoring
methodologies (tool for data collection, keywords, exclusion
criteria, geolocation), analysis (sentiment coding and analysis,

reach, spread and interaction analyses, other types of analyses),
results (number of posts), and evaluation and limitations.

To facilitate the description of social media monitoring methods,
a three-step model of social media monitoring was developed
(Figure 1), including (1) preparation, (2) data extraction, and
(3) data analysis steps. The preparation phase consists of
defining the purpose of social media monitoring and addressing
any ethical considerations. The data extraction phase includes
selecting data extraction tools and periods of monitoring,
developing comprehensive search strategies, and extracting the
data. Finally, the data analysis stage includes geolocation, trends,
content, sentiments, and reach analyses. The findings
summarized in this paper are organized according to this
three-step model.

Three researchers summarized, charted, and analyzed the data.
A descriptive analysis was conducted for the types of data
collection tools used to gather data from social media, the
keywords and search strategies used, and the various analytical
methods. These researchers reviewed and compared results in
the data extraction sheet, listed and identified the frequency of
different methods used for social media monitoring, and
identified common themes. Two researchers met to discuss the
findings and interpret them together with contextual information,
identifying needs for further research.

Figure 1. The three-step model of social media monitoring.

JMIR Public Health Surveill 2021 | vol. 7 | iss. 2 | e17149 | p. 3http://publichealth.jmir.org/2021/2/e17149/
(page number not for citation purposes)

Karafillakis et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Results

Included Studies
The search strategy generated 15,435 articles, from which 7539
duplicates and 7628 irrelevant articles were excluded after
screening by title and abstract (Figure 2). From the 268 articles
screened by full text, 182 were excluded for the following
reasons: not about social media (n=141); no data provided

(n=19); conference abstracts, editorials, or letters to the editor
(n=6); article not accessible (even after enquiring multiple
libraries and contacting authors) (n=4); article containing data
already published in another included article (n=1); and not on
vaccination (n=1). At the end of the screening process, 86
articles in English, Spanish, and Italian were included for
analysis. Articles in Spanish and Italian were analyzed by a
researcher fluent in these two languages.

Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

Study Characteristics
The first study identified on social media monitoring around
vaccination was published in 2006 [26], with an increasing
number of studies published yearly since then. Most studies
analyzed online discourse on Twitter (n=42) [8,27-67], YouTube
(n=12) [68-79], Facebook (n=11) [80-90], and online forums
(eg, babytree, mothering.com, mumsnet, KaksPlus; n=9)
[26,91-98]. A diversification of social media platforms can be
observed in recent years, with studies of platforms such as
Pinterest (n=1) [99], Weibo (n=1) [100], Reddit (n=1) [101],
or Yahoo! Answers (n=2) [102,103] all published after 2015.
Seven studies monitored a mix of social media platforms
[104-110]. More detailed study characteristics are provided in
Multimedia Appendix 2.

Social Media Monitoring Methods
A range of methods were used across the 86 included studies
to monitor social media, most of which have not been evaluated
in terms of their accuracy and reliability. In the following
sections, these methods are described based on the three steps
of social media monitoring proposed in this paper: preparation,
data extraction, and data analysis.

Preparation Phase

Defining the Purpose of Social Media Monitoring
The main objective of the majority of studies in this review
(55/86, 64%) was to better understand how vaccination is
portrayed on social media, whether through the analysis of
online discourse or sentiments, or by looking at how information
is produced, shared, and engaged with [8,26,27,30,33,
39,42-44,46-51,53-56,58-62,68-80,82-88,90-94,98,99,101,102,105,106].
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Many studies (15/86, 17%) used social media monitoring as a
way to better understand general public discussions on
vaccination, assuming that online discussions are a good proxy
for vaccine confidence in a country or region
[29,32,34,36-38,45,57,63,65,67,81,95,96,103]. This comes with
important limitations due to the lack of representativeness of
social media populations. Individuals discussing vaccination
on social media tend to come from specific population groups,
usually younger or female groups [61]. Furthermore, data
extracted from social media platforms are often not
representative of the entire online discourse around vaccination
on these platforms (see Data Extraction Phase section).

Other objectives included estimating correlations between online
activity around vaccination and coverage or outbreak data
[40,41,66,104,107,109], describing systems for monitoring
vaccination online [28,52,64,97], investigating relations between
news media and social media posts [100,108,110], understanding
the contribution of bots or trolls to online content about
vaccination [31], examining political references to vaccination
on social media [35], and detecting anxiety-related adverse
events following immunization [89].

Addressing Ethical Considerations
Access to social media data is becoming increasingly restricted,
as some users set their profiles, conversations, or pages as
“private” [111]. Yet, only 15% (13/86) of the studies included
in this review were found to have been reviewed and to have
received approval from an institutional ethics review board for
their study [32,36-38,50,56,67,81,83,85,86,90,93]. An additional
9 studies sent protocols to institutional or ethical review boards
and were deemed exempt because they only analyzed public
data and social media users were not considered as “human
research subjects” [8,31,44,48,60,69,70,75,80]. One study also
explained that guidelines from an institutional review board
were considered and applied during the study to protect social
media users [92].

However, even once ethical approval had been obtained,
questions about anonymity, confidentiality, and informed
consent remained. For example, one study explained that
anonymization of data is extremely difficult to maintain on
social media, as content and quotes (whether from private or
public data) can easily be traced back to users, revealing their
identity [54]. The authors of another study performed on
Facebook in Israel explained that although they anonymized
their data, informed consent was not required as “subjects would
expect to be observed by strangers” when posting messages on
the internet [85]. Some studies also discussed the limitations of
focusing on public data and the distorted view this creates
[28,43,54,61,83,85,88,97,109].

Data Extraction Phase

Selecting Data Extraction Tools and Periods of
Monitoring
Studies included in this review were found to use different
monitoring tools to extract data from social media platforms.
Thirty-five studies used manual browser search tools such as
search bars available on Twitter, YouTube, or Facebook
[26,60,68-81,83,85,86,89-100,102,104,106,109]. Due to browser

and user interface limitations, studies that used manual browser
search functions were time-consuming and collected small
amounts of data over short periods of time. In one study, the
analysis had to be limited to 30 Facebook pages [80], which
affected the possibility of capturing data over different periods
(ie, possibly missing trends in the number of posts around
influenza seasons). Furthermore, owing to the time needed to
assess Facebook pages, it was found to be impractical to analyze
each complete page in detail. Another limitation comes from
browser cookies and personal tracking algorithms imposed by
search engines, which can influence manual search results and
their listed popularity. Researchers from another study indicated
that findings from both the Google and Facebook searches were
dependent on the geographic location of the reviewer’s browser
settings [89]. Researchers using manual search engines are also
restricted to the way search results are presented on different
platforms; for example, Pinterest does not list its pins
chronologically and does not provide exact time stamps [99].
This made using a more conventional content analysis sampling
method (eg, a constructed 2-week time period) virtually
impossible in this particular study.

Forty-nine studies used either social media application program
interfaces (APIs) (n=24) [29,31-33,35,37-41,43,45,48,
54,56-58,65-67,82,84,87,88,101,103], automated monitoring
tools (n=20) [27,36,42,44,46,47,49-53,55,59,61,62,64,105,107,
108,110], or a combination of both (n=5) [8,28,32,34,63] to
extract data from social media platforms. The term API refers
to a software intermediary that allows two apps to talk to each
other [112]. APIs pull and interpret data from servers storing
information for Facebook, Twitter, YouTube, Reddit, and many
more platforms. It is important to note that APIs do not provide
comprehensive access to all social media content, and often
only pull random samples of content; for example, Twitter
provides access to roughly 1% of public Tweets through its API
[113]. Automatic monitoring tools refer to automated web
platforms that access social media data via APIs. These
automated tools come with user-friendly interfaces, which can
be free (with limited access to a random sample of all posts),
open source (open to development from other developers), or
commercial (where access to a larger percentage of posts is
allowed, which can be real-time or archival via a subscription
pricing structure). Regardless of the data collection period,
studies with the highest number of results and the most robust
datasets consistently came from the use of social media APIs
or automatic data sampling. The “Yahoo! Answers” API
provided the largest sample size from a single platform over a
sampling period of 5 years (16 million messages) [103] and
Crimson Hexagon was the automated platform that provided
the largest mixed sample size, with a mixture of 58,078
Facebook posts and 82,993 tweets over a 7.5-year period [105].
The Yahoo! Answers study found that the API data were
difficult to stratify by age, gender, income, education level, or
marital status, which may have limited generalizability [103].
Similarly, Smith et al [57] found that using the Twitter API to
use social media discussions as a proxy for the population at
large is problematic. The difficulty in finding the correct
self-assigned demographic of users, and whether they are real
users or automated bots, makes the findings less generalizable.
Finally, a large number (n=45) of studies using either APIs or
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automated software focused on Twitter due to the ease of access
given by the platform to its data stream compared to other
platforms, which may give a skewed perspective of social media
attitudes toward vaccines [8,27-59,61-67,105,107,108,110].

Although using a mixture of tools to collect data from social
media is possible, only one study used a combination of APIs
and manual tools [30].

Developing Comprehensive Search Strategies
This review found a diverse range of search strategies developed
to extract data from social media platforms. Simple search
strategies with one to three keywords were most common. Only
10 studies used more extensive search strategies with Boolean
operators to link keywords (eg, AND, OR) or truncations to
identify words with different endings (eg, vaccin*)
[27,29,42,43,50,51,66,101,105,108]. Although simpler search
strategies were perceived as a limitation by some [8,71,73], no
data were available on the accuracy of short strategies as
opposed to longer and more complex search strategies. Studies
that evaluated their search strategies found that the
categorization of keywords into “relevant,” “semirelevant,” and
“nonrelevant” can increase precision [43], and that keywords
should reflect cultural and normative differences [108].

Across all studies, most keywords were related to vaccines (ie,
synonyms of the word “vaccine” or brand names of vaccines)
and vaccine-preventable diseases. Some studies also searched
for adverse events claimed to be linked to vaccination by the
public (eg, autism, autoimmune disorders), keywords related
to specific controversies (eg, mercury, big pharma, aluminum),
or the names of people involved in controversies (eg, Jenny
McCarthy, Andrew Wakefield). In addition to keywords, certain
studies used hashtags (eg, #vaccine, #cdcwhistleblower,
#vaccineswork) [8,30,34,44,48,49,55,60,61,105], questions
inputted into search engines (eg, “should I get the HPV [human
papillomavirus] vaccine?”) [75,102], or phrases to refer to
specific events (eg, “fainting in school children after vaccine”)
[89].

Predefined exclusion criteria were also used to screen data and
exclude irrelevant or duplicate results. The question of how to
deal with data from dubious sources, trolls, or bots was raised,
and although researchers in two studies decided to exclude them,
two studies specifically analyzed them and acknowledged their
impact on the quality and validity of their findings
[31,45,57,108].

Data Analysis Phase

Analyzing Metadata, Including Geolocation
The included studies analyzed a range of metadata, from the
number of posts to users’ characteristics. Information about the
geographical source of social media data was extremely difficult
to obtain, as this information was often private, not provided
by social media users, or, as one study conducted on Twitter
explained, because “accurate location information can be found
in only a small proportion of tweets that have coordinates stored
in the metadata of the tweet” [40]. This could explain why most
of the studies in this review were performed “globally” (n=41).

Despite these challenges, three types of strategies were used to
restrict data to certain regions or countries: using keywords in
local languages; using location-specific search terms (eg, United
Kingdom, Scotland); and directly identifying local or national
Facebook groups, pages, or online discussion forums
[50,82,86,90,91,93]. Once social media posts were collected,
other tools were used to identify and analyze the precise location
of data. Some studies manually screened content or collected
metadata [39,56,108], whereas others used automated
mechanisms and software (Carmen, Geodict, Nominatim,
GeoSocial Gauge) to retrieve this information from Twitter
[28,29,40,41,54,61,66]. Two studies used dictionaries of terms
for geographical entities of countries (GeoNames and the US
Office of Management and Budget’s Metropolitan and
Micropolitan Statistical Areas) to automatically identify
mentions of countries or cities in social media posts or profile
pages [29,61]. Some authors also explained that most bots
spreading negative content about vaccination online do not
report their locations, which could explain why most tweets
with geolocation information available were more positive
toward vaccination [61].

Analyzing Trends, Content, and Sentiments
Once data from social media were extracted from studies,
different analyses were performed, ranging from detecting the
number of posts available over a period of time to more detailed
content analysis to identify the frequency of particular concerns
or conspiracies around vaccination [8,27,46-48,53,59,60,
68-71,75-77,79,82,83,90,94,99]. Several studies also performed
qualitative thematic analysis [45,56,71,83,85,86,95,99,110], or
language and discourse analysis [26,50,52,84,92,93,106]. Four
studies compared social media posts to disease incidence or
outbreak cases [40,103,105,107].

The most common type of analysis looked at sentiments
expressed toward vaccination (70%, 60/86). Sentiments can be
understood in a variety of ways, reflected by the range of words
identified to designate sentiments toward vaccination across all
studies. Most studies used the terms “negative” (n=33),
“positive” (n=31), or “neutral” (n=37); however, each study
defined these in a slightly different way, which could have
influenced study findings and what was perceived by researchers
as “negative” or “positive.” Other common sentiments were
anti- or provaccine, encouraging or discouraging, ambiguous,
or hesitant. Only two studies provided a more comprehensive
list of sentiments such as frustration, humor, sarcasm, concern,
relief, or minimized risk [53,107]. One study also looked at
sentiment as a “yes or no” question: “does this message indicate
that someone received or intended to receive a flu vaccine?”
[41]. In one study, the World Health Organization determinants
of the vaccine hesitancy framework were used to design and
test a list of sentiments [90].

Sentiment was determined not only by looking at social media
posts or comments but also by coding links, headlines, sources,
images, captions, or hashtags [27,35,42,46,60,64,99]. Coding
hashtags was sometimes difficult; for example, those using the
hashtag #antivaxxers were often denouncing vaccine hesitancy.
Similarly, “positive” hashtags such as #provaxxers can be used
in a negative context to criticize those who promote vaccination
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[27]. Coding sarcasm, irony, slang, and hyperboles was also
complicated and prone to subjectivity biases
[27,32,34,42,44,63,101].

Sentiment analyses were performed manually (40/86, 67%) or
using an automated system (19/86, 32%). When data were
analyzed manually, studies used multiple coders (between 2
and 4) and assessed interrater reliability scores to ensure
accuracy and reliability. Many studies also emphasized the need
to provide coders with training and codebooks with precise
definitions of codes [8,26,31,32,46,47,53,60,71,73,83,90,
107,109]. Manual sentiment analysis was prone to limitations,
particularly because it relied on subjective coding and was
labor-intensive, thereby reducing the total number of posts that
could be analyzed by a single person [8,43,68,107].

Sentiments were also analyzed using automated systems, with
most studies using such systems performed on Twitter (16/19,
84%). Leverage or supervised machine learning was used to
code sentiments by training machines to learn how to code
different sentiments using a set of manually coded results
(ranging between 693 and 8261 posts) [28,34,37-39,41,48,
49,51,57,62,63,66,67,82]. An alternative to manually coding
some results to train the machine was to use Amazon
Mechanical Turk [41,51,57,66]. Other automated systems that
have been used to code sentiments included Latent Dirichlet
Allocation, an unsupervised machine-learning algorithm that
automatically determines topics in a text [57,101]; Naive Bayes
[65]; Lightside [61]; BrightView classifier from Crimson
Hexagon [105]; and Topsy [29,44]. Using such programs also
came with limitations, including the aptitude of machines to
correctly detect sentiments around vaccination, the reliance on
manual coding of some part of the data to train the system prone
to researchers’ biases and subjectivity, and the need for high
computational and technical skills [28,44,101].

Assessing the Reach of Social Media
Overall, 49 studies measured potential social media reach and
thus estimations of the number of people that see content posted
on social media. Reach was determined by the number of
followers a user had, as well as the number of engagements
with a post (eg, retweeted, shared, saved, liked, and commented
upon).

Most studies provided a short descriptive summary of the reach
of social media posts, whereas some proposed more detailed or
comprehensive analyses. Interactions between different social
network communities were studied to understand how
information can spread and be shared on social media. Studies
found that analyzing retweets was useful to understand the
spread of certain sentiments toward vaccination and, in the case
of disease outbreaks, to detect how the spread of social media
information online can impact vaccination coverage. One
particular study investigated how two kinds of communities
interacted with each other within conversations about health
and its relation to vaccines [62]. From a retweet network of
660,892 tweets published by 269,623 users, the study compared
“structural community” with another “opinion group,” and used
community detection algorithms and autotagging to measure
the interaction, sentiment, and influence that retweets had in
conversations between the two communities [62]. Similarly,

another study focused on shared concerns about the HPV
vaccine and assessed how international followers express similar
concerns to those of the groups or individuals they follow [56].

Another study examined communication patterns revealed
through retweeting, assessing the impact of various sources of
information, contrasting diverse types of authoritative content
(eg, health organizations and official news organizations) and
grassroots campaign arguments (with the antivaccination
community views serving as a prototypical example) [54].
Finally, one study looked at tweeted images, and evaluated
predictive factors for determining whether an image was
retweeted, including the sentiment of the image and the objects
shown in the image [33].

Discussion

Principal Findings
Over 80 articles have been published on social media monitoring
around vaccination. This growing academic interest, particularly
since 2015, acknowledges the role of social media in influencing
public confidence in vaccination, and emphasizes the need to
better understand the types of information about vaccination
circulating on social media and its spread within and between
online social networks [114,115]. Social media monitoring still
constitutes a relatively new research field, for which tools and
approaches continue to evolve. A wide range of methods, varied
in style and complexity, have been identified and summarized
through this systematic scoping review.

In an effort to summarize media monitoring articles, we
developed a three-step model for this review. The first stage,
preparation, consists of defining the purpose of social media
monitoring while considering any potential ethical issues. The
second stage, data extraction, should include the selection of
data extraction tools as well as periods of monitoring, and the
development of targeted, comprehensive, and precise search
strategies. Finally, the third stage, data analysis, could focus on
different types of analyses: metadata and geolocation, trends,
content, sentiment, or reach. The model was found to be useful
in structuring methodologies for social media monitoring, and
could be used in the future as a standardized protocol for
performing social media monitoring. Further research could be
performed to evaluate different components of the model, and
propose a more detailed and complex framework for media
monitoring.

Standardization of Social Media Monitoring Methods
Although the large number of articles identified via the scoping
review provided sufficient evidence to summarize methods that
have been used to monitor social media, almost none of the
articles evaluated the precision and accuracy of their monitoring
and analysis methodologies. Furthermore, researchers have not
drawn on a coherent body of agreed-upon methodologies, and
instead created an amalgamation of methodological choices that
sets no standards for the right sample size, no recommended
time period for different types of analyses per platform, or no
recommendations for studying the extremes of positive or
negative views (which are not always representative of the
general population) [116]. There is also a lack of standardization
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of which specific API tools or analytical classifiers to use for
analyzing social media discourse, interaction, or trends.

There have been recent calls to better standardize social media
monitoring methodologies, including practices such as search
strategies, so that the quality of the data query is reflected in
more accurate and precise data and study findings [117].
However, it may be apt that social media monitoring remains
a flexible research design, as the nature and access to social
media discourse on vaccination is continuously evolving. The
fast-evolving nature of different social media platforms, the
crossover of shared data, boundaries to privacy, and public
policy surrounding public discourse on vaccination and disease
outbreaks may also necessitate a more methodologically diverse
approach to keep up with ever-changing developments.
Although standardization may not be the best practice for this
relatively new research design, there is a need to evaluate the
different tools that will be used at each stage of social media
monitoring to determine which ones offer the most precise,
accurate, and representative results.

Establishing the Purpose of Social Media Monitoring
Using social media to understand prevailing issues of interest
and concern in certain communities can be a useful listening
tool for public health institutions, which can then use media
monitoring to detect key themes or questions around vaccination
circulating in the population. However, many studies included
in this review explicitly discussed limitations regarding the lack
of population representativeness in investigating social media
content. Evidence shows that social media users often represent
specific population groups in terms of age, gender, education
level, or socioeconomic status [118]. For instance, users
discussing vaccination online were found to be younger and
female [61]. Another challenge comes from the fact that content
being shared by social media users is not always representative
of their personal views or feelings, with evidence showing that
social media content is often more extreme or impulsive [119].
Due to these issues, social media monitoring is best seen as an
alternative to surveys or qualitative interviews in obtaining data
about vaccination beliefs and opinions, without assuming
representativeness of total populations but rather specific interest
groups.

Social media users could also be considered as a configuration
of a research population group, and the field of social media
monitoring could be seen as an opportunity to understand what
information users are exposed to, and how information about
vaccination is shared and spread online. In this way, social
media monitoring would be used as a new research methodology
to study a new type of population. Social media monitoring
comes with representativeness challenges of its own, as access
to data becomes limited due to inaccessible private content, the
challenge of studying all social media platforms at once, or
limitations imposed by automated software. However, social
media monitoring opens the door to more dynamic research that
continuously evolves and responds to a perpetually changing
world.

Important Ethical Considerations
The considerable increase in the number of social media
monitoring studies poses questions regarding the safe use of
data available online. Even though researchers in previous
studies may not have been legally compelled to obtain ethics
approval, the lack of guidance on good ethical conduct when
using social media information is a cause for concern. Issues
of confidentiality and anonymization of data still arise, as some
studies included in this review published screenshots of users’
data that included users’ profile names. Another issue relates
to data coming from minors, which should be considered more
carefully, even when publicly available [120]. Although these
concerns should not unduly hinder the development of social
media monitoring, they should highlight the need for guidelines
to ensure ethical conduct and respect for social media users,
and the importance of submitting research proposals to ethics
boards.

Recent controversies with regard to the exploitation of users’
data in the Facebook and Cambridge Analytica scandal, and the
public outcry of users feeling unnerved being monitored and
manipulated, have indeed opened up conversations and
legislation around the ethics of handling user data from social
media in research [121]. The overall aim of the 2018 EU General
Data Protection Regulation (GDPR) is to increase people’s
control over their own personal data and “to protect all EU
citizens from privacy and data breaches in an increasingly
data-driven world” [122]. For companies, organizations, and
researchers, this means obtaining consent for using and retaining
customers’personal data, while granting more rights to the “data
subject” to be informed and to control how their personal data
are used. Such legislation may change the way future researchers
must anonymize data, as well as restrict what sections of social
media platforms (eg, public vs private) are available for research
[123].

Accessing Data From Different Social Media
Platforms: The Twitter Bias
The majority of studies that had the largest datasets, collected
over longer time periods, were those with access to social media
platforms’APIs or automated data collection tools. Studies that
had smaller samples and used less sophisticated keyword
searches were those that relied on manual data collection, and
were thus constrained by time, resources, and the limitations of
the browser tools used. Although some studies also discussed
the time-consuming nature of manual data collection
methodologies, the time required to perform searches was not
commonly discussed. More research could be performed to
evaluate the clear benefits and limitations of manual and
automated data extraction tools, including the time required to
complete searches. Studies that used the paid version of APIs
via automated monitoring software seemed to have a more
representative sample, as access to paid data offers access to all
historical and current posts. However, there are still issues with
the relative opaqueness of the paid access to Twitter, Facebook,
or YouTube APIs, which do not advertise the mechanisms
behind collection of data, do not inform researchers of what
percentage of “all” data they are given, and may thus not provide
representative data [124,125]. This also prevents researchers
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from fully comparing studies over time, as the API sampling
algorithm itself will change. It is arguable that such an
environment presents risks and opportunities both for data
collection strategies in terms of availability and data privacy
issues, as well as an evolution in our fundamental understanding
of how social media research fits into the rapidly changing
public discourse in relation to vaccines. Finally, the financial
cost associated with the use of most APIs and automated tools
could constitute a barrier to those in lower resource settings
[126].

One of the main reasons for the bias toward the use of Twitter
in a majority of studies within this review may be because
Twitter provides the most openly available API, both for free
and with paid access [116]. However, studies using these freely
collected tweets only have access to a small (1%) sample of all
tweets, creating representativeness challenges [113]. Accessing
the free Twitter API also raises issues around periodical
collection due to restrictive access to intermittent collection
points. This means that any data collection is limited to pockets
of time that are not necessarily continuous, truncating the 1%
sample into different time periods [127]. This focus on Twitter
constitutes an important bias for social media monitoring
research, as it fails to capture the real-time evolution of the
social media environment, and the flow of users and content
from platform to platform [128].

Finally, although subscription-based data analytics companies
provide more comprehensive access to other APIs such as
YouTube and Instagram, the data provided by these companies
can be more skewed toward those of brand marketing (eg, brand
strength, brand influencers, and brand trends) [129]. However,
there have been growing opportunities in recent years to allow
academics to work in partnership with data analytics companies
to forge a better understanding of how to look at social media
images and text from a social sciences and public policy
perspective [130].

Social Media Analyses: Complexity of Analyzing
Sentiments
Although social media data can be analyzed in various ways,
ranging from analyzing trends in the number of posts identified
to more complex content analyses, most studies focused on
sentiment analyses. Identifying sentiments toward vaccination
expressed in social media can be useful to detect changes in
beliefs and possible drops in confidence. Manual and automated
methods of analyzing sentiments both come with their own
benefits and limitations: manual coding may be easier and
requires less technical skills than automated coding, whereas it
is more prone to subjectivity biases and is time-consuming, and
therefore does not allow for the analysis of a large number of
posts. The complexity of coding discourse, particularly those
using sarcasm or irony, is apparent with both automated and
manual systems [40]. Researchers should choose analytical
methods based on their personal objectives and resources
available. Despite the possibility of using a combination of
manual and automated coding or selecting automated systems
that require less technical skills, more accurate and easy-to-use
automated systems should also be developed.

The development of sentiment analysis as a tool in social media
monitoring raises other challenges. Most studies identified in
this review used simple binary categorizations of sentiments
(eg, “negative” vs “positive”). However, discussions around
vaccination tend to elicit complex sentiments, closely linked to
deeper, more contextual themes of trust, confidence, and risk
perception [131]. Categorizing sentiments as either negative or
positive therefore fails to recognize nuances that would be
crucial for the development of targeted responses to rebuild
trust in vaccination. If automated coding systems are to be
further developed, they need to take into account the nuances
in sentiments around vaccination and move beyond the use of
binary variables. More complex sentiment analysis will also
improve the quality of the coding of videos, images, and emojis
[132-135].

Considerations for Future Research: Changing Digital
Ecosystem
Following the Cambridge Analytica data misuse scandal and
an increase in the amount of antivaccine content, Facebook
announced a number of API changes aimed at better protecting
user information between 2017 and 2019. These restrictions,
along with GDPR laws, will pose restrictions on the type of
data and research that can be performed on social media
platforms and will require researchers to continuously adapt
their methodologies [136,137]. Furthermore, platforms such as
Pinterest, Facebook, and YouTube are responding to requests
from public bodies to alter their content to respond to concerns
about the spread of misinformation about vaccines and the
presence of antivaccination content on social media [138-140].
These actions from social media platforms may change what
users see but also what researchers study. Indeed, it may be that
antivaccine groups move away from platforms that no longer
monetize or make it easy for them to share information. Those
with antivaccination views have not only been found to be using
a mixture of websites and social media but also to migrate over
to the dark web, where they are able to create and construct
content-specific platforms from which their chosen ideologies
can be shared [141]. The question of who should decide what
content falls under antivaccination sentiment is also important.
Social media platforms should work closely with vaccination
experts to identify which posts to remove or keep, especially
to avoid infringing on the public’s freedom of expression.

Study Limitations
Some limitations of this systematic scoping review should be
acknowledged. Although articles in languages other than English
were included for analysis, the search itself only used English
keywords, which could have limited the results. Furthermore,
the search strategy was comprehensive but did not include
certain relevant keywords such as “infodemiology” or
“infoveillance,” which should be considered in future research.
Data extraction was performed by three researchers, which could
have caused inconsistencies even though the same data
extraction sheet was used. Finally, social media monitoring
constitutes a relatively new research field, which means that
many real-life, practical uses of monitoring may have been
omitted as they may not have been published in publicly
available peer-reviewed journals or reports. It is also important
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to note that as this is a fast-moving field, a high number of
articles have been published since this review was performed,
particularly around the COVID-19 pandemic. Methodologies
for social media monitoring are expected to continuously and
rapidly evolve, and further research should be performed to
regularly update this review.

Conclusion
Social media has changed the communication landscape around
vaccination. The increasing use of social media by individuals
to find and share information about vaccination, together with
the growing volume of negative information about vaccination
online, has influenced the way people assess the risks and
benefits of vaccination. Social media monitoring studies have
been developed with the aim of better understanding the type

of information social media users are exposed to, and how this
information is spread and shared across the world. This review
has identified clear steps to perform social media monitoring
that can be organized in three phases: (1) Preparation (defining
the purpose of media monitoring, addressing ethical
considerations); (2) Data extraction (selecting data extraction
tools, developing comprehensive search strategies); and (3)
Data analysis (geolocation, trends, content, sentiments, and
reach). A wide range of tools for each of these steps have been
identified in the literature but have not yet been evaluated.
Therefore, to establish social media monitoring as a valuable
research design, future research should aim to identify which
methods are more robust and precise to extract and analyze data
from social media.
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