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Abstract

Estimation of the effective reproductive number Rt is important for detecting changes in dis-

ease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic,

policy makers and public health officials are using Rt to assess the effectiveness of interven-

tions and to inform policy. However, estimation of Rt from available data presents several

challenges, with critical implications for the interpretation of the course of the pandemic. The

purpose of this document is to summarize these challenges, illustrate them with examples

from synthetic data, and, where possible, make recommendations. For near real-time esti-

mation of Rt, we recommend the approach of Cori and colleagues, which uses data from

before time t and empirical estimates of the distribution of time between infections. Methods

that require data from after time t, such as Wallinga and Teunis, are conceptually and

methodologically less suited for near real-time estimation, but may be appropriate for retro-

spective analyses of how individuals infected at different time points contributed to the

spread. We advise caution when using methods derived from the approach of Bettencourt

and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assump-

tions are not met. Two key challenges common to all approaches are accurate specification

of the generation interval and reconstruction of the time series of new infections from obser-

vations occurring long after the moment of transmission. Naive approaches for dealing with

observation delays, such as subtracting delays sampled from a distribution, can introduce

bias. We provide suggestions for how to mitigate this and other technical challenges and

highlight open problems in Rt estimation.
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Author summary

The effective reproductive number Rt is a key epidemic parameter used to assess whether

an epidemic is growing, shrinking, or holding steady. Rt estimates can be used as a near

real-time indicator of epidemic growth or to assess the effectiveness of interventions. But

due to delays between infection and case observation, estimating Rt in near real time, and

correctly inferring the timing of changes in Rt, is challenging. Here, we provide an over-

view of challenges and best practices for accurate and timely Rt estimation.

Introduction

The effective reproductive number, denoted as Re or Rt, is the expected number of new infec-

tions caused by an infectious individual in a population where some individuals may no longer

be susceptible. Estimates of Rt are used to assess how changes in policy, population immunity,

and other factors have affected transmission at specific points in time [1–5]. The effective

reproductive number can also be used to monitor near real-time changes in transmission [6–

11]. For both purposes, estimates need to be accurate and correctly represent uncertainty, and

for near real-time monitoring, they also need to be timely.

We consider 2 potential forms of bias in Rt estimates, systematic over- or underestimation

and temporal inaccuracy. Misspecification of the generation interval is a large potential source

of over- or underestimation, and we find that Rt estimates are most prone to this kind of bias

when the true value is substantially greater or less than 1. This situation might arise at the

beginning of the Coronavirus Disease 2019 (COVID-19) pandemic (when Rt is relatively high)

or after particularly effective interventions (when it might be low). Over- or underestimation

would have particularly strong practical consequences near the control threshold of Rt = 1, but

the biases we observe are smallest in absolute terms in this range.

Another challenge is that depending on the methods used, Rt estimates may be leading or

lagging indicators of the true value [4,12], even measuring transmission events that occurred

days or weeks ago if the data are not properly adjusted. Temporal inaccuracy in Rt estimation

is particularly concerning when trying to infer how changes in behavior have affected trans-

mission [1–5]. Temporal inaccuracy, for instance, in the estimation of the date on which Rt

falls below 1, is a focus of this Perspective. We find that it has several possible causes and can

be difficult to avoid.

This Perspective focuses on the 3 main empirical methods to estimate Rt [13–16]. As an alterna-

tive to the methods reviewed here, it is possible to infer changes in transmission using a dynamical

model (e.g., [3,17–19]). The accuracy and timeliness of Rt estimates obtained in this way should be

assessed on a case-by-case basis, giving sensitivity to model structure and data availability.

We use synthetic data to compare the accuracy of 3 common empirical methods with the

estimate Rt, first under ideal conditions, in the absence of parametric uncertainty, and with all

infections observed at the moment they occur. This idealized analysis is intended to illustrate

the inputs needed to estimate Rt accurately, to highlight the intrinsic differences between the

methods, and to examine specific causes of bias and temporal inaccuracy 1 by 1. However, we

emphasize that our idealized analyses overestimate the potential accuracy of Rt estimates

obtained from real-world data, even if best practices are followed. The results show that the

method of Cori and colleagues [15] is best for near real-time estimation of Rt. For retrospective

analysis, the methods of Cori and colleagues or of Wallinga and Teunis may be appropriate,

depending on the aims.
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Later, we add realism and address practical considerations for working with imperfect data.

These analyses emphasize potential errors introduced by uncertainty in the intrinsic genera-

tion interval and imperfect case observation, the need to adjust for delays in case observation

and right truncation, and the need to choose an appropriate smoothing window given the

sample size. Finally, we emphasize that most off-the-shelf tools leave it up to the user to

account for these 5 sources of uncertainty when calculating confidence intervals. Failure to

propagate uncertainty in Rt estimates can lead to overinterpretation of the results and could

falsely imply that confidence or credible intervals have crossed the critical threshold.

Synthetic data

We used synthetic data to compare 3 common Rt estimation methods. Synthetic data were

generated from a deterministic or stochastic SEIR model in which the transmission rate

changes abruptly. Results were similar whether data were generated using a deterministic or

stochastic model. For simplicity, we show deterministic outputs throughout the document,

except in the section on smoothing windows, where stochasticity is a conceptual focus.

In our model, all infections are locally transmitted, but all 3 of the methods we test can

incorporate cases arising from importations or zoonotic spillover [13,14,16]. Estimates of Rt

are likely to be inaccurate if a large proportion of cases involve transmission outside the popu-

lation. This situation could arise when transmission is low (e.g., at the beginning or end of an

epidemic) or when Rt is defined for a population that is connected to others via migration.

A synthetic time series of new infections (observed at the S!E transition) was input into

the Rt estimation methods of Wallinga and Teunis, Cori and colleagues, and Bettencourt and

Ribeiro [13–15]. Following the published methods, we also tested the Wallinga and Teunis

estimator using a synthetic time series of symptom onset events, extracted daily from the E!I
transition. In the synthetic data, the generation interval followed a gamma distribution with

shape 2 and rate of 1

4
, which is the sum of exponentially distributed residence times in compart-

ments E and I, each with a mean of 4 days [20]. The generation interval of COVID-19 can also

be approximated by a gamma distribution [22,23]. The methods of Cori and colleagues and of

Wallinga and Teunis can accommodate any positive, discrete generation interval distribution,

including the discretized gamma distribution used to generate the synthetic data [13,15,21].

However, the method of Bettencourt and Ribeiro implicitly assumes the generation interval

follows an exponential distribution, as in a susceptible-infectious-recovered (SIR) model,

which does not include a latent period [14,20]. Thus, the method could not match the assump-

tions of the synthetic data.

In the synthetic data, R0 was set to 2.0 initially, then to 0.8 and 1.15, to simulate the adoption

and later the partial lifting of public health interventions. To mimic estimation in real time, we

truncated the time series at t = 150, before the end of the epidemic. Estimates from the meth-

ods of Wallinga and Teunis and Cori and colleagues were obtained using the R package EpiEs-

tim [21]. Estimates based on the method of Bettencourt and Ribeiro were obtained by

translating code from references [6,24] into the Stan language [25]. We initially assumed all

infections were observed. Unless otherwise noted, the smoothing window was set to 1 day

(effectively, estimates were not smoothed). To mimic the timescale of observations, we used

daily time steps when generating synthetic data and performing analyses.

Comparison of common methods

The effective reproductive number at time t can be defined in 2 ways: as the instantaneous

reproductive number or as the case reproductive number [15,26]. The instantaneous repro-

ductive number measures transmission at a specific point in time, whereas the case
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reproductive number measures transmission by a specific cohort of individuals (Fig 1). (A

cohort is a group of individuals with the same date of infection or the same date of symptom

onset.) The case reproductive number is useful for retrospective analyses of how individuals

infected at different time points contributed to the spread. It is a more natural choice for analy-

ses that consider heterogeneity among individuals. For example, the case reproductive number

of Wallinga and Teunis can be adapted to incorporate data on observed transmission chains

[13,22,27] or to produce age-structured Rt estimates, given an age-structured contact matrix

[28]. The instantaneous reproductive number is more appropriate for analyses estimating the

reproductive number of the infected population on specific dates, especially when aiming to

Fig 1. Instantaneous reproductive number as estimated by the method of Cori et al. vs. cohort reproductive

number estimated by Wallinga and Teunis. For each definition of Rt, arrows show the times at which infectors

(upwards) and their infectees (downwards) appear in the data. Curves show the generation interval distribution (A, B),

or serial interval distribution (C). (A) The instantaneous reproductive number quantifies the number of new infections

incident at a single point in time (ti, blue arrow), relative to the number of infections in the previous generation (green

arrows) and their current infectiousness (green curve). The methods of Cori et al. and of Bettencourt and Ribeiro

estimate the case reproductive number. This figure illustrates the Cori method. (B-C) The case reproductive number is

defined as the average number of new infections that an individual who becomes infected on day ti (green arrows in B)

or symptomatic on day ts (yellow arrows in C) will eventually go on to cause (blue downward arrows in B and C). The

first definition applies when estimating the case reproductive number using inferred times of infection, and the second

applies when using data on times of symptom onset. The method of Wallinga and Teunis estimates the case

reproductive number.

https://doi.org/10.1371/journal.pcbi.1008409.g001
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study how interventions or other extrinsic factors have affected transmission at a given point

in time.

More formally, the instantaneous reproductive number is defined as the expected number

of secondary infections occurring at time t, divided by the number of infected individuals,

each scaled by their relative infectiousness at time t (an individual’s relative infectiousness is

based on the generation interval and time since infection) [15,26]. The instantaneous repro-

ductive number can be calculated exactly for a compartment model (SIR or SEIR) as follows,

where β(t) is the time-varying transmission rate, S(t) the fraction of the population that is sus-

ceptible, and D the mean duration of infectiousness:

Rinst
t ¼ bðtÞSðtÞD ð1Þ

The methods of Cori and colleagues [15,16] and methods adapted from Bettencourt and

Ribeiro [6,14,24] estimate the instantaneous reproductive number from observations. We

tested their accuracy under idealized conditions, assuming perfect knowledge of the genera-

tion interval and delay distributions used to generate the synthetic data (Fig 2 and S1 Fig).

The method of Cori and colleagues estimates Rt as

Rt ¼
ItPt

s¼1
It� sws

; ð2Þ

where It is the number of infection incidents on day t, and ws is the generation interval, or the

probability that s days separate the moment of infection in an index case and a daughter case

[15]. Conceptually, this estimator describes the number of new infections incident on day t rel-

ative to the number (It−s) and current infectiousness (ws) of individuals who became infected s
days in the past and who many now be shedding virus.

Fig 2. Accuracy of Rt estimation methods given ideal, synthetic data. Solid and dashed black lines show the instantaneous and case

reproductive numbers, respectively, calculated from synthetic data. Colored lines show estimates and confidence or credible intervals.

To mimic an epidemic progressing in real time, the time series of infections or symptom onset events up to t = 150 was input into

each estimation method (inset). Terminating the time series while Rt is falling or rising produces similar results as in S1 Fig. (A) By

assuming an SIR model (rather than SEIR, the source of the synthetic data), the method of Bettencourt and Ribeiro systematically

underestimates Rt when the true value is substantially higher than 1. The method is also biased as transmission shifts. (B) The Cori

method accurately measures the instantaneous reproductive number. (C) The Wallinga and Teunis method estimates the cohort

reproductive number, which incorporates future changes in transmission. Thus, the method produces Rt estimates that lead the

instantaneous effective reproductive number and becomes unreliable for real-time estimation at the end of the observed time series

without adjustment for right truncation [4,29]. In panels A and B, the colored lines show the posterior mean and the shaded region

the 95% credible interval. In panel C, the colored line shows the maximum likelihood estimate and the shaded region the 95%

confidence interval.

https://doi.org/10.1371/journal.pcbi.1008409.g002
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The only parametric assumption required by this method is the form of the generation

interval. The standard assumption is that ws follows a discretized gamma distribution [15,21],

but the estimator accepts any parametric or empirical discrete distribution with support on

positive values (the same is true of the Wallinga and Teunis method [13]). Thus, when testing

the method on COVID-19-like epidemic processes, we could specify the gamma-distributed

generation interval of the synthetic data perfectly. When tested under idealized conditions, we

found that the method of Cori and colleagues accurately estimated Rt, even tracking abrupt

changes (Fig 2). This is the method we recommend for estimation of the instantaneous repro-

ductive number.

Bettencourt and Ribeiro [14] derive an approximate relationship between the Rt and the

exponential growth rate of the epidemic, where g is the mean generation time:

Itþ1 ¼ Ite
Rt � 1
g ð3Þ

Under the assumption that Rt evolves through time as a Gaussian process, Eq 3 facilitates

efficient Bayesian Rt estimation [24]. The key disadvantage of this method is that Eq 3 is

derived from an SIR model and therefore implicitly assumes that the generation interval fol-

lows an exponential distribution [20], whereas empirically, generation intervals can be heavy

or light tailed, including those for COVID-19 [22,23,30]. Because Eq 3 misestimates variability

in the gamma-distributed generation interval of our SEIR-type synthetic data, we find that this

method produces biased Rt estimates, especially when Rt is substantially higher than 1 (Fig

2A). These biases are consistent with established theory, in which the coefficient of variation of

the generation interval modulates the relationship between exponential growth rate and the

reproductive number of an epidemic [20].

In its current form, we do not recommend using the method of Bettencourt and Ribeiro,

given that unrealistic structural assumptions lead to bias. However, a generalized version capa-

ble of accommodating more realistic generation intervals, which implicitly involves different

assumptions about the underlying epidemic process [20,31], could provide several advantages.

When implemented as a Gaussian process [24], we found that the Bettencourt and Ribeiro

method was computationally efficient. Also, because it penalizes large jumps in Rt across con-

secutive time steps, it returns smoother estimates than the method of Cori and colleagues,

which is advantageous if unmodeled reporting effects, rather than bursts in transmission, are

the dominant cause of variability in daily observations.

Finally, the case or cohort reproductive number is the expected number of secondary infec-

tions that an individual who becomes infected at time t will eventually cause as they progress

through their infection [15,20,26] (Fig 1B and 1C). The case reproductive number Rcase
t can be

calculated exactly at time t within the synthetic data as the convolution of the generation inter-

val distribution w(�) and the instantaneous reproductive number Rinst
t described in Eq 1 [20],

Rcase
t ¼

R1
u¼t R

inst
u wðu � tÞdu ð4Þ

The method of Wallinga and Teunis [13] estimates the case reproductive number from

observations. The first step is to estimate the likelihood that case j (infected at time tj) infected

case i, relative to the likelihood that any other case in the data infected case i:

pij ¼
wðti � tjÞ

P
i6¼kwðti � tkÞ

ð5Þ

Then, the individual reproductive number of case j is defined as

Rj ¼
P

ipij ð6Þ
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The case reproductive number at time t is defined as the expected value of Rj for all individuals

infected at time t. An assumption common to the 3 tested methods is that all infections are

observed. Below we discuss the consequences of partial observation, including that confidence

or credible intervals around Rt estimates do not account for uncertainty from partial

observation.

Practically speaking, there are several important differences between the case reproductive

number (estimated by Wallinga and Teunis) and the instantaneous reproductive number (esti-

mated by Cori and colleagues or Bettencourt and Ribeiro). First, the case reproductive number

is shifted forward in time relative to the instantaneous reproductive number. It produces lead-

ing estimates of changes in the instantaneous reproductive number (Fig 2 and S2 Fig) because

it uses data from time points after t, whereas the instantaneous reproductive number uses data

from time points before t (Fig 1). Because the case reproductive number is essentially a convo-

lution of the instantaneous reproductive number and the generation interval (Eq 4) [20], shift-

ing the case reproductive number back in time by the mean generation interval usually

provides a good approximation of the instantaneous reproductive number [2]. The case repro-

ductive number generally changes more smoothly than the instantaneous reproductive num-

ber [26] (Fig 2B and 2C), but if a smoothing window is used, the estimates become more

similar in shape and smoothness.

Next is the issue of real-time observation. Estimators of the instantaneous reproductive

number were partly developed for near real-time estimation and only use data from before

time t (Fig 1A). Under ideal conditions without observation delays and a window size of 1 day,

neither method is affected by the termination of the synthetic time series at t = 150 (Fig 2A

and 2B). These methods are similarly robust if the time series ends while Rt is rapidly falling

(S1A Fig) or rising (S1B Fig). (Below we discuss more realistic conditions, e.g., in which data

at the end of a right-truncated time series are incomplete due to observation delays.) Unlike

the instantaneous reproductive number, the case reproductive number is inherently forward-

looking (Fig 1B and 1C); near the end of a right-truncated time series, it relies on data that

have not yet been observed. Extensions of the Wallinga and Teunis method can be used

to adjust for these missing data and to obtain accurate Rt estimates to the end of a truncated

time series [4,29]. But as shown in Fig 2C, without these adjustments, the method will always

underestimate Rt at the end of the time series, even in the absence of reporting delays. Mathe-

matically, this underestimation occurs because calculating the case reproductive number

involves a weighted sum across transmission events observed after time t. Time points not yet

observed become missing terms in the weighted sum. Similarly, any infections that occurred

before the first observed date are missing terms in the denominator of the Cori and colleagues

estimator, and so the method of Cori and colleagues often overestimates Rt early in the time

series.

Overall, for real-time analyses aiming to quantify the reproductive number at a particular

moment in time or to infer the impact of changes in policy, behavior, or other extrinsic factors

on transmission, the instantaneous reproductive number will provide more temporally accu-

rate estimates and is most appropriate. The case reproductive number of Wallinga and Teunis

considers the reproductive number of specific individuals and therefore is more appropriate

for analyses aiming to incorporate individual-level covariates such as age [28] or transmission

cluster membership [13] when estimating Rt.

Summary

• The Cori method most accurately estimates the instantaneous reproductive number in real

time. It uses only past data and minimal parametric assumptions.
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• The method of Wallinga and Teunis estimates a slightly different quantity, the case or cohort

reproductive number. The case reproductive number is conceptually less appropriate for

real-time estimation but may be useful in retrospective analyses, especially those involving

individual-level covariates.

• In its current form, the method of Bettencourt and Ribeiro [6,14] involves restrictive

assumptions that can bias Rt estimates, but generalized versions of the method could be

accurate and computationally efficient.

Generation interval misspecification

When estimating Rt from observed data, misspecification of the generation interval is a large

potential source of bias. Regardless of the method used, Rt estimates are sensitive not only to

the mean generation time but also to the variance and form of the generation interval distribu-

tion [20].

The renewal equation is a cornerstone of demographic theory and forms the mathematical

backbone of the Rt estimators described above [20]. Within the renewal equation, the genera-

tion interval mechanistically links the reproductive number R to observables such as the epi-

demic growth rate r or the number of new infections per day [20]. Wallinga and Lipsitch [20]

describe how the exponential growth rate of the Bettencourt and Ribeiro estimator (their Eq

3.1) and continuous-time equivalents of the Cori and Wallinga and Teunis estimators (their

Eqs 4.1 and 4.2) can be derived from the renewal equation model.

Originally developed in the context of population biology, the renewal equation is usually

expressed as bðtÞ ¼
R1
a¼0

bðt � aÞnðaÞda, where b(t) is the number of births at time t and n(a)

is fecundity at age a, scaled by the probability of surviving to age a. When used to describe epi-

demic dynamics, the renewal equation model is expressed in terms of I(t), the number of infec-

tions incident at time t; S(t), the susceptible fraction; and w(�), the generation interval

distribution [31–33]. Note that R0S(t) = Rt.

IðtÞ ¼ R0SðtÞ
R1

0
Iðt � sÞwðsÞds ð7Þ

The difficulty is that the “intrinsic” generation interval of the renewal equation, which is the

interval needed for accurate Rt estimation, is conceptually and quantitatively different from

the generation intervals observed in practice [32–34]. In the renewal equation, the generation

interval describes the time distribution of all infectious contact events, whether or not the con-

tacted individual is susceptible. (Note that a different factor in the equation, S(t), scales the

probability of contacting a susceptible individual and causing a new infection.) The demo-

graphic analogy is that w(�) describes changes over time in the fecundity (infectiousness) of an

index case, while S(t) determines whether the offspring of that index case are viable. In prac-

tice, we only observe generation intervals between viable pairs. Thus, unlike the intrinsic gen-

eration interval, observed intervals are sensitive to changes in the rate of susceptible depletion

and can be biased estimators of the intrinsic interval and of Rt [32–34]. A related challenge is

that interventions such as contact tracing and self-isolation can limit transmission late in the

course of infectiousness, shortening observed generation, and serial intervals [33,35,36]. Meth-

ods for accurate estimation of the generation interval from contact tracing data involve adjust-

ing for right truncation and accounting for population susceptibility at the times transmission

pairs are observed [33,34].

The serial interval, defined as the time between symptom onset in an infector–infectee pair,

is more easily observed than the generation interval and often used in its place. Although the

serial and generation intervals are often conflated, failure to understand the differences
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between these related quantities can bias Rt estimates [22,33]. The serial interval and the gener-

ation interval have the same mean, but usually have different variances [37,38], and the serial

interval can be negative (e.g., for COVID-19 [39–41]), whereas the generation interval cannot

[22,33]. The intrinsic generation interval can be estimated from contact tracing data (i.e., esti-

mates of the serial interval) [33,34].

Fig 3A illustrates the consequences of misspecifying the mean generation interval in the

method of Cori and colleagues. If the mean generation interval is set too high, Rt values will

typically be further from 1 than the true value—too high when Rt>1 and too low when Rt<1.

If the mean is set too low, Rt values will typically be closer to 1 than the true value. These biases

are relatively small when Rt is near the critical threshold of 1, but these increase as Rt takes sub-

stantially higher or lower values (Fig 3). Therefore, biases from misspecification of the genera-

tion interval may be greatest early in an epidemic, when the sensitivity of high Rt values to bias

may be compounded by limited data and highly uncertain generation interval estimates.

The consequences of misspecifying the form and variance of the generation interval distri-

bution are illustrated in Figs 2A and 3B. As explained above, biases in the Bettencourt and

Ribeiro estimator arise from misspecification of the form of the generation interval, even if the

mean is correctly specified. Similarly, the accuracy of the Cori and colleagues and Wallinga

and Teunis estimators in Fig 2B and 2C depends on accurate specification of the generation

interval; in practice, if the mean, variance, or form of a pathogen’s true generation interval is

uncertain, Rt estimates obtained using these methods can be biased.

EpiEstim [21] allows users to account for uncertainty in the mean and standard deviation

of the generation interval by resampling over a range of plausible values [15,21]. Similarly,

Bayesian methods such as EpiNow2 [42] and applications of the Bettencourt and Ribeiro

method [24] allow users to specify the prior variance of the mean and standard deviation.

Uncertainty around an incorrect value can widen the resulting 95% interval but will not shift

the assumed central value toward the truth and will not correct bias in the central Rt estimates.

Fig 3. Biases from misspecification of the generation interval mean (A) or variance (B). Demonstrated using the method of Cori et al. GI, generation

interval.

https://doi.org/10.1371/journal.pcbi.1008409.g003
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Joint estimation of both Rt and the serial interval is possible, depending on data quality and

magnitude of Rt [13,43,44], and the EpiEstim [16,21] package provides an off-the-shelf option

for joint estimation. However, these off-the-shelf methods should be used with caution, as they

estimate the observed serial interval, not the intrinsic generation interval, and do not account

for changes over time in behavior or susceptibility.

Summary

• The intrinsic generation interval is required to correctly define the relationship between Rt

and incident infections.

• The intrinsic generation interval is rarely observable, and care must be taken to estimate it

from proxies such as the serial interval.

Adjusting for delays

Estimating Rt requires data on the daily number of new infections (i.e., transmission events).

Due to lags in the development of detectable viral loads, symptom onset, seeking care, and

reporting, these numbers are not readily available. All observations reflect transmission events

from some time in the past. In other words, if d is the delay from infection to observation, then

observations at time t inform Rt−d, not Rt (Fig 4). Obtaining temporally accurate Rt estimates

thus requires assumptions about lags from infection to observation. If the distribution of

delays can be estimated, then Rt can be estimated in 2 steps: first by inferring the incidence

time series from observations and then by inputting the inferred time series into an Rt estima-

tion method. Alternatively, the unobserved time series could be inferred simultaneously with

Rt or treated as a latent state. Such methods are now available in a development version of the

R package EpiNow2 [42, 45].

Simple but mathematically incorrect methods for the inference of unobserved times of

infection have been applied to COVID-19: convolution and temporal shifts. The errors intro-

duced by these methods may be tolerable if delays to observation are relatively short and not

highly variable and if Rt is not rapidly changing. But when dealing with longer or more variable

observation delays, or when aiming to infer the timing of changes in Rt accurately, these meth-

ods may not be sufficient.

Fig 4. Rt is a measure of transmission at time t. Observations after time t must be adjusted. ICU, intensive care unit.

https://doi.org/10.1371/journal.pcbi.1008409.g004
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One method infers each individual’s time of infection by subtracting a sample from the

delay distribution from each observation time. This is mathematically equivalent to convolving

the observation time series with the reversed (backward) delay distribution, but convolution

does not accurately infer the underlying time series of infections from observations [46–48].

The forward delay distribution has the effect of spreading out infections incident on a particu-

lar day across many days of observation. This blurring into the future is biologically realistic

and reflects individual variation in disease progression and care seeking. To recover the origi-

nal time series of infections from observations requires deblurring. Instead, as illustrated in S3

Fig, backward convolution unrealistically spreads them out further. An unintended conse-

quence of added blurring from backward convolution is that it can help smooth over weekend

effects and other observation noise. But a crucial pitfall is that this blurring also smooths over

true variation in Rt: peaks, valleys, and changes in slope of the latent time series of infection

events. Convolution and other approaches that blur or oversmooth can therefore prevent or

delay detection of changes in Rt and can impede accurate inference of the timing of these

changes (Fig 5C).

The second simple-but-incorrect method to adjust for lags is to shift either the raw inputs

(the observed time series) or outputs of Rt estimation on the time axis. Rt estimates obtained

by applying the methods of Cori and colleagues or Bettencourt and Ribeiro to unadjusted data

will lag the true instantaneous Rt by roughly the mean delay from infection to observation.

Unadjusted estimates from Wallinga and Teunis are less lagged, because the lead intrinsic to

this estimator, relative to the instantaneous reproductive number, partially offsets lags to

observation (Fig 2C). For example, the net lag of Wallinga and Teunis applied to unadjusted

times of symptom onset is roughly the incubation period (lag) minus the generation time

(amount by which case R leads instantaneous R). For pathogens with similar generation and

incubation intervals, the net lag would be small, providing a reasonable approximation to the

instantaneous Rt.

Unlike backward convolution, temporal shifting does not further blur the observed time

series. Thus, if the mean delay is known accurately, this method is preferable to subtracting

samples from the delay distribution (Fig 5A and 5B). However, shifting the input time series

does not undo the blurring effect of the original delay, which, like backward convolution, can

impede accurate inference of changes in Rt. Shifting inputs or Rt estimates by a fixed amount

also fails to account for realistic uncertainty in the true mean delay, which will not be known

exactly and might change over time.

More reliable methods to reconstruct the incidence time series are now under development.

Given a known delay distribution, a potential solution is to infer the unlagged signal using

maximum likelihood deconvolution. This method was applied to AIDS cases, which feature

long delays from infection to observation [48], and in the reconstruction of incidence from

mortality times series for the 2009 H1N1 (swine flu) pandemic [46]. It is now being applied to

COVID-19 [8,49]. Fig 5 shows an example of deconvolution applied following the methods in

[46]. The method of [48] is implemented in the backprojNP function within the surveillance R

package [50,51]. In principle, deconvolution can more accurately estimate the latent time

series than temporal shifting or backward convolution, but the method is sensitive to misspeci-

fication of the mean, variance, or form of the delay distribution and the stringency of the stop-

ping condition of the deconvolution algorithm. It can also be difficult to quantify uncertainty

in the deconvolved time series [41] and to implement deconvolution while adjusting for right

truncation.

A potential alternative to deconvolution is Rt estimation models that include forward delays

to observation in the inference process or that treat the time series of infections as latent states.

Such methods are in development within the R package EpiNow2 [42]. An additional
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Fig 5. Pitfalls of simple methods to adjust for delays to observation when estimating Rt. Infections back calculated from (A) observed cases or (B)

observed deaths either by shifting the observed curve back in time by the mean observation delay (shift), by subtracting a random sample from the delay

distribution from each individual time of observation (convolve), or by deconvolution (deconvolve). Only the deconvolved time series is adjusted for right

truncation. Deconvolution most accurately recovers peaks or valleys in the true infection curve. Shifting is less accurate, and convolution is least accurate.

Errors from back-calculation increase with the variance of the delay distribution (B vs. A). (C) Posterior mean and credible interval of Rt estimates from the

Cori et al. method. Inaccuracies in the inferred incidence curves affect Rt estimates, especially when Rt is changing (here, Rt was estimated using shifted
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advantage of inferring the time series of infections jointly with Rt is the seamless integration of

various sources of uncertainty, e.g., in Rt and reporting. By comparison, the 2-step approach of

first transforming the observed time series and then calculating Rt requires users to propagate

uncertainty from the back-calculation step into the Rt estimation step. A final advantage of

models that include forward delays to observation is that they could facilitate inference from

multiple populations or data streams simultaneously [52,53,64]. For example, by assuming

that cases, hospitalizations, and deaths all arise from a common infection process, these meth-

ods might be able to infer the incident time series of infections more accurately and precisely,

potentially while also estimating delays and changes in ascertainment for specific data sources

(e.g., outpatient cases).

Deconvolution or Rt estimation methods that include a forward observation process are

particularly useful when delays to observation are relatively long and variable and in analyses

that require accurate inference of the timing and speed of changes in Rt. If delays to observa-

tion are relatively short, or if Rt is not substantially changing, then deconvolution may not be

necessary. For example, when working with synthetic case data in which the mean delays to

observation are short and known accurately, the underlying infection curve (Fig 5A) and

underlying Rt values (Fig 5C) can be recovered with reasonable accuracy simply by shifting the

observed time series. But longer and more variable delays to observation worsen inference of

the underlying incidence curve (Fig 5B). In turn, this makes it more difficult to infer the speed

and timing of abrupt changes in Rt and to relate those changes to policies, behaviors, or other

extrinsic epidemic drivers at specific points in time. For example, simply shifting a time series

of observed deaths by the mean delay does not accurately recover the underlying curves of

infections or Rt (Fig 5B and 5C).

Another advantage of working with observations nearer the time of infection, such as times

of symptom onset among newly symptomatic individuals, is that they provide more informa-

tion about recent transmission events and therefore allow Rt to be estimated in closer to real

time (Fig 5C) [47]. Of course, this advantage could be offset by sampling biases and reporting

delays. Users will need to balance data quality with the length of the observation delay when

selecting inputs.

Further investigation is needed to determine the best methods for inferring infections from

observations if the underlying delay distribution is uncertain. If the delay distribution is

severely misspecified, all 3 approaches (deconvolution, shifting by the mean delay, or convolu-

tion) will incorrectly infer the timing of changes in incidence. In this case, methods such as

deconvolution or shifting by the mean delay might more accurately estimate the magnitude of

changes in Rt but at the cost of spurious precision in the inferred timing of those changes. Ide-

ally, the delay distribution could be inferred jointly with the underlying times of infection or

estimated as the sum of the incubation period distribution and the distribution of delays from

symptom onset to observation (e.g., from line list data).

Summary

• Estimating the instantaneous reproductive number requires data on the number of new

infections (i.e., transmission events) over time. These inputs must be inferred from observa-

tions using assumptions about delays between infection and observation.

values from panels A and B). Finally, we note that shifting the observed curves back in time without adjustment for right truncation leads to a gap between

the last date in the inferred time series of infection and the last date in the observed data, as shown by the dashed lines and horizontal arrows in panels A–C.

https://doi.org/10.1371/journal.pcbi.1008409.g005
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• Inferring the unlagged time series of infections using deconvolution, or within an Rt estima-

tion model that includes forward delays, can improve accuracy.

• A less accurate but simpler approach is to shift the observed time series by the mean delay to

observation. If the delay to observation is not highly variable and if the mean delay is known

exactly, the error of this approach may be tolerable. A key disadvantage is that shifting by a

fixed amount of time does not account for uncertainty or individual variation in delay times.

• Sampling from the delay distribution to impute individual times of infection from times of

observation accounts for uncertainty but blurs peaks and valleys in the underlying incidence

curve, which, in turn, compromises the ability to rapidly detect changes in Rt.

Adjusting for right truncation

Near real-time estimation requires not only inferring times of infection from the observed

data but also adjusting for missing observations of recent infections. The absence of recent

infections is known as “right truncation.” Without adjustment for right truncation, the num-

ber of recent infections will appear artificially low because they have not yet been reported

[4,29, 54–58]. Thus, adjusting for right truncation is particularly important in analyses with

the goal of near real-time Rt estimation.

Fig 5 illustrates the consequences of failure to adjust for right truncation when inferring

times of infection from observations. Subtracting the mean observation delay m from times of

observation (“shift” method in Fig 5A and 5B) leaves a gap of m days between the last date in

the inferred infection time series and the last date in the observed data. This hampers recent Rt

estimation (Fig 5C). Inferring the underlying times of infection by subtracting samples from

the delay distribution (“convolve” method in Fig 5A and 5B) dramatically underestimates the

number of infections occurring in the last few days of the time series.

The simplest approach is to drop estimates on the last few dates or to flag them as unreliable

[8]. But many methods are available to adjust for right truncation, which can improve real-

time analysis [42,54,59]. Based on past reporting delays, these methods infer the total number

of infections, observed and not-yet-observed, at the end of the time series.

In short, accurate near real-time Rt estimation requires both inferring the infection time

series from recent observations and adjusting for right truncation. Errors in either step could

amplify errors in the other. Joint inference approaches for near real-time Rt estimation, which

simultaneously infer times of infection and adjust for right truncation, are now in develop-

ment [42].

Summary

• Due to reporting delays, infections at the end of a growing time series will be undercounted.

To avoid systematic unerestimation of Rt on the most recent dates, adjust for the right trun-

cation using 1 of many available methods or truncate the time series to the last date with

complete reporting.

Accounting for incomplete observation

The effect of incomplete case observation on Rt estimation depends on the observation pro-

cess. If the fraction of infections observed is constant over time, Rt point estimates will remain

accurate and unbiased despite incomplete observation [13,15,44,60,61]. Data obtained from

carefully designed surveillance programs might meet these criteria. But even in this best-case
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scenario, because the estimation methods reviewed here assume all infections are observed,

confidence or credible intervals obtained using these methods will not include uncertainty

from incomplete observation. Without these statistical adjustments, practitioners and policy

makers should beware false precision in reported Rt estimates.

Sampling biases will also bias Rt estimates [60]. COVID-19 test availability, testing criteria,

interest in testing, and even the fraction of deaths reported [62] have all changed over time. If

changes in ascertainment are well understood and measurable, they can be incorporated into

or used to adjust Rt estimates. For example, several Rt estimation dashboards currently adjust

for testing effort [6,8,11]. Observed hospitalizations and deaths may be less sensitive to changes

in test availability and testing effort, but may be more sensitive to other factors, such as hospital

bed availability. Hospitalizations and deaths will also vary in their representativeness of mean

transmission rates, depending on which age groups are being infected. No matter what data

are used, 1 potential solution is to flag Rt estimates as potentially biased in the few weeks fol-

lowing known changes in data collection or reporting. At a minimum, practitioners and policy

makers should understand how the data underlying Rt estimates were generated and whether

they were collected under a standardized testing protocol.

Summary

• Rt point estimates will remain accurate given the imperfect observation of cases if the frac-

tion of cases observed is time-independent and representative of a defined population. But

even in this best-case scenario, confidence or credible intervals will not accurately measure

uncertainty from imperfect observation.

• Changes over time in the type or fraction of infections observed can bias Rt estimates. Struc-

tured surveillance with fixed testing protocols can reduce or eliminate this problem.

Smoothing windows

Because Rt estimators incorrectly assume all infections are observed, day-of-week reporting

effects and stochasticity in the number of observations per day can cause spurious variability

in Rt estimates, especially if the number of observations per day is low [15]. The Cori method

incorporates a sliding window to smooth Rt estimates, but the size of the smoothing window

can affect both the temporal and quantitative accuracies of estimates. Larger windows effec-

tively increase the sample size by drawing information from multiple time points but blur

what may be biologically meaningful changes in Rt. Some smoothing approaches can also

cause Rt estimates to lead or lag the true value (Fig 6).

Lags can be particularly severe when using the conventions suggested by Cori and col-

leagues, in which Rt is reported on the last date in a given window, rather than on the middle

date. Although this convention returns Rt estimates to the last date in the time series, which is

convenient for real-time estimation, Rt estimates reported at the end of a window are based

entirely on data from the past and therefore lag the instantaneous Rt (Fig 6B). Instead, we rec-

ommend reporting Rt at the midpoint of the smoothing window (Fig 6A), which produces esti-

mates that are more accurately oriented in time. An apparent disadvantage is that a centered

window precludes Rt estimation on the last w/2 time units, where w is the width of the window.

However, we argue that temporal accuracy is preferable and that if daily counts are low, failure

to produce estimates on the last few days in the time series realistically acknowledges uncer-

tainty about recent trends. Thus, for Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) and other pathogens with short timescales of infection, near real-time Rt esti-

mation requires large enough daily counts to permit a small window (e.g., a few days).
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Although the sliding window increases statistical power to infer Rt, it does not by itself accu-

rately calculate confidence intervals. Thus, underfitting and overfitting are possible. The risk

of overfitting in the Cori method is determined by the length of the time window that is cho-

sen. In other words, there is a trade-off in the window length between picking up noise with

very short windows and over-smoothing with very long ones. To avoid this, one can choose

the window size based on short-term predictive accuracy, for example, using leave-future-out

validation to minimize the 1-step-ahead log score [63]. Proper scoring rules such as the ranked

probability score can be used in the same way, and a time-varying window size can be chosen

adaptively [42].

Summary

• If Rt appears to vary abruptly due to underreporting, a wide smoothing window can help

resolve Rt. However, wider windows can also lead to lagged or inaccurate Rt estimates.

• If a wide smoothing window is needed, report Rt for t corresponding to the middle of the

window.

• To avoid overfitting, choose a smoothing window based on short-term predictive accuracy

[63] or use an adaptive window [42].

Fig 6. Accuracy of Rt estimates given smoothing window width and location of t within the smoothing window. Estimates were obtained using synthetic data drawn

from the S!E transition of a stochastic SEIR model (inset) as an input to the method of Cori et al. Colored estimates show the posterior mean and 95% credible interval.

Black line shows the exact instantaneous Rt calculated from synthetic data.

https://doi.org/10.1371/journal.pcbi.1008409.g006
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Conclusions

We tested the accuracy of several methods for Rt estimation in near real time and recom-

mend the methods of Cori and colleagues [15], which are currently implemented in the R

package EpiEstim [21]. The Cori method estimates the instantaneous rather than the case

reproductive number and is conceptually appropriate for near real-time estimation. The

method uses minimal parametric assumptions about the underlying epidemic process and

can accurately estimate abrupt changes in the instantaneous reproductive number using

ideal, synthetic data.

Most epidemiological data are not ideal, and statistical adjustments are needed to obtain

accurate and timely Rt estimates. First, considerable preprocessing is needed to infer the

underlying time series of infections (i.e., transmission events) from delayed observations and

to adjust for right truncation. Best practices for this inference are still under investigation,

especially if the delay distribution is uncertain. The smoothing window must also be chosen

carefully, potentially adaptively, and daily counts must be sufficiently high for changes in Rt to

be resolved on short timescales. To avoid biases in Rt estimates, the generation interval distri-

bution must be estimated and specified accurately. Finally, to avoid false precision in Rt, uncer-

tainty arising from delays to observation, from adjustment for right truncation, and from

imperfect observation must be propagated. The functions provided in the EpiEstim package

quantify uncertainty arising from the Rt estimation model but currently not from uncertainty

arising from imperfect observation or delays.

Work is ongoing to determine how best to infer infections from observations and to

account for all relevant forms of uncertainty when estimating Rt. Some useful extensions of the

methods provided in EpiEstim have already been implemented in the R package EpiNow2

[42,45], and further updates to this package are planned as new best practices become

established.

But even the most powerful inferential methods, extant and proposed, will fail to estimate

Rt accurately if changes in sampling are not known and accounted for. If testing shifts from

more to less infected subpopulations or if test availability shifts over time, the resulting

changes in case numbers will be ascribed to changes in Rt. Thus, structured surveillance also

belongs at the foundation of accurate Rt estimation. This is an urgent problem for near real-

time estimation of Rt for COVID-19, as case counts in many regions derive from clinical test-

ing outside any formal surveillance program. Deaths, which are more reliably sampled, are

lagged by 2 to 3 weeks and still subject to biases in underreporting. The establishment of sen-

tinel populations (e.g., outpatient visits with recent symptom onset) for Rt estimation could

thus help rapidly identify the effectiveness of different interventions and recent trends in

transmission.

Code availability

All code for analysis and figure generation is available at https://github.com/cobeylab/Rt_

estimation.

Supporting information

S1 Fig. Real-time accuracy when Rt is rising or falling. (A–C) Alternate version of Fig 2 in

which the time series ends on the day Rt first hits its minimum value after falling abruptly

(time 67, yellow point) or 8 days after the changepoint (time 75). (D–F) The time series ends

on the day Rt stops rising (time 97, yellow point) or 8 days later (time 105). Estimates of the

instantaneous reproductive number (A, B, D, E) remain accurate to the end of the time series,

and estimates do not change as new observations become available in the 8 days following the
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changepoint. As in the main text, estimates of the unadjusted case reproductive number (C, F)

depend on data from not-yet-observed time points. These estimates become more accurate as

new observations are added to the end of the time series (orange vs. blue). Methods to infer

the number of not-yet-observed infections can help make estimates of the case reproductive

number more accurate in real time [4, 29]. All panels show fits to the time series of new infec-

tions and assume all infections are observed instantaneously. Solid black line shows the instan-

taneous reproductive number, and dashed black line shows the case reproductive number.

Colored lines and confidence region show posterior mean and 95% credible interval (A, B, D,

E) or maximum likelihood estimate and 95% confidence interval (C, F).

(TIF)

S2 Fig. Smoothed estimates of Cori et al. and Wallinga and Teunis. Both were estimated

using a 7-day smoothing window on a synthetic time series of new infections, observed with-

out delay. The estimates of Cori et al. and Wallinga and Teunis are similar in shape when

smoothed, but the estimate of Wallinga and Teunis (the case reproductive number) leads that

of Cori et al. (the instantaneous reproductive number) by roughly 8 days, or the mean genera-

tion interval. Solid colored lines and confidence regions show the posterior mean and 95%

credible interval (Cori et al.) or maximum likelihood estimate and 95% confidence interval

(Wallinga and Teunis). Dotted and dashed lines show the exact instantaneous reproductive

number and case reproductive number, respectively.

(TIF)

S3 Fig. Why is deconvolution needed to recover latent times of infection? (A) Consider

1,000 individuals all infected at time 100 (vertical line shows the mean). (B) Now consider the

times at which these individuals are observed. Logically, tobservation = tinfected+u, where u is a

random variable describing the delay between infection and observation. Mathematically, this

is a convolution of the infection time and the delay distribution. Because u has non-zero vari-

ance, observation times are not only shifted into the future but also blurred across many dates.

This blurring is biologically realistic; due to the variability in disease progression and care seek-

ing, individuals with the same date of infection will not necessarily be observed at the same

time. (C) Using the observations in panel B, we aim to recover the latent times of infection

shown in panel A. Doing so would require not only shifting into the past but also removing

the variance introduced by the observation process, which can be achieved by deconvolution.

Instead, as demonstrated here, a common strategy is to subtract u from the times of observa-

tion, effectively repeating the convolution shown in panel B, but this time moving backward in

time rather than forward. This is not the correct inverse operation. It fails to remove variance

introduced by the observation process (the forward convolution) and adds new biologically

unrealistic variance, further blurring the inferred times of infection. (D) Shifting the times of

observation by the mean delay E[u] is also incorrect, as it does not remove the variance from

the forward convolution in panel B. But if the mean delay time is known exactly, this approach

is preferable to panel C, as it avoids adding even more variance. Ultimately, deconvolution

methods would be needed to recover panel A from the observations in panel B while properly

accounting for uncertainty.

(TIF)
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