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Objective: To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricu-
lar systolic dysfunction (LVSD) in an external population.
Background: LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived
AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic.
Methods: We performed an external validation study with subjects from the Know Your Heart Study, a cross-
sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and
transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the
performance of the AI-ECG to identify LVSD in this distinct patient population.
Results: Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to
7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust
with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from
the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%,
97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values.
Conclusions: The AI-ECG detected LVSDwith robust test performance in a population thatwas very different from
that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation.
Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.

© 2020 Published by Elsevier B.V.
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1. Introduction

Left ventricular systolic dysfunction (LVSD), even when asymptom-
atic, is associatedwith increased cardiovascularmorbidity andmortality
[1]. There is currently no cost-effective method to screen for LVSD, and
routine echocardiography in the general population is not recom-
mended [2]. Yet, given its association with increased morbidity and
mortality and the availability of effective treatments to prevent progres-
sion, there is likely to be clinical benefit in identifying subjects with
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asymptomatic LVSD. In low income countries, where routine echocardi-
ography may be too costly, a simple and inexpensive screening test for
those with symptoms suggestive of undiagnosed heart failure can be
lifesaving.

Recently, we developed an artificial intelligence electrocardiogram
(AI-ECG) algorithm to detect LVSD, defined as left ventricular ejection
fraction (LVEF) less than or equal to 35%. By analysing paired ECG and
transthoracic echocardiography (TTE) data in 44,959 subjects treated
at Mayo Clinic, we trained a convolutional neural network (CNN) to
identify subjects with LVSD with a sensitivity and specificity of 86.3%
and 85.7% respectively (AUC of 0.93) in an independent retrospective
internal validation study [3]. We further performed a prospective vali-
dation of the ECG algorithm on an internal study of 8600 prospective
subjects and demonstrated similar model performance [4].

Yet, evenwith this encouragingdata, in order to be able to generalize
our findings, it is imperative to evaluate how well these algorithms
work in other populations, in different clinical settings, and with vari-
able ECG and echocardiographic data collection techniques. There
have been several well publicized examples of initially promising algo-
rithm that failed to generalize to broader populations. Notable examples
include poor performance of facial recognition software in diverse pop-
ulations and difficulty generalizing retinal image diagnostics [5]. Such
problems can arise when datasets used to train the algorithms are of
limited diversity. Additionally, if there is excessive data redundancy in
internal validation, these algorithms may have a tendency to “overfit”
to a given dataset [6].

To evaluate the robustness and accuracy of our algorithm, we per-
formed an external validation of our AI-ECG to detect LVSD in a
completely different setting and population from a population-based
cross-sectional study of men and women living in two Russian cities.

2. Methods

2.1. Study design

We performed the retrospective external validation study of our
deep learning ECG algorithm to detect LVSD (defined as LVEF ≤ 35%)
in a study of subjects from the cross-sectional Know Your Heart Study
in Russia [7]. The primary outcome was the predictive ability of the
deep learning network to identify subjects with LVSD from ECGs from
this external validation study. The study was approved by the Mayo
Clinic Institutional Review Board and by the ethics committees of the
London School of Hygiene & Tropical Medicine, Novosibirsk State Med-
ical University, the Institute of Preventative Medicine, Novosibirsk and
the Northern State Medical University, Arkhangelsk.

Twelve‑lead ECGs were obtained using Cardiax devices (IMED Ltd.,
Hungary) with a sampling rate of 500 MHz, and were further filtered
to 0.1 MHz to 100 MHz to eliminate noise and artefact. ECGs shorter
than 10 s were excluded (three subjects). ECGs longer than 10 s were
truncated to 10 s. Of note, the algorithm was previously trained on
10 s ECGs raw signals sampled at 500 MHz as highlighted below. TTE
was performed using GE VividQ machines (GE Healthcare) in accor-
dance with a strict-defined protocol [7]. Two methods of LVEF were
used in the Know Your Heart Study (biplane and Teichholz formula).
For LVEF determination, initial comparative analysis of the two LVEF cal-
culations revealed poor correlation between the two calculation
methods (R-squared 0.3). Therefore, as the biplane method is generally
considered more accurate than the Teichholz formula, only subjects
with LVEF determined by the biplane method were used for the final
analysis.

2.2. Participants

We included participants from the Know Your Heart Study, a large
cross-sectional population-based study of adults aged 35 to 69 year in
two Russian cities, Arkhangelsk and Novosibirsk. Extensive information
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on socioeconomic status, laboratory studies, ECGs and TTEs were col-
lected on all subjects as part of the study. Subjects had comprehensive
cardiovascular screening performed, including ECG and TTE. The study
protocol for the Know Your Heart Study is published and described in
detail [7].

2.3. Test methods and the convolutional neural network

The convolutional neural network (CNN) based algorithm has been
previously described, developed and internally validated [3]. The net-
work was trained with Keras with a Tensorflow (Google, Mountain
View, CA) backend. No additional training or optimization was per-
formed on this sample. The sole input for the model was a 12‑lead
ECG (10 s duration sampled at 500 Hz) divided into two second seg-
ments with an overlap of one second. The network included six
single‑lead convolutional layers followed by a nonlinear “Relu” activa-
tion function, a batch normalization layer and a maximum pooling
layer. Thesewere then fused in another convolutional layer with simul-
taneous access to all leads. This data was the input for a fully connected
network with two hidden layers with dropout layers to reduce
overfitting and an output layer that was activated using the “Softmax”
function. The outputs of the softmax layer were compared with the bi-
nary LVSD label (LVEF ≤ 35% or LVEF > 35%). With the Adam optimizer,
the layerswere trained to classify each ECG into one of these two groups
[8]. The output for the network is a continuous value between 0 and 1
representing the probability of LVSD.

For the external validation study, the ECGs (10 s duration at variable
sample rates) were fed into the pre-existing network utilizing the same
probability threshold for a positive screen (0.256) as determined by the
original interval validation study. Using the cut-off value, all tests either
had a positive or negative screen. None of the tests were considered
indeterminate.

2.4. Analysis

For the primary objective of evaluating the AI-ECG performance, a
comprehensive panel of diagnostic performance metrics were summa-
rized. In particular, the accuracy, sensitivity, specificity, negative predic-
tive value (NPV), positive predictive value (PPV), and area under the
receiver operating curve (AUC) of the validation studywere determined
using the originalmodel output cut-off of greater than or equal to 0.256,
indicating that the input ECGhad at least a 25.6% probability of LVSD [3].
95% confidence intervals were used to summarize sample variability in
the estimates. Alternative study-specific cut-offs were explored based
on clinical relevance. We examined the optimal threshold defined as
the threshold that maximized the sum of sensitivity and specificity
(i.e., Youden's index) along with thresholds that would provide 70%,
80% and 90% sensitivity. Given there was no external sample to validate
these thresholds on, 1000 bootstrap replicateswere generated using the
R package cutpointR (version 1.0.0) in order to estimate the 95% boot-
strap confidence interval for the candidate threshold. Continuous data
are presented as mean±SD and median and interquartile range (IQR)
if highly skewed. Statistical analysis was performed using R (version
3.4.2).

3. Results

3.1. Study population

Of the 4647 subjects in the Know Your Heart Study, 4277 (91.4%)
subjects were included in the validation study, after exclusion of sub-
jects with ECGs shorter than 3 s and missing biplane LVEF. The deriva-
tion of the final study population is shown in the flow diagram as Fig. 1.

Of these subjects, 56% were female with a mean age of 54.1 ± 9.7.
When compared to the testing set in the original publication, the
subjects in this external validation study were younger with fewer



Fig. 1. Derivation of included study participants.
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co-morbidities as was anticipated as the former was a clinical popula-
tionwhile the latter is a random population sample of a general popula-
tion of two Russian cities. There was a significantly lower proportion of
subjects in the validation study with an existing self-reported diagnosis
of heart failure. The difference in mean LVEF was not clinically signifi-
cant. The data is summarized in Table 1 and the Supplemental Data.
Notably, only 26 subjects (0.6%) had LVSD in the present study, com-
pared to 7.8% with LVSD in the original study comprised of a clinical
population undergoing diagnostic investigation.
3.2. Outcomes

3.2.1. Diagnostic performance in the Know Your Heart study
Of the 4277uniqueECGs processed into the CNNalgorithm, 118 sub-

jects were identified as having LVSD using the pre-existing probability
cut-off of 0.256 used in the previous studies. The AUC showed very
good discrimination (0.82, 95% CI: 0.75–0.90) Sensitivity, specificity,
and accuracy were 26.9% (95% CI: 11.6–47.8%), 97.4% (95% CI:
96.9–97.8%),and97.0%(95%CI,96.4–97.5%),respectively.Usingtheorig-
inal cut-off, the PPV of a positive screenwas 5.9%, whereas the NPVwas
99.5%. The receiver operating characteristic curve is shown in Fig. 2a.

We further evaluated the test performance using different cut-off
values of LVSD probability. Tomaximize the sumof sensitivity and spec-
ificity, a cut-off value of 0.0163 (95%CI: 0.013–0.040) was identified
from the data. With this cut-off, 1543 (36%) of subjects screened posi-
tive, with a sensitivity, specificity, PPV, NPV and accuracy of 84.6%,
64.2%, 1.4%, 99.9%, and 64.3%, respectively. Cut-off values to explore sen-
sitivities of 70%, 80%, and 90%were also determined, and the test perfor-
mance parameters are shown in Table 2. Subgroup analyses for age
(greater than or less than the mean age of 55) and sex were also per-
formed and summarized in Fig. 2b.

Given the significantly lower prevalence of LVSD in the present
study, we modelled the PPVs and NPVs using the fixed sensitivity
(84.6%) and specificity (64.2%) from our maximized cut-off value of
0.0163 under different theoretical prevalence values of LVSD in the
Table 1
Patient self-reported demographic and comorbidity data.

Know Your Heart validation set (n=4277)

Mean Age, years (SD) 54.1 (9.7)
Female, n (%) 2403 (56)
Mean Ejection fraction (SD) 55.8 (6.1)
Heart failure, n (%) 569 (14)
Diabetes mellitus, n (%) 344 (8)
Hypertension, n (%) 2052 (48)
Myocardial infarction, n (%) 245 (6)
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population. As expected, the NPV and PPV increase with increasing dis-
ease prevalence. The results are shown in Table 3.

4. Discussion

We performed an external validation study of the AI-ECG algorithm
in a study of 4277 adult Russian subjects who were part of the cross-
sectional population-based Know Your Heart Study. We found that ap-
plying the algorithm to this study using the original model cut-off
yielded a very good discrimination (AUC of 0.82), high specificity and
accuracy, but low sensitivity, for detecting LVSD. When the probability
threshold of LVSD was lowered from 0.256 to the study-specific maxi-
mized threshold, the test performance characteristics were improved
for this study population. These findings suggest that the AI-ECG algo-
rithm has clinically robust performance in a clinically distinct popula-
tion sample, but that population-specific cut-offs may be necessary to
optimize test performance for populationswith different characteristics
including different underlying disease prevalence.

Whenwecomparethisexternalvalidationstudytothepreviousinter-
nalvalidationstudiesperformed,therearedifferences intheperformance
characteristics of the algorithm in the external study. Compared to both
the original validation study as well as the second prospective internal
validation study, application of the algorithmto thepresent external val-
idationstudyyieldsamodestly loweraccuracy, sensitivityandspecificity,
evenwhen evaluating themodel performance at the study-specific opti-
mal LVSD probability threshold of 0.0163 [3,4]. Likewise, we report
an AUC of 0.82with the external study, compared to 0.93 of the original
internal validation study and 0.92 of a second internal validation study,
whichwhile lower still representsagoodmeasureof separability. It is un-
clear whether themodest degradation in performance comparedwith
our initialpublicationsstemsfromtheECGsignalprocessingadjustments
required or from variations in the echocardiographic assessment of the
LVEF(thegoldstandard inthiscase).However, inoursensitivityanalyses,
actualandmodelledvariationofEFmeasurementmethodbyTTEandvar-
iations in ECG acquisition duration did not appear to significantly affect
testperformance. Furthermore,ourAI-ECGwasdevelopedusingsubjects
seen in a clinical setting, where subjects presumably have more co-
morbidities and previous events thatwarranted ECG and TTE. This con-
trastswith the present study population,which is population-based.

Weexploredstudy-specific cut-offs toevaluatedifferent clinical screen-
ing scenarios. To achieve high (90%) sensitivity, the cut-off was lowered,
resulting innearly half of the subjects screening positive,with lowPPVand
accuracy.While a screening test should ideally have high sensitivity, the
cost of screening in such amannermay be cost-prohibitive if nearly half of
patientswho screen positive require further expensive testingwith a yield
of justover1%.Therefore, aswithany test, it is important toevaluateclinical
goalsaswellaspragmaticcostconcerns.Whenweevaluatedaloweredsen-
sitivity by increasing the test cut-off, naturally, less patients screenpositive
and the PPV and accuracy improves, whilemaintaining a high NPV, given
the lowprevalence of LVSD. The test performance of the AI-ECG algorithm
may be further augmented by other historical, clinical, laboratory and
radiographical features thatmodulate pre-test probability [4].

Previous non-AImodels and scoring systems had been developed to
utilize ECGs to screen for LVSD, though none arewidely used in clinical
practice. One study in 10,782 patients found that certain ECG findings,
such as wide QRS, prolonged QT, delayed transition, LVH, AV block,
havebeenassociatedwithLVSD.SixkeyECGfindingswereusedtocreate
an unweighted score. A score of> 3 had a sensitivity of 0.443, specificity
of 0.947, PPV of 0.326, andNPV of 0.961, demonstrating high specificity
but low sensitivitywith a cohort LVSD prevalence of 12.4% [9]. Another
studyof14,507patientsat theMayoClinicshowedthatcertainECGchar-
acteristics including T-wave inversions, left bundle branch block, LVH,
evidence of myocardial infarction were significant predictors of LVSD.
When combined with other clinical variables such as cardiomegaly on
chestX-ray, basilar ralesonexamination and thirdheart sound, a logistic
regressionmodelwasdevelopedwitha sensitivityof0.68andspecificity



Fig. 2. Test performance of AI-ECG, overall and subgroups by age and sex. (A) ROC of AI-ECG with test performance characteristics using an LVSD probability cut-off of 0.256. (B) Test
performance in subgroups by age and sex using an LVSD probability cut-off of 0.256.
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of 0.74 [10]. Overall,while direct comparisons between the various non-
AImodelsarenotpossible, theAI-ECGalgorithmappears tobemoresen-
sitivewith robust test performance.
Table 2
Test performance of AI-ECG using different LVSD probability cut-off values.

LVSD probability cut-off value Positive tests Sensitivity

0.256 118 (3%) 26.9%
0.0163 1543 (36%) 84.6%
0.0127 1866 (44%) 92.3%
0.0180 1413 (33%) 80.8%
0.0239 1131 (26%) 73.1%

Abbreviations: PPV, positive predictive value; NPV, negative predictive value.
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Furthermore, the algorithm performance remains with a high AUC,
and the sensitivity and specificity are comparable to routine testing
used currently in cardiovascular medicine (stress echocardiography,
Specificity PPV NPV Accuracy

97.4% 5.9% 99.5% 97.0%
64.2% 1.4% 99.9% 64.3%
56.7% 1.3% 99.9% 56.9%
67.3% 1.5% 99.8% 67.3%
73.8% 1.7% 99.8% 73.8%



Table 3
Impact of disease prevalence on positive predictive value (PPV), negative predictive value
(NPV) and accuracy using the maximized LVSD probability cut-off of 0.0163.

Disease prevalence PPV NPV Accuracy

0.6% 1.4% 99.9% 64.3%
2% 4.6% 99.5% 64.6%
4% 9.0% 99.0% 65.0%
6% 13.1% 98.5% 65.4%
8% 17.0% 98.0% 65.8%
10% 20.8% 97.4% 66.2%
20% 37.1% 94.3% 68.3%

Abbreviations: PPV, positive predictive value; NPV, negative predictive value.
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nuclear perfusion imaging) [11]. There is a paucity of data in regards to
asymptomatic LVSD, and no guidelines currently recommend routine
screening given lower-yield and high-cost of imaging. Yet, there is
growing evidence that screening higher-risk groups (i.e. higher pre-
test probability), such as older subjects with hypertension, diabetes,
greater body mass index, etc. may have clinical utility, given the mor-
bidity andmortality of incident congestive heart failure [12]. The ability
to screen for asymptomatic LVSD using a simple and inexpensive mo-
dality, such as an ECG, can lead to early detection and treatment with
medications and ultimately prevent the progression to clinical heart
failure.

Certainly, the potential use of artificial intelligence to assist clinicians
in daily practice and to advance the science of medicine is promising.
But as with any algorithm to be clinically useful and scientifically
sound, vigorous testing and validation must be performed in diverse
clinical settings and populations – even beyond this external validation
study. We have also shown that different populations may require dif-
ferent thresholds, and implementation may require initial calibration
from population-based validation studies. In populations with known
low prevalence of LVSD, the probability cut-off may need to be lowered
in order to improve the sensitivity (i.e. decrease false negatives) of the
AI-ECG as a potential screening tool, though at the expense of increasing
false positives. Alternatively, such algorithmsmay need to be separately
trained on data in different populations in order to maximize test per-
formance. From a public health perspective, further investigation can
be performed to evaluate the potential cost-effectiveness and impact
on cardiovascular outcomes of a screening approach using this algo-
rithm, especially in conjunction with other clinical and laboratory fac-
tors to improve predictive ability.

There are several important issues to be considered in interpreting
the findings from this study. First, despite the acquisition of ECG data
fromhardwarewithfiltering characteristics different than thehardware
used to develop the algorithm, we show for the first time the ability to
adjust and adapt the acquisitionmodalities to obtain clinically useful in-
formation. Given the broad array of potential sources of ECG data, input
agility will be important for global utility to enable this massively scal-
able means of screening for an important disease. Indeed, we have pre-
viously shown the ability to use a smartphone-recorded ECG to
determine blood potassium levels and have also demonstrated the abil-
ity to assess EF from a single lead, potentially making this tool available
from a watch or phone [13]. Second, the incidence of heart failure is in-
creasing throughout theworld, and there remains a significant disparity
in healthcare resources between countries [14]. Due to the fact that they
are inexpensive to deploy andmassively scalable, digital screening from
12 lead ECGs or ultimately smartphone-based ECGs may democratize
access to care, and may provide critical tools to rural, resource-
constrained environments to save lives.

4.1. Limitations

There were limitations in this study. Firstly, it should be noted that
there were very few subjects in this external validation study with
5

LVSD compared to the original study (0.6% versus 7.8%). Thismay partly
reflect differences in the burden of different types of cardiovascular dis-
ease in the two populations. However, the most important explanation
for this difference in prevalence is the fact that the population onwhich
the algorithmwas developed was a clinically, symptomatic population,
while the validation study was based on a general population sample
selected at random regardless of symptoms or health status. This may
have impacted the overall predictive ability of the algorithm. In particu-
lar, as others have suggested, the sensitivity of a diagnostic test may be
reduced in a low disease prevalence population because the cases may
be less severe than in a population with high prevalence [15,16]. This
would certainly be the case in our situation where we are effectively
comparing a symptomatic clinical populationwith a general population
sample.

Secondly, as the only input into the algorithm is the ECG data, differ-
ences in ECG quality may impact the quality of the predictions made by
the algorithm. Lastly, theremay be significant technical variations in the
echocardiography between the studies. From initial analysis of themea-
surement of LVEF in the present study, we noted poor correlation and
significant variability between two methods used to calculate LVEF. As
we are using TTE as the gold standard in determining a positive or neg-
ative screen, the quality and reliability of the TTE is also of significant
importance. It is possible that there may have been misclassification of
subjects regarding actual LVSD status. To mitigate this, we included
only patients with LVEF determined by the biplane method.

Clinical perspectives

We performed an external validation study of an AI-ECG algorithm
to detect LVSD in a clinically distinct population. While the test perfor-
mance was modestly weaker between these different populations, the
algorithm remains robust to detect LVSD and has comparable sensitiv-
ity, specificity and AUC to many commonly used cardiovascular medi-
cine testing.

Translational outlook

AI-ECG represents a readily scalable method of screening for LVSD,
which can have immense impact in global health and public health,
but rigorous calibration of the AI ECG to the population of interest and
control of ECG and echocardiographic data quality is necessary. Further-
more, validationwith other populations and clinical scenarios aswell as
investigations into cost-effectiveness and impact on clinical outcomes
should be performed.
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