
Received: 25 December 2019 Revised: 18 December 2020 Accepted: 19 December 2020

DOI: 10.1002/sim.8882

R E S E A R C H A R T I C L E

Power and sample size for multistate model analysis of
longitudinal discrete outcomes in disease prevention trials

Isabelle L. Smith1 Jane E. Nixon1 Linda Sharples2

1Clinical Trials Research Unit, University
of Leeds, Leeds, UK
2Department of Medical Statistics,
London School of Hygiene and Tropical
Medicine, London, UK

Correspondence
Isabelle L. Smith, Clinical Trials Research
Unit, University of Leeds, Leeds, UK.
Email: i.l.smith@leeds.ac.uk

Funding information
Health Technology Assessment
Programme, Grant/Award Number:
11/36/33; Research Trainees Coordinating
Centre, Grant/Award Number:
DRF-2016-09-085

For clinical trials where participants pass through a number of discrete health
states resulting in longitudinal measures over time, there are several potential
primary estimands for the treatment effect. Incidence or time to a particular
health state are commonly used outcomes but the choice of health state may not
be obvious and these estimands do not make full use of the longitudinal assess-
ments. Multistate models have been developed for some diseases and conditions
with the purpose of understanding their natural history and have been used for
secondary analysis to understand mechanisms of action of treatments. There is
little published on the use of multistate models as the primary analysis method
and potential implications on design features, such as assessment schedules. We
illustrate methods via analysis of data from a motivating example; a Phase III
clinical trial of pressure ulcer prevention strategies. We clarify some of the pos-
sible estimands that might be considered and we show, via a simulation study,
that under some circumstances the sample size could be reduced by half using
a multistate model based analysis, without adversely affecting the power of the
trial.
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1 BACKGROUND

In randomized controlled trials (RCT) of disease prevention treatments, patients may be observed to pass through a series
of health states, for example, in cancer trials progression or recurrence of disease, diagnosed by imaging scans or biomark-
ers, may occur before death; similarly, clinical events such as MI or stroke may precede cardiovascular death in heart
disease trials.1 In trials of chronic conditions such as hand eczema, longitudinal measures of a discrete outcome at fixed
time points may demonstrate increasingly severe disease classification over time.2 Although the final endpoint may be
mortality or disease severity above a certain threshold, the observed intermediate events and/or disease states can provide
useful information on both the mechanisms of action and the overall efficacy of prevention treatments.

Multistate models (MSM) are structures that represent different disease categories (states) and movement of patients
between these disease categories (transitions). They are convenient representations of diseases that can be classified
into distinct categories, with clear definitions, and where onset, progression, and regression of the disease correspond to
transitions between states in the model. MSM have been used to explore the natural history of diseases and conditions
as diverse as lung transplantation,3 cardiovascular diseases,4 chronic myeloid leukemia,5 colon cancer,6 and psoriatic
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arthritis.7 Moreover, they have been applied to large disease cohorts and registry data, primarily for prediction of patient
prognosis.8,9 Both general statistical methods and software to fit models to observed data are available.10-12

MSM have been used in secondary analysis of RCT data to better understand the mechanisms underlying primary
analysis results, for example, the illness-death model to explore disease recurrence/progression patterns in chronic
myeloid leukemia.5 They are also commonly used in health economics decision models.13 However, despite recent
research concluding that they are a promising tool for use in clinical trials,14 to our knowledge, there is only one publi-
cation assessing their potential in terms of type I error and power via a simulation study.15 The authors used data from
trials in the stroke setting and considered multistate models with 4, 5, 6, and 7 states compared with repeated logistic
regression. The authors conclude that when the treatment effect is the same for all transitions bar one, multistate models
provide increased power compared with repeated logistic regression; however, when the treatment effects differ across all
transitions, repeated logistic regression models are more powerful. For multistate models, the overall effect of treatment
on the disease process was tested using a likelihood ratio test rather than considering the treatment effect on specific
disease transitions.

At the design stage of a disease prevention trial, investigators need to make a number of interrelated decisions about the
patient population, overall size of the trial, the length of patient follow-up, and the intervals between patient assessments.
This article aims to show how MSM can contribute to these decisions.

First, MSM of disease processes, fitted to disease cohorts and registry data can provide insight into the number of
patients who might be suitable for participation in a clinical trial and the number of events of a specific type that will be
observed in a stated timescale.9,16 As an example, Le Rademacher et al compared a 3-state MSM and time-dependent Cox
models in cancer clinical trials using simulation, highlighting the insight that MSM provide into the disease process and
corresponding treatment effects.17

Second, MSM can use longitudinal data efficiently. In RCTs where the outcome requires detection of a new disease
or a particular stage of disease, patient assessment often takes place at a number of fixed time points, resulting in serial
measurements. Panel data of this type, for which only snapshots of the underlying disease process are obtained, are
interval censored, in that changes in health status can occur at some time point between assessments, and only part of the
(latent) disease process is observed.12 In cancer trials that use progression assessed via imaging or other tests, ignoring
this interval censoring has been shown to result in sample size estimates that are up to 7.2% lower than required for
the stated power.18 Therefore, sample size estimation should consider interval censoring at the design stage, and MSM
together with parametric transition models provide an appropriate method for accommodating it.10-12

Third, in practice, due to administrative and patient-related events, assessments are not necessarily conducted at
the same time point for all participants, and time intervals between assessments may vary.19 Continuous-time MSM
can estimate unbiased transition rates and treatment effects when assessment time intervals vary, provided that the
measurements themselves are independent of the fact that a measurement was taken.19

Fourth, using intermediate health states in MSM may result is smaller trials. Incidence of death or severe disease may
be easier to define and is often the estimand of choice in RCTs, but such endpoints may occur rarely, resulting in the need
for very large trials. The impact of using MSM to inform treatment effects and increase power of a RCT is unclear.

Fifth, MSM can be used to assess the impact of frequency of assessments. A simulation study by Zeng et al explored
efficiency gains due to increasing the frequency of patient assessments in an illness death model, concluding that, in their
context, the gain in power was small in comparison to increasing the sample size.18 Of note, their model constrained the
well-to-disease progression and well-to-death transition intensities to be equal, with power estimates based on the effect
of treatment on time to any transition out of the well state.

Despite potential improved trial efficiency and greater understanding of treatment mechanisms for MSM, possible
barriers to their use for primary analysis of RCTs have been raised. For instance, MSM have a more complicated struc-
ture than simple regression models, so that a number of estimands may be of interest, but which should be primary?
Although MSM can be used to calculate traditional endpoints, such as incidence of a particular event or disease category,
choice of the specific structure of the model is not necessarily clear-cut. Further, Manzini et al highlighted the need for
sufficient numbers of observed transitions throughout the MSM structure and difficulties in dealing with missing data in
this context.14 Le Rademacher et al acknowledged that there are barriers to their use in practice including availability of
easily accessible validated software, and interpretation of the results of multistate model analyses.17

This article investigates the use of MSM to analyze discrete, interval censored longitudinal data in the context of RCTs.
Motivation for this work arose from trials of treatments for the prevention of pressure ulcers (PUs), which are classified
on a 4-point ordinal scale from 1 to 4, with 4 the most severe category (Table 1).21 This semiquantitative scale for PU
classification and the longitudinal data arising from trials suggests that MSM would fit this situation well. As the number
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T A B L E 1 Adapted EPUAP/NPUAP PU Classification system21

State PU assessment Description

1 Healthy No skin changes

2 Altered Alterations to intact skin

3 Category/stage I Intact skin with nonblanchable redness of a localized area usually over a bony
prominence. Discoloration of the skin, warmth, edema, hardness, or pain may
also be present. Darkly pigmented skin may not have visible blanching

4a Category/stage II Partial thickness loss of dermis presenting as a shallow open ulcer with a red
pink wound bed, without slough. May also present as an intact or
open/ruptured serum filled blister

Category/stage III Full thickness tissue loss. Subcutaneous fat may be visible but bone, tendon, or
muscle is not exposed. Slough may be present but does not obscure the depth
of tissue loss. May include undermining and tunneling

Category/stage IV Full thickness tissue loss with exposed bone, tendon, or muscle. Slough or
eschar may be present on some parts of the wound bed. Often include
undermining and tunneling

aCategory/stage II, III, and IV are combined into a single absorbing state based on clinically meaningful disease status.

of older people in the UK and around the world increases, the population at high risk of PUs also increases, so that
measures to prevent them and efficient evaluation in clinical trials are important. This is heightened by the vulnerable
nature of the at-risk population. The case of PU prevention trials is used throughout this article for illustration, but the
methods are general and could be applied to any trials in which discrete outcomes are measured repeatedly through time.

The remainder of the article is structured as follows: an introduction to MSM and some notation, followed by an
illustration of methods applied to an existing data set from a PU prevention trial, a simulation study to examine the impact
on sample size and power under different scenarios, and finishes with a discussion of the findings and implications for
further research.

2 MULTISTATE MODELS

For the purposes of this article, we will consider a 4-state MSM with three transient states (healthy, preclinical, and mild
disease) and one absorbing state (severe disease) (Figure 1). For the example of PUs these states are given by rows 1-4 of
Table 1. In this 4-state model, regression from more to less severe health states (ie, healing) is not allowed, so that each
state represents the most severe category observed up to the current observation, but this is not a requirement of this
approach.

As with survival models, assuming measurements are taken in continuous time, movement between health states
is according to the hazard or intensity for each transition, which can be summarized in a transition intensity matrix
Q(t), where the rsth element, qrs(t) denotes the instantaneous probability of transition from state r to state s at time t.
Suppressing dependence on time, the corresponding transition intensity matrix, Q, for the multistate model illustrated in
Figure 1 is given by (1).

Q =

⎛⎜⎜⎜⎜⎜⎝

−q12 q12 0 0
0 −q23 q23 0
0 0 −q34 q34

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
. (1)

F I G U R E 1 Multi-state model for 4-state disease progression
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The intensity for transition r → s at time t is defined by (2)

qrs (t) = lim
𝛿t→0

Prob (t ≤ T < t + 𝛿t|T ≥ t,t)
𝛿t

, (2)

where t denotes the disease history of the patient up to time t. For a Markov model we assume that the hazard rate for
the transition r → s is independent of t, which greatly simplifies the model.

Time t denotes the time since the process began, which for RCT is usually the time that the patient was random-
ized, known as a clock forward approach.22 Note that, in situations where time of entry and exit to each health state is
known and observed, a survival function can be estimated for each transition from state entry, known as a clock reset
approach.22 The full likelihood is the product of probabilities of observed transitions between states over all individuals j
and observation times l given by (3).

L (Q) =
∏

l

∏
j

prob
(

X
(

tj,l+1
)
= s|X (

tjl
)
= r

)
, (3)

where X(tjl) denotes the state occupied by patient j at time l. Note that these probabilities are functions of the transition
intensities. Estimates of transition intensities and hazard ratios for treatment effects can be estimated by maximizing
the likelihood in Equation (3). However, all but the simplest multistate models are complicated and cannot be expressed
in closed form. Jackson developed the msm package within R which uses eigensystem decomposition to maximize the
likelihood and obtain estimates of qrs assuming parametric transition time distributions.12 Covariates may be incorporated
into transition-specific regression models in line with (4)

qrs (t) = qrs (t|z (t)) = qrs.0 (t) exp
(
𝜷T

rsz (t)
)
, (4)

where qrs. 0(t) denotes the baseline hazard, 𝜷rs is a parameter vector of length k corresponding to the covariate vector z(t)
also of length k. The key covariates in RCTs are the treatment contrasts and stratification variables. A common assumption
is that transition intensities are constant through time although piecewise constant hazards can be used if this assumption
is not valid.23

3 MOTIVATING EXAMPLE

PRESSURE2 was a Phase III RCT of 2029 high-risk patients designed to compare two types of mattress.24 To minimize
misclassification, the primary outcome was the time to development of a new Category II or more severe PU.25 The
treatment phase was up to 60 days and patients were assessed twice a week for 30 days, and once a week for a further
30 days or until no longer at high risk, were discharged from hospital, withdrew, or died. A subset of 1846 patients who
entered the trial without an existing Category II or more severe PU and had at least one follow-up assessment was used
to illustrate the use of MSM compared with other commonly used methods. The worst PU Category recorded across all
skin sites within a patient and up to the present assessment was recorded at each assessment.

The 1846 patients provided a median (range) of 62 (2, 182) assessments. The median (range) number of days between
visits was 4 (1, 42) days and the length of follow-up ranged from 1 to 65 days, with median 14 days, and an interquartile
range (7, 25) days. At the patient level, there were 9975 assessments and 8129 transitions were observed as shown in M1
and M0 (5), where 1 denotes intervention and 0 denotes the control group. The observed transitions included 45 from
state 3 (Category I) to state 4 (Category II+), overall incidence of new Category II PUs was equal to 7.2% (Table 2). There
were 11 transitions observed from state 1 to state 3, 11 transitions from state 1 to state 4 and 76 transitions from state 2
to state 4. This is a key feature of panel data whereby the disease process is not fully observed, and transitions between
states may occur between assessments.

M1 =

⎛⎜⎜⎜⎜⎜⎝

303 67 4 6
0 2792 76 30
0 0 692 17
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
M0 =

⎛⎜⎜⎜⎜⎜⎝

347 82 7 5
0 2953 80 46
0 0 594 28
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
. (5)
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T A B L E 2 PRESSURE2 Incidence of
new Category II (or more severe) PUs

Intervention Control Total

New Category II+ PU 53 (5.7%) 79 (8.6%) 132 (7.2%)

No new Category II+ PU 871 (94.3%) 843 (91.4%) 1714 (92.8%)

Total 924 (100.0%) 922 (100.0%) 1846 (100.0%)

T A B L E 3 Model-based analysis
of PRESSURE2

Point estimate of treatment effect 95% CI

Logistic regression (odds ratio) 0.65 (0.45, 0.93)

Cox PH (hazard ratio) 0.69 (0.49, 0.98)

Multistate model

𝛽12 0.98 (0.72, 1.32)

𝛽23 0.90 (0.70, 1.15)

𝛽34 0.57 (0.40, 0.81)

F I G U R E 2 Kaplan-Meier
plot for the time to incidence of
a new Category II or more severe
PU in the PRESSURE2 trial,
based on a subset of patients
during their treatment phase
[Color figure can be viewed at
wileyonlinelibrary.com]

Initial analyses of the PRESSURE2 data focused on incidence of a new Category II+ PU using logistic and Cox PH
regression models (Table 3). The estimands in these analyses were the odds ratio for incidence of, and the hazard ratio
for time to, a Category II+ PU, respectively. Both estimates were significantly different from one, which suggests that
treatment does have an influence on Category II+ PU development. However, the binary outcome does not take into
account the time a patient is in the trial before discharge and there is evidence from the Kaplan-Meier curves in Figure 2
that the proportional hazards assumption is not valid. Specifically, the treatment effect does not appear until after the
first week at risk; such a delayed effect might be expected in a prevention trial, in which severe ulcers take some time to
develop, with a corresponding delay in evidence of prevention.

The 4-state model illustrated in Figure 1 was fitted to the full data set and indicated that the treatment effect is not
statistically significant on transitions between healthy and altered skin and between altered skin and Category I PU, but
there was a substantial and significant treatment effect for the transition between Category I and Category II+. This
finding is consistent with the Kaplan-Meier estimates in Figure 2, as it shows that the treatment effect is mainly on the
later transition and is only evident when patients have passed through the intermediate states.

The results from this analysis indicate that there is merit in using the longitudinal data to understand the natural
history of the disease and to identify where treatment may have most benefit. There are differences in the estimated

http://wileyonlinelibrary.com
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T A B L E 4 Factors varied in simulation study

Total
sample size

Length
of follow-up

Assessment
frequency

Baseline transition
intensities
q(0) = (q12.0, q23.0, q34.0)

Treatment effects
(hazard ratios)
Exp (𝜷) =

(
e𝜷12 , e𝜷23 , e𝜷34

)

100 60 daysa Dailya (0.05,0.05,0.03) a (1, 1, 1)

200 30 days Every 2 days (0.01,0.01,0.01) (0.67, 0.67, 0.67) a

500 14 days Every 3 days (0.01,0.01,0.05) (0.5, 0.5, 0.67)

1000 7 days Every 7 days (0.01,0.05,0.01) (0.67, 0.67, 0.5)

2000 Every 14 days (0.05,0.01,0.01) (0.9, 0.9, 0.67)

(0.01,0.05,0.05)

(0.05,0.01,0.05)

(0.05,0.05,0.01)

a Base case settings.

treatment effect for different transitions, which are obscured by the use of a model with a single outcome, such as time to
event. It is of interest to understand how a multistate model, which is able to estimate treatment effects at different stages
of the disease process, could be used to inform the design and analysis of a future RCT.

4 SIMULATION STUDY

A review of published PU prevention trials showed that they have included as few as 1026 and as many as 202924 patients,
with a median size of 75 patients. Follow-up times have ranged from a few days27 to 2 or more months,24 with the frequency
of assessments ranging from daily28 to once a week27 or less frequently.29 This simulation study shows how MSM might
be used to optimize power calculations based on these design features. Extensive simulations exploring the impact on
the power of a trial using MSM compared with analyses with a single endpoint are summarized. Model outputs from the
analysis of PRESSURE2 have been used to inform the design of this simulation study.

4.1 Design of the simulation study

The aim of the simulation study was to assess the impact on power and sample size of using different statistical models and
methods to analyze data collected in PU prevention trials such as that described in the motivating example and illustrated
in Figure 1. A number of scenarios, based on varying the sample size, length of follow-up, assessment frequency, baseline
transition intensities, and treatment effects, were considered (Table 4).

The base case assumed that, patients were followed up daily for a maximum of 60 days, with a moderate treat-
ment effect (𝛽12 = 𝛽23 = 𝛽34 = 0.67 ), high risk of transitions 1→ 2 and 2→ 3 and a moderate risk of transition 3→ 4
(q12.0 = q23.0 = 0.05, q34.0 = 0.03). In all scenarios, the proportions of patients in states 1 (healthy), 2 (preclinical), and 3
(mild disease) at baseline (t = 0) were 15%, 70%, and 15%, respectively. In each scenario, patients were equally allocated
to one of two treatment groups and the censoring rate was assumed to be 0.05 per unit time for all transitions.

The methods evaluated under each scenario were the binary logistic regression model, Cox PH model, and four MSM
whereby the treatment effects were either,

a unconstrained, that is, 𝛽12 ≠ 𝛽23 ≠ 𝛽34,
b completely constrained, that is, 𝛽12 = 𝛽23 = 𝛽34,
c partially constrained, that is, 𝛽12 = 𝛽23 ≠ 𝛽34, or
d partially constrained, that is, 𝛽12 ≠ 𝛽23 = 𝛽34.

Treatment effects in the binary logistic regression and Cox PH model were assessed using the Wald statistic and signif-
icance concluded at the 5% level. Similarly, for the completely constrained MSM, which has a single common treatment



SMITH et al. 7

effect, the Wald statistic from the maximum likelihood estimation was calculated. The unconstrained and partially con-
strained MSM had three and two treatment effects, respectively, so that Hochberg’s multiple testing procedure based on
Bonferroni corrections was adopted in order to maintain the overall 5% type I error.30 In this case, empirical power was
reported overall by examining the Wald statistic for the treatment effect on each transition, for example, for the uncon-
strained model 5% significance was concluded if either (i) all three transitions were significant at the 5% level, or (ii) at
least two treatment effects were significant at the 2.5% level, or (iii) at least one treatment effect was statistically signifi-
cant at the 1.67% level. Bias of the estimates and coverage were also calculated in addition to the Monte Carlo standard
error in line with recommendations for simulation studies.31,32

A total of 1000 simulations were conducted for each scenario. The same data sets were used to compare statistical
methods but different data sets were generated for each scenario being considered.

4.2 Results

For the null case, where data sets were generated assuming no treatment effect, the type I error was close to 5%,
as expected, in each multistate model and in the logistic and Cox PH regression models. For the base case, where
the treatment effect was 0.67 on each transition, all MSM had greater power compared with the binary logistic
regression model and the Cox PH model. For example, with 500 patients the binary and Cox models provide power
of 57.5% and 68%, respectively, the multistate model with no constraint on the treatment effect provides power of
72.5% and MSM with some constraint(s) applied to the treatment effect provide a minimum of 80% power in this
case (Figure 3).

4.3 Length of follow-up

The simulation study explored lengths of follow-up of 7, 14, 30, days and 60 days (the base case) with all other param-
eters remaining as in the base case. In all cases the MSM had greater power than the corresponding Cox and binary
logistic regression analyses when applied to data with the same follow-up periods. Figure 4 shows results for the
unconstrained multistate model with various durations of follow-up compared with logistic and Cox models with
60 days follow-up. The results indicate that a follow-up period of 60 days provides some additional efficiency com-
pared with a follow-up period of 30 days when using a multistate model, while a follow-up period of 7 or 14 days
leads to substantially reduced power, largely due to the low number of transitions to the absorbing state. Notably,
the unconstrained multistate model with 30-day follow-up had similar power to a Cox model with data collected for
60 days (Figure 4).

F I G U R E 3 Power of detecting a significant
treatment effect overall according to sample size for the
base case (maximum length of follow-up = 60 days,
assessment frequency = daily, exp(𝜷) = (0.67, 0.67, 0.67),
q(0) = (0.05, 0.05, 0.03)) [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 Power of detecting a significant
treatment effect overall according to sample size for
different lengths of follow-up (assessment
frequency = daily, exp(𝛽) = (0.67, 0.67, 0.67),
q = (0.05, 0.05, 0.03)) [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 Power of detecting a significant
treatment effect overall according to sample size for
different intervals between assessments (maximum length
of follow-up= 60 days, exp(𝛽) = (0.67, 0.67, 0.67),
q = (0.05, 0.05, 0.03)) [Color figure can be viewed at
wileyonlinelibrary.com]

4.4 Assessment intervals

Assessment intervals of daily, every 2 days, every 3 days, every 7 days, and every 14 days were considered with all other
parameters remaining as in the base case including planned follow-up of 60 days. The results indicate that MSM fitted to
assessments taken daily, every 2 days or every 3 days, perform at least as well as Cox models applied to data collected daily.
There is a large improvement in efficiency from using a multistate model compared with a binary logistic regression model
in these scenarios. For example, to achieve 80% power, a multistate model would require around 650 patients with data
collected daily or every 2 to 3 days, whereas data would need to be collected daily for an additional 200 (approximately)
patients to provide similar levels of power using Binary logistic regression (Figure 5).

4.5 Different treatment effects and baseline transition intensities

Table 5 summarizes results from scenarios governing treatment effects and transition intensities. MSM conferred sub-
stantially increased power compared with the binary logistic and Cox PH regression models when the baseline intensity

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 5 Estimate of power for combinations of baseline transition intensities (maximum length of follow-up = 60 days, assessment
frequency = daily, treatment effects [hazard ratios] Exp(𝜷) = (0.67,0.67,0.67))

Baseline transition intensities Estimate of power (Monte Carlo SE)

N Scenario q12.0 q23.0 q34.0

Binary logistic
regression

Cox
PH model

Overall multistate
model

500 1 0.01 0.01 0.01 0.137 (0.0109) 0.137 (0.0109) 0.177 (0.0121)

2 0.01 0.01 0.05 0.275 (0.0141) 0.315 (0.0147) 0.270 (0.0140)

3 0.01 0.05 0.01 0.289 (0.0143) 0.375 (0.0148) 0.597 (0.0155)

4 0.05 0.01 0.01 0.152 (0.0114) 0.152 (0.0114) 0.265 (0.0140)

5 0.01 0.05 0.05 0.597 (0.0155) 0.738 (0.0139) 0.716 (0.0143)

6 0.05 0.01 0.05 0.631(0.0153) 0.762 (0.0135) 0.728 (0.0141)

7 0.05 0.05 0.01 0.309 (0.0146) 0.339 (0.0150) 0.669 (0.0149)

8 0.05 0.05 0.05 0.684 (0.0147) 0.824 (0.0120) 0.775 (0.0132)

1000 1 0.01 0.01 0.01 0.301 (0.0145) 0.318 (0.0147) 0.422 (0.0156)

2 0.01 0.01 0.05 0.550 (0.0157) 0.573 (0.0156) 0.597 (0.0155)

3 0.01 0.05 0.01 0.559 (0.0157) 0.586 (0.0156) 0.905 (0.0093)

4 0.05 0.01 0.01 0.304 (0.0145) 0.308 (0.0146) 0.541 (0.0158)

5 0.01 0.05 0.05 0.903 (0.0094) 0.955 (0.0066) 0.959 (0.0063)

6 0.05 0.01 0.05 0.900 (0.0095) 0.958 (0.0063) 0.962 (0.0061)

7 0.05 0.05 0.01 0.576 (0.0156) 0.605 (0.0155) 0.940 (0.0075)

8 0.05 0.05 0.05 0.916 (0.0088) 0.978 (0.0046) 0.980 (0.0044)

2000 1 0.01 0.01 0.01 0.543 (0.0158) 0.551 (0.0157) 0.779 (0.0131)

2 0.01 0.01 0.05 0.808 (0.0125) 0.838 (0.0117) 0.915 (0.0088)

3 0.01 0.05 0.01 0.846 (0.0114) 0.871 (0.0106) 0.997 (0.0017)

4 0.05 0.01 0.01 0.556 (0.0157) 0.562 (0.0157) 0.873 (0.0105)

5 0.01 0.05 0.05 0.995 (0.0022) 1.000 (0.0000) 1.000 (0.0000)

6 0.05 0.01 0.05 0.999 (0.0010) 1.000 (0.0000) 1.000 (0.0000)

7 0.05 0.05 0.01 0.873 (0.0105) 0.901 (0.0094) 0.999 (0.0010)

8 0.05 0.05 0.05 0.997 (0.0017) 1.000 (0.0000) 1.000 (0.0000)

for the transition from state 3 to state 4 was low (q34.0 = 0.01). A consistent increase in power was observed in scenarios
1, 3, 4, and 7, whereas there were similar levels of power observed for each model under scenarios where the baseline
transition intensity from state 3 to state 4 was high (Category I to II+, q34.0 = 0.05). In some cases (eg, N = 500, scenario
2) lower power was observed for the multistate model compared with the binary logistic regression and Cox PH mod-
els. We note, for example, that the Cox PH model estimates the treatment effect on the transition from any of the states
1, 2, or 3 to state 4 and significance testing is conducted at the 5% level. In contrast, the multistate model estimates the
treatment effect on individual transitions (ie, 1 → 2, 2 → 3, and 3 → 4) and significance testing is conducted according
to Hochberg’s method for multiple testing. Therefore, the Cox PH model is expected to perform as well as the overall
multistate model in situations when the baseline transition intensity to the absorbing state is high and may therefore be
the preferred method for primary analysis as it requires less computing power, and is widely understood. Similar results
are observed in Appendix S1 for different treatment effects.

5 DISCUSSION

5.1 Summary of results

RCTs of strategies for prevention of diseases and medical conditions often involve repeated assessments of the severity
of disease at multiple time-points. The potential estimands from different models that could be applied to data of this
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structure include odds ratios for a binary endpoint, hazard ratios for a time to event endpoint, and transition-specific
hazard ratios obtained from MSM. Secondary analysis of the full data from an existing PU trial using a MSM showed
that such models can provide a deeper understanding of PU natural history and how treatment acts at each stage of the
disease pathway. Where such data are collected they should be analyzed in detail in order to understand the mechanisms
of action of different treatments.

Simulations have shown that, depending on the estimand of interest, analysis using MSM can have a substantial
impact on power, or equivalently a reduction in sample size. Note that there is no formula for calculating the sample size
for a trial using MSM as the primary analysis and simulations such as those used in this article can be used instead.

5.2 Implications on clinical settings

The results of the simulation study suggest that in PRESSURE2 the length of follow-up could have been reduced to 30 days
or assessments conducted every 2 or 3 days to provide similar levels of power as would be obtained by Cox or binary logis-
tic regression models applied to daily measurements for 60 days. This has the potential to reduce trial resource use by
using fewer patients, with savings in clinical research nurse time and data management. In many scenarios, fewer patients
need to be recruited overall and fewer are unnecessarily exposed to inferior treatments. Moreover, evidence of treatment
effectiveness (or not) will emerge more quickly leading to quicker changes in practice for subsequent patients. However,
this should be considered in conjunction with the relevant clinical research question (estimand) since the overall signif-
icance level for MSM reflects treatment effects across all transitions. For example, if primary interest lies in preventing
Category II+ PUs then the commonly used methods may be sufficient, and have the advantage that the resulting signifi-
cance level is directly related to a single treatment effect. If however interest lies in assessing whether the treatment can
reduce transitions at any stage along the pathway, and an overall model significance level is acceptable, then MSM will
lead to more efficient designs at lower cost. Furthermore, health economic analyses commonly use Markov models13 and
by using MSM for the analysis of the main trial, the results of the clinical research and health economics research will be
better aligned.

Our simulation study provides a comprehensive set of results under a range of scenarios and compared MSM with
simpler models (logistic regression and the Cox PH model), in addition to reviewing the impact of applying constraints
to treatment effects within MSM. Constraining treatment effects to be equivalent within the MSM did provide additional
power but should be used with caution as they may not be a realistic representation if the true treatment effects differ
between disease stages. Although we were motivated by trials in PUs, the methods are general and can be applied to any
setting whereby a disease process can be reasonably represented by a multistate model.

5.3 Some statistical considerations

It is important to try to understand how the additional power from MSM arises, given that the number of Category II+ PUs
observed was the same for all analyses. It is clear that more data on early skin changes is included in MSM; this, together
with the structure of the model which links the different transitions together, is the source of the additional information.
If the MSM is not consistent with the observed natural history of the disease of interest, then either the predicted increase
in power will not manifest, or spurious increases in power will result. Therefore, it is imperative that a good model is
adopted and (in line with good statistical practice) the fit of the model is checked carefully. The Appendix provides plots
of the observed and model-fitted prevalence in each of the four states in the PRESSURE2 trial analysis, with reassuring
agreement between them. This shows that the Markov assumption (transitions depend only on current disease stage, time
since randomization, and covariates) holds over the 60-day duration of study. For disease prevention studies with much
longer time horizons, such as cancer prevention studies, this assumption may not hold and alternatives may be required.
The msm software in R allows for piecewise continuous Markov models which may be more appropriate but increases
the number of parameters to be estimated.

All analyses in the article were conducted in R using freely available, general software, which is important if these
methods are to be used more widely. Other statistical software programs contain packages that will fit MSM10,33 but most
focus on the case where exact transition times are known, with no interval censoring, and on semi Markov models, where
time is reset to zero when a new state is entered. These cases simplify the likelihood and implementation but are not
suitable for the case of PU prevention.



SMITH et al. 11

In theory, where trial patients are all followed up at the same time points, discrete time models may be suitable. In
these cases the model is specified through the probabilities of moving states between scheduled time points, rather than
transition intensities. Resulting likelihoods include multinomial terms and can be fitted using standard software, but
results will be specific to the observation times.

5.4 Future research

This simulation study makes a number of assumptions, including that censoring patterns are independent of skin status
or patient condition, and that the MSM allows progression only. In reality, patients may move between states in both
directions and this should be considered for further research. Furthermore, this article has studied the use of MSM on a
patient level “worst observed skin state” basis, whereas assessments made on all 14 skin sites could be used to provide
additional power. MSM have been used for correlated disease processes of this type, for example, psoriatic arthritis,34 but
resulting models are more complex and there is little available software in the case of interval censoring.

Misclassification of (particularly) early stage disease is a major concern in the PU setting because of the subjective
nature of skin assessment.20,35 The extent of misclassification between categories and the impact of this on assessment of
treatment effects is the subject of further work.

Missing data methods need to be considered in this setting. Skin classifications that are not recorded may be dependent
on the PU stage itself. Failure to explicitly model this missing data mechanism may result in biased estimates of the rate
of PU onset and change. The extent of the potential bias needs to be examined to inform PU assessment strategies and
analysis of future trials.

In conclusion, this simulation study demonstrated that current methods of analysis of PU prevention trials may be
inefficient, requiring large sample sizes and frequent assessments. MSM have the potential to maximize the information
collected in RCTs with serial disease category assessments and could transform the design of clinical trials of PU preven-
tion strategies, although further methodological work is required to provide robust recommendations for the design and
analysis of such trials in general. Moreover, analysis of the full data can provide important insight into the mechanisms
of action of the treatment under evaluation.
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