STUDY PROTOCOL

Mapping global research on climate and health using machine learning (a systematic evidence map) [version 1; peer review: awaiting peer review]

Lea Berrang-Ford1, Anne J. Sietsma1, Max Callaghan1,2, Ja C. Minx1,2, Pauline Scheelbeek3, Neal R. Haddaway2,4,5, Andy Haines3, Kristine Belesova3, Alan D. Dangour3

1Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK
2Mercator Research Institute on Global Commons and Climate Change, Torgauer Straße 12–15, EUREF Campus #19, Berlin, 10829, Germany
3Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
4Stockholm Environment Institute, Linnégatan 87D, Stockholm, Sweden
5Africa Centre for Evidence, University of Johannesburg, Johannesburg, South Africa

Abstract
Climate change is already affecting health in populations around the world, threatening to undermine the past 50 years of global gains in public health. Health is not only affected by climate change via many causal pathways, but also by the emissions that drive climate change and their co-pollutants. Yet there has been relatively limited synthesis of key insights and trends at a global scale across fragmented disciplines. Compounding this, an exponentially increasing literature means that conventional evidence synthesis methods are no longer sufficient or feasible. Here, we outline a protocol using machine learning approaches to systematically synthesize global evidence on the relationship between climate change, climate variability, and weather (CCVW) and human health. We will use supervised machine learning to screen over 300,000 scientific articles, combining terms related to CCVW and human health. Unsupervised machine learning using topic modeling will be used to identify and map key topics in the literature on climate and health.
health, with outputs including evidence heat maps, geographic maps, and narrative synthesis of trends in climate-health publishing. To our knowledge, this will represent the first comprehensive, semi-automated, systematic evidence synthesis of the scientific literature on climate and health.

Keywords
Climate, health, mitigation, adaptation, global, machine learning, topic modelling, systematic

Corresponding author: Lea Berrang-Ford (l.berrangford@leeds.ac.uk)

Author roles: **Berrang-Ford L:** Conceptualization, Funding Acquisition, Methodology, Project Administration, Supervision, Visualization, Writing – Original Draft Preparation; **Sietsma AJ:** Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Software, Visualization, Writing – Original Draft Preparation; **Callaghan M:** Data Curation, Formal Analysis, Methodology, Project Administration, Software, Visualization, Writing – Original Draft Preparation; **Minx JC:** Conceptualization, Funding Acquisition, Methodology, Project Administration, Software, Supervision, Writing – Review & Editing; **Scheelbeek P:** Conceptualization, Funding Acquisition, Methodology, Project Administration, Writing – Review & Editing; **Haddaway NR:** Funding Acquisition, Methodology, Writing – Review & Editing; **Haines A:** Funding Acquisition, Methodology, Writing – Review & Editing; **Belesova K:** Funding Acquisition, Methodology, Writing – Review & Editing; **Dangour AD:** Conceptualization, Funding Acquisition, Methodology, Project Administration, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This project is funded by the Foreign, Commonwealth and Development Office [Contract number: PO 40123400]. ADD, PS and AH work on the Sustainable and Healthy Food Systems (SHEFS) project funded by the Wellcome Trust [205200]. AH and KB work on the Complex Urban Systems for Sustainability and Health (CUSSH) consortium funded by the Wellcome Trust [209387] and the Pathfinder initiative on health in the zero-carbon economy funded by the Wellcome Trust [221284]. JCM acknowledges funding from the German Federal Ministry of Education and Research (grant references: 01LA1826A, 03SFK3J0).

Copyright: © 2021 Berrang-Ford L et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Berrang-Ford L, Sietsma AJ, Callaghan M et al. Mapping global research on climate and health using machine learning (a systematic evidence map) [version 1; peer review: awaiting peer review] Wellcome Open Research 2021, 6:7 https://doi.org/10.12688/wellcomeopenres.16415.1

First published: 20 Jan 2021, 6:7 https://doi.org/10.12688/wellcomeopenres.16415.1
Introduction

There are a range of causal pathways linking climate change to the environmental and social determinants of health. Climate change is already affecting local and regional weather patterns, with implications for the frequency and intensity of extreme events such as heatwaves, flooding, drought, and wildfires. Increased ambient temperatures, that have been observed in nearly all geographic regions, have a direct effect on public health. More complex pathways of impact include those mediated through ecosystems such as effects on nutritional health through food systems; changing temperature and rainfall already affect crop yields. Other effects on health are mediated through socioeconomic pathways including increasing poverty and migration. Overall, climate change is likely to disproportionately affect the poorest countries.

The scientific literature base on climate change and health relationships is large and fast-growing, making systematic assessment of the breadth of evidence difficult using conventional, largely manual methods. A search in Web of Science for documents with “climat*” and “health*” within title-abstract-keywords, for example, retrieves >35,000 documents published in the past five years alone. Expanding this search to include weather or extreme events (e.g. floods, heat waves, drought) and specific health outcomes (e.g. malaria, nutritional deficiencies, diarrhoeal illness) rapidly increases the number of retrieved documents to over 200,000. For example, Bouzid et al. reviewed systematic reviews on the effectiveness of public health interventions to reduce the health impact of climate change, synthesising literature up to 2010. Their review retrieved and screened 3,176 records, including 33 in the review. Replication of their search strategy now indicates that there have been >10,000 new scientific publications since 2010, and their publication notably excluded single studies, health-relevant interventions outside the health sector, and a range of terms relevant to health such as food security, mental health, and chronic disease.

This literature ‘explosion’ has meant that delivering transparent, systematic, and robust evidence synthesis is increasingly difficult, and evidence maps that use traditional approaches are increasingly relying on a smaller and smaller portion of the literature to inform policy and practice for climate adaptation and resilience. New ‘big data’ tools have recently become available that allow us to scale evidence synthesis to potentially vast literatures. Rather than increasingly restricting the scope of reviews, these tools herald a new era of large-scale computer-assisted evidence synthesis (e.g. 17,18,21,22). This protocol outlines the methods used to conduct a machine learning-assisted systematic evidence synthesis of the global literature on climate and health. We are guided by methods for systematic mapping, which are adapted here for the context of machine learning as applied to large-n literature.

Stakeholder engagement

The overarching research questions and broad scope of the work were outlined by the UK Foreign, Commonwealth and Development Office (FCDO). This protocol was developed and refined in partnership with FCDO and experts at the Priestly International Centre for Climate, University of Leeds, and the Centre on Climate Change and Planetary Health at LSHTM. In addition, an independent review panel, constituted to provide expert external oversight, contributed detailed advice and feedback on the draft protocol. The independent panel comprised:

- Professor Kristie Ebi, Centre for Health and the Global Environment, University of Washington, USA;
- Professor Howard Frumkin, School of Public Health, University of Washington, USA;
- Dr. Shuaib Lwasa, Global Centre on Adaptation, Netherlands (formerly Makerere University, Kampala, Uganda)
- Dr. Chandni Singh, School of Environment and Sustainability, Indian Institute for Human Settlements, Bangalore, India.

Objectives

Our primary objective is to systematically synthesize the global evidence on the relationship between climate change, climate variability, and weather (CCVW) and human health. We framed our review using standards for formulating research questions and searches in systematic reviews, using a PICoST approach: population/problem (P), interest (I), context (Co), and time and scope (T/S) (Table 1).

<table>
<thead>
<tr>
<th>Review objective(s)</th>
<th>To systematically synthesize the evidence on the relationship between climate change, climate variability, and weather (CCVW) and health globally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (P)</td>
<td>Global, human</td>
</tr>
<tr>
<td>Interest (I)</td>
<td>Empirical evidence on the relationship between climate change, climate variability, and weather (CCVW)</td>
</tr>
<tr>
<td>Context (Co)</td>
<td>Any component of the nexus between climate change, climate variability, and weather (CCVW) and human health, including impacts on health, and responses to reduce health impacts from climate change (e.g. adaptation, mitigation), without prejudice to any climate-health pathways</td>
</tr>
<tr>
<td>Time & Scope (T/S)</td>
<td>scientific articles and reviews published between 2013 and 2020</td>
</tr>
</tbody>
</table>
Scope and key concepts
This systematic evidence synthesis protocol uses a framework and definitions adapted from the Intergovernmental Panel on Climate Change (IPCC)’s (Figure 1) and we use the most recent IPCC definitions23, adapted to the context of health. We include key climate hazards, health impacts and risks, mediating pathways, and adaptation/mitigation options and responses (Figure 1).

Climate hazards are defined as changes to global climate and their impacts on meteorological variability and climate-related events. We collectively refer to climate change, climate variability, and weather (CCVW) to encompass trends in climate that can be attributed to climate change and weather-related impacts that change in frequency and/or intensity due to climate change. We also include natural regional climate phenomena, notably El Nino, that provide analogues of rapid climate change.

Health risks (potential for adverse health consequences) and impacts (consequences or outcomes of realised risks) include the wide-ranging health outcomes that are affected by climate change via diverse and often complex causal pathways. We include health outcomes as well as the proximal determinants of health outcomes, including air quality, vector habitat, food security, water, sanitation and hygiene, and health systems.

Options and responses include the range of human strategies and measures that can be deployed to minimize the negative health impacts of climate change. These can be in response to real, anticipated, or perceived climate risks and impacts, and may be reactive or proactive. Mitigation responds directly to climate drivers by aiming to reduce greenhouse gas emissions, and therefore focuses intervention on reducing the magnitude of climate hazards as well as capitalising on co-benefits of mitigation (e.g. from reduced air pollution). Adaptation aims to minimise the impact of climate hazards on humans and ecosystems of importance to humans by focusing intervention on the pathways that mediate climate impacts (i.e. by reducing vulnerability and exposure).

Mediating pathways determine the magnitude and nature of the effects of climate change on health, and reflect the ways in which climate hazards indirectly impact health via effects on the existing determinants of health. The IPCC refers to these as exposure and vulnerability23. We collectively define exposure and vulnerability as mediating pathways to align more closely with how these components are understood within a health context. We consider mediating pathways to comprise the role of non-climatic factors in mediating, effect modifying, and interacting with climate hazards to influence health risks and outcomes. Exposure reflects the ways in which humans are located and live in places and spaces that put them at greater risk of impact, such as the location and development of infrastructure or social and cultural assets in high-risk areas or settings. Vulnerability is defined by the IPCC as the propensity or predisposition to be adversely affected, and encompasses a range of factors affecting sensitivity or susceptibility to harm and lack of capacity to cope and adapt23. Vulnerability describes the social, cultural, economic, and demographic factors that mediate how hazards will manifest as impacts.

Methods
The methodology proposed in this protocol is guided by principles of systematic mapping24 and the protocol conforms to ROSES reporting standards25. Forms for ROSES systematic map protocols are included in Extended data (SM2)26.

Figure 1. Conceptual framework and key concepts.
Search strategy

Information sources: The search will be carried out on three different databases: Web of Science Core Collection, Scopus, and Medline (Table 2). The former two are general scientific databases whereas the latter is aimed primarily at biomedical and life sciences, including public health. For all databases except Web of Science Core Collections, the search will be carried out on title, abstract and keywords. Searches using keywords in Web of Science automatically generate additional default searches (referred to as “keywords plus”), which act to introduce a huge volume of irrelevant literature and expand the specificity -- and reduce the transparency -- of our search string. We will thus limit searches in Web of Science to title and abstract only. Results will be de-duplicated using trigram similarity on titles, combined with having a publication year within one year of each other or matching at least one author surname.

Many relevant search terms result in a high rate of irrelevant documents. To increase relevance of our search without removing relevant terms that could not be reasonably specified further, we will exclude search results from journals with a high rate of retrieval of irrelevant publications. This journal exclusion list is restricted to highly-focused titles in material sciences, physics, and chemistry (Table 3).

Search string

Our search string combines two key concepts: climate change and health. We first developed a set of initial search terms from the Web of Science Core Collection here includes: Science Citation Index Expanded (SCI-EXPANDED) --1900-present; Social Sciences Citation Index (SSCI) --1900-present; Arts & Humanities Citation Index (A&HCI) --1975-present; Conference Proceedings Citation Index- Science (CPCI-S) --1990-present; Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH) --1990-present; Emerging Sources Citation Index (ESCI) --2015-present.

1 Taking the 50 most recent articles as a heuristic for the journal relevance: if none of these articles was relevant and the remit of the journal did not explicitly refer to either climate or human health, the journal was excluded.

Table 2. Overview of database search parameters and number of documents retrieved per database.

<table>
<thead>
<tr>
<th>Database</th>
<th>Search on</th>
<th>Estimated N. of documents*</th>
<th>Limiting parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web of Science Core Collection</td>
<td>Title or abstract</td>
<td>Approx. 175,000</td>
<td>Document type (article or review only -- excluding book chapters, proceedings, comments, and editorials), publishing year, some excluded journals.</td>
</tr>
<tr>
<td>Scopus</td>
<td>Title, abstract or keywords</td>
<td>Approx. 300,000</td>
<td></td>
</tr>
<tr>
<td>Medline</td>
<td></td>
<td>Approx. 50,000</td>
<td></td>
</tr>
<tr>
<td>Total (after duplicate removal)</td>
<td></td>
<td>Approx. 350,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Journals excluded from searches.

<table>
<thead>
<tr>
<th>ACS Applied Materials And Interfaces</th>
<th>Journal Of Hazardous Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS Nano Analytical Chemistry</td>
<td>Journal Of Materials Chemistry B</td>
</tr>
<tr>
<td>Biomacromolecules</td>
<td>Journal Of Molecular Liquids</td>
</tr>
<tr>
<td>Bioresource Technology</td>
<td>Journal Of Nanoscience And Nanotechnology</td>
</tr>
<tr>
<td>BMC Genomics</td>
<td>Journal Of Pharmaceutical And Biomedical Analysis</td>
</tr>
<tr>
<td>Carbohydrate Polymers</td>
<td>Journal Of Physical Chemistry B</td>
</tr>
<tr>
<td>Ceramics International</td>
<td>Journal Of Physical Chemistry C</td>
</tr>
<tr>
<td>Colloids And Surfaces B</td>
<td>Journal Of Thermal Analysis And Calorimetry's source details</td>
</tr>
<tr>
<td>Biointerfaces</td>
<td>Journal Of Thermal Biology</td>
</tr>
<tr>
<td>Extremophiles</td>
<td>Langmuir</td>
</tr>
<tr>
<td>Industrial Engineering Chemistry Research</td>
<td>Materials Science And Engineering C</td>
</tr>
<tr>
<td>International Journal Of Biological Macromolecules</td>
<td>Methods In Molecular Biology</td>
</tr>
<tr>
<td>International Journal Of Heat and Mass Transfer</td>
<td>Nanoscale</td>
</tr>
<tr>
<td>International Journal Of Molecular Sciences</td>
<td>Palaeogeography Palaeoclimatology Palaeoecology</td>
</tr>
<tr>
<td>International Journal Of Systematic And Evolutionary Microbiology</td>
<td>Physical Review B</td>
</tr>
<tr>
<td>Journal Of Alloys And Compounds</td>
<td>Resuscitation</td>
</tr>
<tr>
<td>Journal Of Applied Polymer Science</td>
<td>RSC advances</td>
</tr>
<tr>
<td>Journal Of Chromatography B</td>
<td>Sensors And Actuators B Chemical</td>
</tr>
<tr>
<td>Journal Of Controlled Release</td>
<td></td>
</tr>
</tbody>
</table>
existing keystone articles and reviews, assessment of IPCC reports, and internal team expertise. This step ensured that our search strings did not exclude common terms used in the literature. We subsequently tested alternate combinations of search terms iteratively to compare results from different databases and identify further missing areas, as well as terms that reduced precision (e.g. high rate of irrelevant hits). Strings were designed to minimise inclusion bias induced by the search: the focus on inclusivity allows the search strings to comprehensively identify lesser known or understudied pathways that may have received less attention in previous reviews and reports. Search strings were reviewed by all team members, as well as external expert advisors, and revised accordingly.

Consistent with the scope of our review, our climate-related search string includes terms reflecting climatic and meteorological processes, as well as vocabulary reflecting impacts, adaptation, and mitigation, but excluding intermediate pathway terms. Selection of terms is based on key vocabulary articulated in the Intergovernmental Panel on Climate Change’s 5th Assessment Report and Special Report on Global Warming of 1.5°C. Adaptation is not included as the term in the final search string since it is a highly generalized term associated with a large number of irrelevant topics; and all relevant literature using the term is assumed to include reference to ‘climate’.

Development of the search string for health is similarly aligned with the stated scope, and focused on health outcomes. While we explicitly include literature relevant to health policy and systems, our scoping phase identified no additional search terms needed for this literature, which is captured under our use of general search terms (e.g. ‘health*’). We include all pathways linking climate change to human health, and focus our search strings on retrieving literature linking climate change and climate variability to human health outcomes, and literature linking meteorological processes to human health outcomes. This does not exclude any causal pathways from the searches, but rather increases the specificity of searches to exclude irrelevant literature that does not consider climate/meteorological change and variability, or is not relevant to health.

All searches use English-only search terms. Bibliographic databases include articles in all languages indexed with English translations of title, keywords, and abstract. We do not restrict by language in our inclusion and exclusion criteria.

Search strings were reviewed, discussed, tested, and finalised across the team. The resulting search strings for the climate and the health components can be found in Table 4.

A machine-learning approach

Machine learning allows for the analysis of large and diverse literature bases, and involves training a computer to conduct some components of the work automatically. There are two main types: Unsupervised machine learning finds structures or patterns in large datasets and can be used to categorise documents. Supervised machine learning is based on the concept that a computer algorithm can be trained to predict the decisions that would be made by a human screener or coder. To do so, humans manually screen or code a sample of data. For evidence synthesis, a supervised machine learning algorithm is trained with human-screened articles, and can use these to predict both 1) whether an article is relevant, and 2) how the document should be categorised, based on the presence and frequency of key words used in the title and abstract. The algorithm provides a score (e.g. 0–1), predicting the likelihood that the article is relevant and/or belongs to a labeled category. Supervised machine learning requires humans to manually screen or code iterative samples of data, after which an algorithm uses this sample to classify the rest of the data. In this evidence synthesis, supervised learning will be used to predict which articles are relevant to CCVW and health, as well as to predict whether the article is relevant to adaptation, impacts or mitigation. Topic modelling, an unsupervised method, will be used in our analysis to identify key themes in the literature.

The machine learning algorithm has been developed. Relevant coding is available on GitHub.

Screening strategy

Given the size of the literature and the timeline of this work, not all documents can be screened by hand. At the same time, however, the broad search string and scope of this review results in a large number of irrelevant studies. To identify relevant documents within the larger set of documents retrieved by our search strings, we will use supervised machine learning. This approach involves manually screening (human coding) subsets of documents to iteratively ‘teach’ an automated classifier which documents are relevant according to a set of pre-defined criteria, and then use this trained classifier to predict the ‘most likely to be relevant’ literature. To be labelled as relevant, documents need to include empirical data (qualitative and/or quantitative) on both CCVW and health. All screening and analyses will be conducted on the NACSOS platform (NLP-Assisted Classification, Synthesis, and Online Screening).

Consistency checking

A sample (>10%) of screened documents will be reviewed by multiple team members; the documents in these samples that are labelled differently by different team members will be discussed until consensus is reached, to reduce bias and ensure consistency between team members. We will not consult full text during this process.

It is common practice to divide the manually classified set into a training set and a smaller validation set. Here, we will use 10-fold cross-validation, meaning that the data will be segmented at random into 10 equal sections. A classifier is then trained on 90% of the screened data, providing predictions for the remaining 10%, after which the training is repeated withholding a different section for validation. The result is a relevance prediction for all screened documents, based on an algorithm trained with 90% of the screened data. The results of the classifier on the different validation sets thus includes both false positives (i.e. the algorithm included the article, but the human reviewer did not) and false negatives (i.e. the inverse).
<table>
<thead>
<tr>
<th>Theme</th>
<th>Key concepts</th>
<th>String (Scopus)</th>
<th>Attributable Hits (scopus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change</td>
<td>General climate change terms, including extreme weather events, floods, wildfire, and coastal erosion. Some paleo-climatic events are excluded.</td>
<td>(climate* OR "global warming" OR "greenhouse effect")</td>
<td>35,052</td>
</tr>
<tr>
<td></td>
<td>Health</td>
<td>General health terms, including obesity, undernutrition, and chronic disease.</td>
<td>(health* OR well?being OR ill OR illness OR disease* OR syndrome* OR infect* OR medical*)</td>
</tr>
<tr>
<td></td>
<td>Mental health outcomes</td>
<td>Mental health outcomes, including obesity, undernutrition, and chronic disease.</td>
<td>(mental OR depress* OR stress OR anx* OR ps* OR psycho* OR "trauma* OR "suicide* OR "solastalgia")</td>
</tr>
<tr>
<td></td>
<td>Environmental health outcomes</td>
<td>Environmental health outcomes, including waterborne and foodborne diseases.</td>
<td>(waterborne OR "water borne" OR diarrhoea* OR diarrhel OR gastro OR virus OR "stomach flu" OR "gastroenteritis" OR "typhoid fever" OR "cholera" OR "salmonellosis" OR "shigellosis" OR "campylobacteriosis" OR "tuberculosis")</td>
</tr>
<tr>
<td></td>
<td>Respiratory outcomes</td>
<td>Respiratory outcomes, including waterborne and foodborne diseases.</td>
<td>(respiratory OR allergy* OR "air pollution" OR "asthma* OR "bronchi* OR "pulmonary* OR "cystic fibrosis" OR "emphysema* OR "pneumonia* OR "asthma* OR "cancer")</td>
</tr>
<tr>
<td></td>
<td>Other health outcomes</td>
<td>Other health outcomes, including waterborne and foodborne diseases.</td>
<td>(other OR skin OR heart OR liver OR brain OR bone OR tumor OR cancer OR "cancer related")</td>
</tr>
<tr>
<td></td>
<td>Health systems</td>
<td>Health systems, including obesity, undernutrition, and chronic disease.</td>
<td>(health* OR well?being OR ill OR illness OR disease* OR syndrome* OR infect* OR medical*)</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td>AND</td>
<td>49,773</td>
</tr>
</tbody>
</table>

Note: The search strings are designed to capture a broad range of related concepts, including climate change and health outcomes. The strings are connected by a boolean 'OR', and 'W/#' or '?' are used to specify the number of words or letters allowed between terms. The search hits in the table were conducted on 9 April 2020.
If a certain kind of document occurs often in either one of these error categories, this could point to inconsistencies in the manual coding and re-assessing the documents in these error categories can help improve the accuracy of the classifier as well as uncover ambiguities in the screening protocol. To find these inconsistencies, the false positives and false negatives from the validation sets will be re-assigned for screening to see if the initial human label was correct. In essence, this allows the reviewers to use a preliminary version of the algorithm as an extra consistency check. Inclusion and exclusion criteria are summarized in Table 5.

Inclusion criteria

Eligibility criteria: For all searches, the publishing year will be limited to 2013–2020 to capture literature published since the last IPCC Assessment Report. We further limit our review to Table 5.

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
<th>Tag (for included articles only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes substantial focus and empirical data (qualitative or quantitative) or secondary analysis of data on a climate-related driver of impacts, AND Includes substantial focus and empirical data (qualitative or quantitative) or secondary analysis of data on a perceived, experienced, or observed eligible health-related outcome or health system</td>
<td>Does not include an eligible climate-related driver of impacts, or a health-related outcome or health system, OR Does not include empirical data for both of the above, OR Consideration of climate drivers and/or health outcomes is a minor or tangential component of the document</td>
<td>Impacts</td>
</tr>
<tr>
<td>OR</td>
<td>Reference to a driver of climate change, mitigation, energy production or efficiency is not accompanied by relevant empirical data and/or analysis, OR There is no reference to impacts on eligible health-related outcomes or health systems OR The document focuses on emissions within the healthcare sector with no consideration of impacts on health</td>
<td>Mitigation</td>
</tr>
<tr>
<td>OR</td>
<td>Includes substantial focus (documenting and/or empirically assesses) a human response (adaptation) to perceived, experienced, or observed impacts on an eligible health-related outcome or health system</td>
<td>Document focuses on potential or planned responses to the health impacts of climate change, OR Responses (adaptations) are not relevant to human health (e.g. conservation measures) OR Responses (adaptations) that are not clearly linked to eligible health-related outcomes or health systems (e.g. general resilience activities)</td>
</tr>
</tbody>
</table>

1. Perceived impacts are based on the perspective of the study (authors and/or respondents). For example, households or governments might undertake adaptation in response to the perceived risk of flooding, regardless of whether flooding in that context has been attributed to climate change or is expected to increase under climate change projections.

2. Eligible health-related outcomes are described in the *Extended data* (SM1).
published research papers and reviews only. We frame our review using standards for formulating research questions and searches in systematic reviews, using a PICoST approach: population/problem (P), interest (I), context (Co), and time and scope (T/S) (Table 1). The review population (P) included all nations globally. The focus of interest (I) was the relationship between CCVW and health, specifically, the evidence base for the different components of this relationship. The time period (T) is 2013 to 2020. Screening will focus on identification of documents that meet PICoST search criteria. This means that documents must be indexed in English and:

1. Provide a clear link to actual, projected, or perceived impacts of climate change, responses to reduce the impacts of climate change (adaptation), or the mitigation of greenhouse gas emissions. Evidence of detection and attribution was not required.

2. Include substantial focus on a perceived, experienced, or observed eligible health-related outcome or health system.

3. Present empirically-driven research or a review (including non-systematic reviews) of such research.

Critical appraisal
Our evidence synthesis process is guided by systematic mapping methods, and as such does not include critical appraisal of study validity nor full synthesis, but rather describes the nature of the evidence base. Furthermore, the evidence synthesis is supported by machine learning practices to reduce workload and optimise timeliness and resource efficiency.

Data extraction
We will extract the bibliographic meta-data for all documents retrieved through search strings from bibliographic databases. Documents where the abstract is missing will be removed from the dataset as these abstracts are crucial for the inclusion/exclusion classifier. If any of the other data fields is missing, the document will still be included in the dataset. All data extraction activities will be conducted using abstracts and titles only. No data extraction will be conducted using full texts.

Climate categories: Supervised machine learning will be used to categorize documents into three climate literature categories: adaptation, mitigation, and climate impacts (Table 5). This data extraction will be undertaken in parallel with the screening described above. A sample of the articles will be manually tagged (identical sample to that used for screening), and an algorithm will be used to predict the likely relevance of the remaining articles to each climate category. All documents are assumed to fall into at least one of the three categories in order to have met our original inclusion criteria. Documents can be tagged as relevant to more than one category (e.g. impacts AND adaptation).

Geographical location: We will use ‘geoparsers’ to classify documents based on their geographic focus. Geoparsers refer to algorithms that can extract geographic place names from text, based on dictionary methods or pre-trained models. We will employ a geoparser to determine the country of affiliation for the first author of the paper, as well as to identify which countries or places within countries are mentioned in abstracts. When author information is missing, the geoparser cannot determine the affiliation of the author, but it should be able to provide an estimate for nearly every case where author information is given. Similarly, a substantial number of abstracts will not contain any geographic place names as many studies either are place-independent or do not mention the specific case they are investigating in the abstract. For these articles, geographical data cannot be collected.

Thematic topics: We will use machine-learning approaches – in this case an unsupervised machine learning approach called topic modelling – to identify thematic topics in the included articles. Topic modelling is a method that automatically identifies clusters of words which frequently occur together. These clusters are used to assign ‘topic scores’ to each document. Topic modelling identifies a pre-specified number of topics. The themes resulting from topic modelling are not based on any labelling or tagging, but rather based on structures that the algorithm finds in the data itself. In practice, this means that words which are frequently used in different abstracts will form a topic, and that each abstract will be assigned a ‘topic score’. This score represents which words associated with a certain topic are used in that abstract. Topic modelling requires the user to a priori set the number of topics, as well as some hyper-parameters. To find the most relevant and interpretable topic model, we will run several topic models using both Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF) with different parameter settings (50-80 topics in increments of five; for LDA, alpha was set at 50/[number of topics]). We will identify the number of topics providing the best balance between detail and interpretability. Topics will be assigned to one of five aggregated ‘meta-topics’ based on our review framework, including: climate hazards (CCVW), health risks and impacts, options and responses, mediating pathways, or ‘other’ (Figure 1). In some cases, conceptually similar topics may need to be combined for ease of understanding. Expert assessment will be used to iteratively review, label and create aggregated topics to support synthesis.

Validation of machine-learning methods
Validation of results is based on performance scores to assess how reliable a supervised machine learning method is. Accuracy describes the proportion of all documents that are correctly classified. Precision reflects the proportion of the documents labelled relevant by the algorithm that are actually relevant. Recall describes the proportion of relevant documents that are classified by the algorithm as relevant, and is analogous to diagnostic sensitivity. In practice, there is a trade-off between precision and recall: if a classifier retrieves many documents (high recall) it will likely also retrieve more irrelevant documents (false positives; low precision) and vice versa. >90% accuracy is a common performance goal but may not always be achievable or reasonable. Conceptual complexity may lead to inconsistent coding, which would in turn lead to inconsistent
performance of the classifier. In other words, the performance of the classifier tends to be lowest where human classification is hardest. Our performance goal in this review is to maximize performance scores until no longer possible given the complexity of the topic. We will assess this by calculating the classifier performance for increasing sizes of the dataset, and finding the point at which performance has clearly levelled off -- i.e. more data no longer leads to better performance.

Data synthesis

Topic maps: We will generate topic maps based on the outcome of the topic model. Topics maps use machine learning methods, specifically text mining, to identify groups or clusters of words that occur in a group of documents. Topics mapping is used to identify sets of words (referred to as ‘topics) that co-occur. We might find, for example, that one topic includes the words ‘agriculture’, ‘farming’, ‘crops’, and ‘drought’, reflecting a topic centered around drought risks to agriculture, while another topic includes the words ‘malaria’, ‘vector borne’, ‘parasite’, and ‘transmission’, collectively reflecting a topic on infectious disease (specifically malaria) transmission. The labels or names given to these topics are not automated, and must be defined by the research team. Topic mapping can be used to generate a visual ‘topography’ of key topics, with frequently co-occurring topics visually located closer together than those that rarely co-occur. We will use the t-SNE dimensionality reduction algorithm to plot the topic scores for each document, labeling clusters of documents based on locally dominant topics, and overlaying the map with meta-data information. In simpler terms, we will make use of the fact that every document will have its own topic score, and each document can contain multiple topics to identify clusters of documents with similar topics. This then allows us to plot similar documents closely together. The resulting clusters are indications of conceptual linkages between topics and can give further insights into the significance of the identified topics.

Evidence heat maps: Heat maps will be created to visualize the relative co-occurrence of topics. Co-occurrence here will be defined as both topics constituting at least 0.15 of the topic distribution of the document.

Evidence atlases (i.e. cartographic maps) will be generated to visualize the geographic locations of studies.

Narrative synthesis: We will appraise the frequency of key topics within the climate and health literature, as well as the extent of co-occurrence of topics within the heat and map heat. We will assess the extent to which trends in the literature differ by country income class.

Knowledge gap and cluster identification strategy

This review approach, using machine learning to synthesize a large literature base, is explicitly designed to facilitate knowledge gap and cluster identification. Topic maps and heat maps in particular aim to visualize areas of knowledge clusters, and highlight gaps in literature for particular combinations of topics (e.g. particular heat outcomes, climate hazards, or response types).

Demonstrating procedural independence

Given the nature of the review, reviewers will not be in a position to make primary decisions (i.e. whether an article is eligible for inclusion) on their own work. Manual coding will be conducted for a sample of the literature by an early career researcher, with team double-coding and validation on selected samples to ensure consistency. Where these validation samples include authors from the review team, decisions will be made collectively by several team members, reducing the potential for bias by a team member author. Following manual training, all inclusion decisions will be made automatically by the machine learning algorithm, reflecting robust procedural independence.

Limitations and potential bias

There are a number of potential sources of publication bias affecting this review. The preponderance of positive and significant results in the non-grey literature means that issues where the direct causal link is clear and/or easy to quantify may be over-represented (e.g. excess mortality due to an extreme weather event has both a clear cause and a concrete proxy for health, whereas mental health effects of droughts through reduced livelihood opportunities may be harder to quantify and therefore less likely to be published). We further introduce bias through the inclusion of publications with an English title and abstract only. Even though many databases index non-English articles, there is a dominance of English-language publications in the literature more broadly. The literature is also biased towards high income regions (lower publishing rate in lower income regions). In this context, it is typically difficult to distinguish whether absence of reporting reflects lack of substantive importance and activity, or lack of publication. Further bias is introduced by limiting the search to articles and reviews in bibliographic databases of scientific articles. Including grey literature would likely better represent institutional climate policy, for example, but at the expense of the feasibility of the assessment. This bias is roughly in the same direction as the language-based bias.

Ethics approval

This study uses publicly available data, does not involve research using human participants, animals, or plants, and thus does not require ethics approval.

Plans for results dissemination

We will report the results of the review in an open access international peer-reviewed journal. We will hold dissemination meetings in different settings and seek to ensure that the findings are shared widely among multiple stake-holder communities.

Study status

The study has now been completed. A manuscript presenting final results is in submission.

Data availability

Underlying data

No underlying data are associated with this protocol.

Extended data

This project contains the following extended data in ‘WOR Protocol Extended Data.pdf’:
- SM1: Detailed screening and tagging criteria
- SM2: ROSES Systematic Mapping checklist

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/AnneIsARealProgrammerNow/ClimateHealth_Wellcome

Archived source code at time of publication: https://doi.org/10.5281/zenodo.4322697v2.

License: MIT license

Acknowledgements
We gratefully acknowledge input in protocol development from Professor Paul Wilkinson from the Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, and from Profs. Tim Ensor and John Walley from the University of Leeds Nuffield Centre for International Health and Development. We are grateful to Dr. Kirsty Lewis, Rahi Islam, Dr. Carolyn Sunners and Phil Jones from the UK Foreign, Commonwealth and Development Office for their support and helpful contributions throughout. The views and opinions expressed in this protocol are those of the authors and do not necessarily reflect the official policy or position of the UK government.
27. Intergovernmental Panel on Climate Change: *Global Warming of 1.5°C*. 2018.

Publisher Full Text