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Malaria control programs in Africa traditionally 
focus on rural settings, although transmission 

is also a health concern in some urban settings (1). 

Anopheles stephensi mosquitoes breed predominantly 
in urban settings, prefer water storage containers (2), 
and are found throughout the Horn of Africa (3). To 
determine susceptibility of An. stephensi mosquito 
vectors to infection with local Plasmodium strains, we 
measured their abundance in an urban area of Ethio-
pia and characterized their aquatic habitats, biting 
and resting behavior, and competence to transmit lo-
cal P. vivax and P. falciparum.

Study protocol was approved by the Institutional 
Ethical Review Board of the Aklilu Lemma Institute 
of Pathobiology of Addis Ababa University (ALIPB 
IRB/025/2011/2019), the Oromia Regional Health 
Bureau (BEFO/MBTFH/1331), and AHRI/ALERT 
Ethics Review Committee (AF-10-015.1, PO07/19). 
All participants or parents/legal guardians for par-
ticipants <18 years of age provided written informed 
consent. Persons who volunteered for human landing 
collection also provided written informed consent, 
were monitored for 3 weeks after collections, and 
if symptomatic and positive received treatment for 
Plasmodium according to the treatment guidelines of 
the country.

The Study 
This study was conducted in Awash Sebat Kilo, 
Ethiopia, an area of perennial malaria transmission, 
during April–September 2019. We examined aquatic 
habitats for immature-stage Anopheles mosquitoes 
by standard dipping (10×/site) for 5 consecutive 
days (4). We assessed mosquito resting, feeding, and 
host-seeking behavior by 5 methods: CDC minia-
ture light traps model 512 (John W. Hock Company,  
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Anopheles stephensi mosquitoes, efficient vectors in parts 
of Asia and Africa, were found in 75.3% of water sources 
surveyed and contributed to 80.9% of wild-caught Anoph-
eles mosquitoes in Awash Sebat Kilo, Ethiopia. High sus-
ceptibility of these mosquitoes to Plasmodium falciparum 
and vivax infection presents a challenge for malaria con-
trol in the Horn of Africa.
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https://www.johnwhock.com), human landing col-
lection, pyrethrum spray sheet collection, aspiration 
from animal shelters, and cattle-baited traps (5). We 
identified adult mosquitoes by using standard keys 
and confirmed identification by targeted sequencing 
of nuclear internal transcribed spacer 2 (ITS2) and mi-
tochondrial cytochrome oxidase subunit 1 gene (COI) 
(6). To generate clade topologies, we compared An. 
stephensi mosquito DNA sequences with those in pub-
licly available libraries (7). We determined mosquito 
blood meal sources by using multiplex PCR target-
ing cytochrome b (8) and infection status by using 18S 
rRNA nested PCR (9).

Adult An. stephensi mosquitoes reared from im-
mature mosquitoes from local water sources and a 
colony of An. arabiensis mosquitoes (≈120 each) were 
fed in the dark for 30 min on membrane feeders con-
taining fresh blood from Adama malaria clinic pa-
tients with microscopy-confirmed mono- and mixed-
species infections with P. vivax and P. falciparum (10). 
Unfed and partially fed mosquitoes were removed; 
fully engorged mosquitoes were maintained on sugar 
solution. At 7 or 12 days after feeding, mosquitoes 
were dissected, their midguts were examined for oo-
cysts, and their salivary glands were examined for 
sporozoites. To compare infection status between An. 
arabiensis and An. stephensi mosquitoes, we performed 
logistic regression. We used individual mosquito 
data and a fixed effect for each patient to account for 
correlations between mosquito observations from the 
same donor. Bland-Altmann plots were generated for 
differences in infectivity between mosquito sources 

by using the Pitman test of difference in variance. 
For analyses, we used STATA version 13 (StataCorp., 
https://www.stata.com/company) and GraphPad 
Prism 5.3 (GraphPad Software Inc., https://www.
graphpad.com). Raw data have been deposited in the 
DRYAD data depository (https://datadryad.org/
stash/dataset/doi:10.5061/dryad.gf1vhhmnt).

An. stephensi larvae were detected in 75.3% 
(64/85) of the 85 artificial water sources surveyed 
(Table 1). A total of 49,393 immature Anopheles lar-
vae and pupae were collected during 20 weekly col-
lections in April–September 2019, of which 45,316 
(91.7%) emerged as adult mosquitoes in the labora-
tory. Morphologic identification of adults confirmed 
that all were An. stephensi. During monthly rounds of 
entomologic surveillance in August and September 
(6 days each), we collected 89 adult female Anopheles 
mosquitoes (72 [80.9%] An. stephensi, 16 An. gambiae, 
and 1 An. pharoensis). We detected P. vivax in 2.8% 
(2/72) and P. falciparum in 1.4% (1/72) of wild-caught 
An. stephensi mosquitoes. Blood meal source was iden-
tified for 35.0% (28/80) blood-fed wild-caught An. ste-
phensi mosquitoes; exclusive human blood meal was 
identified for 17.2% (5/29). The remainder fed (mul-
tiple blood meals) either on humans and animals (n 
= 9) or animals only (n = 14) such as goats (n = 21), 
cows (n = 4), and dogs (n = 5). Successful sequencing 
of ITS2 for 76 and COI for 45 Anopheles mosquitoes  
confirmed that all were An. stephensi. According to 
ITS2 sequences, An. stephensi mosquitoes from Ethio-
pia formed a well-supported monophyletic clade with 
isolates from the Arabian Peninsula and Southeast 

 
Table 1. Characteristics of 85 aquatic habitats surveyed in study of Anopheles stephensi mosquitoes as vectors of Plasmodium vivax 
and falciparum, Horn of Africa, 2019 

Characteristic Habitats, no. 
Mosquito larvae, no. larvae 

detected/no. habitats sampled (%) 
Mosquito pupae, no. pupae 

detected/no. habitats sampled (%) 
Localities (kebeles) within the town of Awash Sebat Kilo   
 Sebat Kilo 60 44/60 (73.3) 19/44 (43.2) 
 Lemlefan 17 12/17 (70.6) 0/12 (0) 
 Alalamo 8 8/8 (100.0) 5/8 (62.5) 
Artificial containers    
 Permanent 48 41/48 (85.4) 17/41 (41.5) 
 Temporary 37 23/37 (62.2) 7/23 (30.4) 
Shade status    
 Fully 22 14/22 (63.6) 6/14 (42.9) 
 Partial 24 22/24 (99.7) 7/22 (31.8) 
 None 39 28/39 (71.8) 11/28 (39.3) 
Use status    
 In use 71 54/71 (76.1) 20/54 (37.0) 
 Not in use 14 10/14 (71.4) 4/10 (40.0) 
Container material    
 Fiber jar/tire 23 10/23 (43.5) 4/10 (40.0) 
 Metal/steel tanks/drum/barrel 17 16/17 (94.1) 5/16 (31.3) 
 Cement/ceramic 45 38/4 (84.4) 15/38 (39.5) 
Water turbidity    
 Clean  56 45/56 (80.4) 17/45 (37.8) 
 Turbid  28 19/28 (67.9) 7/19 (36.8) 
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Asia (Appendix, https://wwwnc.cdc.gov/EID/
article/27/2/20-0019-App1.pdf). The COI tree was 
more resolutive, suggesting that An. stephensi mosqui-
toes from Ethiopia were most closely related to mos-
quitoes from Djibouti (64%) and Pakistan (54%).

We conducted 47 paired-membrane feeding ex-
periments by using blood from patients with micros-
copy-confirmed P. vivax or P. falciparum infection (Ta-
ble 2). The proportion of blood-fed mosquitoes was 
generally higher for An. arabiensis (median 80.5%; in-
terquartile range [IQR] 72.5–85.0) than An. stephensi 
mosquitoes (median 53.5%, IQR 44.0–68.0; p<0.001; 
Figure 1, panel A). The proportions of the 2 mosquito 
species infected with P. vivax were strongly associat-
ed (ρ = 0.82, p<0.001; Figure 1, panel B); a significantly 
higher proportion of An. stephensi (median 75.1%, IQR 
60.0–85.9) than An. arabiensis mosquitoes were infect-

ed (median 58.4%, IQR 40.0–85.6; p<0.042). Allowing 
for the number of dissected mosquitoes for each set 
of paired feeding experiments, the odds of an indi-
vidual mosquito becoming infected was higher for 
An. stephensi mosquitoes (odds ratio [OR] 1.99, 95% 
CI 1.52–2.59; p<0.001) (Figure 1, panel C). The num-
ber of oocysts per infected midgut was also higher for 
An. stephensi (median 17, IQR 6–33) than An. arabiensis 
mosquitoes (median 13, IQR 4–30); p<0.001 (Figure 2, 
panel A). The number of oocysts was positively as-
sociated with the proportion of infected mosquitoes 
for An. stephensi (ρ = 0.553, p<0.001) and An. arabien-
sis mosquitoes (ρ = 0.576, p<0.001; Figure 2, panel B). 
Among paired feedings, sporozoites were detected 
in 52.2% (47/90) An. arabiensis and 75.0% (84/112) 
An. stephensi mosquitoes. A much higher proportion 
of An. stephensi (51.8%, 58/112) than An. arabiensis  

 
Table 2. Characteristics of blood meals and mosquito feeding outcomes in study of Anopheles stephensi mosquitoes as vectors of 
Plasmodium vivax and falciparum, Horn of Africa, 2019* 

Characteristic 
Plasmodium species 

P. vivax, n = 36 P. falciparum, n = 7 Mixed, n = 4 
Parasites/µL, median (IQR) 7,783 (3,603–13,440) 2,431 (867–8,756) 4,516 (1,589–10,563) 
Gametocyte positivity, no. positive/no. sampled (%) 25/34 (73.5) 1/7 (14.3)  1/4 (25.0). 
Infectious feeds, no. positive/no. sampled (%) 26/36 (72.2)  1/7 (14.3)  2/4 (50.0)  
Infected An. stephensi mosquitoes, no. positive/no. 
sampled (%) 

446/849 (52.5  2.2  36/104 (34.6)  

Infected An arabiensis mosquitoes, no. positive/no. 
sampled (%) 

452/1,000 (45.2) 18/200 (9.0) 45/122 (36.9)  

Oocysts in infected An. arabiensis mosquito midgut, mean 
(range) 

 22.8 (1–115)  NA 3.1 (1–22) 

Oocysts in infected An. stephensi mosquito midgut, mean 
(range) 

24.1 (1–105)  NA 2.8 (1–13) 

*Parasite and gametocyte densities were determined by microscopy; IQR, Interquartile range; NA, not available. 

 

Figure 1. Comparison of feeding efficiency and infection rates for Anopheles stephensi and An. arabiensis mosquitoes in paired feeding 
experiments in study of An. stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. A) Percentage of 
fully fed An. arabiensis mosquitoes (red) and An. stephensi mosquitoes (green). Box plots indicate median (midline), 25th (lower line), and 
75th (upper line) percentiles of proportion of blood-fed mosquitoes. Whiskers indicate lower and upper 25% scores. Vertical lines indicate 
minimum and maximum values. B) Percentage of infected mosquitoes. C) Bland-Altman plot (difference plots) for mosquito infection rates 
in different mosquito species. Symbols indicate differences in infection rates in An. stephensi versus An. arabiensis (y-axis) mosquitoes in 
relation to mean infection rates in these 2 species (x-axis). Positive values (57.1%; 16/28) indicate a higher infection rate in An. stephensi 
mosquitoes; dotted lines indicate the 95% limits of agreement. There was no evidence that the correlation coefficient between the paired 
differences and means differed significantly from 0 (Pitman test of difference in variance, r = 0.026, p = 0.864).
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mosquitoes (31.1%, 28/90) had high sporozoite load 
(+3 and +4); p = 0.011. After accounting for the num-
ber of examined salivary glands, the odds of detect-
ing high sporozoite intensity were substantially high-
er for An. stephensi than An. arabiensis mosquitoes (OR 
4.6, 95% CI 2.2–9.9; p<0.001).

Conclusions
An. stephensi mosquitoes have spread from Asia 
throughout the Horn of Africa, detected in Djibouti 
in 2012 (11), Ethiopia in 2016 (12), and Sudan in 2019 
(3). The widescale presence of An. stephensi mosqui-
toes in developmental stages in artificial water bod-
ies demonstrates that these mosquitoes are firmly 
established in an urban setting in Ethiopia, located 
on the main transportation corridor from Djibouti 
to Addis Ababa. Detection of 4 haplotypes suggests 
independent arrival of different populations or het-
erogeneity arising after importation of the mosquito 
species. Our mosquito feeding experiments predom-
inantly included highly infective patients with clini-
cal P. vivax infection (10,13). Although feeding rates 
for the membrane-adapted colony of An. arabiensis 
mosquitoes were high, mosquito infection rates were 
significantly higher for An. stephensi mosquitoes. 
Our detection of salivary gland sporozoites estab-
lishes that sporogonic development of local P. vivax 
can be completed by An. stephensi mosquitoes. We 

recruited fewer patients with clinical P. falciparum 
infection, who were less likely than P. vivax patients 
to infect mosquitoes (10). Despite a modest number 
of observations, our findings demonstrate that lo-
cal P. falciparum isolates are also capable of infecting 
An. stephensi mosquitoes and are further supported 
by detection of P. falciparum– and P. vivax–infected 
wild-caught adult mosquitoes. 

Spread of An. stephensi mosquitoes poses risk for 
increased P. falciparum and P. vivax receptivity and 
local transmission in urban Africa. Given mosquito 
preference for human-made containers (14), our find-
ings support integrated vector management recom-
mended by the World Health Organization under the 
Global Vector Control Response (15). Management 
may include integrated surveillance and control of 
other vectors such as Aedes aegypti mosquitoes for lar-
val source management.
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Vectors of Plasmodium vivax and 

falciparum, Horn of Africa 
Appendix 

 Aquatic habitat characterization 

A total of (n = 85) potential larval habitats were surveyed in 5 days (May 2019) in Awash 

Sebat Kilo town (Appendix Figure 1) using a standardized check list/questionnaire (22 question 

sets) to capture important characteristics. Immatures were collected throughout the day. Altitude, 

latitude, longitude, sun light exposure, water turbidity, substrate type, presence of vegetation, 

predators, and competitors were recorded for each site. The Anopheles larvae were separated 

from culicine larvae and classified as early- (1st, 2nd) or late-instars (3rd and 4th) stage and 

larval density was recorded by instars. The Anopheles larvae/pupae were transported to Adama 

malaria center with jars and transferred to larval tray for rearing to adult using the same filtered 

water from the breeding site. Detailed outcome of the aquatic habitat survey can be obtained 

using this link (https://datadryad.org/stash/dataset/doi:10.5061/dryad.gf1vhhmnt; Table 1). 

Aquatic habitat characterization) with number of larvae/pupae collected in each of the 10 dips 

(https://doi.org/10.5061/dryad.gxd2547hr; Table 2_Larvae pupae density). 

 

Adult mosquitoes resting, biting and host preference behavior 

Resting, feeding and host preference behavior of An. stephensi was assessed using 5  

entomological sampling techniques: i) Centers for Disease Control (CDC) light trap, ii) human 

landing catches (HLC), iii) pyrethrum spray sheet collection (PSC), iv) aspiration from animal 

shelters, and v) cattle baited traps. The CDC light traps (Model 512; John W. Hock Company, 

Gainesville, FL, USA) were set 1 m above the ground on a wall or roof, both indoors and 

https://doi.org/10.3201/eid2702.200019
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outdoors on 15 randomly selected households for two nights that makes a total of 60 traps in 30 

nights. Indoor traps were hung at the foot edge of the person who slept under an untreated bed 

net (1). Other occupants in the houses were left to use LLINs provided by the control program as 

part of the routine malaria control. The traps were switched on at 6:00PM and off at 6:00AM the 

next morning in each sampling night. PSC were conducted from 6:00 AM to 2:00 AM on five 

randomly selected households’ per-day and 20 households were included in each round of 

sampling, thus a total of 60 households were sampled in three rounds. The HLC were conducted 

in nine selected households both in and outdoors that was repeated the next day. Locally trained 

entomology technicians were employed to collect female Anopheles by standard mouth aspirator 

from 6:00 PM to 6:00 AM from both indoors and outdoors. Two collectors were assigned at a time 

for each house (one outdoors and one indoors) in shifts of 6 hours (the first shift being 6:00PM – 

12:00PM and the second from 12:00 PM to 6:00 AM). Collectors in the same shift changed with 

each other between outdoors and indoors every hour after recording their findings on the 

checklist to avoid bias due to individual variation in attraction and competence. In addition to 

this, animal sheds were inspected using HC and cattle bait trap (2) were conducted for collecting 

mosquitos biting and resting in animal shelters. Mosquitoes resting in animal shelters and cattle 

bait traps were collected using standard mouth aspirator for 30 minutes in each, from 5:30 AM to 

6:00 AM. All collected Anopheles mosquitoes were counted and sorted out morphologically to 

species level (3,4) and by their abdominal stage into unfed, freshly fed, half-gravid or gravid (5), 

except those collected by HLC. In animal shelter with high number of mosquito collection was 

repeated the next morning. 

Of the five methods used for mosquito collection in the 2 monthly studies of 6 days each 

and therefore 12 days in total, Anopheles were caught only by the three methods: CDC light 

traps, aspiration from animal shelter (hand collection), and human landing catches. This makes it 

an average of 2.5 female Anopheles caught per trap per night. Detailed survey results for 

different adult catch methods is provided using this link 

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.gf1vhhmnt; Table 3_Adult mosquitoes 

surveillance). 
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Optimization of feeding efficiency of adult An. stephensi raised from wild 
collected larvae/pupae 

Optimum starvation time for the An. stephensi raised from wild collected larvae and 

pupae was assessed in three different experiments with 2, 3, 4 or 5 hours before feeding 

evaluated in each experiment (Appendix Table 1). 

Appendix Table 1. Feeding optimization for Anopheles stephensi raised from wild collected larvae/pupae 
Code of Experiment Starvation hour prior feeding Number of fed mosquitoes Feeding efficiency, % of blood fed 
E01–01 5 58 39.2 
E01–02 4 68 45.9 
E01–03 3 85 53.8 
E01–04 2 86 50.3 
E02–01 5 24 36.4 
E02–02 4 31 42.5 
E02–03 3 29 44.6 
E02–04 2 17 28.3 
E03–01 5 33 36.2 
E03–02 4 46 48.9 
E03–03 3 44 51.6 
E03–04 2 35 35.0 

 Molecular detection of parasites and blood meal sources and targeted 
sequencing of morphologically identified An. stephensi mosquitoes 

Plasmodium infection status of individual wild-caught morphologically-confirmed adult 

An. stephensi mosquitoes was assessed using nested polymerase chain reaction (nPCR) targeting 

the small 18S subunit (6) using genomic DNA extracted from homogenate of mosquito’s head-

thorax and abdomen separately (7), indicating sporozoite and oocyst-stage infections, 

respectively. Multiplex PCR that targets the mitochondrial cytochrome b gene and produces 

species-specific fragments of varying sizes was used to assess blood meal sources of individual 

mosquitoes (8). For confirmation of morphologically identified An. stephensi, DNA was 

extracted from whole mosquito bodies using the DNeasy Blood and Tissue kit (Qiagen, UK). 

PCR was performed for each individual mosquito, targeting the nuclear internal transcribed 

spacer 2 region (ITS2) and the mitochondrial cytochrome oxidase subunit 1 gene (COI) (9). 

Following PCR clean-up (Source BioScience Plc, Nottingham, UK), chain termination 

sequencing was performed to generate unambiguous consensus sequences for each sample 

(Supplemental notes). Sequences were assembled manually in BioEdit v7.2.5 (10) to create 

unambiguous consensus sequences for each sample. Consensus sequence alignments per gene 

were generated in ClustalW and used to perform nucleotide BLAST (NCBI) database queries 

(11). An. stephensi ITS2 and COI sequences, from across the vector’s geographic range, were 
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downloaded from GenBank for phylogenetic analysis in MEGA X (12). Additional outgroup 

ITS2 sequences were retrieved for An. maculatus, An. maculipalpis, An. sawadwongporni and 

An. willmori. Alternate maximum-likelihood (ML) phylogenies were constructed using the 

Jukes-Cantor (ITS2; final tree lnL = −916.913) or Tamura-Nei (COI; final tree lnL = −732.248) 

models, following appropriate nucleotide substitution model selection in MEGA X. Bootstrap 

support for clade topologies was estimated following the generation of 1,000 pseudoreplicate 

datasets. As indicated in Appendix Figure 2. An. stephensi from Ethiopia are more related with 

those from Pakistan and Djibouti. 

Sporozoite quantification 

Sporozoites were quantified on day 12 post feeding in salivary glands of mosquitoes that 

remained from the batch where high oocysts were detected during midgut dissection on day 7 

post feeding and categorized into four (with a grade from 1–4) following protocol reported 

before (14). Table 4_Sporozoite quantification, following this link 

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.gf1vhhmnt) depicts the detail results for 

each An. arabiensis and An. stephensi dissected (rows) with representative pictures in Appendix 

Figure 3, panels A, B. 
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Appendix Figure 1. Anopheles. stephensi larval habitats. Images are of waterbodies that were infested 

with developmental stages of An. stephensi, namely water reservoirs made of bricks or cemented tanks 

(A – B), metal (C and D), barrels (E – F), plastic (G), or fiber (H). The median volume of the aquatic 

containers was 4m3 (interquartile range, 1.0–15.6) and ranged from 0.06 m3 to 360 m3. The majority of 

the containers were uncovered and were in use for household (32) and construction purposes (34). The 

material from which the different types of reservoirs were made of included cement (n = 45), plastic (n = 

9), fiber (n = 14) and steel (n = 17). 

 

 

Appendix Figure 2. Maximum-likelihood phylogenies of ITS2 (left) and COI (right). Maximum-likelihood 

topologies were constructed using representative reference sequences with published geographic data 

downloaded from GenBank. Within the Ethiopian population, due to the presence of a hyper-variable 
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microsatellite region, ITS2 sequences (A) were trimmed to create a consensus alignment of 289 bp; one 

polymorphic site separated samples into two genotypes (indicated with filled asterisk together with the 

previously reported genotype, MH650999, Carter, et al. (13) in unfilled asterisk). COI sequences (B) were 

assembled into a consensus alignment of 687 bp; a total of four variable sites were identified, 

corresponding to four haplotypes (indicated with filled asterisk together with the previously reported 

genotype, MH651000, Carter, et al. (13), unfilled asterisk). Nucleotide sequences for ITS2 and COI were 

deposited in GenBank under the following accession numbers: Ethiopia Genotype1, MN826065; Ethiopia 

Genotype2, MN826066; Ethiopia Haplotype1, MN826067; Ethiopia Haplotype2, MN826068; Ethiopia 

Haplotype3, MN826069; and Ethiopia Haplotype4, MN826070. Scale bars indicate nucleotide 

substitutions per site. 

 

 


