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in Sensing, Adapting, and Competing
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Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world
wide and represents a major public health concern. Over the past two decades, significant
progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP),
and the cellular biology of C. jejuni have improved our basic understanding of this
important pathogen. We review key advances in our understanding of the multitude of
emerging virulence factors that influence the outcome ofC. jejuni–mediated infections. We
highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense,
adapt and survive in multiple hosts. Finally, we propose cohesive research directions to
obtain a comprehensive understanding of C. jejuni virulence mechanisms.
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INTRODUCTION

Campylobacters are the leading cause of bacterial foodborne gastroenteritis in the world. There are 31
different species1 and 10 sub-species within the genus Campylobacter (Garcia-Sanchez et al., 2018;
Wilkinson et al., 2018). The Campylobacter genus encompasses several clinically relevant species, such
as Campylobacter jejuni subsp. jejuni, Campylobacter coli, Campylobacter fetus, Campylobacter
lari, and Campylobacter upsaliensis (Kaakoush et al., 2015; Garcia-Sanchez et al., 2018). This
review focuses on C. jejuni subsp. jejuni which is the most relevant clinically (Skirrow, 1977;
Skirrow, 2006). C. jejuni is responsible for 80%–90% of the diagnosed cases of Campylobacter
infections (Facciola et al., 2017). C. jejuni colonizes the gastrointestinal (GI) tract of a wide variety of
food-producing animals such as poultry, cattle, sheep and swine (Figure 1). However, poultry,
particularly chickens are the major source of human infection (Humphrey et al., 2014; Ijaz et al., 2018;
McKenna et al., 2020). Outbreaks of C. jejuni infections are also associated with exposure to
contaminated soil, unpasteurized milk and untreated water sources (Korlath et al., 1985; Hudson
et al., 1999; Bronowski et al., 2014; Artursson et al., 2018). Clinical symptoms of C. jejuni infection can
be watery or bloody diarrhea accompanied by abdominal cramps, nausea, fever and sometimes
vomiting (Blaser, 1997; Hansson et al., 2018; Igwaran and Okoh, 2019). Although C. jejuni infection is
acute and self-limiting, in a small number of patients (1:1000) post infection sequalae can lead to
severe neurological disorders such as Guillain-Barré syndrome (Yuki et al., 1993; Nachamkin et al.,
1998; Sheikh et al., 1998a; Sheikh et al., 1998b; Houliston et al., 2011). According to a recent report by
the World Health Organization (WHO), C. jejuni is responsible for 96 million cases of enteric
1http://www.bacterio.net/campylobacter.html
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infection globally each year (Havelaar et al., 2015; Bailey et al.,
2018). In the United Kingdom, C. jejuni is responsible for more
than 700,000 cases, of which 22,000 hospitalisations and more
than 100 deaths occur each year (Bronowski et al., 2014; John
et al., 2017). The economic burden associated with C.
jejuni infection in the United Kingdom is estimated to be £1
billion per year (Bronowski et al., 2014). Moreover, in the
European Union (EU), C. jejuni is responsible for estimated
cases of 9 million with an economic burden of around €2.4
billion each year (https://www.efsa.europa.eu/en/topics/topic/
campylobacter). According to the United States Centers for
Disease Control, C. jejuni is responsible for an estimated 1.5
million human infections each year2 with a staggering economic
burden of between $1.3 to 6.8 billion dollars per year.

C. jejuni does not possess classical virulence factors observed
in bacterial enteropathogens such as enterotoxigenic Escherichia
coli and Salmonella spp. (Gaytan et al., 2016; Park et al., 2018).
However, C. jejuni has a complex array of fitness and virulence
2https://www.cdc.gov/campylobacter/technical.html
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factors (Crόinıń and Backert, 2012; Backert and Hofreuter, 2013;
Backert et al., 2013) which aid the bacterium to respond to the
defense mounted by the host; C. jejuni can adhere, invade
and temporarily survive inside human intestinal epithelial
cells (IECs) in vitro. We review recent progress made in
understanding C. jejuni pathogenesis. We highlight findings
from several approaches that pioneered the integration of
selective mutagenesis, phenotypic assays, high-resolution
proteomics and ‘omics. Finally, we describe challenges ahead
for successful research in understanding how C. jejuni causes
disease in humans.
C. JEJUNI VIRULENCE FACTORS,
A BREAKTHROUGH IN UNDERSTANDING
THE MISSING LINK

In early 2000, the availability of the full genome sequence of C.
jejuni NCTC 11168, isolated from the feces of a diarrheic patient in
FIGURE 1 | Overview of C. jejuni reservoirs and transmission routes of infection. C. jejuni reside in the GI tract of chickens, where the bacteria can be spread
through consumption of contaminated poultry products. C. jejuni transmission can also occur via the consumption of contaminated raw cows drinking milk (RDM)
which can occur during the milking process, most commonly via fecal contamination of udders. Pigs are also recognized as reservoirs of C. jejuni. Contamination of
the environment can also occur via host fecal contamination. C. jejuni can persist for long periods in feces, milk and water, especially at temperatures close to 4℃. In
adverse conditions, C jejuni converts to a viable nonculturable form that can be reactivated when ingested.
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1977 by Martin Skirrow, marked a new era in the study of the
pathogenesis of this major enteric pathogen (Skirrow, 1977;
Parkhill et al., 2000). The annotation of the full genome sequence
revealed the absence of genes encoding for a non-flagellar type 3
protein secretion system (NF-T3SS). This finding has raised an
intriguing question: Does C. jejuni sense, inject and secrete putative
virulence factors into host cells? In contrast to the absence of NF-
T3SS, the genome sequence shed light on the presence of a genomic
locus encoding a novel bacterial protein N-glycosylation (pgl)
system, absent in other enteropathogens (Szymanski et al., 1999;
Linton et al., 2005). This 11 gene locus encodes for all the necessary
enzymes for N-linked pgl system to produce a conserved
heptasaccharide consisting of GalNAc–a1,4-GalNAc–a1,4
(Glcb1,3)-GalNAc–a1,4-GalNAc–a1,4-GalNAc–a1,3-Bac (Bac is
bacillosamine or 2,4,-diacetamido-2,4,6-trideoxyglucose (Young
et al., 2002; Jervis et al., 2012). C. jejuni conserved
heptasaccharide has been found to modify up to 100 periplasmic
and membrane-bound proteins while it also appears to be
responsible for multiple cell functions (Cain et al., 2019;
Abouelhadid et al., 2019; Abouelhadid et al., 2020). A feature of
the availability of C. jejuni genome sequence was the identification
and characterization of different glycostructures. In addition to the
N-linked pgl system, other studies have facilitated systematic
analysis of genes encoding for flagellar biosynthesis and
modification (Jagannathan et al., 2001; Hendrixson and DiRita,
2003; Konkel et al., 2004), lipooligosaccharide (LOS) (Parker et al.,
2005; Parker et al., 2008; Kanipes et al., 2008; Hameed et al., 2020)
and capsule polysaccharide (CPS) (Karlyshev et al., 2001; Karlyshev
et al., 2005). In parallel, the genome sequence ofC. jejuni identified a
large repertoire of phase-variable genes (Guerry et al., 2002; Aidley
et al., 2018). The genome sequence of C. jejuni further accelerated
characterization of repertoire of virulence and fitness factors such as
putative adhesins (Konkel et al., 2005), proteases (Brondsted et al.,
2005), autotransporters (Ashgar et al., 2007), chemotaxis regulatory
genes (Marchant et al., 2002) and the cytolethal distending toxin
(CDT) (Purdy et al., 2000). Sequencing the genomes of various C.
jejuni isolates have also elucidated strain-specific genetic diversity,
noticeably the finding of the putative pVir plasmid in C. jejuni strain
81–176 (Bacon et al., 2000). Because of the high genome plasticity of
C. jejuni, genome sequencing also facilitated genome-wide
association studies (GWAS) which provided insight into the
prevalence of C. jejuni virulence genes, antimicrobial resistance
markers as well as relatedness of human clinical isolates (Sheppard
et al., 2013; Buchanan et al., 2017). Understanding the genetic
variability of C. jejuni isolates is important for defining key
factors that contribute to its ability to host adaptation and
evolution. Some C. jejuni strains are restricted to specific
host while there are C. jejuni strains with multi-host lineages.
Defining how C. jejuni adapts to hosts is an enduring challenge.
However, study has demonstrated that one factor that is driving
rapid C. jejuni host adaptation is gain and loss of panBCD
genes encoding for vitamin B5 biosynthesis pathway (Sheppard
et al., 2013). Recently, the advent of large scale genome
sequencing has also identified C. jejuni isolates possessing
Type VI Secretion System (T6SS) (Corcionivoschi et al., 2015;
Ugarte-Ruiz et al., 2015), offering the potential to better
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
understand the role of T6SS in C. jejuni pathogenesis (Liaw
et al., 2019).
C. JEJUNI IN THE HOST-PATHOGEN
CROSSTALK: VIRULENCE AND
FITNESS FACTORS

In its natural environment C. jejuni adapts, survives and
proliferates in the nutrient-rich mucous layer of the avian GI
tract. C. jejuni growth in chicken ceca exceeds 108 colony-
forming units per g of cecal contents (CFU)/g (Dhillon et al.,
2006; Hermans et al., 2011; Gormley et al., 2014). The transition
of C. jejuni from nutrient-rich chicken ceca to the environment
exposes C. jejuni to perturbations. These perturbations unveil
C. jejuni to atmospheric oxygen (ca. 21% O2) and temperature
fluctuations which thus alter C. jejuni nutrient acquisition and
metabolism. In the context of human infection, C. jejuni faces
additional stresses such as peristalsis and expulsion in the
GI tract. C. jejuni also faces endogenous stresses ranging
from oxidative, nitrosative, pH fluctuations and cationic
stresses. The ability to persist in spite of various stresses
indicate C. jejuni harbors complex virulence and fitness factors
(Hermans et al., 2012). These virulence and fitness factors do
not only confer protection but also play a role in the ability of
C. jejuni to sense, adapt and compete the constantly changing
host microenvironments, working for example as sensors and/
signal molecules, adhesins for host receptors, and/or effectors for
invasion and intracellular survival.

C. jejuni interaction and invasion of human IECs induce
numerous downstream host signaling pathways. C. jejuni
activates mitogen-activated protein kinases (MAPKs),
extracellular signal-regulated kinase (ERK) and p38, leading to
the induction of a potent pro-inflammatory cytokine interleukin-
8 (IL-8) (MacCallum et al., 2005). IL-8 is an important pro-
inflammatory cytokine of IECs and acts as a chemotactic factor
of immune cells. However, it is hypothesized that induction IL-8
from human IECs which is found to correlate with an increase in
circulating neutrophils to the site of infection can inadvertently
exacerbate the classical acute inflammatory symptoms. C. jejuni
induction of Erk and p38 signaling pathways is dependent on
bacterial de novo protein synthesis and a functional flagellum (Jin
et al., 2003; Watson and Galan, 2005).
C. JEJUNI FLAGELLA: FUNCTION
AND VIRULENCE

C. jejuni produces two polar flagella at each pole of the cell,
termed as amphitrichous flagellation. C. jejuni flagella is a
multifunctional organelle which enables the bacterium to avoid
hostile environments including forceful peristalsis and expulsion
from the GI tract. C. jejuni flagella also enable the bacterium to
penetrate the viscous mucosa lining of the human IECs, and to
reach the distal ileum, jejunum and colon. Thus, C. jejuni flagella
February 2021 | Volume 10 | Article 607704
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promotes bacteria motility, chemotaxis and avian colonization.
Besides mediating these virulence attributes, C. jejuni flagellar
also promotes adhesion and invasion into human IECs in vitro
(Black et al., 1988; Grant et al., 1993; Szymanski et al., 1995;
Konkel et al., 1999), biofilm formation (Svensson et al., 2014)
and non-flagella protein export. The latter enables C. jejuni to
secrete ∼18 putative virulence-associated proteins termed
Campylobacter invasion antigens (Cia) (Konkel et al., 2004;
Christensen et al., 2009). Some of C. jejuni Cia proteins are
required for invading human IECs in vitro, for instance CiaC
plays a role in invasion whereas CiaI is required for intracellular
survival in human IECs (Buelow et al., 2011; Neal-McKinney and
Konkel, 2012). Interestingly study showed CiaD involves in
maximal activation of the MAP kinase signaling pathways Erk
1/2 and p38 resulting in the secretion of IL-8 (Samuelson
et al., 2013).

C. jejuni flagella synthesis and glycan modification involves
over 50 flagellum-related genes. The flagellum is composed of
three major parts, the basal body, which crosses the bacterial cell
membrane, as well as a flagellar-associated cytoplasmic ring, the
hook complex and the flagellar filament. Debates had focused on
finding relationships between C. jejuni flagellum, motility,
colonization and secretion. C. jejuni flagellar filament
contributes to bacterial motility (Wassenaar et al., 1991;
Guerry et al., 1991), adherence and colonization. The flagellar
filament is composed of subunits of FlaA and FlaB proteins. C.
jejuni flagellin proteins are O-linked glycosylated and the O-
linked glycosylation is specific to the serine and threonine
residues on a flagellin subunit which is modified by
pseudaminic acid (Pse) and derivatives containing acetyl and
acetamindino groups (PseAcOAc or PseAm, respectively
(Thibault et al., 2001; Schirm et al., 2005). Sometimes C. jejuni
flagellin subunits are modified with legionaminic acid (Leg),
moieties (Logan et al., 2009; Schoenhofen et al., 2009; Howard
et al., 2009). C. jejuni flagellar subunit FlaA rather than FlaB is
essential for C. jejunimotility. This is supported by evidence that
showed a mutation of the flaA gene led to the generation of non-
flagellated and non-motile cells (Nuijten et al., 1990; Wassenaar
et al., 1991). By contrast, the mutation of flaB, has no impact
on C. jejuni flagella synthesis and motility. These findings suggest
that FlaA protein, rather than motility, is essential for C.
jejuni optimal colonization in chickens (Wassenaar et al.,
1993). However, subsequent studies have identified C. jejuni
mutant with normal but paralyzed flagella that is also non-motile
and had a reduced ability to colonize chickens (Yao et al., 1994).
The role of C. jejuni flagella in chicken colonization is further
confirmed through mutation of the flagellar motor genes MotA
and MotB which are essential for the rotation of the flagella. A
motAB mutant produced non-motile cells with a full-length
flagellum that is unable to rotate, thus unable to colonize
chickens (Hendrixson and DiRita, 2004). Other C.
jejuni flagella genes that have been studied include the flagellar
sigma factor s28 (fliA) and the alternative sigma factor s54

(rpoN). These two sigma factors regulate a large number of
genes that are responsible for the expression and function of C.
jejuni flagella. For example, sigma s28 is known to regulate the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
major flagellin gene flaA and some other late flagellar genes
which control synthesis of proteins forming motor and
chemotaxis proteins. On the other hand, C. jejuni s54 involves
the transcription of genes encoding for the hook, basal body, and
minor flagellin flaB. In the context of host colonization and
infection, mutation of s54 (rpoN) gene results a non-motile cells
that are unable to colonize chickens (Fernando et al., 2007),
adhere to and invade into human IECs in vitro (Wassenaar et al.,
1991). Also, C. jejuni flagellar functions as an organelle to secrete
flagellar co-expressed determinants (Feds) which are required for
efficient invasion of human IECs in vitro (Song et al., 2004;
Barrero-Tobon and Hendrixson, 2012). A unique feature of C.
jejuni flagellar filament is its mechanism to escape immune
interaction with Toll-like receptor 5 (TLR5). TLR5s are found
at the basolateral side of the human IECs and recognize a highly
conserved epitope in bacterial flagellin. However, C. jejuni
flagellar filament evades TLR5 activation because it fails to
make complementary contacts with the TLR5 LRR9 loop
(Song et al., 2017). This is attributed to sequence divergence of
C. jejuni flagellin particularly the highly conserved epitope found
in most g-proteobacteria and Firmicutes bacterial flagellin.
Recently, specific amino acids found in C. jejuni flagellar
filament have been shown to mediate weakened binding to
human TLR5 (Kreutzberger et al., 2020).
C. JEJUNI CAPSULAR POLYSACCHARIDE
(CPS)

The first evidence of a CPS at the surface of C. jejuni was
reported in 2001 (Karlyshev et al., 2001). C. jejuni CPS is found
on the outermost layer of the cell surface of the bacterium and it
is composed of a rare structure of diverse repeating units of
sugars (Karlyshev et al., 2005; McNally et al., 2005; Gilbert et al.,
2007). C. jejuni CPS possess a heptoses sugar with an unusual
configuration (e.g., ido, gulo, and altro) and nonstoichiometric
modifications on the sugars, including ethanolamine,
aminoglycerol, and O-methyl phosphoramidate (MeOPN).
Unsurprisingly, C. jejuni CPS is the major sero-determinant of
the Penner serotyping scheme of C. jejuni strains (Karlyshev
et al., 2000). Currently, there are more than 47 different C. jejuni
Penner serotypes of the bacterial CPS with some forming related
serotype complexes (Poly et al., 2015). The structural variations
of C. jejuni CPS reflects differences in the genetic content of the
genomic locus that drives CPS biosynthesis (Karlyshev et al.,
2005). C. jejuni CPS contains homopolymeric tracts which are
prone to phase variation. As expected, homopolymeric tracts
allow a rapid on/off switching of the C. jejuni CPS genes resulting
in variations in CPS arrangements even in C. jejuni isolates that
have identical gene contents. In addition to the phase variation
observed in CPS sugar composition, C. jejuni CPS is also
modified with ethanolamine, glycerol, and nonstoichiometric
MeOPN modifications in approximately 75% of C. jejuni
strains (Thota et al., 2018).

C. jejuni CPS plays a role in bacteria pathogenicity (Guerry
et al., 2012; Bolton, 2015). C. jejuni CPS is required to resist
February 2021 | Volume 10 | Article 607704
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complement-mediated killing (Bacon et al., 2001; Keo et al.,
2011), invade into human IECs in vitro (Bachtiar et al., 2007;
Corcionivoschi et al., 2009), colonization of chickens (Jones et al.,
2004), and diarrheal disease in ferrets (Bacon et al., 2001).
Consistently, the nonstoichiometric modification of CPS with
MeOPN has also been demonstrated to be essential for
complement resistance. The role of CPS in C. jejuni resistance
to complement-mediated killing is supported by evidence
showing C. jejuni expressing full CPS structure but lacking
MeOPN, displayed the same pattern of serum killing as a
nonencapsulated kpsM mutant, which lacked CPS. Also, study,
using Galeria mellonella larvae infection model demonstrated C.
jejuni expressing full CPS but lacking specific MeOPN
modification to be significantly attenuated in virulence
(Champion et al., 2010). This same study suggested the
structure of the MeOPN moiety has a remarkable similarities
to the active structures of organophosphorous pesticides
(McNally et al., 2007), therefore, the virulence attenuation of
C. jejuni expressing full CPS but lacking specific MeOPN may be
due to a consequence of toxicity provided by the MeOPN.
However, from virulence perspective, the role of C. jejuni CPS
in serum resistance is still unclear as C. jejuni induces human b-
defensins 2 and 3 (hBD2 and hBD3) from human IECs in vitro
(Zilbauer et al., 2005).
C. JEJUNI PUTATIVE ADHESINS

Adhesins play an important role in the pathogenesis of bacteria
to adhere, colonize, and invade into hosts. C. jejuni adherence to
human IECs in vitro involves putative adhesins decorated on its
outer membrane (OM) surface. C. jejuni adhesins seem to have
alternate primary functions, yet some can target the same host
receptor such as fibronectin. Once C. jejuni adheres to
fibronectin on the basolateral side of human IECs, it is
preceded by secondary steps that orchestrate cellular invasion
(Konkel et al., 2020). The most highly investigated adhesins in C.
jejuni that exist almost in mutually exclusive fashion are
Campylobacter adhesion to fibronectin (CadF) and fibronectin-
like protein A (FlpA). C. jejuni adhesins (CadF and FlpA) are
highly conserved among C. jejuni strains. CadF and FlpA
proteins are important for C. jejuni adherence to human IECs
and colonization of chickens (Konkel et al., 2020). A C.
jejuni cadF mutant displays reduced ability to adhere to
human IECs and chicken hepatoma cell line, LMH cells. C.
jejuni cadF mutant is also unable to adhere to immobilized
fibronectin (Talukdar et al., 2020). C. jejuni FlpA also promotes
C. jejuni adherence to human IECs in vitro and plays a role in C.
jejuni colonization of chickens (Flanagan et al., 2009; Konkel
et al., 2010; Larson et al., 2013). There are additional C.
jejuni surface-exposed adhesins, such as Campylobacter
adhesion protein A (CapA), PEB1 (Kervella et al., 1993; Pei
et al., 1998) and PEB4 (Asakura et al., 2007). These adhesins
which also play a role in C. jejuni adherence to human and
chicken IECs in vitro represent the multifactorial ability of C.
jejuni virulence mechanisms. However, study suggested that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
PEB1 is not required for adhering to chicken LMH cells but
rather as a transporter of amino acids aspartate and glutamate
(Leon-Kempis Mdel et al., 2006). Unfortunately, an important
gap in our current knowledge is the lack of mechanistic insight as
to how C. jejuni orchestrates adherence steps to IECs. This is due
in part to the fact that some of the adhesins identified to date
display an overlap in binding mechanisms, a factor that
confounds straightforward analysis of C. jejuni adhesion
mechanisms. It is hypothesized that these C. jejuni different
adhesins are required in the multiple steps of infection. First, to
adhere to the mucosal layer at the luminal side of human IECs
and then to adhere to the fibronectin receptor at the basolateral
side of IECs.
OTHER C. JEJUNI OUTER MEMBRANE
CHANNELS

C. jejuni produces numerous virulence and/or fitness proteins
that function as major outer membrane proteins (MOMPs). Two
of the most well characterized MOMPs in C. jejuni are MOMP
and OMP50. C. jejuni MOMP is also referred to as PorA. In
contrast to E. coli, C. jejuni possesses only one MOMP that is
present in all isolates and is highly (but not absolutely) conserved
in other Campylobacters (Ferrara et al., 2016). C. jejuni, MOMP,
is a 44-kDa protein, with sequence signature typical of b-barrel
porin seen in other enteropathogens (Amako et al., 1996; Ferrara
et al., 2016). C. jejuni, MOMP is relatively well characterized
compared to OMP50. As might be expected, considering its
association with the outer surface of the bacterial cell, C. jejuni
MOMP exhibits substrate selectivity and functions as a control
channel for the entry/exit of nutrients and other specific
molecules (Dhanasekar et al., 2017). Mutation of porA have
been thought to be lethal due to critical structural and transport
functions. However, inactivation of porA enhances sensitivity to
certain hydrophilic antibiotics (Iovine, 2013). Unlike MOMP,
which is present in most Campylobacters, Omp50 is only found
in C. jejuni and C. lari strains, but not in C. coli (Dedieu et al.,
2008). The synthesis of Omp50 is tightly regulated by the host
microenvironment. For example, C. jejuni Omp50 is down-
regulated in chicken cecum and up-regulated in rabbit ileal
loop (Stintzi et al., 2005; Woodall et al., 2005). Mutation of
Omp50 substantially reduced C. jejuni motility and invasion,
while it also involves bacterium decreased Nox1-dependent ROS
generation (Corcionivoschi et al., 2012).
C. JEJUNI PUTATIVE PROTEASES:
NEW PERSPECTIVE IN VIRULENCE
INVOLVEMENT

Recent characterization of C. jejuni putative proteases represent
an important step forward in the efforts to dissect C. jejuni
pathogenesis. As opposed to traditional candidate-mutant
experimental approaches, a proteomics analysis coupled with
February 2021 | Volume 10 | Article 607704
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enzymatic-based virulence profiling (EBVP) have shed light on
the specific role of C. jejuni putative proteases in adhesion to and
invasion into human IECs in vitro. C. jejuni secretes outer
membrane vesicles (OMVs) that contain three active serine
proteases (HtrA, Cj0511, and Cj1365c) (Elmi et al., 2012). The
mechanism responsible for the abundance of these serine
proteases in OMVs remains elusive. However, C. jejuni
proteases have been demonstrated to contribute targeted
damage to human IECs in vitro (Elmi et al., 2016). Treatment
of human IECs with active protease result in cleavage of IECs
tight and adherens junction proteins, namely occludin and E‐
cadherin. The targeted proteolytic activity of C. jejuniOMVs also
enhance C. jejuni adhesion to and invasion into IECs in vitro
(Elmi et al., 2016). Moreover, follow-up study has shown that bile
salt sodium taurocholate (ST) upregulates C. jejuni expression of
htrA, Cj0511, Cj1365, and the cdtABC operon, highlighting the
importance of bacterium adaptation to host metabolites (Elmi
et al., 2018). Furthermore, recent study has demonstrated that
physiological concentrations of ST regulates C. jejuni OMVs
production through changes in expression of the maintenance of
lipid asymmetry (MLA) pathway (Davies et al., 2019). Although
most of the examples discussed above had focused on the role of
serine proteases in virulence, it should be remembered that C.
jejuni OMVs also contain a cocktail of virulence and fitness
factors, including stress response enzymes, adhesins, CDT,
lipoproteins and other metalloproteases, which also play an
important role in bacterial virulence. Thus, suggestions have
been raised that C. jejuni OMVs might also function as fitness
and survival factors, allowing the bacterium to adapt new niches,
adhere to surfaces, translocate rapidly across IECs, and resist
antibiotics and other deleterious circumstances.
C. JEJUNI FITNESS AND VIRULENCE
FACTORS: ROLE IN STRESS
ADAPTATION, TEMPERATURE, NUTRIENT
SENSING, AND METABOLIC REWIRING

As C. jejuni transitions from nutritionally rich ceca in the GI
tract of chickens to accidentally infect humans, the bacterium
faces formidable stresses. Here, the term “stress” refers to
environmental and human host stresses that reduce C. jejuni
fitness or negatively impact on its virulence. Unlike other entero-
pathogens, C. jejuni does not have homologs of the classical
stress response regulators such as SoxRS and OxyR found in E.
coli and Salmonella spp. respectively. SoxRS regulates response to
redox-active compounds while OxyR responds to hydrogen
peroxide (Nunoshiba et al., 1992; Zheng et al., 1998). In
addition, C. jejuni lacks transcription regulators such as cold
shock protein A (CspA) and leucine-responsive regulatory
protein (Lrp) (Calvo and Matthews, 1994; Murphy et al., 2006;
Keto-Timonen et al., 2016). Besides, C. jejuni does not possess
the classical alternative sigma factors such as RpoS (s38)
although it has limited sigma factors including RpoD (s70),
RpoN (s54), and RpoF/FliA (s28). Interestingly, C. jejuni
possesses unique and yet unresolved mechanisms to survive
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
under various stress conditions. C. jejuni utilizes OmpR‐type
response regulators such as Campylobacter oxidative stress
regulator (CosR) (Hwang et al., 2011), peroxide-sensing
regulator (PerR) (Palyada et al., 2009) and Multiple Antibiotic
Resistance Regulator, MarR‐type regulators designated for
response to peroxide stress (Gundogdu et al., 2016). C. jejuni
CosR is a pleiotropic regulator that controls the expression of
genes involved in various cellular processes, especially genes that
involve in macromolecule biosynthesis, metabolism, and
oxidative stress response (Kim et al., 2015b). The genes that
CosR regulates mostly encode for stress response-related
proteins such as the DNA binding protein from starved cells
(Dps), rubredoxin oxidoreductase/rubrerythrin (Rrc), alkyl
hydroperoxide reductase (AhpC), and superoxide dismutase
(SodB). On the other hand PerR, non-OxyR-dependent
regulator, controls transcription of peroxide as well as the
superoxide defense genes particularly under oxidative stress
conditions. For instance, perR mutation abrogates the
transcriptional response of ahpC, katA, and sodB to oxidants
(Kim et al., 2015a).

C. jejuni also possesses global transcriptional regulators such
as carbon starvation regulator (CsrA), ortholog of the E. coli
global posttranscriptional regulator CsrA. In addition, C. jejuni
has two-component regulatory systems (TCRS) such as
Campylobacter planktonic growth regulator (CprRS) (Svensson
et al., 2015; El Abbar et al., 2019). Mutation of csrA results in C.
jejuni cells with altered motility, biofilm formation, adherence to
and invasion of human IECs cells and resistance to oxidative
stress (Fields and Thompson, 2008). CprRS is two‐component
systems regulator typically consisting of a sensor kinase and a
response regulator. The CprR response regulator is essential and
mutation to the cprR, is lethal to C. jejuni, but a cprS mutation,
results in decreased expression of SodB, Rrc and LuxS. C. jejuni
also possesses a ferric uptake regulator (Fur) to control the
expression of a range of oxidative stress genes, to prevent the
build-up of toxic levels of iron within the cell (Butcher et al.,
2012). In addition to the stress-responsive regulators, C. jejuni
KatA and SodB proteins play critical roles in detoxification, SodB
detoxifies free radicals O−

2 while KatA contributes for the
detoxification of H2O2 (Atack and Kelly, 2009). SodB also
contributes to C. jejuni chicken colonization and intracellular
survival in human IECs in vitro (Palyada et al., 2009; Novik et al.,
2010). C. jejuni cell surface structures such as flagella, CPS, LOS
and OM also can act at the interface between the bacterium and
the extracellular environment. These cellular surface structures
assist C. jejuni to sense environmental and host stresses, in
principle, inducing a collective response to protect the
bacterium from damage caused by stresses.
Environmental Stress Survival
and Adaptation
In light of its relatively small genome (1.6–1.7 Mb), it remains
enigmatic how C. jejuni senses, adapts and persists in diverse
environmental stresses. C. jejuni requires optimal oxygen
concentrations of approximately 5%–10% for growth; however,
the bacterium can survive in the environment, which is rich in
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oxygen (ca. 21% O2). This variation in oxygen concentration
constraints C. jejuni to rewire its physiology to adapt flexible
metabolic pathways. The requirement of 5%–10% O2 for growth
is governed by single class I-type Ribonucleotide Reductase
(RNR) (Burnham and Hendrixson, 2018). This is an oxygen-
dependent enzyme that catalyses the de novo conversion of
ribonucleotides diphosphates (NDPs) to deoxyribonucleotides
diphosphates (dNDPs), and therefore plays a pivotal role in
maintaining C. jejuni synthesis of deoxyribonucleotide (dNTP).
Besides, C. jejuni also possesses a highly-branched respiratory
chain feature that facilitates the use of oxygen as an electron
acceptor for one of two respiratory oxidases, cytochrome c
oxidase (CcoNOQP), a cbb3-type cytochrome c oxidoreductase
and a bd-type (CioAB or CydAB) quinol oxidase (Guccione
et al., 2017; van der Stel and Wosten, 2019). The sensitivity of C.
jejuni pyruvate: acceptor oxidoreductase (POR) and the TCA
cycle 2-oxoglutarate: acceptor oxidoreductase (OOR) to oxygen
has been suggested as one of the explanations of the so-called ‘C.
jejuni-oxygen paradox’ - that is, why C. jejuni is unable to
proliferate in aerobic environment. Also, atmospheric levels of
oxygen inactivate C. jejuni L-serine dehydratase (SdaA), which
catalyses the deamination of serine and converts serine into
pyruvate which is further converted to acetyl CoA, which is
oxidized via the TCA cycle to carbon dioxide and free
energy. SdaA is essential for colonization of the avian gut
(Velayudhan et al., 2004). The ability of C. jejuni to tolerate
oxygen in the environment can also vary between strains. For
instance, study has found a higher prevalence of some strain
genotypes in environmental samples attributing these variations
in oxygen tolerance (Champion et al., 2005; Bronowski et al., 2014).
Besides, another study has reported atypicalC. jejuni Bf strain that is
oxygen tolerant (Rodrigues et al., 2015; Bronnec et al., 2016a). This
strain has been demonstrated to have protective mechanisms
against oxidative stress which is thought to be mediated by
regulation of genes involved in oxidative stress response and
biofilm formation (Bronnec et al., 2016b). Interestingly, recent
assessment of C. jejuni phospholipidome profile has indicated
that C. jejuni phospholipidome have an unusually high
percentage of lysophospholipid. Lysophospholipids are small
bioactive lipid molecules characterized by a single carbon chain
and a polar head group. It is hypothesized lysophospholipid
allows C. jejuni to be motile under low O2 conditions (Cao et al.,
2020a). This is a significant observation considering the
requirement of C. jejuni to adapt to the low oxygen deep in the
mucus layer of the human GI tract. This could give C. jejuni
competitive advantage when competing with other microbiota that
colonize the mucosal layer as it transitions into the IECs. In
addition, the ability of C. jejuni to sense environmental oxygen
have been thought to correlate altering its membrane lipid
composition which could be crucial for biofilm formation.
C. jejuni Biofilm: Environmental Adaptation
and Persister Phenomena
C. jejuni adaptation to an oxygen-rich environment such as
contaminated freshwater, poultry meat or raw milk can be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
attributed to the ability of the bacterium to form biofilms on
different substrates. C. jejuni can attach and persist on a variety
of abiotic and biotic surfaces, and several studies have reported
on the viable but non-culturable (VBNC) state (Teh et al., 2014;
Magajna and Schraft, 2015). C. jejuni cells switch to VBNC state
to survive better under adverse environmental conditions. In the
environments, C. jejuni is exposed to high oxygen tension,
limited nutrient availability, heat, acidic pH, temperatures
fluctuations and antimicrobials. These environmental
constraints are known to stimulate increased C. jejuni biofilm
formation to a relatively high level, supporting the proposal that
C. jejuni forms biofilm as a survival strategy outside of the avian
host. C. jejuni forms increased biofilm in oxygen-rich conditions
compared to microaerobic conditions (Reuter et al., 2010). It is
commonly agreed that all C. jejuni strains form biofilm, however,
the ability of C. jejuni to form biofilm appears to be strain-
dependent (Melo et al., 2017). Interestingly, C. jejuni mutant
strains deficient in genes encoding for key oxidative stress
resistance enzymes such as alkyl hydroperoxide reductase
(AhpC) or C. jejuni’s sole catalase enzyme (KatA) have been
shown to have an increased ability to form biofilm (Oh and Jeon,
2014). This is attributed to the accumulation of reactive oxygen
species (ROS) which may serve as a trigger to increase the level of
biofilm formed in response to increased oxidative stress.
Overexpression of ahpC is correlated with decreased biofilm
formation, and treatment of the ahpC mutant with antioxidants
reduces biofilm formation (Oh and Jeon, 2014). C. jejuni lacks
the classical two-component regulatory systems involved in
biofilm formation found in other bacteria, such as GacSA in
Pseudomonas aeruginosa, however, C. jejuni biofilm formation is
thought to be under the control of a complex array of regulatory
factors that respond to a variety of environmental signals. These
complex regulatory factors include global regulator CsrA,
Campylobacter oxidative stress regulator (CosR), stringent
response regulator (SpotT) and CprRS, which have been
shown to play an important role in biofilm formation in C.
jejuni under aerobic conditions (Gaynor et al., 2005; Fields and
Thompson, 2008; Svensson et al., 2015; El Abbar et al., 2019).
Mutations of cosR, cprRS, and, spotT increase biofilm formation
under aerobic conditions, while mutation of the gene encoding
for global regulator (CsrA) decreases the ability of C. jejuni to
form biofilms when grown in static culture as well as increased
sensitivity to oxidative stresses (Fields and Thompson, 2008).
Interestingly, in other enteric bacteria spoT mutation decreases
biofilm formation (He et al., 2012). In C. jejuni, the mutation of
spoT alters the expression of genes related to redox balance,
metabolism, energy production, and conversion pathways while
CosR, a key orphan regulator in the maturation of biofilm, has
also been shown to affect the expression of the antimicrobial
efflux pump CmeABC (Turonova et al., 2015). CprRS is two‐
component systems regulator typically consisting of a sensor
kinase and a response regulator. The CprR response regulator is
essential and deletion of the cprS sensor kinase enhances
biofilms. Current evidence suggests that CprRS likely regulates
genes related to aspects of the C. jejuni surface structures
(Svensson et al., 2015). The molecular mechanism of C. jejuni
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biofilm formation also appears to indirectly correlate with factors
required for fitness and virulence. For instance, mutation of the
flagella genes flaA, flaB and the cell surface modification genes
pgp1 and waaF have been shown to increase biofilm formation
(Reeser et al., 2007). This indicates that C. jejuni increases
biofilm formation as a survival strategy during stress.
Interestingly, a recent study suggests C. jejuni does not form
biofilms under conditions encountered in the environment but
attaches to surfaces or biofilms of other species (Teh et al., 2014;
Teh et al., 2019). This is an attractive proposal supporting the
notion that C. jejuni is a poor biofilm initiator, and is likely to
form enhanced biofilms in a “mixed-species biofilm” with other
bacteria such as P. aeruginosa, Enterococcus faecalis and
Staphylococcus simulans.
C. jejuni Temperature Stress Adaptation
Temperature is a prominent signal used by many enteric
pathogens. The strategies enteric pathogens use to sense
temperature variation across space, hosts and time broadly acts
as a mechanism to adjust bacterial survival and virulence. For C.
jejuni, the transition from its primary chicken host (42°C) to the
environment, the bacterium experiences temperature variation.
This temperature variation confines proliferation and shifts C.
jejuni physiology forcing the bacterium to coordinate fitness and
virulence regulatory systems. It is puzzling that C. jejuni lacks
classical RpoS homolog (Parkhill et al., 2000) and cold shock
proteins (Oh et al., 2019), yet C. jejuni has the ability to survive in
low and/or high nonpermissive temperature growth conditions
before reaching human host. C. jejuni doesn’t also grow
temperatures below ~ 30°C, however the bacterium survives
temperature growth range between 4°C to 33°C (Hazeleger et al.,
1998). C. jejuni survives better at 4°C in various biological milieu
than at 25°C (Murphy et al., 2006). C. jejuni also survives in
water, at low temperatures, for up to 4 months (Oberheim et al.,
2020). The ability of C. jejuni to survive in cold temperatures is
different among strains, with C. jejuni strains isolated from
human infection being significantly more capable of prolonged
survival at 4°C than poultry‐derived strains (Chan et al., 2001).
Intriguingly C. jejuni also survives extreme freezing temperatures
(−20°C) for several weeks (Bhaduri and Cottrell, 2004).

C. jejuni genes associated with oxygen tolerance, starvation
and osmotic stress are essential for the bacterium to survive in
the low temperature. This perplexing physiology of C. jejuni
seems to be the bottleneck to the efforts aimed to eradicate the
risk of C. jejuni to human health. The ability of C. jejuni to
rapidly sense and adapt to cold temperature is largely driven at
the transcriptional level (Bronowski et al., 2017). Studies
focusing on human infections, use in vitro human IECs grown
at 37°C to mimic the temperature that the bacteria encounters
inside human host. C. jejuni ability to sense 37°C is crucial to
optimize its fitness and adjust expression of its virulence genes.
C. jejuni is more invasive into human IECs cultured at 37°C than
IECs cultures at 42°C (Aroori et al., 2013). Although the exact
mechanism of C. jejuni response to temperature stress is not yet
explicitly known, changes in temperature are known to affect
expression of bacterial heat shock proteins (HSP). C. jejuni
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possesses two-component regulatory systems (TCSs) such as
reduced ability to colonize response regulator (RacRS). RacRS
function to assist the bacteria to overcome stresses associated
with heat shock response. In addition, C. jejuni RacR is required
for avian colonization and growth while mutation of racR alters
the expression of selected proteins in both temperature-
dependent and independent manners (Hazeleger et al., 1998;
Wouters et al., 2000).
C. jejuni Acid Stress Adaptation
C. jejuni grows at optimal pH range of 6.5–7.5, while it is also
able to survive pH range as low as 5.5 and as high as 8.5.
However, C. jejuni encounters acidic conditions either in the
environment or within the gut of the various hosts that it
colonizes. In the context of human infection, C. jejuni survives
passage through the stomach, where the concentration of acid is
high and the pH ranges 1.5–3.5. The molecular strategies that
C. jejuni uses to sense, adapt and survive the luminal acid
concentration in the stomach upon ingestion and within the
phagosomes and phagolysosomes of human IECs is not
currently known. However, C. jejuni tolerance to human GI
tract luminal acid is important for disease development. So far,
it is hypothesized C. jejuni lacks proteins required for acid
tolerance such as urease protein found in Helicobacter pylori.
However, it is intriguing that with low infectious dose of (500–
800 bacteria), C. jejuni cells survive the gastric acid of the
human stomach and continue down to reach the small
intestine. Study has demonstrated some C. jejuni strains can
survive acid exposure at pH 3.5 and above for up to 30 min (Le
et al., 2012). Another study has suggested adaptation of C.
jejuni to the luminal acid concentration in humans requires
genes mediating various cellular processes, including those
involved in motility, metabolism, stress response, DNA repair
and surface polysaccharide biosynthesis (Reid et al., 2008). For
instance, C. jejuni RpoN, a classical flagellar transcriptional
regulator, which is historically known to play an important role
in motility has been demonstrated to be important for the
resistance of C. jejuni to various stresses including acid stress.
This suggested flagella mediated motility is critical for both
initial navigation through the acid environment in the GI
tract lumen and mucus layer to IECs attachment. C. jejuni
adaptation to low pH stress also involved the differential
expression of genes involve in respiratory pathways, the
upregulation of genes for phosphate transport, and the
repression of energy generation and intermediary metabolism
genes (Reid et al., 2008). Recent study that investigated acid-
stressed adaptation of C. jejuni under iron-enriched conditions
has shown the capacity of C. jejuni to survive acid stress is
greatly enhanced in presence of iron (Askoura et al., 2020).
However, limited information is available about the role which
human host microbiota plays in the pathophysiology of C.
jejuni adaptation in acidity along the gut, although it is evident
that many species of the microbiota are able to generate
metabolites that have bearing on the composition of GI tract
luminal acidity. For example, lactate which is an organic acid
that is found in the upper GI tract of human and avian species
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can act as a chemoattractant signal of C. jejuni (Bernalier-
Donadille, 2010; Hofreuter, 2014).

C. jejuni Metabolic Sensing
and Adaptation
While, as discussed above, C. jejuni has complex stress response
mechanisms, its ability to resist stresses overlaps its ability to
adapt to different metabolic requirements. C. jejuni sequenced
strain NCTC11168 lacks the glycolytic enzymes glucokinase
(Glk) and phosphofructokinase (PfkA) of the classical
Embden-Meyerhof-Parnas (EMP) pathway (Parkhill et al.,
2000; Guccione et al., 2008; Hofreuter, 2014). C. jejuni was
once considered to be non-saccharolytic since C. jejuni
sequenced strain NCTC11168 lacks genes encoding for the
complete pentose phosphate (PPP) or Entner-Doudoroff (ED)
pathway. Interestingly, few isolates of C. jejuni subsp. doylei
encode a complete ED pathway which suggests the potential to
catabolize glucose (Vegge et al., 2016; Garber et al., 2020). The
inability to utilize glucose has necessitated C. jejuni to utilize
amino acids such as serine, aspartate, glutamate, glutamine,
proline and asparagine as carbon and energy sources (Stahl
et al., 2012; Hofreuter, 2014; Szymanski, 2015). Most C. jejuni
strains preferentially use serine, aspartate, glutamate, and
proline, although certain C. jejuni strains can also utilize
asparagine and glutamine (Thompson and Gaynor, 2008; van
der Hooft et al., 2018). This unique ability to metabolize only a
few amino acids allows the bacterium to utilize efficient strategies
to include host nutrients into its anabolic processes, to fuel its
metabolic pathways and to support its survival and adaptation in
hosts with largely commensalism outcome in avian species or
pathogenesis in humans. For instance, C. jejuni catabolism of
serine and aspartate enhances the ability of the bacterium to
colonize the avian gut (Hermans et al., 2011), while a C. jejuni
mutant that is lacking an oxygen-labile serine dehydratase and
unable to catabolize serine is demonstrated to be incapable of
colonizing chickens (Velayudhan et al., 2004). Furthermore, C.
jejuni rewires its metabolic requirements during avian colonization
and human infection. C. jejuni has the ability to adopt an
asaccharolytic lifestyle, likely as a strategy to evade microbiome
competition. It is known that certain C. jejuni strains metabolize
sugars such as L‐fucose (Stahl et al., 2011). These C. jejuni strains
possess an operon for L‐fucose utilisation which until recently has
been known to be limited to some C. coli and C. jejuni subsp. doylei
strains. L-fucose acts as a chemoattractant for C. jejuni (Dwivedi
et al., 2016). Interestingly, C. jejuni binds to a1, 2-fucosylated
glycans, however the L-fucose catabolism is not essential for
C. jejuni colonization of avian species (Muraoka and Zhang,
2011; Stahl et al., 2011). Furthermore, C. jejuni lacks fucosidase
enzyme which is essential for the release of the L-fucose from
glycosylated host proteins such as mucin. A study recently
demonstrated that C. jejuni fucose positive strain utilisation of
L-fucose is dependent on the fucosidase activity of the
gastrointestinal bacterium Bacteriodes fragilis (Garber et al.,
2020). This same study also revealed that C. jejuni becomes more
invasive toward human Caco-2 cells in the presence of an
exogenous fucosidases from B. fragilis.
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Recently, examining the idea of a host nutritional role in C.
jejuni adaptation and pathogenesis, studies showed that C. jejuni
senses and utilizes catabolic end products of the intestinal
microbiota such as short-chain fatty acids (SCFAs) butyrate and
acetate, CO2-derived hydrogen carbonate, and free amino acids and
di-/or oligopeptides, which are released by microbiota from dietary
or endogenous proteins (Gao et al., 2017). The ability of C. jejuni to
sense SCFAs positively regulates many C. jejuni amino acids uptake
and catabolism systems that are essential for host colonization.
SCFAs are found in abundance in the lower regions of the intestinal
tracts of avian species and humans where they play a major role
in host physiology through nutritional, regulatory, and
immunomodulatory functions. However, in the context of C.
jejuni avian and human colonization, the abundance of butyrate
and acetate in the lower GI tract provides the bacterium with a
competitive advantage to thrive in this niche (Burnham and
Hendrixson, 2018). A prevailing belief is that C. jejuni has the
ability to spatially differentiate between sections of the GI tract by
sensing the presence of acetate and butyrate, and thereby modifying
the transcription of its colonization factors (Goodman et al., 2020).
This enables C. jejuni to obtain sufficient nutrients and resources to
allow for optimal survival and persistence in both avian and human
intestinal tracts. C. jejuni specifically senses butyrate via a
noncanonical TCS termed BumSR (Goodman et al., 2020). BumS
functions as a phosphatase, via a noncanonical mechanism for
signal transduction in place of a sensor kinase, to control the activity
of the cognate BumR response regulator. BumS phosphorylates
BumR in response to the presence of butyrate. C. jejuni genes
known to be induced after sensing butyrate and acetate include
genes encoding for nutrient acquisition systems, energy generation
pathways, and colonization factors (Goodman et al., 2020). In
addition, acetate which is more abundant in the gut is preferred
metabolite for C. jejuni once the rate-limiting step of carbohydrate
metabolism is surpassed in stationary phase. C. jejuni also
catabolizes organic acids such as lactate which is abundant in the
upper gut of avian hosts (Luethy et al., 2017).
CONCLUSIONS AND FUTURE
DIRECTIONS

Recent developments in the understanding of C. jejuni pathogenesis
have combined several experimental approaches that link the
functional characterization of various putative genes. Although this
is important, characterizing C. jejuni virulence and fitness factors
requires an integrative approach. In the future, an ideal experiment
should involve the use of single-gene inactivations and phenotypic
assays, incorporated with integrative multi-omics approach
including, transcriptomics, proteomics and metabolomics. This
should reveal comprehensive findings that would contribute to the
characterization of C. jejuni pathogenesis. This approach will
also guide us to re-focus on re-characterization of many C.
jejuni virulence-associated genes that have not yet been fully
characterized. From our perspective, the incorporation of
integrative multi-omics and phenotypic assays in C. jejuni research
promises enormous potential. However, there are many challenges
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and thus, opportunities for further development of experiments
involving multi-omics technology. Also, future studies of C.
jejuni should include refining, optimisation and normalization of
experimental design and protocols that represent ideal settings
for C. jejuni and host cells, allowing researchers to reproduce data.
Unsurprisingly, there are a plethora of C. jejuni studies that use
experimental approaches that give an insight into the selected role
of C. jejuni putative virulence associate genes. For instance, in stress
survival, adhesion, invasion and intracellular survival, however, few
studies provide information about the function of such putative
genes. Also, integration of C. jejuni virulence characterizations with
spatial analysis at the various time point and C. jejuni strains
variability is needed to improve our understanding of C.
jejuni pathogenesis.
AUTHOR’S NOTE

For the purpose of this review, we define a virulence factor as a
protein (such as a toxin) or macromolecular structure (such as
flagellum) that contribute to the ability of the bacteria to cause
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
disease and a fitness factor as a protein or macromolecular
structure that, while not required for virulence, offers a
competitive advantage during infection.
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