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Abstract  
Mathematical models of infectious disease are increasingly capable of capturing spatial and 

demographic factors in transmission. However, there has been limited evaluation of how ethnic 

and socioeconomic groups within a population might impact transmission, the effectiveness of 

interventions and inequalities in infectious disease outcomes. A large part of this challenge lies 

in identifying means by which information about how social groups interact can be measured and 

included in mechanistic models of transmission. By means of data analysis and mathematical 

modelling, I have investigated how social groups contribute to heterogeneity in transmission and 

how these factors may be captured in a model of transmission.  

 

In the first part of this thesis I first present my evaluation of the roles of transmission and 

vaccination differences between social groups in creating inequalities in disease risk.  

 

Secondly, I report my analysis of reported cases from the 2009 Influenza H1N1 outbreak to 

elucidate the spatial and social nature of the early stages of the outbreak.  

 

Later I present a novel framework that I have developed for analysis of social contact of school-

aged children and modelling transmission. This framework utilises national school and pupil data 

to simulate outbreaks over a network, explicitly accounting for school and household transmission 

links.  

 

Finally, I present the application of this framework in two distinct settings: First, I assess the 

potential role of the school system in inequalities in influenza risk between ethnic and socio-

economic groups in London. Then I investigate how connections between schools and households 

in the Netherlands might impact clustering of children unvaccinated against measles. Finally, I 

evaluate how such clustering impacts the epidemiology of measles in The Netherlands, where 

vaccine refusal is clearly associated to particular socio-religious communities.  

 

I find evidence that inequalities in disease are most sensitive to differences in transmission if the 

pathogen has a low basic reproduction number. With higher basic reproduction numbers, 

inequalities are more sensitive to variation in vaccine uptake. Inequalities observed in influenza 

are not clearly reconciled by the school network structure, however the network may promote 

inequalities in incidence early in an outbreak, which may be interpreted as inequality in risk. 

Finally, school networks can explain the observed measles dynamics in the Netherlands well, 

reproducing the outbreak scale and geographical spread of cases reported in recent outbreaks. 



 
 

 
 
4 

 

Acknowledgements  
 
A great deal of thanks and credit go to my supervisors, Dr Albert Jan van Hoek and Dr Katherine 

Atkins for inviting me to take on this PhD and providing consistent support throughout my 

studies. I owe deep gratitude to others at LSHTM for guidance and support Dr Sebastian Funk 

with whom I first explored the move towards Epidemiology and has provided mentorship an 

encouragement to me, Dr Petra Klepac who offered great support and inspiration at a key time in 

the development of the work, Prof Mark Jit for his balanced and rich insights and Prof John 

Edmunds for his encouragement and his key role in Analysis A. 

 

Regarding my collaborators, I would like to thank Richard Pebody, who was most generous with 

his time and resources, making it possible for me to use analyse UK influenza data at Public 

Health England and offering insight into the response to the Influenza H1N1 outbreak in 2009. 

At The national institute for public health and the environment of The Netherlands (RIVM), I 

would like to thank Dr Don Klinkenberg, Prof. Jacco Wallinga and Dr Susan Hahne all of whom 

have been a great deal of support to the work on MMR in the Netherlands. Also, from the 

Education Executive Agency of the Netherlands (DUO) I thank Marc Meurs and Erik Fleur for 

their commitment an enthusiasm in providing Dutch schools data to the exact requirements I 

needed, certainly at no small effort.  

 

I must also thank those who have supported me in the past, ultimately preparing me for 

undertaking a PhD. To Eddie Kerchinski who gave me the confidence to pursue mathematics, Dr 

Philippe Blondel for his kindness, encouragement and support, Mark Manzocchi whose technical 

knowledge and flexibility stirred my interest, and Mutahar Chalmers whose enthusiasm for new 

and exciting challenges inspired me to move beyond the familiar and who continues to nurture 

my curiosity. 

 

I would also like to thank my family. My parents for always supporting me in where I wanted to 

go. To my daughter Emmy who had no choice in being born into the final stages of a PhD and 

has brought such joy in these last months. Finally, to my wife Katie, who has sacrificed a great 

deal to allow me to pursue these studies and been my firm support throughout. 

 
 

 
 
 
 



 

 

5 

Acronyms 
 

BH Basic Homophily  

CHI Coleman Homophily Index 

CI  Confidence interval  

CVT Critical vaccination threshold 

DUO  Dienst Uitvoering Onderwijs meaning “Education Executive 

Agency” 

ECDC European Centre for Disease Control 

GLA Greater London Authority 

HAVO Hoger Algemeen Voortgezet Onderwijs meaning “higher general 

continued education” 

IBM Indevidual Based Model 

IMD Index of Multiple Deprivation 

LSOA Lower Super Output Area 

MMR Mumps, Measles and Rubella vaccine 

NMI Normalised Mutual Information 

ONS Office for National Statistics 

OR Odds Ratio 

PC4 four-digit postcode region 

pH1N1 Pandemic Influenza A H1N1 (2009)  

ROC Receiver Operating Characteristic 

RR Relative Risk 

SCH  Social Contact Hypothesis 



 
 

 
 
6 

 

SIR Susceptible, Infected, Recovered (model) 

SR Spearman's Rank 

UK United Kingdon  

USA United States of America 

VMBO Voorbereidend Middelbaar Beroepsonderwijs meaning "Pre-

vocational secondary education"  

VWO Voorbereidend Wetenschappelijk Onderwijs meaning "preparatory 

scientific education" 

WCA  Women of childbearing age 

WHO World Health Organisation 

wROC Weighted Reciever Opporating Characteristic 

 

  



 

 

7 

Contents 
Declaration ........................................................................................................................ 2 

Abstract ............................................................................................................................. 3 

Acknowledgements ........................................................................................................... 4 

Acronyms .......................................................................................................................... 5 

Contents ............................................................................................................................. 7 

Figures ............................................................................................................................. 11 

Tables .............................................................................................................................. 15 

1 Background and Introduction .................................................................................. 17 

 Heterogeneity, transmission and control of infectious disease ....................... 17 

 Observations of heterogeneity in risk and control of infectious disease ......... 18 

 Mathematical modelling to explore infectious disease dynamics in 

heterogeneous populations .......................................................................................... 23 

 Aims and objectives ........................................................................................ 37 

 Thesis structure ............................................................................................... 38 

 References ....................................................................................................... 39 

2 Analysis A: Quantifying the impact of social groups and vaccination on 

inequalities in infectious diseases using a mathematical model ..................................... 49 

 Introduction ..................................................................................................... 53 

 Methods ........................................................................................................... 55 

 Results ............................................................................................................. 62 

 Discussion ....................................................................................................... 71 

 Conclusion ....................................................................................................... 76 

 References ....................................................................................................... 76 



 
 

 
 
8 

 

3 Analysis B: Changing socio-economic and ethnic distribution of cases over the 

containment phase of the UK Influenza A H1N1 epidemic in 2009 – a comparison of 

London and Birmingham ................................................................................................ 81 

 Introduction ..................................................................................................... 82 

 Methods ........................................................................................................... 84 

 Results ............................................................................................................. 90 

 Discussion ....................................................................................................... 96 

 References ..................................................................................................... 101 

4 Contact between children – location, duration and frequency of child-to-child 

contact ........................................................................................................................... 105 

 Introduction ................................................................................................... 106 

 Materials and Methods .................................................................................. 107 

 Results ........................................................................................................... 109 

 Discussion ..................................................................................................... 111 

 References ..................................................................................................... 114 

5 Two frameworks for analysing social structure and disease transmission using 

national school data. ...................................................................................................... 117 

 Introduction ................................................................................................... 118 

 Proposed Frameworks ................................................................................... 122 

 Methods ......................................................................................................... 133 

 Results ........................................................................................................... 134 

 Discussion of results ..................................................................................... 137 

 Summary ....................................................................................................... 140 

 References ..................................................................................................... 140 

6 Analysis C: Modelling influenza outbreaks on a school network in London: 

geographic, ethnic and socio-economic heterogeneity in risk ...................................... 145 



 

 

9 

 Introduction ................................................................................................... 146 

 Methods ......................................................................................................... 150 

 Results ........................................................................................................... 163 

 Discussion ..................................................................................................... 177 

 References ..................................................................................................... 185 

7 Analysis D (part 1): Analysis of a between school contact network – Clustering of 

children by faith denomination ..................................................................................... 189 

 Introduction ................................................................................................... 190 

 Methods ......................................................................................................... 196 

 Results ........................................................................................................... 206 

 Discussion ..................................................................................................... 215 

 References ..................................................................................................... 221 

8 Analysis D (part 2): A network of schools in the Netherlands: Implications for 

measles epidemiology ................................................................................................... 225 

 Introduction ................................................................................................... 226 

 Methods ......................................................................................................... 227 

 Results ........................................................................................................... 240 

 Discussion ..................................................................................................... 245 

 References ..................................................................................................... 250 

9 Discussion ............................................................................................................. 253 

 Summary of key results ................................................................................. 253 

 Strengths and limitations ............................................................................... 257 

 Contributions of this research relative to previous knowledge ..................... 261 

 Implications and future research opportunities ............................................. 263 

 References ..................................................................................................... 267 



 
 

 
 
10 

 

Appendix A. Suplementary material for Analysis A .............................................. 271 

Appendix B. Supplementary material for Analysis B ............................................ 291 

Missing data .............................................................................................................. 291 

Additional results: ..................................................................................................... 297 

Appendix C. Suplementary material for Analysis C .............................................. 299 

Appendix D. Suplementary material for Analysis D (part 1) ................................. 303 

Appendix E. Suplementary material for Analysis D (part 2) ................................. 307 

Alternative Model 2: Spatial interaction between schools ........................................ 307 

Risk by schools calculations ..................................................................................... 308 

Appendix F. LSHTM ethics approval .................................................................... 311 

Appendix G. License for re-publication of BMC Medicine paper ......................... 313 

 

  



 

 

11 

Figures 
Figure 1.1 Schematic of the compartmental framework of a Susceptible (S), Infected (I) 

and Recovered (R) model. ............................................................................................... 25 

Figure 1.2 Schematic of the compartmental framework of a Susceptible (S), Infected (I) 

and Recovered (R) model for a simple Adult and child risk structured model. .............. 26 

Figure 2.1 Summary of the mathematical model used to quantify inequalities between 

social groups H (high risk) and L (low risk). .................................................................. 57 

Figure 2.2 Epidemiology predicted by the mathematical model for seasonal influenza and 

rubella. ............................................................................................................................. 63 

Figure 2.3  Risk of infection in group H relative to group L in the total population and in 

risk groups, elderly and women of childbearing age (WCA). ........................................ 66 

Figure 2.4  Relative risk with social isolation ................................................................. 68 

Figure 2.5   Optimal vaccine allocation .......................................................................... 69 

Figure 2.6 Sobol indicies: ............................................................................................... 70 

Figure 3.1 Age distribution of cases in Birmingham and London. ................................. 91 

Figure 3.2  Incidence in each 10 year age group per national Index of Multiple 

Deprivation decile in A) Birmingham and B) London ................................................... 92 

Figure 3.3 Incidence in each 10 year age group per local Index of Multiple Deprivation 

quintile in A) Birmingham and B) London ..................................................................... 93 

Figure 3.4 Disparities in incidence between local deprivation quintile over time .......... 94 

Figure 3.5 Breakdown of reported cases by ethnic group ............................................... 95 

Figure 4.1 Contacts at home and at school ................................................................... 111 

Figure 5.1 A network of schools linked by households ................................................ 125 



 
 

 
 
12 

 

Figure 5.2 A decision tree showing the 4 potential implications of a child moving from 

primary to secondary school ......................................................................................... 127 

Figure 5.3 Calculating the unique number of contact pairs per household ................... 130 

Figure 5.4 Proportion of contacts in each ethnic group by ethnic group, relative to 

proportion of the population. ........................................................................................ 135 

Figure 5.5 Proportion of contacts in each deprivation decile by deprivation decile, relative 

to proportion of the population. .................................................................................... 136 

Figure 5.6 Proportion of contacts in the same social group after n generations of contacts

 ....................................................................................................................................... 137 

Figure 6.1 Geography, Socio-economic variation and household size in London. ...... 149 

Figure 6.2 Contact networks, transmission networks and outbreak networks .............. 156 

Figure 6.3 Graphs of the first 15 generations of outbreaks in the 9 schools with the highest 

weighted degree, for a given sampled binary outbreak network with !0 of 1.5. ......... 161 

Figure 6.4 The degree (A) and weighted degree (B) distributions of the between school 

contact network constructed from National School Census data. ................................. 166 

Figure 6.5 A) Proportion of school infected before seeding an outbreak in an adjacent 

school plotted against the weighted degree of the between school contact network. B) 

Histogram of the proportion of school infected before seeding an outbreak in an adjacent.

 ....................................................................................................................................... 167 

Figure 6.6  (A) Relative magnitude of expected number of adjacent schools infected, (B) 

and mean proportion infected before seeding a second outbreak, by ethnic group, for 

values of !0 from 1.1 to 2. ........................................................................................... 168 

Figure 6.7 (A) Relative magnitude of mean number adjacent schools infected. (B)  Mean 

proportion infected before seeding a second outbreak, by deprivation quintile, for values 

of !0 from 1.1 to 2. ....................................................................................................... 169 



 

 

13 

Figure 6.8 Example component size distribution of binary outbreak networks ........... 171 

Figure 6.9 The relative risk of infection in outbreaks on the school network .............. 171 

Figure 6.10 Relative risk by Ethnic Group in the first 15 generations (of schools) of 

outbreaks seeded in each secondary school in the Network ......................................... 173 

Figure 6.11 Relative risk by deprivation quintile in the first 15 generations (of schools) 

of outbreaks seeded in each secondary school in the Network ..................................... 174 

Figure 6.12 Sensitivity analyses – Variation in !0 between schools ........................... 175 

Figure 6.13 Sensitivity analyses – within-household transmission probability ............ 177 

Figure 7.1 MMR first dose uptake by 14 months by municipality in the Netherlands 

(Lochlainn et. al., 2017) [4] .......................................................................................... 192 

Figure 7.2 The education system in the Netherlands has 2 stages. The second stage has 3 

tiers based on academic ability. .................................................................................... 194 

Figure 7.3 Calculation of network distance between schools 1 and 5 is the sum of the 

edges along the shortest path between those schools. ................................................... 204 

Figure 7.4 Scatter plots of degree (number of connected schools) and weighted degree 

(the number of unique pairs). Points show schools from A) the whole network, B) roman 

catholic denomination, C) Mainstream protestant denomination, D) Dutch Reformed 

denomination and E) Anthroposophic denomination. Marker size indicates school 

population size. ............................................................................................................. 207 

Figure 7.5 Quality metrics for various values of resolution parameter # for partitions 

recovered using the modified Leiden algorithm. .......................................................... 208 

Figure 7.6 partitions of the school network in the Netherlands .................................... 209 

Figure 7.7  Community 9 of the consensus partition .................................................... 211 

Figure 7.8 The 11 denominations with the highest Coleman Homophily Index (CHI).

 ....................................................................................................................................... 214 



 
 

 
 
14 

 

Figure 7.9 Boxplot of distance ratio for pairs of Dutch Reformed and Anthroposophic 

schools and geographically equivalent sample from the rest of the network. .............. 215 

Figure 8.1 Schematic of the components of the different network models .................. 229 

Figure 8.2 Ranked vaccine uptake in schools, points show mean, bars show interquartile 

range of the marginal distribution for each school. ...................................................... 233 

Figure 8.3 Ego-networks of the school where the 2013/14 measles outbreak was seeded

 ....................................................................................................................................... 235 

Figure 8.4 Successors and predecessors in a directed network. .................................... 237 

Figure 8.5 Mean outbreak final size by school where outbreak is seeded. ................... 241 

Figure 8.6 The proportion of unvaccinated children who if seeded an outbreak in their 

school, would cause an outbreak in each school plotted. .............................................. 242 

Figure 8.7 Mean number of cases across 1000 simulated in each PC4 region with a 

reporting rate of 10% (from estimates in literature). .................................................... 244 

Figure 8.8 Sensitivity and specificity of the baseline and alternative network models.245 

 

  



 

 

15 

 

Tables  
 

Table 2.1 Model parameter values used in base case and sensitivity analyses ............... 60 

Table 2.2 Percentage increase in risk of infection in group H relative to group L due 

to vaccination. 67 

Table 3.1 Ethnic Group returned by ONOMAP and the corresponding UK Census codes 

that were used for population relative population size .................................................... 86 

Table 4.1 Categories for the fields in the Polymod contact survey [10] of interest to this 

analysis .......................................................................................................................... 108 

Table 6.1 Sensitivity analysis regimes for variation in R between schools .................. 162 

Table 6.2 The largest component of Binary Outbreak Networks calculated over 1000 

realisations, .................................................................................................................... 170 

Table 7.1 Faith schools in the Netherlands. The number of schools, primary schools and 

secondary schools in each faith denomination in the Netherlands. .............................. 195 

Table 7.2 Composition of Community 9 in the final consensus partition detailing number 

of schools by province and denomination in the community and in the whole network.

 ....................................................................................................................................... 212 

Table 7.3 The mean pairwise probability (95% CI) that schools of each denomination and 

province are partitioned into the same community. ...................................................... 212 



 
 

 
 
16 

 



 

 

17 

1 Background and Introduction 

 Heterogeneity, transmission and control of infectious disease 

Heterogeneity in transmission and control of infectious disease (between individuals, 

geographical location (areas/cities/countries), socio-economic class, climate and over 

time) can substantially impact the epidemiology of the disease affecting health outcomes 

and the effectiveness of healthcare interventions. 

 

One particular area that remains broadly unclear is how social structure, created by 

preferential contact within certain social groups (such as religious or socio-economic 

groups), might create heterogeneity within particular populations. This type of 

heterogeneity is of interest in public health for two clear reasons:  

 

Firstly, if the characteristics of infectious disease transmission differ between groups, 

inequalities in risk may emerge. Inequalities in health outcomes are moving up the agenda 

of public health authorities, for example monitoring and reduction of inequalities in 

healthcare services and interventions are now a statutory requirement in the UK[1]. 

Understanding how transmission dynamics may contribute to observed differences in 

health outcomes is an important part of resolving them[2, 3]. In addition, such differences 

may impact the effectiveness of control strategies, both within particular groups and in 

the population as a whole[4–6]. 
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Secondly, heterogeneity in uptake of interventions between social groups will likely give 

rise to inequalities in infectious disease[7–9]. But can also impact its overall 

effectiveness. For example, if a large proportion of unvaccinated people cluster within a 

particular social group[10–13], there may be a higher risk of outbreaks. This diminishes 

prospects for control and eventual eradication of pathogens[14]. 

 

In this thesis I seek to dissect observed inequalities in infectious disease outcomes and 

uptake of vaccinations between social groups, specifically to improve understanding of 

how differences in transmission and uptake of vaccination between social groups 

contribute to observed and previously unexplained transmission dynamics in diverse 

populations. I approached this problem using a combination of analysis of disease data 

and novel mathematical modelling approaches aimed at accounting for transmission 

within and between particular social groups within a population.  

 

 Observations of heterogeneity in risk and control of infectious 

disease 

Differences in health outcomes and mortality between social groups have been observed 

since the 19th century[15], and inequalities in infectious disease continue to be observed 

in many high-income countries[16]. A systematic review of inequalities in in infectious 

diseases and strategies to reduce them, identifies instances of observed inequalities every 

European Union member state[17]. It remains pertinent that certain groups of the 

population are still at disproportionately high risk of morbidity and mortality from 

diseases for which we have the available means to control.  
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The World Health Organization’s (WHO) commission on the social determinants of 

health[18] published a report in 2008 addressing the broader issue of inequality. The 

development of a better understanding of the extent and cause of inequalities in health[18] 

was defined as a key target. The European Centre for Disease Control (ECDC) has made 

addressing inequalities in infectious disease a public health priority[19]. In addition, 

reductions in welfare spending following the recent financial crisis and the potential 

implications for infection prevention and control funding[19, 20] have further 

strengthened interest in addressing inequalities, which may be exacerbated by these 

changes.  

 

Heterogeneity in risk of infectious disease 

Despite general improvements in living conditions and hygiene, disparities in serious 

infectious disease outcomes are still observed in high-income settings[16, 17, 19]. In 

general, these disparities afflict the most deprived and vulnerable in society. In recent 

studies in the UK it has been shown that the most deprived quintile of the population are 

30% more likely to be admitted to hospital with pneumonia than the most affluent quintile 

[21, 22]. Similar disparities are also observed in the rates of hospitalisation with acute 

gastroenteritis [23].  

 

A clear example of inequalities in infectious disease outcome is the 2009 Influenza 

A/H1N1 (pH1N1) outbreak. Disparities were consistently observed between socio-

economic and ethnic groups, in the UK and in other high-income countries.  

 

Analysis of laboratory confirmed Influenza A H1N1 case data from the initial nine weeks 

(Wk 17-26) of the outbreak in London [24] shows clear disparities in the attack rates and 
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overall burden by socio-economic deprivation. The peak of the outbreak also appears to 

occur two weeks earlier in the most deprived areas despite higher prevalence in more 

affluent areas in the very early phases. The overall risk ratio between the most and least 

deprived quintiles was found to be 2.67 (95% CI 2.06–3.49).  

 

Analysis of surveillance data from the West Midlands [25] from during the containment 

phase shows that 66·7% (95% CI 64·9–68·5) of laboratory confirmed cases were from 

the most socio-economically deprived quintile compared to just 6·2% (95% CI 5·3–7·1) 

from the least deprived quintile. South Asians accounted for 57·9% (95% CI 56·1–59·8) 

of confirmed cases, which far exceeds the proportion of the population they represent. 

 

Analysis of H1N1 associated mortality rates in the UK [26–28], shows a higher rate in 

South Asians (up to Risk Ratio = 3), and in those who live in areas of high socio-economic 

deprivation (up to Risk Ratio = 2). This was particularly evident in the initial wave of the 

local epidemic. Furthermore, analysis of specific risk factors for influenza mortality 

shows no evidence of ethnicity [29, 30] being a significant risk factor, suggesting that 

differences in mortality reflect risk of infection rather than disease severity.  

 

The disparities between ethnic groups and socio-economic status in case data could 

reasonably be partially attributable to variation in health seeking behaviour. However, 

analysis of anti-viral use does not support this [31]. Increased attack rate and an earlier 

epidemic peak in the London outbreak of pH1N1 are indicative of higher rates of 

transmission in areas of higher socio-economic deprivation[24]. 
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Differences in reported cases of an infectious disease can be driven by a multitude of 

factors. These factors can either contribute to genuine inequalities in health (either 

differences in risk of infection or severity of disease), or differences in reporting (arising 

from differences in healthcare practice [32] and variation in health-seeking behaviour). 

Understanding the drivers of observed disparities is vital for development of practicable 

and effective mitigations against inequalities in future. 

 

Heterogeneity in control of infectious diseases  

Vaccination is the single most effective means of preventing and controlling infectious 

disease[33]. Whilst most health-care interventions act to improve the health of the 

individual, the dynamic properties of infection allow vaccination to protect unvaccinated 

individuals in the population indirectly through a mechanism known as herd immunity 

[34]. The herd immunity phenomenon means that vaccinating a large enough sub-set of 

the population can interrupt transmission effectively. The proportion requiring 

vaccination is known as the critical vaccination threshold, which has a theoretical value 

of 1 − !

"!
 [35], where !#  is the basic reproduction number of the infection in the 

population affected. Indirect effects are typically of benefit to the population as a whole 

[36]. However, this simple model of herd immunity is conditional on homogenous 

transmission in the population, and uniformly distributed vaccination uptake. Where 

heterogeneity in transmission exists due to population structure this simple assumption 

breaks down. Moreover, studies of the dynamics of vaccination in realistic populations 

have shown significant differences in behaviour depending on demographic and social 

differences between contexts [5, 6]. Moreover, there are many examples where clustering 

of unvaccinated individuals leads to coverage lower than the critical vaccine threshold at 
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a local level[13]. This may not be adequately represented in regional or national estimates 

of vaccination coverage[37]. If these complexities are ignored vaccination can have 

unintended effects and in some cases has been observed to increase morbidity [9, 38]. 

 

Vaccination delivery requires complex logistical programs; there are multiple ways that 

heterogeneity can arise in this process[39–41]. A key factor in implementation is access 

and cooperation from members of the population. Difficulty in accessing health care, and 

negative sentiment towards certain interventions are key drivers of sub-optimal uptake. 

In some cases, social factors such as socio-economic status, ethnicity and religion are 

predictors of low uptake. Disparities in vaccine uptake between socio-economic, ethnic 

and religious groups have been identified in multiple settings [13].   

 

Orthodox Jewish populations have been observed to have much lower uptake of the 

Measles, Mumps and Rubella vaccine (MMR) than that of the rest of the local population 

in many settings [42]. Notably, this lead to a measles outbreak in 2019 in the New York 

population [43] and multiple outbreaks in other countries in recent years [11, 12, 44, 45]. 

Another population with particularly low uptake of MMR are the Anthroposophic [46] 

and Orthodox Protestant (Dutch Reformed Church) populations [47] in the Netherlands. 

These populations have also experienced outbreaks in recent years [48, 49] despite 

consistently high national MMR uptake for the past 20 years [50].  

 

Other factors that may contribute to clustering of unvaccinated children are less explicit. 

Bensal et al. showed that in the states there was a correlation between income and other 

social factors and low vaccination uptake, as well as significant geographical clustering 

in the USA [51].  
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Combined heterogeneities – a complex problem  

Heterogeneities in transmission and uptake of vaccination combine to form a complex 

epidemiological problem. Since the overall impact of vaccination in itself is affected by 

the local transmission properties of the population. This means that the drivers of 

heterogeneity in disease are not easily understood or studied. By capturing the mechanism 

of transmission explicitly, mathematical models are well placed for studying this 

problem[2]. 

 

 Mathematical modelling to explore infectious disease dynamics in 

heterogeneous populations 

A brief introduction to the principles of mathematical modelling 

Mathematical models have become a popular method for studying the dynamics of 

infectious disease. They have been used to develop much of the current understanding of 

infectious disease epidemiology [52]. A popular approach to modelling infectious disease 

transmission, is to use compartmental models. In these models, parts of the population 

exist in one of a number of disease states at any one time. An example of this was first 

proposed by Ross and Hudson [53] and popularised by Kermack and McKendrick in a 

series of papers in the 1920s and 30s [54–56]. This work built on Bernoulli’s state space 

model, the most important extension was to introduce dependency between rate of 

transmission and incidence (1766) [57].  
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The basic compartmental model framework is known as the “Susceptible, Infected, 

Recovered” (SIR) model (Figure 1.1). The model in its most familiar form is written as a 

system of ordinary differential equations. In this model parts of the population are 

assumed to be in either the Susceptible, Infected or Recovered state. The infected part of 

the population can infect the susceptible part of the population at a rate known as the force 

of infection (&), hence the population moves from the susceptible state to the infected 

state at this rate. The force of infection is proportional to the section of the proportion 

population that is in the infected state. In turn the part of the population in the infected 

state recovers becoming neither infectious nor susceptible in the recovered state. The 

population moves from the infected state to the recovered state at a constant rate (').  

 

(̇ = −&( = 	−,-( 

-̇ = 	,-( − '- 

!̇ = '- 

 

Variations of the state-space approach have included stochasticity [58] within the model 

formulation allowing variation in transmission rate and recovery, and the introduction of 

additional states to account for variation in transmission due to the effects of intervention 

[59]. Although these models capture the basic dynamics of transmission, they require the 

assumption of homogenous transmission between all parts of the population, and contain 

no information about any structure within that population.  
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Figure 1.1 Schematic of the compartmental framework of a Susceptible (S), Infected (I) and Recovered 

(R) model. 

Boxes show disease states indicated by letter. The population can move from state to state in the 

direction of the solid arrows at rates indicated by expressions below the arrow. Dashed line shows that 

the state affects the rate indicated. 

 

Constructing mathematical models with heterogeneous transmission due to 

population structure  

To study the effect of social structure on transmission with a mathematical model some 

approximation for the heterogeneity in transmission within and between social groups 

must be included in the model framework. There are a number of ways that mathematical 

models have incorporated heterogeneous transmission in past analyses.  

 

A simple extension of the SIR model enables it to contain multiple compartments of each 

state to account for some different ‘classes’ of the population. A clear example is age 

groups[60]. In an age structured model there are separate compartments of Susceptible, 

Infectious and Recovered states for each age group. Force of infection in each age group 

is different and defined by a matrix of transmission parameters detailing rate of 

transmission within and between age groups (Figure 1.2). For example, separating 

children and adults results in a vector of force of infection expressed as:  

 

S	 I	 R	
βI	 ρ	
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This approach can be extended to any number of classes, to reflect greater complexity of 

population structure.  

 

Meta-population models were developed to account for transmission of a pathogen 

between specific groups[61–63], often geographic locations. As well as transmitting 

between groups, in some models, portions of the population can move between groups 

remaining in the same disease state. This results in infected members of the population 

moving into un-infected groups and causing that population to become infected.  

 

 

Figure 1.2 Schematic of the compartmental framework of a Susceptible (S), Infected (I) and Recovered 

(R) model for a simple Adult and child risk structured model. 

Boxes show disease states indicated by letter. The population can move from state to state in the 

direction of the solid arrows at rates indicated by expressions below the arrow. Dashed line shows that 

the state affects the rate indicated. 

 

Further complexity can be added by accounting for the disease status of each individual 

in a population separately[64, 65]. Individual-based network models (IBMs) specify a 
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probability of infection between hosts explicitly. IBMs have been used extensively to 

advance understanding of transmission dynamics on networks with particular properties 

from a theoretical perspective. They have also been used to create large scale ‘synthetic 

populations’ with multiple levels of population structure, such as family units, places of 

work and schools[66].  

 

Parameterising population structure within models of infectious disease 

transmission 

A key challenge with increased complexity of mathematical models is that more 

information is required to accurately parameterize them. In some cases, parameters can 

be fitted to data on infectious disease outcomes. However, increased model complexity 

requires a greater number of parameters to be estimated a priori. This parameterisation 

of models generally requires detailed analysis and sometimes collection of other data to 

provide insight into the various mechanisms within the model. Social contact surveys 

have become a popular method for parameterising transmission rates in and between 

subsets of the population.  

 

Use of contact diaries to estimate heterogeneities in population mixing 

To improve understanding of social contact structures, studies have been performed as a 

means to elicit information about the contact behaviour of populations. This is based on 

what is known as the “social contact hypothesis” (SCH)[67]. SCH is the proposition that 

infectious contacts, particularly in the case of respiratory infections can be assumed to be 

analogous to social contacts. Diary based contact surveys take a pragmatic approach by 

collecting self-reported contact events from participants sampled from the general 
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population, a method proposed and piloted by Edmunds et al in 1997[68]. For a detailed 

evaluation of these methods I point the reader to a recent systematic review from Thang 

et. al. [69]. Here I discuss contact surveys that have particular relevance to this thesis.  

 

In 2006 Mossong et al undertook the first large scale social contact survey known as 

Polymod. This study was in eight European countries[70] based on this hypothesis. 7290 

participants completed paper-based diaries of contact events they had made in a randomly 

assigned 24-hour period. Contacts were defined as close contact (conversational) or 

physical contact. Participants were asked to record the approximate (or exact) age of the 

contact, the context in which the contact was made, and the duration of the contact event. 

Other information regarding the relationship of the contact to the participant was also 

recorded. In addition, socio-demographic information was collected from each 

participant, such as household size and employment status.  

 

The primary finding of the study was that age groups mix assortatively; higher contact 

rates exist within age groups than between age groups. Strong mixing is also shown 

between those of parental age and children. Schoolchildren mix most intensely and those 

over the age of 65 have the fewest daily contacts. The data gathered from this survey have 

been used to form the basis of many models where age structure is required.  

 

In addition, qualitative observations, about how social contact networks may form can be 

elicited from the results. For example, contact events with contacts who are met more 

frequent are likely to be of longer duration, and also more likely to involve physical touch 

than less frequent and shorter duration events. 75 % of contacts made with strangers occur 
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for less than 15 minutes. Contacts were made most frequently at home and at school or 

work.  

 

Following Polymod there have been 17 major diary based contact surveys in large 

populations  that adopted a similar methodology, nine at a national level [71–79] and 

eight studies performed on a regional basis [80–87]. Across these studies some 

adjustments have been made to the survey methodology to identify characteristics of 

certain populations and allow deeper analysis of mixing behaviour. Differences between 

findings of the studies and variation within populations indicate the impact of cultural 

and social context in contact networks.  

 

Some studies have included individual covariates relevant to social groups for example, 

employment status[80, 88], household composition[71–73, 75, 76, 81–84] and population 

density[81, 83]. Two studies in particular investigate social context of contacts in more 

depth.  

 

A large survey of the United Kingdom[75] by Danon et. al. in 2009 investigated the nature 

of contact events in different social settings. The survey estimated the level of contact 

clustering by asking participants how many of their contacts also had contact with each 

other in the 7 days prior to the completing the diary. Detailed analysis of number of 

contacts, contact duration and clustering of contacts in different social settings allows 

analysis of how networks of contacts may form. In additional analysis, Danon constructed 

characteristic ego-networks[88] (networks centred around a specific individual) in the 

sampled population. The results demonstrate striking differences in the way individuals 

mix, based on their social and professional context. However, difficulty in connecting 
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ego-networks limits use of these findings in the development of large-scale models of 

transmission.  

 

Danon also collected information about the distance of contact events from the 

participants home, a measure also undertaken by Read[83] et al. in China. Both surveys 

show a power-law relationship between distance from home and number of contact 

events.  

 

The questionnaire does not include contact age, eliminating the possibility of exploring 

potential differences in age-structured mixing patterns in different social contexts.  

 

A novel approach to sampling the population for social contact surveys has been 

implemented by Stein et al in both Thailand and the Netherlands [76, 85]. The process is 

used to assess socio-demographic correlation between contacts. The approach initializes 

a ‘seed’ sample. Following completion of the questionnaire, seed participants are 

requested to recruit a small sub-set of their own contacts, who then repeat the process 

until no more participants are recruited or a maximum number of cycles are completed. 

This theoretically has potential for a deeper understanding of types of individuals who 

mix together. Analysis suggests that in general recruits were assortative by age, education 

level, household size and vaccination preference [76]. However, there are indications of 

high recruitment rates from within participants’ households. 

 

This approach is limited in two ways. Firstly, only a small proportion of participants were 

successful in recruiting their contacts making the sample size for comparison small. 

Secondly, accurate representation of contacts relevant to infectious disease transmission 
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may be affected by the “friendship paradox”: an individual’s contacts have more contacts 

than them on average [89]. Qualitative similarities between recruits and contacts have 

been demonstrated, but this does not necessarily support a proposal that these covariates 

are also predictive of contacts relevant to the transmission of infectious disease.  

 

There are a number of qualitative consistencies between the findings of all diary-based 

surveys, for example age assortativity and relationship with household composition. 

There are however significant differences in specific measures of number of contacts and 

the composition of age structured mixing. This is most clear from comparison of the 

constituent countries of the Polymod study, which used a consistent sampling and survey 

methodology in each setting. Analysis has shown that these differences are clear enough 

to result in variance in outbreak dynamics and the relative success of identical vaccination 

programs[14].  

 

Although diary-based contact surveys have proven successful in identifying differences 

in contact rates between age groups, none has yet attempted to quantify differences in 

contact rates between social sub-groups of the population explicitly. Sociological studies 

have sought to measure social integration of socio-economic and ethnic groups in the 

UK[90, 91], but the measures of integration cannot be directly applied to the transmission 

of infectious disease.  

 

Three clear limitations within contact survey methodology make their use for 

understanding widespread interaction between social groups challenging within this 

framework:  
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1. Participant burden: In general, longer surveys have reduced participant response 

rates. Hence, by increasing complexity of information gathered through a survey 

both the scale and representation of the sample can suffer [92, 93].  

2. Statistical power: As the aggregation of the population becomes more specific, 

for example, introducing ethnic background or social status of participants, the 

proportion of the population in these groups reduces. This requires either more 

targeted recruitment methods or increased numbers surveyed. This can greatly 

increase the cost and effort required.  

3. Participant interpretation: The definition of social groups, even by ethnicity, can 

vary significantly, particularly between those of different cultural heritage. This 

makes it difficult to ask participants to assign a social group to contacts in a 

consistent way. 

 

Other methods of recording social contacts  

There have been multiple studies that make use of proximity sensors to record interaction 

between members of a population[94–98]. These are powerful techniques for measuring 

complete contact networks within small, closed populations such as school classes, 

however they require the entire population to be included to record every contact made 

between its members, which becomes untenable in larger populations.  

 

Data driven parameterisation 

Another way to establish interaction between groups or individuals is to analyse 

secondary data sets that give some information about population structure or behaviour.  
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Models with geographically aggregated populations can use various data on interaction 

between those sites in conjunction with socio-demographic data (ethnic breakdown, 

socio-economic status, age structure) to aid parameterisation of a model.  

 

One method of parameterising interaction particularly between geographically defined 

populations is to make assumptions about how populations move relative to location and 

population size. The models used to estimate spatial interaction are generally known as 

“spatial kernels”. A popular example of a spatial kernel is the Gravity Model [99], which 

is based on Newtonian gravity. In this kernel mass is replaced with population size. Larger 

populations interact more strongly than smaller populations and interaction decays with 

a power-law. This model can be made more flexible by varying exponents on population 

size and distance between populations. These approximate measures of interaction have 

been found to perform differently in different settings and at different spatial scales when 

assessed against movement patterns identified through mobile phone use data, census 

commuting data and arrival times of pathogen strains[100–102]. 

 

Sometimes data is available that gives some explicit information about movement of 

people. A good example of this is airline flight and passenger data[103], which is freely 

available for every flight in the world. This has been used fruitfully in assessing risk of 

transmission between countries[104], the expected arrival time of particular strains of 

influenza in different countries[105] and assessing the pandemic potential of a novel 

strain of influenza[106]. This resource is most useful over long distances where flights 

are the main form of transport, however this assumption breaks down at shorter distances 

and usually for within country travel, with the exception of larger countries such as the 

United States of America.  
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Similarly, government-collected commuting data has been used to parameterise detailed 

individual-based models [66, 107] of infectious disease transmission. The premise is that 

individuals generally move between their home and place of work introducing risk of 

spreading infection between these locations. An important limitation of this data is that it 

is often presented at a zipcode/postcode area level or similar, which is relatively coarse 

when considering individual risk of contact, and an assumption must be made about 

contact within the same work and residential district limiting information about the 

interaction between social groups explicitly. 

 

Another form of data-driven network, popular for modelling infections in farm animals, 

is a hub-based network. In these networks data about interaction between ‘hubs’ (e.g. 

farms) is explicitly parameterized from, for example, animal freight data[62, 108, 109]. 

Transmission within the hub can then be assumed to be homogenous and often hubs are 

used as the agent in the model such that they themselves have a disease status (e.g. 

Susceptible, Infected, Recovered). This has been shown to be effective in veterinary 

epidemiology, however this approach has only rarely been used for modelling infection 

in human populations. One example is for understanding transmission of hospital-

acquired infections on a network of health care institutions, parameterised from patient 

transfer data [110–112].  

 

Models with social structure for understanding inequalities 

Despite a lack of explicitly measured differences in contact rates within and between 

social groups, there have been instances where mathematical models have been used as a 

means to investigate the inequalities in infectious disease. These models use spatially 
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aggregated demographic and commuting data to inform rates between socio-economic 

groups.  

 

Typical approaches include spatially dependent transmission parameters and transport 

and commuting data [113, 114]. This approach neglects the potential for significant 

cultural differences in contact behaviour. For example, religious practice, engagement 

with family members living outside of the household and the nature of work undertaken. 

These may lead individuals to mix preferentially within their own social sub-group to a 

greater degree than spatial models predict [115].  

 

The nature of integration of sub-groups is likely to be highly location-dependent even 

within a country. The relationship between ethnicity, socio-economic status and 

cultural/religious preference is likely to be complex[91]. It may, however, be possible to 

identify predictors of integration based on a combination of ecological factors.  

 

Kumar et al modelled Influenza A H1N1 transmission in New Haven County, 

Connecticut, USA[114]. The analysis used an “Individual based model”, a highly detailed 

simulation designed to qualitatively reflect realistic movements and contact behaviours 

based on information about the context being modelled. Kumar et al found that by 

explicitly modelling differences in population structure (age distribution, household size 

etc.) and commuting patterns between geographical areas, approximately a third of the 

observed area-level disparities in the 2009 outbreak were reproduced in the model.  

 

Hyder et al performed a similar analysis in Montreal[113], Canada. Interestingly the 

disparities in Montreal are reversed; individuals of low socio-economic status have lower 
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risk of infection from influenza. This had previously been demonstrated in a number of 

ecological studies[116, 117]. The analysis compares models with increasing level of 

detail regarding the spatial distribution of social deprivation in the City. Results show that 

spatial distribution of deprivation is an important factor in reproducing the measured 

disparities. However, the full extent of these disparities could not be explained purely by 

spatial considerations. 

 

Both of these studies conclude that spatial and demographic elements of population 

structure are important, but are insufficient to explain the full extent of observed 

disparities in influenza risk. Other factors that influence mixing patterns beyond 

population structure and distribution, such as cultural differences and religious practice, 

may also be important in explaining disparities in transmission. Development of models 

that include more realistic estimates of mixing within and between social groups is 

required to better understand how differences in transmission may account for the 

observed disparities. 

 

Opportunities with school data 

As I have discussed, no existing contact surveys specifically capture interaction between 

social groups and no well-established data-driven approach to parameterisation is well-

suited to approximate these interactions. There is a need to identify methodologies to 

account for social structure effectively in mathematical models. One source of data that, 

has not yet been utilized in parameterisation of models of infectious disease transmission, 

is government school data. Both the UK and the Netherlands maintain detailed databases 

on school children. This data provides the means to study the structure of the school 

system and hence social structure relevant to infectious disease transmission within the 
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school-aged population, which is generally accepted to be of high importance in 

infectious disease dynamics[118]. In this thesis I take advantage of this data to develop 

frameworks to evaluate transmission within and between particular social groups.  

 

 Aims and objectives 

The aim of this thesis is to better understand observed inequalities in infectious disease 

and uptake of vaccinations. Specifically, to: 

 

A. Improve understanding of how differences in transmission and uptake of 

vaccination between social groups contribute to observed and previously 

unexplained transmission dynamics in diverse populations.  

B. To advance the description of population structure in relation to contact-patterns 

and the embedding of these in a modelling framework to explain observed 

inequalities and to improve understanding of the impact vaccination on 

inequalities. 

 

To address these aims I have five objectives: 

 

1. Assess the relative importance of contact rate, susceptibility and vaccine uptake 

on inequalities in infectious diseases of different epidemiological character. 

 

2. Evaluate whether previously observed inequalities during the early phase of the 

Influenza H1N1 UK outbreak in 2009 are likely to be related to differences in 

transmission. 
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3. Develop a framework to quantify social structure within contact networks of 

school children in a way that can be used in an infectious disease transmission 

model.  

 

4. Evaluate the potential role of schools in creating inequalities in influenza 

outbreaks in London. 

 

5. Analyse the impact of faith schools on clustering of children who are susceptible 

to measles and resultant measles epidemiology in the Netherlands 

 Thesis structure 

This thesis is presented in nine chapters. Seven of these chapters present the various 

analyses in ‘paper-style’, which form the work of the PhD. These are preceded by this 

introduction and followed by a general discussion of the findings. Each of chapters 

presents a self-contained piece of work aimed at answering a specific set of questions 

which pertain to one of the objectives the PhD. The thesis contains four detailed analyses 

summarised as follows:  

 

Analysis A is found in chapter 2. This analysis aligns with objective 1 and uses a 

traditional differential equation model to assess impact of social groups with different 

transmission related behaviour and/or vaccination uptake on inequalities in disease. This 

is a published research article with multiple authors and is therefore written in first person 

plural tense. Details of my contribution to the work are found in the cover sheet at the 

beginning of the chapter. 
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Analysis B in chapter 3 evaluates the observed inequalities in Influenza H1N1 during the 

UK outbreak in 2009, which is in line with objective 2.  

 

Analysis C, detailed in chapter 6 uses a novel framework to simulate outbreaks of 

influenza in school aged children in London in alignment with objective 4.  

 

Analysis D, which spans chapters 7 and 8, this concerns potential clustering of children 

who are unvaccinated against measles in the Netherlands and the impact of this on 

measles epidemiology, to address objective 5. Chapter 7 contains network analysis to 

evaluate clustering of unvaccinated children. Chapter 8 contains simulation studies to 

investigate the impact of this clustering on measles epidemiology. 

 

In addition to these major analyses, chapters 4 and 5 contain briefer analyses and a 

detailed description of the two frameworks I developed using national schools’ data to 

investigate social group structure of school aged children, one of which is used in 

Analyses C and D. These chapters align with objective 3.  
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Abstract 

Background 

Social and cultural disparities in infectious disease burden are caused by systematic 

differences between communities. Some differences have a direct and proportional 

impact on disease burden, such as health seeking behaviour and severity of infection. 

Other differences—such as contact rates and susceptibility—affect the risk of 

transmission, where the impact on disease burden is indirect and remains unclear. 

Furthermore, the concomitant impact of vaccination on such inequalities is not well 

understood. 

 

Methods 

To quantify the role of differences in transmission on inequalities and the subsequent 

impact of vaccination, we developed a novel mathematical framework that integrates a 

mechanistic model of disease transmission with a demographic model of social structure, 

calibrated to epidemiologic and empirical social contact data.  

 

Results 

Our model suggests realistic differences in two key factors contributing the rates of 

transmission—contact rate and susceptibility—between two social groups can lead to 

twice the risk of infection in the high risk population group relative to the low risk 

population group. The more isolated the high risk group, the greater this disease 

inequality. Vaccination amplified this inequality further: equal vaccine uptake across the 

two population groups led to up to seven-times the risk of infection in the high risk group. 

To mitigate these inequalities, the high risk population group would require 

disproportionately high vaccination uptake. 

 

Conclusion 

Our results suggest that differences in contact rate and susceptibility can play an 

important role in explaining observed inequalities in infectious diseases. Importantly, we 

demonstrate that, contrary to social policy intentions, promoting an equal vaccine uptake 

across population groups may magnify inequalities in infectious disease risk. 
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   Introduction 

Reductions in global infectious disease burden have uncovered inequalities in infectious 

disease health outcomes[1–7]. These inequalities often reflect a disproportionately high 

incidence observed amongst the most deprived and vulnerable in society[4, 8–10]. 

Implementing equitable public healthcare relies on prioritizing effective interventions 

that control the drivers of these inequalities[11]. 

 

There may be many contributing factors to inequalities in reported infectious disease 

health outcomes. Some of these factors have a direct and proportional impact on the 

relative reported disease burden between social groups; for example, the severity of 

disease experienced[12, 13], the propensity to seek health care[14] and the reporting rate 

of disease[15]. In contrast, other factors impact the transmission of infection and these 

may result in non-linear changes in the relative disease burden between social groups. 

This latter group of factors include differences in social contact, both within and between 

social groups, and differences in the susceptibility to infection and infectiousness. 

 

Although indistinguishable when their effects are measured using reported disease 

burden, these drivers have different implications for delivering equitable public health 

interventions. For example, in the 2009 H1N1 pandemic disparities in health outcomes 

between social groups were identified globally. In particular, British Pakistanis had a 3.4 

times increased risk of mortality relative to the White British population[16]; many ethnic 

minority groups (Black, South Asian and South East Asian) had a higher risk (Odds Ratio 

of 1.33–4.5) of exposure than white Canadians in Ontario[17]; Pacific populations were 

twice as likely to be exposed to infection than the rest of the New Zealand population[18]. 
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Although these examples would likely present as increased clinical burden in particular 

sub-groups, the drivers of these differences are difficult to determine. Even though the 

results from New Zealand indicate differences in transmission rate between sub-groups, 

the seroprevalence data do not provide enough information to identify the specific driver 

responsible. 

 

Vaccination is an important intervention in infectious disease control because it reduces 

disease burden in those vaccinated as well as reducing onward transmission to 

unvaccinated people. The strength of this indirect protection non-linearly depends on the 

transmission rate[19]. Therefore, if inequalities are caused by differences in transmission 

between social groups, vaccination may benefit some groups more than others. The 

impact of vaccination on inequality in infectious disease outcome is therefore unclear. 

 

To address this gap in our knowledge, we developed a novel mathematical model of the 

transmission of two vaccine-preventable infections circulating in a population with two 

social groups characterised by different transmission properties. To quantify the effect of 

differences in transmission on disease inequality between the social groups, we 

parameterised the model using realistic estimates of susceptibility and contact structure 

informed by empirical social mixing data. Using our model, we investigated how the 

overall impact of vaccination is distributed between two social subgroups, and the effect 

on inequality in disease incidence. 

 In addition, we determined the optimal vaccine allocation needed to eliminate inequality. 
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 Methods 

We developed a novel mathematical model to evaluate whether differences in contact rate 

and the susceptibility to infection between two social groups can explain disease 

inequality across a population. We used this model to quantify how a vaccination 

programme affects these inequalities. Our mathematical model combined a dynamic 

epidemiological model of disease transmission with an age-structured population model 

of two distinct social groups (Figure 2.1).  

 

Population model 

To simulate the demographics of a high-income country, we modelled a stable age 

distribution with birth rate equal to death rate, a life expectancy of 80 years, and mortality 

only occurring after 70 years of age at a constant rate. The population model was stratified 

into 1&'(=15 age groups (0–4, 5–9, … , 65–69, 70+ years) with continuous ageing 

between age groups. The age-structured population model was further stratified into two 

social groups of equal size, with the same proportion male and female and identical age 

structure. Throughout the paper, the social groups with high and low transmission are 

labelled group H and group L, respectively. 

 

Epidemiological model 

Our dynamic transmission model tracked the proportion of the population as susceptible 

(S), infected but not infectious (E), infectious (I), and permanently immune to infection 

(R)  (Figure 2.1A). 
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The transmission between and within the two social groups was captured by three 

mechanisms. The first two control the underlying differences between the two social 

groups that are potential drivers of inequality: i) a difference in contact intensity between 

the two groups, expressed as the relative rate at which members of group L interact with 

members of their own group, compared to the rate at which members within group H 

interact with one another (‘Contact intensity’, 0 < 3 < 1) , and ii) a difference in 

susceptibility to infection, expressed as the relative susceptibility for members of group 

L compared to members of group H (‘Susceptibility’, 0 < 5 < 1). The third mechanism 

determines the integration of the two social groups: iii) the relative rate at which 

individuals from one social group contact members of the opposite social group 

(‘Integration’, 0 < 6 < 1). For example, 6 = 0.15 corresponds to contact between group 

H and group L at 15% of the rate of contact within group H. The rate of contact between 

the groups remained symmetrical i.e. the rate of contact from group H to group L was the 

same as the rate of contact from group L to group H. The force of infection,	&, for the 

susceptible population in age group 8 and social groups H or L is therefore dependent on 

the social group specific susceptibility, the age- and social group-specific contact rate, 

and the reproductive number, !#, of the disease (Figure 2.1C) and can be expressed as: 

 

!!,# =#$%!$&'$,# + )'$,%*
&'

$(&
 (1a) 

!!,% =#$+%!$&)'$,# + ,'$,%*
&'

$(&
 (1b) 

 

Where ,)* is the age-specific transmission rate from age group 9 to age group 8 and -*,, 

and -*,- are the proportion infectious in age group 9 and social group H and L respectively.  
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To keep !#	constant when the relative contact rate (3), susceptibility (5) and integration 

(6) of the social groups were changed, we scaled the force of infection using a linear 

operator, : . This approach allows parameters of interest (relative contact rate (3 ), 

susceptibility (5) and integration (6) and !#) to be varied independently from each other 

(Supplementary material). All modelling and analysis was performed using Python[20] .  

 

 

Figure 2.1 Summary of the mathematical model used to quantify inequalities between social groups 

H (high risk) and L (low risk).  

A) The epidemiological model where. !!,# , #!,# , $!,# . &!,#  and '!,# 	are the proportion susceptible, 

infected not infectious, infectious, recovered and force of infection in age group i and social group G 

(either group H or group L), ) is the proportion vaccinated, * is the rate at which infected individuals 

become infectious and + is the rate of recovery from infection, population also moves out of these 

groups into other age groups and are removed when they die (not shown in this schematic). B) A 

schematic of the population model with higher contact rate in group H than group L, the groups also 

differ in susceptibility (not shown). C) An example transmission matrix, showing the relative 

transmission rate between age and social groups with all social mixing and susceptibility assumptions 

included with parameterisation	, = 0.6, 0 = 0.6, 1 = 0.05  (rates normalised such that the highest 

transmission group 10-14 YO in group H has a rate of 1. The same age-group has a rate of 0.36 within 

group L (Low susceptibility and reduced contact rate, ,  and 0), 0.05 from group L to group H 

(between group contact rate, 1) and 0.03 from group H to group L (between group contact rate and 

reduced susceptibility, 1 and 0). 
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Parameterisation 

Disease scenarios 

We parameterised our model for two vaccine-preventable diseases: seasonal influenza 

and rubella. We quantified the incidence in the total population for both diseases. For 

influenza, we also quantified the incidence in those aged 60 years and over; who are at 

risk for severe complications following infection. For rubella, we quantified the incidence 

in women of childbearing age (WCA) (15-45 years), who serve as a proxy for children 

born with congenital rubella syndrome after their mothers become infected during 

pregnancy. The reproduction number, incubation period and infectious period for both 

diseases were parameterised from literature (Table 2.1). The contact rate between age 

groups was parameterised with empirical social mixing data collected in the UK arm of 

the POLYMOD contact survey[21]. 

 

Inequality mechanisms 

Integration: We informed the parameterisation of	6, the rate of contact between social 

groups, relative to the rate of contact within group H, using social contact data from the 

UK arm of the POLYMOD study[21]. We assumed that all household contacts were 

within their own social group, with a further 70–90% of non-household contacts also 

within their own social group. The relative rate of contact between social groups, 6 was 

estimated as 0.05–0.25 (Supplementary material).  

 

Relative contact rate: The feasible range for the contact intensity parameter, 3 , the 

relative rate contact within group L compared to group H, was also informed by the 

POLYMOD contact data. For each of the 15 age groups we sorted the participants into 

quintiles by their household size. We then recombined the age groups, quintile by quintile 
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to recover five equally sized groups. For each participant, we calculated the total number 

of contacts from within each person’s own social group (using the same assumption as 

above that all household contacts and 70–90% of non-household contacts were with 

members of their own social group). The contact intensity parameter, 3  was then 

estimated by evaluating the ratio of the total number of within-group contacts for 

individuals in every unique pair of quintiles. We estimated the range of ratios as 0.65–

0.95 (Supplementary material). 

 

Relative susceptibility: Given the disease specific consideration regarding previous 

exposure to obtain a parameter for the relative susceptibility (6) we investigated the same 

range of 65–95% susceptibility in group L compared to group H.  

 

Primary analysis: Quantifying inequalities  

The inequality in the population was expressed by the relative risk of infection in the high 

mixing group (group H) relative to the low mixing group (group L). We calculated this 

relative risk across the overall population and for the disease-specific risk groups. For 

influenza, we calculated the cumulative relative risk over the course of a single outbreak. 

For rubella, we measured the relative annual infection risk at endemic equilibrium to 

ensure both rate of transmission and age specific prior exposure to infection were 

accounted for in our calculation.  
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Table 2.1 Model parameter values used in base case and sensitivity analyses 

 Symbol 
Primary 
analysis 

Sobol 
range** 

Population parameters    

Difference in transmission 
(either*):    

 Within group mixing 
(“Contact”) ,	 0.65–0.95  0.65 – 1.54 

 
Relative susceptibility of 
group L to group H 
(“Susceptibility”) 

0	 0.65–0.95  0.65 – 1.54 

Quantity of out group mixing 
relative to within group mixing of 
group H (“Integration”) 

1	 0.05–0.25 0.05–0.25 

Relative vaccine uptake in 
group H to group L 3$/3%	  1.0  0.70–1.43 

* One parameter value set to 1.0 whilst the other adjusted over the ‘primary 
analysis range’’ 
** Ranges were set so the mid value is the ‘base case’, which was 1.0 (no 
difference) for factors which vary group L relative to group H.  

Epidemiological parameters     

Basic reproduction number[22, 
23] &&	   

Influenza 	 1.8 1.5–4.0  

Rubella  6.5 5.0–8.0  

Pre-infectious period (days)[24] *	   

Influenza  2.6 2.6 

Rubella  14.0 14.0 

Infectious period (days)[24] +	    

Influenza 
	

4.0 4.0 

Rubella  11.0 11.0 
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Vaccination 

For both diseases, we assumed a proportion of individuals become immunised after 

vaccination—an ‘effective coverage’. Consistent with disease-specific immunity 

profiles, we assumed no waning of vaccine protection over the period of evaluation 

(lifetime for rubella or one influenza season). Effective coverage for influenza 

vaccination was identical across all age groups from the beginning of the season; for 

rubella, vaccine was administered at birth. To allow comparison of results between the 

two diseases with different !# values, we express the effective vaccine coverage as a 

fraction of the critical vaccination threshold (CVT), 1	– 	1/!#  i.e. the minimum 

proportion of the population required to be vaccinated to interrupt transmission. We 

evaluated the relative risks of infection with no vaccination and with vaccination at 80%  

of the critical vaccination threshold. Unless otherwise stated, the effective coverage was 

assumed to be identical between social groups. 

 

Identifying the drivers of inequality 

To evaluate the relative importance of the model parameters as drivers for inequality, we 

used a variance-based global sensitivity analysis, the total Sobol’ sensitivity index 

(ST)[25, 26], that calculates the proportion of the variance in the relative risk attributable 

to each parameter and combinations thereof.  
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 Results 

Underlying epidemiology 

We ran simulations with no vaccination and no epidemiological differences between 

group H and group L (i.e. setting 3, 5, 6 = 1). We found that the influenza epidemic lasted 

approximately 21 weeks with a cumulative attack rate of 62% across all age groups and 

40% among those over 60 years. For rubella at endemic equilibrium 99.4% of the 

population were infected before death (95% before the age of 30 years) and the mean age 

of infection was eight years. The annual incidence among women of childbearing age was 

66 per 100,000 (Figure 2.2). 

 

Pre-vaccination inequalities 

Influenza  

Without vaccination, introducing a relative contact rate of 0.65–0.95 within group L 

compared to group H, led to a change in cumulative attack rate in both social groups, and 

hence a change in the relative risk of infection between the two groups (Figure 2.2). In 

particular, across base case values of susceptibility and integration, group H experienced 

a relative risk of infection 1.04 - 1.44 compared to group L (Figure 2.3A). This relative 

risk increased to 1.06 - 1.62 (an increase of 1 -12%) among the elderly in group H. Less 

integration between the two groups exacerbated this inequality; when contact between 

groups was decreased by 67% compared to the base case scenario, (6 = 0.05), the relative 

risk for group H increased to 1.06 - 1.84,(Figure 2.4A).  
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Figure 2.2 Epidemiology predicted by the mathematical model for seasonal influenza and rubella. 

With no differences between two population groups (black dashed line) and with differences in 

susceptibility and contact rate for group H (orange region) and group L (navy region) across feasible 

range of contact rate within social groups (– and base case values of integration (1) and susceptibility 

(Table 1). A) Cumulative incidence of influenza over a single outbreak with no vaccination. B) 

Proportion of population infected with rubella by age at endemic equilibrium with no vaccination. C) 

Proportion of all infections acquired in each 5 year age group, with no vaccination. D) Cumulative 

incidence of influenza with 37% vaccine uptake (80% of the critical vaccination threshold). E) 

Proportion of population infected with rubella by age with 67% vaccine uptake (80% of the critical 

vaccination threshold). F) Proportion of all infections acquired in each 5 year age group, with 67% 

vaccine uptake (80% of the critical vaccination threshold) 

 

Reducing the susceptibility in group L by a factor of 0.65–0.95 relative to group H, while 

maintaining base case values of within-group contact and between group integration, led 

to 1.05–1.63 times more infections in group H than group L over the course of the 

outbreak (Figure 2.3B). Again, the relative risk among the elderly in group H was higher 
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than that of the social group as a whole, with a relative risk of 1.05 - 1.63 under base case 

assumptions of integration. Relative risk of infection in group H increased when the social 

groups were less integrated relative to the base case scenario to 1.08 - 2.04 (6 = 0.05) and 

up to 2.49 in the elderly. 

 

Rubella 

Unlike our influenza model results, differences in contact rate and susceptibility between 

the social groups did not result in an inequality in the risk of rubella infection in the whole 

population (Figure 2.3). However, a more intense contact rate in group H or a lower 

susceptibility in group L led to a lower age of infection in group H relative to group L 

(Figure 2.2). This difference in the age of infection resulted in a relative risk of infection 

for women of childbearing age (WCA) in group H of 0.64 - 0.95 across feasible ranges 

of both within-group contact rates and susceptibility. In contrast to the influenza risk 

group, therefore, our model suggests there is an elevated risk for the low transmission 

social group (Figure 2.3). Again, in contrast to the influenza model results, varying the 

level of integration between social groups only marginally affected the relative risk of 

infection across WCA (Figure 2.4B). 

 

Post Vaccination inequalities 

Influenza  

Vaccination with a 37% uptake (80% of the critical vaccination threshold) reduced the 

cumulative attack rate of seasonal influenza from 62% to 30% when transmission in the 

social groups was identical (Figure 2.2C). However, with differences in contact rate and 

susceptibility between the two social groups, introducing vaccination increased the 

inequality between the social groups (Figure 2.3). For example, relative risk of 1.04 - 1.84 
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before vaccination increased to 1.11 - 2.18 after vaccination with differences in contact 

rate, and for differences in susceptibility relative risk increased from 1.05 - 2.04 before 

vaccination to 1.13 - 3.00 after vaccination (with base case integration, 6 = 0.15).  

 

Consistent with the results without vaccination, relative risk of infection for group H 

increased when the two social groups were less integrated (Figure 2.4A). When the 

inequality was driven by feasible changes in either within-group contact rate or 

susceptibility to infection, the relative risk across the whole of group H reached 4.83 and 

6.99, respectively, when integration was at its lowest value (6 = 0.05 ). Therefore, 

vaccination increased the inequality of disease risk in the social group most at risk of 

infection by 5 - 241% (Table 2.2). 

 

Although the percentage increase in relative risk after vaccination was less among the 

elderly in group H (5-203%), the relative risk remained higher than in the total population, 

with a maximum relative risk of 5.19 and 7.52 for differences in contact rate and 

susceptibility respectively (Figure 2.4A).  

 

The marked increase in inequality in risk of influenza infection as a result of vaccination 

corresponds to the social group H benefiting substantially less from the vaccination 

programme than group L. 

 

Rubella 

An effective vaccination uptake of 67% (80% of the critical vaccination threshold) greatly 

reduced lifetime risk of rubella in both social groups, with less than 40% of the 

unvaccinated population experiencing infection over their lifetime (Figure 2.2D).  With 
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differences in contact rate between the social groups, vaccination caused an inequality to 

emerge. Specifically, the relative risk of infection in group H relative to group L increased 

from 1.01–1.02 to 1.02–1.42, across a feasible range of within-group mixing patterns 

(Figure 2.3A). The same result was found as a consequence of susceptibility differences 

(Figure 2.3B).  

 

Figure 2.3  Risk of infection in group H relative to group L in the total population and in risk groups, 

elderly and women of childbearing age (WCA).  

Relative risks shown with no vaccination and vaccination at 80% of critical vaccination threshold 

(37% for influenza and 67% for rubella). Forest plots show ranges of relative risk for fixed integration 

of 1=0.15 and a range of A) ratio of in contact rate in social groups (,=0.65–0.95) and B) ratio of 

susceptibility in social groups (0=0.65–0.95) 

 

Furthermore, vaccination reduced the difference in the age of infection between the two 

social groups (Figure 2.2). The combination of changes in relative risk of infection before 

death and in age at infection caused a switch in the group most at risk for infection in 

women of childbearing age. Before vaccination the highest relative risk was among 

women in group L whereas with vaccination the women of childbearing age in the group 

H tend to have a higher risk, with relative risk ranging 0.99–1.16. 
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Sensitivity analyses show robustness of these results to variation in the relative size and 

community structure of group L and group H (Figure 16 and Figure 17 of the 

supplementary material). 

 

 

 

 

 

 

 

 

 

 

Table 2.2 Percentage increase in risk of infection in group H relative to group L due to 

vaccination.  

 

Percentage increases in relative risk of infection for the total population (all), women of 

childbearing age (WCA) and elderly. Results calculated when either the relative within-

group contact rates of the two social groups is varied (“Contact” parameter) or when the 

relative susceptibility of group L to group H is varied (“Susceptibility” parameter) (Table 

1). Integration between the social groups is set at its base case value. 

 

Driver of 

inequality 
Infection 

Population 

group 

Increase in 

relative risk 

Difference in 

Contact rate 

Influenza All 4–162% 

Elderly 3–137% 

Rubella 
All 2–39% 

WCA 4–72% 

Difference in 

Susceptibility 

Influenza All 5–241% 

Elderly 5–203% 

Rubella 
All 2–49% 

WCA 5–86% 



 
 

 68 

 

Figure 2.4  Relative risk with social isolation 

Full range of relative risk in A) influenza in the elderly (60+ y) and B) rubella in women of 

childbearing age (15–45 y), due to differences in contact rate (, = 0.6–0.9)  as isolation between sub-

groups varies (1 = 0.05–0.15). Red shaded region shows range of relative risk with no vaccination, 

blue shaded region shows relative risk with vaccination at 80% of the critical vaccination threshold. 

(37% coverage for influenza, 67% coverage for rubella) 

 

Vaccinating to prevent inequality 

By increasing the vaccine uptake in group H relative to group L, the inequalities driven 

by vaccination, differences in contact rate and differences in susceptibility can be 

mitigated. To achieve equality in risk of infection for influenza across the entire 

population, group H had to receive 52–70% of the total number of vaccine doses across 

the feasible ranges of population parameters (Figure 2.5A). In contrast, small changes in 

vaccine dose allocation were required to curb inequality in rubella (50.3–52.3%) (Figure 

2.5B). The level of integration between the two social groups did not impact the vaccine 

uptake required in each group to eliminate inequality (results not shown). 
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Figure 2.5   Optimal vaccine allocation 

Optimal vaccine allocation between social groups required to control disease inequalities in A) 

influenza and B) Rubella. Results shown for ratio of contact rate in social groups (,=0.65–0.95) and 

ratio of susceptibility in social groups (0=0.65–0.95). The total vaccination coverage is 80% of the 

critical vaccination threshold (37% vaccine uptake for influenza, 67% vaccine uptake for rubella). 

 

Ranking drivers of inequalities  

Pre-vaccination era 

Without vaccination the magnitude of the inequality (i.e. relative risk of infection for the 

high transmission group) in influenza was most sensitive to the relative susceptibility of 

the social groups (ST = 0.55) and their relative contact rate (ST = 0.48) (Figure 2.6A). The 

same was true for rubella (for relative susceptibility ST = 0.58; for relative within-group 

contact rate ST = 0.46). By comparison, sensitivity to integration between the two groups 

was relatively small, however greater for influenza than rubella (ST = 0.03 vs. 0.004, 

respectively) (Figure 2.6B).  
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Figure 2.6 Sobol indicies:  

Total Sobol’ indices, ST , for contact (,), susceptibility (0), integration (1), infectivity (&&) and 

difference in vaccination coverage (3$/3%) relative risks for rubella and influenza. A) Influenza in the 

elderly (60+ years) with no vaccination. B) Rubella in women of childbearing age (15–45 years) with 

no vaccination. C) Influenza in the elderly with vaccination coverage at 37% (80% of the critical 

vaccination threshold). D) Rubella in women of childbearing age (15–45 years) with vaccination 

coverage at 67% (80% of the critical vaccination threshold). Error bars show 95% confidence interval.  
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Vaccination era 

Additional variance introduced by differences in vaccine uptake between social groups 

caused a reduction in the relative sensitivity of inequalities to all other parameters, with 

the exception of integration. Nonetheless, for influenza, inequality in the disease risk 

between the two social groups remained most sensitive to relative susceptibility and 

contact rate (ST = 0.48; ST = 0.37). In contrast, inequalities were relatively insensitive to 

relative vaccine uptake (ST = 0.35) (Figure 2.6C). Sensitivity to the integration between 

social groups also increased relative to no vaccination (ST = 0.13). For rubella relative 

vaccine uptake between the two social groups had the greatest influence on inequality (ST 

= 0.91), diminishing the relative sensitivity of inequality to relative susceptibility and 

contact rate of the social groups such that they were negligible (Figure 2.6D). 

 

 Discussion 

Differences in incidence of infectious diseases between social groups have been 

observed, however the factors that drive these inequalities are not well quantified. 

Moreover, the impact of vaccination on these inequalities is unclear. We developed a 

novel mathematical model to simulate influenza and rubella in two connected social 

groups and assessed the role of differences in two key factors—contact rate and 

susceptibility—on inequalities as well as the impact of vaccination. Our model suggested 

that these factors could be responsible for substantial differences in disease epidemiology 

between social groups. Therefore, these factors may play a significant role in driving 

observed inequalities in infectious disease outcomes. Furthermore, the results suggest that 

the impact of these factors on inequalities depend on the characteristics of the pathogen, 
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as we show that the same differences in transmission are likely to cause greater inequality 

in influenza than rubella. Vaccination can exacerbate the inequalities even when the 

uptake is equal between the groups. 

 

These observations have four important implications for public health and immunisation 

strategies. First, inequality in health is an area of high importance amongst public health 

authorities[5, 27]. As such there is a appetite for policy that avoids and reduces 

inequalities in infectious disease outcome[28, 29]. To this end, effort is spent attempting 

to provide equal distribution of vaccination across social groups in the population[30]. 

However, our results indicate that equal vaccination uptake could, paradoxically, increase 

inequalities into high transmission groups, if the vaccine coverage is not high enough to 

eliminate disease. This result indicates that equal vaccination is not an appropriate 

measure of equitable intervention, and inequality in disease burden must be evaluated 

directly.  

 

Second, groups who have social characteristics that place them at a higher risk of 

infection and who also have a reduced vaccination uptake may be vulnerable to amplified 

inequalities. For example, during pandemic H1N1 (pH1N1) in 2009, Black and Hispanic 

populations had a lower uptake of influenza vaccination than the White population in the 

United States[31]. In addition, countries with self-financed or partially self-paid 

vaccination programmes may discourage more materially deprived groups from 

vaccinating; studies[32, 33] in Poland and South Korea have identified lower uptake of 

vaccination correlates with low Socio-economic status. This leaves the possibility that 

low uptake may correlate with factors contributing to transmission.  
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Third, the factors that most influence inequality depend on the underlying disease 

dynamics and intervention efforts must therefore be disease- and population-specific. For 

example, our results indicate that differences in vaccine uptake are more important in 

creating inequalities in rubella than differences in factors associated with transmission 

rate. This is reflected in the small (0.3–2.3%) change from equal vaccine uptake required 

to mitigate differences in contact rate or susceptibility (Figure 2.4). However, inequalities 

in Influenza are more sensitive to differences in transmission related factors than 

differences in vaccine uptake. This contrast was evidenced when low vaccine uptake in 

more affluent social groups created “a reversal of health inequalities” with higher 

prevalence in more affluent areas during a measles outbreak in London, UK in 2001–

2002[34]. In contrast, the same geographical region saw a higher attack rate of pH1N1 in 

more deprived areas[9] only seven years later. This finding suggests that, notwithstanding 

the potential to increase existing inequalities, for diseases like rubella equal vaccine 

uptake may be the most practicable target for minimising post vaccination inequalities in 

disease burden. However, the same approach may not be optimal for Influenza.  

 

Finally, we identified that inequalities resulting from differences in transmission are 

highly sensitive to the level of integration of subgroups. The importance of integration 

between social groups becomes more pronounced for diseases with sub-optimal vaccine 

uptake. This result suggests that inequalities driven by differences in transmission rate or 

a difference in vaccine uptake may be more likely to occur in highly segregated 

populations. Our finding could explain inequalities in incidence of infectious disease in 

urban centres where there is geographical clustering of social and ethnic groups. For 

example central Birmingham, UK, which was heavily affected by pH1N1 in 2009, is an 

area where up to 80% of the population is South Asian, an ethnic group associated with 
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higher risk of transmission[8] . This phenomenon may also contribute to increased risk 

of outbreaks of measles, often observed in isolated communities with low vaccination 

coverage[35, 36] . Our findings reinforce the notion that communities that are more 

isolated should be of particular focus when considering public health strategies for 

infectious disease. Further, our results highlight the importance of understanding the role 

of transmission related factors in inequality in populations where social and ethnic groups 

are becoming more segregated, as inequalities could be set to increase[37]. 

 

Our influenza model predicts a relative risk of infection in an unvaccinated population of 

up to 2.05, within feasible values of social group mixing and susceptibility. This is 

broadly consistent with data from the pH1N1 epidemic in 2009. For example, a case 

control study from Ontario, Canada shows that East/Southeast Asian, South Asian and 

Black Ethnicities had a significantly increased risk of acquiring pH1N1 relative to white 

Canadians (OR 1.33–4.50)[17]. Similarly in New Zealand a seroprevalence study showed 

that Pacific Island populations were twice as likely to be infected during the 2009 

pandemic than those of European ethnic identity[18]. While there are many examples of 

observed inequalities in influenza[8, 9, 38–42], studies of inequalities associated with 

rubella and other endemic childhood infections are often focused on disparities in vaccine 

uptake rather than disease outcome[43]. 

 

While much attention has been given to investigating the impact of transmission 

heterogeneity on the overall effectiveness of control strategies[44, 45], We build on this 

work by considering the role of  heterogeneity in influencing  inequalities in infectious 

disease outcomes, rather than the overall disease burden. Transmission models have 

previously been developed to evaluate the impact of social structure on observed 
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inequalities in reported incidence of pandemic and seasonal influenza[46, 47]. By using 

socio-economic census data, these studies can replicate some of the location-specific 

inequalities between pre-defined social groups. However, because it is difficult to 

disentangle the drivers of inequality underlying these socio-economic groups, the models 

do not provide a fully generalisable framework in which to evaluate inequality. To 

overcome this issue, we developed a ‘bottom up’ approach, in which potential 

transmission related drivers of inequality are isolated and evaluated. By parameterising 

our model with empirical social mixing data, we can explicitly capture the contact 

patterns between age- and social groups and the effect of vaccination. Our generalised 

framework therefore allows us to disentangle the relative impact of different drivers of 

inequality and the impact of vaccination on this inequality.  

To enable a mechanistic understanding of the drivers of inequality, we made some 

simplifying assumptions. We assumed that the two social groups in our model have 

identical age structure and birth rates. It has been shown that differences in age structure 

and other demographic differences such as birth rate can also result in changes in 

transmission which lead to inequalities in incidence[46, 47] and the effectiveness of 

vaccination[48]. To remain consistent with this assumption, we corrected for age 

distribution when we calculated the range of differences in contact rate between the 

groups. Furthermore, we assumed gender non-specific contact patterns. In some settings 

gender differences may exist, particularly in rates of contact between adults and 

infants[49, 50]. While this gender difference may also differ between social groups, , a 

recent survey suggest that contact rates between mothers and children are broadly 

consistent across ethnic and socio-economic groups[50]. Our approach is general and 

aims to establish the relative impact of various drivers of inequality. As such, our results 

should not be considered as indicative of the magnitude of specific inequalities, rather the 
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potential for difference in transmission to explain inequalities and the qualitative nature 

of the inequalities that may arise from such drivers. We hope the results can be used to 

target additional analyses at specific scenarios where differences in transmission may 

arise. For example, where differences in household size distribution or high levels of 

segregation between social groups prevail.  

 

 Conclusion 

Difference in contact behaviour and susceptibility to infection could cause substantial 

inequality in infectious disease related health outcomes, particularly those related to 

influenza outbreaks or infections with similar epidemiology. Such inequalities have a 

highly non-linear relationship with vaccination, which is sensitive to the underlying 

epidemiology of the infection, ultimately resulting in an increase in inequality after sub-

optimal vaccination, even when uptake is equal across the entire population. As such, we 

advocate measurement of health outcomes rather than vaccination coverage when 

quantifying the equality of protection across multiple social groups. Moreover, targeted 

vaccination in known risk groups may reduce overall inequalities in the case of influenza 

outbreaks, however, due to high sensitivity of rubella inequalities to differences in 

vaccination coverage, this is not recommended course of action in this case or for similar 

infections.  
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3 Analysis B: Changing socio-

economic and ethnic distribution 

of cases over the containment 

phase of the UK Influenza A 

H1N1 epidemic in 2009 – a 

comparison of London and 

Birmingham  
 

 

 

Objective: Evaluate whether previously observed inequalities during the early phase 

of the Influenza H1N1 UK outbreak in 2009 are likely to be related to differences in 

transmission. 
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 Introduction 

During the 2009/10 influenza pandemic, many high-income countries reported a higher 

incidence of Influenza associated disease in certain social and ethnic sub-groups 

compared to the rest of the population [1–9]. In the UK, observations of disparities were 

clearest during the first few months of the outbreak, in the cities of London [10] and 

Birmingham [11]. Analysis of inequalities in risk of influenza infection can be 

challenging. Clear measurement of disparity in risk of acquisition of infection requires 

accurate, detailed data on cases at the point of infection. Without such data, analyses rely 

on distal measures of infection such as hospitalisation or mortality [2, 4, 7, 8], where 

reported rates can be influenced by many factors not associated with transmission. 

Furthermore, aggregating data with low spatial resolution can result in apparent 

associations between risk and social factors can become exacerbated or diluted due to 

confounding from geographical variation in risk within regions.  

 

Sufficiently detailed case data is most frequently available from the early stages of an 

outbreak, chiefly because the small number of cases allows: closer surveillance, higher 

proportion of cases tested in a laboratory, and more detailed patient records to be kept. 

However, analysis of data early in an outbreak presents additional challenges. For 

example, high degree of localisation in early outbreaks and residential clustering of social 

and ethnic groups geographically may result in measured inequalities simply as a result 

of the location of index cases. Assessing how disparities in risk change over time might 

provide additional insight into what is driving them. 
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During the first three months of the UK Influenza A H1N1 epidemic in 2009, Public 

Health England (PHE, previously the Health Protection Agency) rolled out reactive 

antiviral delivery program, in an effort to contain the outbreak by slowing onward 

transmission through reducing viral load and symptoms in infected individuals [12–15]. 

As part of this effort, data was collected from all those who reported symptoms and 

received treatment. Some patients were swabbed and samples sent for laboratory testing. 

After three months the response and surveillance effort was consolidated into the National 

Pandemic Flu Service (NPFS), where case data became less detailed [16].   

 

I used the individual level data collected during the initial antiviral delivery program to 

perform a detailed analysis of the socio-economic and ethnic breakdown of incidence of 

infection[17]. In particular, I assessed the way in which disparities between socio-

economic and ethnic groups develop over the course of the early phase of the outbreak. I 

compared local outbreaks in the two largest cities in the UK, London and Birmingham, 

which also accounted for the majority and highest density of cases during the period 

corresponding to the data I analyse. I used the comparison to identify consistent patterns 

between the settings, which could provide insight into how disparities my arise, whether 

there are signs of higher rates of transmission within particular groups, and how social 

groups may play a particular role in the initiation and determining the dynamics of the 

early phase of an outbreak. 
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 Methods 

Data overview 

The data, collected as part of the initial containment operation accessed from the Fluzone 

database [17], provides a detailed record of the initial phase of the outbreak across the 

England and Wales. The individual level data included: Unique identification number, 

name (anonymised for this analysis), age, date of symptom onset, date that the report 

arrived at the test centre, full postcode (residence) and school attended. The data also 

included case status, detailing laboratory testing status (confirmed, test-negative or 

untested) or whether the reported case is still considered a possible H1N1 infection, or if 

it has been excluded for another reason (possible, probable or excluded).  

 

To ensure only possible or confirmed cases were analysed, I excluded cases that were 

coded as either test-negative or ‘excluded’. For the purpose of the analysis I required both 

detailed location and symptom onset time. For cases where no date of symptom onset was 

recorded but which did include the date received at test centre I estimated the date of 

symptom onset using the mean time between symptom onset and time received at test 

centre, as calculated from cases which had both dates recorded. Cases with neither date 

reported were discarded.  

 

To provide details of socio-economic status and ethnicity breakdown by area, I linked the 

case data to UK 2011 census data, which I accessed via the Office for National Statistics 

(ONS) website. Using the full postcode, I assigned each case a Lower Super Output Area 

(LSOA), which are small geographical regions defined by ONS, with populations of 

between 800 and 2000 residents. I then linked population data to each case using LSOA 

level aggregates of the following fields from the 2011 census:  
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Age distribution: The number of residents of each age (in years) from 0 to 79 and the 

number of residents 80 and over. 

 

Ethnic group: The number of people who identify as each of the 19 census defined ethnic 

groups. This data was also broken down by age, which allowed ethnic breakdown to be 

estimated for children (<=19 yrs) and adults (>19yrs) separately. Ethnic group is coded 

as shown in Table 3.1. 

 

Deprivation: National Index of Multiple Deprivation (IMD) rank. The rank of the LSOA 

out of 34,753 LSOAs in England and Wales based on the IMD, a commonly used 

deprivation measure that captures multiple facets of deprivation including wealth, 

income, living conditions, quality of life and health outcomes[18]. 

 

To assess socio-economic status by relative national and local deprivation, I summarised 

the deprivation by assigning each LSOA a national decile (the decile (10% band) of the 

IMD rank in England and Wales). In addition, I identified the local deprivation quintile 

(the quintile of the IMD rank in the relevant city) of the LSOA in which each case lived.  

 

To classify the ethnic group of each individual case, ethnicity was assigned at an 

individual level using Onomap software [19], which uses first and last name, prior to 

anonymisation. The ethnicity classification for this analysis was performed by PHE prior 

to the commencement of this analysis. Although the inferred ethnicities are based on UK 

census ethnic groups, the software is not as precise as the census tract presenting a set of 

broader groups. I have aggregated census groups to the Onomap groups to provide 
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relevant denominators (Table 3.1). Onomap has been validated in the past [19] and has 

previously been used for  similar analysis of influenza related mortality [20].  

 

 

Table 3.1 Ethnic Group returned by ONOMAP and the corresponding UK Census codes that were 

used for population relative population size 

 

Details of the Onomap software and verification 

Onomap version 2 (used for the analysis described in this chapter) was developed in 2009 

[21]; this version of the software consists of a database of names derived from public 

registries of over 26 countries and includes 448,657 surnames and 253,881 forenames 

[19]. The names are each classified by cultural ethnic and linguistic group by evaluating 

the community structure of the name network (linked by fore- and surnames). The lowest 

level classification is “Onomap type” which occurs as a community within the name 

ONOMAP Ethnic Group Census Ethnic Group
White: English/Welsh/Scottish/Northern Irish/British

White: Irish

White: Gypsy or Irish Traveller

White: Other White

Asian/Asian British: Indian

Asian/Asian British: Pakistani

Asian/Asian British: Bangladeshi

Chinese Asian/Asian British: Chinese

Other Asian Asian/Asian British: Other Asian

Black/African/Caribbean/Black British: African

Black/African/Caribbean/Black British: Caribbean

Black/African/Caribbean/Black British: Other Black

Other ethnic group: Arab

Other ethnic group: Any other ethnic group

Mixed/multiple ethnic group: White and Black Caribbean

Mixed/multiple ethnic group: White and Black African

Mixed/multiple ethnic group: White and Asian

Mixed/multiple ethnic group: Other Mixed

White 

South Asian

Black

Other/Unclassified
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network, along with this type is a probability score which gives likelihood of a name-type 

match, which is calculated from the share of the population with the particular name that 

can be assigned to that type in the training dataset (2001 census). As I stated before, 

Onomap software assesses both fore- and surname to assign an ethnicity classification. If 

the assignment conflicts, the software assigns the name-type match with the highest 

probability score. 

 

Evaluation of the performance of the software has been undertaken by Lakha et. al. [19] 

in a study which tested the software’s performance against multiple datasets in Scotland 

by comparing assigned ethnicity with parents’ country of birth. The Sensitivity, 

Specificity, positive predictive value and Negative predictive value were reported for 

each ethnic classification. For clarity I present summary results here in Table 3.2. 

Notably, the assignment of ethnicity had higher specificity than sensitivity for all 

ethnicities except British. Complementarily, all non-British ethnicities were assigned 

with near perfect specificity, whereas British births had relatively poor specificity (68%). 

I include implications for this variation in sensitivity and specificity in the discussion of 

this chapter. African ethnicities were assigned with poor sensitivity.  

 

Estimating socio-economic breakdown of cases 

To estimate the distribution of cases in London and Birmingham by socio-economic 

status, I calculated the incidence rate per 100k in each ten-year age group for each national 

IMD decile. To estimate the distribution of cases by local relative deprivation, I calculated 

the same for each local IMD quintile.  
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To summarise the distribution of cases as the outbreak progressed, I plotted Lorentz 

curves for each week of the outbreak, calculated from the cumulative. The Lorentz plot 

shows the cumulative proportion of cases by deprivation quintile (i.e. proportion of cases 

to date in the most deprived 20%, proportion of cases to date in the most deprived 40% 

etc.). An equal distribution of cases by socio-economic status would return a straight line 

where the proportion of cases increases by 20% per deprivation quintile; this is called 

‘the equity line’. Deviation from this line indicates unequal distribution of cases. A 

Lorentz curve below the equity line indicates a disproportionate share of cases in more 

affluent areas, whereas a curve above the line indicates disproportionate share of cases in 

more deprived areas.  

 

 

Table 3.2 Comparison of Onomap results against general register office for Scotland (GROS) birth 

registration (males and females together). PPV, positive predictive value; NPV, negative predictive 

value; CI, confidence interval. [Directly from Table 1 in Lakha et. al [19]] 

 

Co
un

tr
y 

of
 b

irt
h

n Pr
ev

al
en

ce
 (%

)

O
no

m
ap

 +
ve

 
GR

O
S 

+v
e

GR
O

S 
+v

e

O
no

m
ap

 +
ve

Se
ns

iti
vi

ty
%

 (9
5%

 C
I)

Sp
ec

ifi
cit

y%
 (9

5%
 C

I)

PP
V%

 
(9

5%
 C

I)

N
PV

%
 

(9
5%

 C
I)

British Isles 66,073 86.7 63,795 66,037 67,416
96.6 
(96.5–96.7)

64.3 
(63.3–65.2)

94.6 
(94.5–4.8)

74.4 
(73.5–75.3)

Eastern Europe 1616 2.1 1243 1616 1447
76.9 
(74.9–7.0)

99.7 
(99.7–99.8)

85.9 
(84.1–7.7)

99.5 
(99.5–97.5)

Accession 8 countries 1413 1.9 1149 1413 1356
81.3 
(81.3–81.3)

99.7 
(99.7–99.9)

84.7 
(82.8–6.7)

99.7 
(99.6–99.7)

Poland 1218 1.6 1081 1218 1290
88.8 
(87.0–90.5)

99.7 
(99.7–99.8)

83.8 
(81.8–5.8)

99.8 
(99.8–99.9)

South Asia 1636 2.2 1230 1636 2297
75.2 
(73.1–77.3)

98.6 
(98.5–98.7)

53.6 
(51.5–5.6)

99.5 
(99.4–99.5)

China 508 0.7 405 508 571
79.7 
(76.2–83.2)

99.8 
(99.8–99.8)

70.9 
(67.2–4.7)

99.9 
(99.8–99.9)

Africa 1753 2.3 440 1753 568
25.1 
(23.1–27.1)

99.8 
(99.8–99.9)

77.46 
(74.0–0.9)

98.3 
(98.2–98.5)
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To express unequal distribution of cases by deprivation status in a single value, I 

calculated the deviation from equity, ?, which is the sum of the difference between the 

Lorentz curve and the equity line at each quintile (or the area between the Lorentz curve 

and the equity line). Hence a ? of 3 would indicate that all the cases were in the most 

deprived quintile, a D of -3 would indicate that all the cases were in the most affluent 

quintile. A value of 0 indicates no deviation from equity and cases were distributed 

equally amongst areas of different deprivation status. 

 

Estimating Ethnic Breakdown of cases using Onomap ethnicity linkage 

 

To estimate the proportion of the population each ethnic group comprised, I aggregated 

the census ethnic groups as detailed in Table 1.1. To assess the variation in ethnic 

distribution of cases over the course of the outbreak, I calculated the relative risk at each 

day of the outbreak based on the cumulative incidence up to that day. As Onomap was 

not able to attribute an ethnic group to every name in the data, I only included cases that 

were assigned as one of: White, South Asian, Other Asian, Chinese or Black. Also, in 

line with this I only calculated the relative proportion of the population amongst only 

these groups as well. (i.e. proportion of the population that is white is taken as the white 

proportion of a subset of the total population that is either White, South Asian, Other 

Asian, Chinese or Black).  

 

I calculated the relative risk of infection in each ethnic group, !!(., as the ratio of the 

proportion of cases in each group, @/&0(0,(., and the proportion of the population each 

group comprises, @121,(..  
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@/&0(0,(.
@121,(.

 

 

To ensure the results were not impacted by varying ethnic breakdown by age, I repeated 

this analysis for the total population and separately for children (<=19 yrs) and adults 

(>19 yrs). 

 Results  

Overview of the outbreak 

The data comprised 20,301 reported cases nationally, 12,018 of them were remained after 

exclusions based on case status. There were 1920 with postcodes within Birmingham 

LSOAs and 3631 in London LSOAs, which also reported either date of symptom onset 

or date of arrival at the test centre. Of these 855 and 1199 were confirmed in a laboratory 

for Birmingham and London respectively. The rest remained ‘suspected’ or ‘possible’.  

Finally, 1,315 and 2,486 had ethnic group successfully inferred using Onomap.  

 

Evaluating the bias of missing data showed no strong correlation between missing 

postcode information and any variable used in my analysis (Appendix B). There is 

evidence that in general a higher proportion of samples from white individuals tested 

negative when submitted for laboratory testing, suggesting that a higher proportion of the 

un-confirmed cases (possible or suspected) may be false reports (Appendix B).  

 

Age distribution of cases 

In Birmingham 72% (70 – 74%, 95% CI) of cases were in children under the age of 19 

whereas in London this figure was lower with 60% (58 – 62%, 95% CI) of cases in this 
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age group. However, there was a higher proportion of cases reported in young adults, 

between 20 and 29 yrs, 18% (17 – 19%, 95% CI) in London, compared to 11% (10 - 12%, 

95% CI) in Birmingham. The majority of cases in both outbreaks were reported in the 

same 10-week period from the 11th May 2009 (day 130 to day 200) (Figure 3.1). Although 

there was a higher number of cases in London overall, there was a higher incidence rate 

in Birmingham.  

 

 

Figure 3.1 Age distribution of cases in Birmingham and London. 

Number of cases reported per day between day 130 and 200 in A) Birmingham and B) London 

stratified by age group. Proportion of cases in each 10 year age group in C) Birmingham and D) 

London. 

 

Cases by socio-economic status 

In Birmingham there was markedly higher incidence in the lower national IMD deciles 

than the higher deciles, indicating higher incidence in more deprived areas of the city 

(Figure 3.2). This was replicated for local IMD quintiles where a reduction incidence was 

clear (Figure 3.3). Incidence per 100k in the most deprived 20% was 2.83 times higher 
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than the most affluent 20%. This difference is largely due to large disparities in 0 – 19 

year-olds where a clear gradient in incidence rate is present and the Rate Ratio between 

the most deprived and most affluent quintiles was 2.74 (Figure 3.3). 

 

Conversely in London, there was no clear general difference in incidence rate by 

deprivation, using either national or local grouping of IMD rank. There was, however, 

slightly higher incidence (1.37 times) in the most deprived 20% than the most affluent 

20% overall.  

 

Figure 3.2  Incidence in each 10 year age group per national Index of Multiple Deprivation decile in 

A) Birmingham and B) London 

 

A	

B	
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Figure 3.3 Incidence in each 10 year age group per local Index of Multiple Deprivation quintile in A) 

Birmingham and B) London 

 

The Lorentz curves for Birmingham of cumulative weekly incidence shows that the 

outbreak largely began in deprived areas. All cases were in areas in the most deprived 

40% resulting in a deviation from equity value of 1.6. Cases then spread to more affluent 

areas gradually, resulting in a deviation from equity of 0.6, and 60% of cases in the most 

deprived 40% of the population. 

 

In contrast Lorentz curves for London indicate that the outbreak began in more affluent 

areas with a deviation from equity of -1. The outbreak then progressed to infect more 

individuals from more deprived areas eventually reaching a deviation from equity of 0.2 

(Figure 3.4). 

 

A	

B	



 
 

 94 

 

Figure 3.4 Disparities in incidence between local deprivation quintile over time  

as: Cumulative incidence by deprivation quintile in each week (Lorentz plot) in A) Birmingham and 

B) London; Deviation from equity for A) Birmingham and B) London. 

 

Cases by ethnic group 

In Birmingham the majority of cases were in individuals identified by Onomap as White 

(37% ) or South Asian (43%). The proportion of the population that is South Asian, 

however is substantially lower, which results in a relative risk of infection in South Asians 

of 1.89 (1.71 – 2.08, 95% CI) compared to White of 0.64 (0.58 – 0.72, 95% CI). The 

relative risk of infection based on the cumulative incidence at each day of the outbreak, 

reveals that the outbreak began by infecting mostly white individuals however after day 

132 the outbreak progressed into the South Asian population, and disproportionately 

affected this ethnic group from this point. (Figure 3.5)  

 

A	 B	

C	 D	
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In London, the majority of cases were in individuals identified as White by Onomap. 

South Asians made up 16% of all cases, but South Asians also make up a smaller 

proportion of the population than in Birmingham. The resulting relative risk in this group 

was 1.36 (1.22 – 1.51, 95% CI). By assessing the relative risk at each day of the outbreak, 

it appears that the outbreak initiated in a largely white population. The proportion of cases 

in South Asians was lower than expected for much of the containment period, however 

number of cases was small and the confidence intervals straddled 1.0 (Minimum RR was 

0.24 (0.032 - 1.72, 95% CI)). However, when incidence increased, a higher proportion of 

cases were in South Asian individuals, reaching a relative risk in this population of 1.36 

(1.22 – 1.51, 95% CI), by the end of the data collection period (Figure 3.5). The relative 

risks followed similar trend in both adult and child age groups (children <= 19yrs < 

adults). The relative risk was slightly reduced when stratified by age, however the 

disparity remained clear (Appendix B).  

  

 

 

Figure 3.5 Breakdown of reported cases by ethnic group  

as determined by ONOMAP. Reported daily incidence of Influenza A H1N1 by ethnic group in A) 

Birmingham and B) London. Relative risk in White and South Asian ethnic groups in C) Birmingham 

and D) London; the solid lines show the calculated relative risk (compared to risk of the total 

population), the shaded areas show the corresponding 95% confidence limits. 

A

C

B

D
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 Discussion 

Disparities in incidence of pandemic influenza between ethnic groups have been reported 

in multiple high-income settings. Often the analyses that identify such disparities provide 

a single estimate of relative risk over a defined period of time or using data on particular 

health outcomes such as hospitalization or mortality. They frequently use ecological 

analysis to infer relative risk between socio-economic and ethnic groups. By analysing 

detailed data on cases reported during the initial phase of the UK Influenza A H1N1 

epidemic in two urban settings, I have assessed the way disparity in risk develops and 

varies over time during the early phase of the outbreak.  

 

There were some key differences between the locations, besides those that concern social 

groups. Higher relative incidence was experienced in Birmingham during the data 

collection period, however this could have been due to earlier initiation of sustained 

transmission in the region compared to London. There were also a higher proportion of 

cases in Children in Birmingham compared to London. However, the similar timing of 

outbreaks in the two settings and comparable attack rates in the two settings make these 

well suited to comparison for the purpose of this analysis.  

 

Concerning socio-economic status: There were much clearer differences between 

deprivation quintiles in Birmingham than in London over the course of the data collection 

period. These disparities were particularly clear amongst children. However, both 

outbreaks began with unequal distribution of cases. In London, the majority of cases were 

in the most affluent region at the beginning of the outbreak. In Birmingham, however, 
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most cases were in more deprived communities initially. In both cases however, there 

was gradual movement towards a more equal distribution of cases over the course of the 

outbreak, suggesting that if an outbreak initiates in one particular socio-economic class it 

may first progress in that group before dispersing to another. Importantly, the outbreak in 

London appears to have remained subdued, with low incidence. This suggests that 

transmission was not sustainable within the population until day 160, after which 

incidence increases. The increase in incidence coincides with an increase in the 

proportion of cases reported in more deprived Lower Super Output Areas. In 

Birmingham, high incidence occurred earlier in the outbreak and mostly in more deprived 

LSOAs. Incidence then gradually increases in more affluent areas as well.  

 

Disparity in incidence by deprivation status is clearest in children (0 – 19 yrs), who also 

account for a large proportion of cases in both settings. The proportion of cases in this 

age group increases greatly as incidence increases overall. This suggests that: outbreaks 

among children provided the majority of sustained transmission, and differences in 

transmission within this age group may drive the overall difference in incidence observed 

by deprivation status.  

 

Concerning ethnic groups, in both the Birmingham and London, an increase in incidence 

coincided with an increase in the proportion of cases in areas with higher density of South 

Asians; in Birmingham this occurred around day 132 and in London around day 160. In 

Birmingham the majority of cases classified were classified by Onomap as South Asian, 

whereas in London, a smaller, but still disproportionately high proportion of cases were 

identified as South Asian by Onomap. In both settings the relative risk of infection in 

South Asians was lower in Children than Adults. It’s important to note, however, that the 
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proportion of cases in South Asians is higher in children than adults, but a higher 

proportion of children are South Asian overall, resulting in a lower relative risk. One 

explanation for this is that higher incidence in South Asian children leads to higher 

incidence in their parents, who represent a smaller proportion of the adult population 

resulting in higher overall relative risk. 

 

Over the full data collection period, inequality in risk by socio-economic status and ethnic 

group (specifically higher risk in South Asian individuals) appears to be more substantial 

in Birmingham than London. However, it should be noted that due to the apparent later 

initiation of sustained transmission in London, the impact of higher transmission within 

more deprived regions may not have had time to take its full effect. 

 

The coincidence of increased incidence and presence of cases in the most deprived 

quintiles, and in South Asian populations could be driven by multiple phenomena. There 

are two important possible factors, which would be consistent with observations: Firstly, 

sustained transmission may be more likely to start within more deprived regions and 

South Asian populations. Secondly, when sustained transmission occurs, transmission 

rates are generally higher in South Asian and deprived populations. Both of these factors 

would create inequalities in incidence of infection early on in an outbreak, the first due to 

higher incidence temporarily in that particular group due to seeding location, the second 

by transmission rate in a particular group leading to faster accumulation of cases and 

potentially higher overall incidence. The presence of these dynamics in both setting 

suggest that if this is the case, a single property that these populations possess that drives 

this disparity may be present in both cities. Other explanations for this effect include a 

possibility that the high incidence in South Asians in Birmingham after day 132, initiated 
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an outbreak in South Asians in London later, through long-range social or familial contact 

links. This could in turn have led to replication of the observed inequalities at this early 

stage, when cases were relatively few. There is also the possibility that the observed 

effects happened purely by chance based on seeding events. However, the relatively large 

number of cases in London prior to sustained transmission suggests that seeding alone 

could not explain the observation as there were many opportunities for outbreaks in 

settings of a different demographic description. 

 

When analysing data collected as part of an initial outbreak response there are always 

some limitations that give way to potential biases. I would like to highlight two clear 

limitations here. Firstly, some of the data collected was part of a contact tracing effort[17]. 

This creates the opportunity for biases to arise, as potential increased surveillance in 

certain populations may be compounded by active case finding amongst contacts in that 

population. Both of these may generate a higher case to infection ratio. There is evidence 

however that a greater proportion of tests resulted in negative result in the White British 

population, suggesting that case finding and surveillance efforts were not 

disproportionately focused within the South Asian population. Secondly, there is likely 

to be substantial variation in testing capacity throughout the initial phase as services 

become overwhelmed and adapt to demand. This could have the impact of the 

composition of tests between self-reporting and active case finding varying. There is no 

clear way to evaluate this in the present case as the source of cases is not recorded. This 

could impact perceived inequality in risk as actively found cases from known outbreaks 

could be favoured over self-reported cases and vice versa depending on the priorities of 

the local response. 
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The accuracy of ethnicity assignment using Onomap Version 2 must play a role in the 

interpretation of these results[19]. Since previous verification studies show that Onomap 

has higher sensitivity when assigning British ethnicity compared to non-British 

ethnicities and lower specificity assigning British comparted to others (Table 3.2), it is 

likely that non-British ethnicities was under represented in the assigned data and British 

ethnicity was over represented. In particular, Black ethnicities may be highly under-

represented, with a sensitivity of only 25.1% (23.1%–27.1% 95% CI)[19], compared to 

other ethnicities which had a sensitivity of over 75%. Other Black ethnicities were not 

evaluated by Lakha et. al. This poor performance suggests little should be interpreted 

from the proportion of cases Black ethnicities represent. This is acceptable for this 

analysis since the major focus is on South Asian and White British ethnicities. When 

considering this comparison explicitly, the performance in Lakha et. al. suggests that 

South Asians are more likely to be under represented than over represented in the assigned 

data, suggesting that estimates for relative risk are conservative. In contrast British 

ethnicity is likely to be over-estimated, suggesting that disparities may have been even 

greater than identified in this analysis. Since these potential biases are not expected to 

vary over time, my analysis of variation in disparities over time should not have been 

further affected.  

 

The findings of this analysis corroborate previous analyses of inequalities in this phase in 

the west midlands [11], which used the same dataset. The previous analysis by Inglis et. 

al. identified a disproportionate incidence in South Asians and more deprived regions of 

in the West Midlands region overall (of which the city of Birmingham is a part). My 

analysis builds on these results by evaluating disparities at a finer spatial resolution and 

analysing how they change over time. Previous analysis of the same period of the 
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outbreak in London also identify a gradual transition of cases from more affluent groups 

early in the outbreak, to more deprived communities [10]. However, this analysis used a 

different data source. My analysis complements this by supporting the findings with a 

different data set and evaluating disparities by ethnic group in this setting. In addition, by 

using a national dataset I was also able to compare outbreaks in the two most important 

settings during the early phase of the outbreak. 

 

To conclude, my detailed analysis of the early phase of the UK Influenza A H1N1 

epidemic in 2009 indicates that there may be a connection between the initiation of 

sustained transmission with the introduction of infection to more deprived areas and 

South Asian populations, both in Birmingham and London. This phenomenon resulted in 

higher risk of infection in the most deprived areas and South Asians during the 

containment phase of the epidemic. This was most clear in Birmingham and particularly 

in children under the age of 19 years. The combination of higher incidence in children 

and more pronounced disparities by deprivation status suggest that children may be 

important in driving inequalities in these settings. 
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4 Contact between children – 

location, duration and frequency 

of child-to-child contact 
 

 

 

 

Objective: Develop a framework for to quantify social structure within contact networks 

of school children in a way that can be used in an infectious disease transmission model.  
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 Introduction  

Children often contribute disproportionately to transmission of common infections, e.g. 

measles, rubella and varicella, as well as Influenza. This is demonstrated in Chapter 3 of 

this thesis and previous analyses [1, 2]. 

 

On this basis, the nature of contact between children is of particular interest in the field 

of infectious disease epidemiology. Understanding contact behaviour of children 

promises to reap the greatest reward in understanding the overall dynamics of 

transmission of a large number of important infectious diseases. Happily, the social 

contact behaviour of children may be more predictable than much of the population. For 

the most part each child between the age of 4 and 16 spends a large part of the waking 

time of approximately 70% of their days in an educational setting. A large proportion of 

the rest of their time is likely to be spent at home. The importance of schools in 

transmission of infectious disease is evident from the demonstrated impact of holidays 

and school closure on transmission dynamics during many outbreaks[3–5]. Analysis by 

Melegaro et. al. [6] suggests that school and home based contacts are most important for 

transmission of Varicella Zoster Virus and Parvovirus B19. There is also evidence that 

physical contact, longer duration contacts and more frequent contacts best explain 

serology of these infections in European countries. The clear importance of schools in 

transmission has led to a number of targeted social contact surveys and similar studies 

that aim to understand potentially infectious contact within schools [7–18]. This section 

details a short analysis where I used existing data from a large social contact survey [19] 

to assess the relative importance of school and household based contacts in the overall 

contact network of school-aged children.  
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 Materials and Methods 

Analysis of contact survey data 

Survey data 

I analysed data collected as part of the Polymod study [19] to establish the proportion of 

children’s contacts that occur either in school or in their household. The contact survey 

data detail 7290 participants and 97,904 contacts recorded in eight European countries 

(Belgium, Germany, Finland, Great Britain (GB), Italy, Luxembourg, The Netherlands, 

and Poland). Participants were asked to record contact events that they experienced over 

a pre-arranged 24-hour period (between 5 a.m. and 5 a.m. the following day). A contact 

event was defined either a two-way conversation at least three words in the physical 

presence of another person or skin-to-skin contact. 

 

Amongst other fields, data contains participant age, contact age, where contact event(s) 

took place (location(s)), time spent with a single contact (duration), frequency with which 

the participant and a particular contact typically have meet (frequency) and whether the 

contact event included physical touch (physical).  The possible values of these fields are 

shown in table 4.1.  

 

Contacts of children 

I investigated the locations in which children make contact outside the home by 

considering the contacts of school-aged children only (4 – 19 yrs.). To assess the role of 

school contacts I found the proportion of contacts made outside the home in school and 

in all other places. I also calculated the proportion of contacts made outside the home and 

not in school that are also associated with a contact event in school or home (i.e. the same 
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contact recorded in two locations). To account for the time of exposure of contacts I also 

calculated these proportions for contacts of increasing duration and frequency.  

 

Field Category 

  

Duration < 5 mins 

5 - 15 mins 

15 - 60 mins 

1 - 4 hours 

4 + hours 
  

Location Home 

Work  

School  

Leisure  

Transport  

Other 
  

Frequency Daily or almost daily (Daily) 

About once or twice a week (Weekly) 

About once or twice a month (Monthly) 

Less than once a month (A few times a year) 

For the first time 
 

 

Contact type Physical / non-physical 
 

 

Table 4.1 Categories for the fields in the Polymod contact survey [10] of interest to this analysis 

 

Proportion of total contact time in school and at home  

To highlight the relative importance of school and home contacts for school-aged 

children, I estimated the proportion of contact time in school, at home or other. For 

individual contacts where contact was made in multiple locations, the survey recorded 

duration as the sum of contact time over all contact events. Therefore, for such contacts 

it was necessary for me to infer the proportion of the duration of contact made at home, 

in school and other. I estimated the ratio of contact durations for contact events in each 
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location category using contacts with a single location reported (either home, school or 

other). I used these relative durations to divide the time between locations for contacts 

with multiple locations reported.  

 

 Results 

Age specific contacts at home and elsewhere 

In the Polymod social contact survey, 27 % (26.2 - 26.85, 95 % CI) of contacts were 

reported at home, 73 % (73.2 – 73.8, 95% CI) were reported outside home. In school-

aged children the proportion of contacts outside home was higher, 75% (74.9 - 75.8, 95 

% CI).  

 

When I filtered the contacts by duration, the proportion of contacts outside the home 

reduced to 54% (53.8 - 55.0, 95% CI) for contacts with duration of at least 4 hours. The 

reduction was lower in school-aged children, where the proportion outside the home 

reduced to 65% (64.1 – 65.8, 95% CI) 

 

Of the total number of outside home contacts 36% (36.2 – 37.0, 95% CI) were reported 

by children, correcting for population age distribution. For contacts with reported 

duration of over 4 hours, 58% (57.2 – 58.9, 95% CI) of outside home contacts were 

reported by children.  

 

Of contacts outside the home 45% (44.1 – 44.9, 95% CI) involved physical touch, 

whereas 76% (75.9 – 77.0, 95% CI) of home contacts involved touch. Of children’s 

contacts, 51% (50.2 – 51.4, 95% CI) of contacts outside the home involved touch. 
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Contacts of school-aged children 

The majority of contacts of school age children were also school age children (58%, 57.5 

– 58.6, 95 % CI). Most of contacts between school age children occur outside of the home 

86 % (86.1 – 87.0, 95 % CI). Of contacts out of the home between children, 69% (68.5 – 

69.8, 95% CI) of them include an event in school. Of all contacts between school age 

children, 73% (72.8 – 73.9, 95% CI) of them had contact in school or at home. This 

proportion increases both when the contacts are filtered for longer duration contacts 

higher frequency of event (Figure 4.1). Of the events that occurred for the longest duration 

(>4 hours) with most frequent (at least once a day) contacts, 99.9% (99.9 – 100.0, 95% 

CI) of contacts between school-aged children and 95% (94.9 – 95.8, 95% CI) of all 

contact events occurred either in school or at home. Of contact events in locations other 

than school or home, 23% (22.4 – 23.1, 95% CI) of them also had a contact event recorded 

in school, home or both. The proportion this increased to over 75% (72.6 – 76.9, 95% CI) 

for daily contacts with durations of over 4 hours. 

 

Proportion of total contact time at school or at home  

89% (88.9 – 89.6, 95% CI) of contacts were recorded in a single location (home, school, 

other). For contacts where only one location was recorded, the mean duration of a contact 

event at school, home and other were 222 minutes, 243 minutes and 101 minutes 

respectively. The average duration for contacts with events recorded both at school and 

at home was 275 minutes. I weighted duration of contacts’ multiple locations recorded 

according to the overall distribution of contacts in each of school, home, and other 

locations. I estimated the proportion of contact time reported by children to be 84% (83.0 
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– 85.4, 95% CI) at school and at home for all contacts and 88% (86.1 – 88.8, 95% CI) at 

school and at home for contacts reported on weekdays.  

 

 

Figure 4.1 Contacts at home and at school 

A) Proportion of contact events either at school or at home cumulative by frequency and duration 

(95% CI). B) Proportion of contacts in other locations (not school or home) also contacted at school 

or at home cumulative by frequency and duration (95% CI). 

 

 Discussion 

Contacts between children are widely acknowledged as being of great importance in the 

transmission of many common infections including ‘childhood infections’ and Influenza. 

Within-school contact networks and household transmission have been the focus of much 

research in recent years [9, 10, 13–18] due to the large proportion of children’s time spent 

in these contexts. To establish the importance of school and household contacts for 

transmission between children I have analysed existing social contact data.  

 

My analysis suggested that children have more contacts outside the household than other 

age groups. The majority of these contacts occur in school. They are also more likely to 
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involve touch than contacts between adults, which might indicate higher risk of 

transmission on contact.  

 

A larger majority of contacts were made in school and home when only long duration and 

contacts that were made more frequently were considered. This showed that the 

dominance of school and home settings for contact between children increased for more 

established contact relationships, which occur over long durations, suggesting that 

contact events outside of these contexts are more likely to be ‘incidental’ short and events 

rarely repeated.  

 

I estimated the proportion of contact time between children to be over 80% in school or 

households overall and nearly 90% in schools or households on weekdays.  

 

This analysis is intended to show in principle, that a large proportion of contacts amongst 

school-aged children occur at school. There are some severe limitations to the approach, 

which largely stem from the data on which it is based.  

 

Contacts were self-reported, which leaves room for interpretation from participants. 

Biases could be introduced if some participants, for example, report large groups with 

whom they met or just a small number of the group with whom they had the most contact. 

In particular, children may include whole classes, therefore over-reporting contacts at 

school, however there is evidence that fewer school contacts are reported through surveys 

than observed by sensor-based studies [20]. The survey also relies on the participants’ 

memory, so there may also be a tendency to report contacts which are easier to remember. 

This effect could be amplified since contacts were right-censored to 30 contacts per 
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participant, due to the paper-based format of the survey [19]. This may have meant that 

some contacts could not be reported, especially for children, who frequently report large 

numbers contacts. The way this was dealt with by the participants may vary and may 

impact the results. For example, children may have systematically favoured reporting 

school and home contacts over those in other places because they were easier to recall. 

 

The duration of contacts was only reported per contact, not per contact event, so I had to 

estimate the distribution of time between contacts where multiple events in different 

locations were reported. This however accounted for only 10% of contacts. More 

importantly, durations were not reported as an exact time, but instead as a band. To give 

a specific value to this I estimated the time as the midpoint of the band. This assumption 

is not tested and cannot be expected to necessarily result in accurate estimates of duration 

of contact when aggregated. For this reason, the reported values of the proportion of 

contact time in schools and homes should not be interpreted as accurate measurements 

but rather to give a broad indication of how child-to-child contact time is distributed. I 

judge the approach to be appropriate for such broad interpretation.  

 

If longer contact with an infected individual constitutes greater exposure to infection, the 

analysis indicates that, for school-aged children, the vast majority of exposure to infection 

occurs in schools and households. Furthermore, if ‘closer’ contact occurs between 

familiar individuals, made more frequently and for longer duration, it appears that the 

majority of such contacts also occur at school and home.  
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5 Two frameworks for analysing 

social structure and disease 

transmission using national 

school data.  
 
 
 
 
 
 
 
 
Objective: Develop a framework to quantify social structure within contact networks of 

school children in a way that can be used in an infectious disease transmission model.  
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 Introduction 

The purpose of this chapter is to introduce to two frameworks that I have developed to 

make use of national school data for analysing social structure and the implications for 

transmission of infectious disease in school-aged children. These frameworks are used in 

later chapters to analyse how social structure impacts transmission dynamics. 

 

The role of social structure in disease transmission 

Transmission of directly transmitted pathogens requires contact between a susceptible 

and infected member of the host population. This places ‘contact events’ at the centre of 

transmission dynamics[1]. A contact event describes an instance where two potential 

hosts have an encounter that could result in transmission if one is infected with and the 

other susceptible to infection with a particular pathogen. Many epidemiological 

phenomena are thought to depend on the setting, duration and frequency of contact 

events[2–6]. Much effort has been spent on studying the measured or inferred properties 

of these contact events over several spatial and temporal scales [2, 3, 7–17].  

 

Studying contact networks in a population of humans 

Broadly, there are two groups of methods for studying contact networks: measurement 

by collection of new data, and inference by use of existing data. 

 

Firstly, direct measurement of contacts. Social contact can be measured directly, most 

frequently at an individual level. A growing number of contact surveys have been 

undertaken to elicit a generalised understanding of how individuals interact with the 
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population around them. Such studies have been instrumental in our understanding of 

transmission between age groups, distance between residence and contact sites, and the 

locations and activities during which contact most frequently occurs[2, 8, 9, 16, 18–22]. 

In addition, there have been a number of studies, which utilize location-tracking devices 

to measure movement of individuals. By providing such devices to every member of the 

a population, contact events can be registered when participants remain in close proximity 

for a threshold period of time [13, 23, 24]. 

 

Secondly, Existing data can often be useful to infer long-range contact between 

populations for example between cities[7], nations[25] or contained populations. For 

example, long distance contact within a population of farm animals can be inferred from 

transport networks between farms, where infected livestock might be traded and 

introduce infection into new herds[26]. Similarly, airline passenger data has been 

successful in predicting the arrival time of new strains of influenza across the world[27]. 

More recently, the transmission of healthcare related infections between institutions have 

been studied by use of patient transfer data[28–31]. 

 

Within geographic areas with relatively continuous population densities, transmission 

risk has often been assumed to decay with a power-law relationship to distance from an 

infected host, chiefly driven by observed movements of people following this relationship 

[32]. This is also supported by evidence from social contact surveys carried out in 

multiple settings. This assumption has been a sufficient approximation in some cases, 

however there is also evidence that it falls short of properly accounting for the impact of 

spatial considerations on an epidemic[33]. Of particular interest to this analysis, where 

the population is structured into highly segregated social groups, such approximations are 
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unable to capture the particularities of transmission between them. Social groups are 

characterised by collections of individuals who possess a commonality with which they 

choose to identify, and who show strong preference for relationship (or contact) within 

the group relative to outside the group. Such behaviour has been observed in sub-

populations of particular ethnic, socio-economic and religious and political descriptions. 

Complex social structures mean that heterogeneity in transmission and uptake of 

interventions, such as vaccination, correlated with particular social groups may be 

important for transmission dynamics and the effectiveness of healthcare interventions, 

especially if the pathogen is close to elimination. 

 

A justification for using school data 

Approaching social structure from an individual basis, e.g. through social contact surveys, 

is challenging for multiple reasons. Alongside standard information about the contact (for 

example: age, sex, duration and frequency of contact) the additional information required 

in a survey to identify clustering of contacts within social groups would require a 

substantial increase in burden on the survey participants. This is likely to reduce the 

quality of responses and response rate[34, 35]. Moreover, it is not always immediately 

clear if contacts are part of a particular group, making accurate and consistent recording 

of contacts challenging for the participants. Finally, by increasing the stratification of 

contacts to include ethnic or social group the required sample size would increase greatly. 

The combination of these factors makes survey methodology inappropriate within the 

scope of my current work. In lieu of a dedicated social contact survey, certain 

government-collected data may provide information that is useful for inferring properties 

of social structure.  
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Children dominate transmission in many instances as observed in Influenza A H1N1 

outbreaks in London and Birmingham (studied in Chapter 3). This is also true for seasonal 

influenza[36] and many childhood infections such as measles, mumps and rubella. This 

suggests that by understanding the social structure of childhood contacts (between school-

aged children), insight into how social structure impacts transmission of a number of 

important infections might be gained. Furthermore, there is evidence that the vast 

majority of infectious contact between children of school-going age occurs in the home 

and at school (chapter 4), there is also evidence that these contacts are of particular 

importance for transmission of particular pathogens circulating in children in Europe [5]. 

 

Many governments routinely collect data from schools to support service assessment and 

policy making[37]. This data contains information about pupils who attend each school 

including residence address. British and Dutch governments both publish aggregates of 

this data [38] and invite applications for bespoke data from their databases. National 

school data linked to socio-demographic data from the national census could provide 

important source of insight into how social, ethnic and religious groups integrate through 

the school system. In addition, by analysing the differences in the school system in 

different areas, heterogeneity in the epidemiology of outbreaks may be explained. 

 

In this chapter I present how national school data can be used to evaluate interaction of 

school-aged children from different social groups and construct models of infectious 

transmission. These frameworks can be used to provide insight into the impact of social 

structure on transmission dynamics.  
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 Proposed Frameworks 

Analysis framework summary 

I propose two frameworks, which use national school data to investigate the role of the 

school system in determining the epidemiology of an outbreak:  

 

The first framework provides a means to evaluate preferential mixing within ethnic and 

socio-economic groups within schools based on residence data of pupils. I use this to 

assess clustering of social groups within London.  

 

The second framework provides a means to construct a network of schools where the 

links between the schools give the strength of contact between them. I used this 

framework in the analyses detailed in the following chapters of this thesis to evaluate 

transmission within school-age populations in two distinct settings (Analyses C and D  - 

chapters 6 to 8). 

 

Framework 1: Integration of ethnic and social groups through schools 

The aim of the first framework is to measure the relative rate of contact between social 

groups (such as ethnicities or socio-economic groups) through the school system. This 

framework requires data containing pupils’ residence aggregated at a small geographical 

area, and the social and ethnic breakdown for the same geographical areas at the same 

resolution as the pupil residence data, for example national census data. From these data 

an estimate can be made for the relative rate of contact between children within and 

between social and ethnic groups at school.  
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First, I constructed two matrices using schools’ data. The first gives the proportion of 

children in each geographical area that attend each school (als), the second the proportion 

of children in each school who reside in each geographical area (ssl). Assuming 

proportional mixing in schools, a matrix of the interaction between geographical areas, 

through schools, is calculated as the product of A30 and B034 : 

 

C = A30 ∙ B03
4  

 

Secondly, using national census data, I constructed two vectors, which capture the 

distribution of social-groups in the population. One vector, e&, gives the proportion of 

each geographical area who are in social group A (i.e. each element gives the proportion 

of social group A in the total population who reside in a particular area), the second 

vector, ϵ5, gives the proportion of social group B who are in each geographical area (i.e. 

each element gives the proportion of the total population of social group B who reside in 

a particular area).  

 

Using, e& , and the interaction between areas, C, I calculated a vector of the proportion of 

contacts in each area that belong to social group A.  

 

c& = C ∙ e& 

 

Finally, using ϵ5 I calculated the proportion of social group B’s contacts that belong to 

social group A.  

 

p5& = c& ∙ ϵ5 
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This framework relies on two clear assumptions. Firstly, I assume that children from a 

particular area are distributed between schools independent of socio-economic status or 

ethnic group. Secondly, I assume that all contact behaviour within school is homogenous 

with no additional preference for particular social groups to mix with each other relative 

to others. There is a chance that certain social groups have preference for particular 

schools. Also, there is evidence of positive homophily within schools (preference for 

mixing within social groups), particularly amongst ethnic groups[39]. Therefore, the 

proportion of contacts between social groups is likely to be over-estimated and the 

proportion of contacts within the same social group is likely to be under-estimated.  

 

Framework 2: Connecting schools through households 

Outbreaks within school populations and transmission within households are a key factor 

in the epidemiology of infectious disease, particularly influenza and other infections 

strongly associated with children. However, on their own each of these phenomena are 

naturally limited by the size of the school population or household. Large epidemics rely 

on both to spread across large populations of multiple schools and households.  

 

I propose a second use of national school data to quantify connections between schools 

through household-based contacts. The aim of this framework is to provide a method for 

approximating how school-level outbreaks may translate to large epidemics and how the 

particular structure of the school network might determine the epidemiology of outbreaks 

in school-aged populations. 
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I used national school data to construct ‘real networks’ of schools, connected by 

residences in which children attend two or more institutions between them (figure 5.1 A). 

I weighted the edges of the network by the number of unique pairs of pupils, which form 

a link between two schools by residence at the same address. Where this data was not 

directly accessible, I weighted the edges by the number of pupils that transfer from each 

primary school to each secondary school each year (feeding rate). I developed a method 

of inferring an estimate of the number of unique contacts between pupils from feeding 

rate and local household size information to allow between school transmission to be 

estimated in settings where there is insufficient data to calculate the number of unique 

contact pairs directly. 

 

 

Figure 5.1 A network of schools linked by households 

A) A network of schools constructed such that schools are connected when contact is made between 

pupils of different schools within a household. B) The strength of contact between schools is quantified 

by calculating the number of unique contact pairs (one child in each school). The number of pairs per 

household is the product of the number of children who attend school a, and the number of children 

who attend school b. The total number of unique pairs is the sum of unique pairs in each household 

with children attend both school a and b.  
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Where sufficient data do exist, the number of unique pairs which connect school I and J 

within a particular house, ℎ6 , is given by is given by 1&,7" 	15,7" . Where there are 

1&,7"		children who attend school I and 15,7" children who attend school J. For a given 

school with set of N shared households L = {ℎ!: ℎ9}, the total number of contact pairs 

between the school is P)* 	= ∑ 1&,7" 	15,7"
9
6:!  (figure 5.1 B). 

 

Construction of a network from primary to secondary feeder rate 

In some settings the school data that was made available to me was not sufficient to 

directly calculate the number of unique contact pairs between schools. In lieu of sufficient 

data I developed a method of estimating the number of unique contacts between primary 

and secondary schools based on the rate of transition of pupils from each primary school 

to each secondary school following the completion of their primary education (feeder 

rate).  

 

I assumed that households consist of one or multiple siblings of different ages living in 

the same home. In households where one or more siblings attend primary school and one 

or more attend secondary school, this would constitute a ‘link household’. I assume that 

each child observed in the feeder rate data must belong to a household, which either does 

or doesn’t form a link between the primary school and secondary school they have moved 

from and to. To infer the proportion of households that do form a link I first identify that 

the observed movement of a child from primary to secondary school must represent one 

of 4 possible events depending on the nature of the child’s household and the age of the 

child relative to their siblings (figure 5.2), either: 
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1. The child has no siblings therefore no prior link exists through the child’s 

household and no link is formed by siblings remaining in primary school after the 

child’s transition. 

2. The child has only younger siblings therefore no prior link exists, but a link is 

formed because the younger siblings remain in primary school after the child’s 

transition. 

3. The child has only older siblings therefore a prior link exists, but this link is 

destroyed because no siblings remain in primary school after the child’s transition. 

4. The child has both older and younger siblings therefore a prior link exists and is 

maintained (not destroyed) because some siblings remain in primary school after 

the child’s transition. 

 

I used the data in combination with areal household composition data to infer the number 

of contacts between each primary and secondary school via households.  

 

 

Figure 5.2 A decision tree showing the 4 potential implications of a child moving from primary to 

secondary school 
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A number of children are observed to transfer each year from each primary to each 

secondary school, R250
)* . For each primary and secondary school pair I calculated the 

number of households that have children in both schools for households with n children 

in the household, for each value of n. I defined the proportion of all children in the local 

population that are part of a household of n children to be S;. Therefore, the number of 

children observed in the feeder data, who belong to a household with a total of n children, 

R;,250
)* , is given by: 

 

R;,250
)* = S;R250

)*  

 

For households with multiple children, the oldest child forms a link between schools 

(Action 2). The following 1 − 2 children neither create nor destroy the link (Action 4). 

The youngest child, with no younger siblings in primary school, destroys the link. 

Therefore, the proportion of children in a household of n children, where 1	 > 	1, that 

either form or maintain a link between the schools is given by (;=!)
;

. For households with 

one child the same is true since the child doesn’t form a link (Action 1.). The proportion 

of households with 1 = 1, which constitutes an ongoing link, can also be expressed as 

(;=!)

;
. 

 

Hence, the number of children who belong to a household with 1 children, that forms a 

link between the schools is given by:  
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RV;,250
)* =

R;,250
)* (1 − 1)

1
, 

 

For any value of 1.  

 

As many consecutive siblings are more than a year apart in age, each link household that 

exists between schools is not observed every year. I accounted for this by multiplying the 

subset that was observed by a correction factor. If I'&1 is the average age gap between 

consecutive siblings, the rate at which each household with a link has a child completing 

primary school is !

&#$%
. To find the total number of live link households with n children, 

I multiplied the number I observed, RV;,250
)* , by the average age gap between siblings, 

I'&1.  

 

RV;,.2.
)* = I'&1RV;,250

)*  

 

Next I calculated the average number of pairs of contacts between schools within each 

household of n children over the total life of the link household. If 11 is the number of 

children in primary and 10  is the number of children in secondary school, for a link 

household of n children there are n-1 combinations of 10 and 11. Assuming the total age 

span of siblings is does not allow older siblings to leave secondary school before the 

youngest sibling joins, 11 = (1 − 10). For any given configuration, the number of unique 

pairs between the schools is then given by 10(1 − 10). Assuming the age gap between 

siblings is constant, the time for which each configuration is the same. Therefore, the 
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average number of contact pairs formed by a link household with n children, ';, is simply 

the mean number of unique contact pairs over all possible configurations (figure 5.3): 

'; =
1

1 − 1
X 10(1 − 10)

;=!

;&:!

 

The total number of contact pairs between schools, within all households of n children is 

therefore given by:  

P)*
; = ';RV;,.2.

)*  

To find the estimated total number of contacts between school 8  and school 9  of all 

household sizes, I took the sum of P)*; 	over all appropriate values of n:  

P)* 	= XP)*
;

;

= R250
)* ∙ I'&1 ∙XY

S;(1 − 1)
1

∙ ';Z
;

 

 

Figure 5.3 Calculating the unique number of contact pairs per household 

An example of calculating the average number of unique contact pairs over the lifetime of a link 

household with 5 school age-children; there are 6 possible configurations of 5' children in primary 

school and 5(  children in secondary school. Of those 6, 4 constitute a link between primary and 

secondary through the household. The average number of unique contact links between primary and 

secondary over during the time that the household provides a link is 5.  
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Translation of contact network to a school-based transmission model 

Now that the network of contact between schools has been defined, it is used to estimate 

the probability that individual school outbreaks can seed an outbreak in each 

neighbouring school.  

 

For each pair of neighbouring schools, I calculate the probability that an outbreak could 

be seeded in school 8 given that an outbreak does occur in adjacent school 9. First, I 

consider the probability of transmission between siblings, in the event that one is 

infectious and the other is susceptible, to be a set value [. The probability that the child 

from school 9 is infected is denoted by @*? and the probability that the child from school 9 

is susceptible by @)@. The probability that a single infected student in school i causes a 

large outbreak in that school is @)AB . The probability of an outbreak in school 9 leading to 

an outbreak in school 8 through each unique contact pair that link schools 8 and 9 is:  

 

@*
?@)

@[@)
AB 

 

The probability that the child in school 9 is infected, @*?, was assumed to be equal to the 

proportion of the school children infected by the outbreak in that school. I assumed that 

this is defined by the solution of the final size equation[40]: 

 

!*(∞) = (1 − ]*)(1 − 	^
=C!=D'E"!"(F)) 

 

Where ]* is the vaccination coverage in school 9.  
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The probability that the child in school 8	is susceptible, @)@ is assumed to be equal to the 

proportion of school 8	that remains unvaccinated, (1 − ])). 

 

The probability of an outbreak occurring in that school as a result of this transmission can 

be written in terms of the effective reproduction number, !(GG: 

 

@)
AB = _1 −

1
!(GG

` = a1 −
1

(1 − ]))!#
b 

 

which assumes a geometric distribution of within-school contact rate amongst 

children[40]. 

 

The probability that none of the unique contact pairs causes an outbreak in school 8 can 

be written:  

 

c d1− @*
?@)

@[@)
ABe =

$33	1&)H0

d1 − @*
?@)

@[@)
ABe

%(' 

 

Therefore, the probability that at least one contact pair causes an outbreak in school 8 is 

the complement of this:  

 

@.H&;0,)* = f1 − d1 − @*
?@)

@[@)
ABe

%('g 

 

This provides a basis upon which to model simulations of outbreaks across networks of 

schools in different settings. And is used later in this thesis for analysis of influenza and 
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social groups in London (chapter 6) and measles outbreaks in the Netherlands (chapter 7 

and 8). 

 

 Methods  

To evaluate interaction between social groups in the school-aged population in London, 

I used Framework 1 (detailed above) to estimate the baseline rate of contact between 

socio-economic and ethnic groups. I estimated the rate of contact between ethnic groups 

and deprivation deciles relative to what would be expected through proportional mixing 

for the whole population of London. Proportional mixing was taken as for example: if an 

ethnic group comprised 40% of the population that ethnic group would be expected to 

comprise 40% of each child’s contacts. I repeated the same analysis for deprivation 

deciles.  

 

The matrices A30 and B03 (to determine interaction between schools are geographic areas) 

were constructed from data accessed from the London data service Schools Atlas[38], 

which is a service provided by the Greater London Authority (GLA). The data included 

the number of children in each school (n. 2838) who reside in each Lower Super output 

Area (LSOA) (n. 5780) and vice versa for all LSOAs and for every state funded school 

in the Greater London Authority area. The data was constructed by GLA by aggregating 

pupil level data from the 2016 Autumn schools census, which is submitted to the 

Department for Education by each school individually, in October, January and May each 

year. The data only includes state funded institutions providing primary education (4 – 

11 year olds), secondary education (11 – 16 year olds) and further education (typically 
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16 – 18 year olds).  Independent schools are not included, which amount to 130 schools 

in the GLA area.  

 

The data for vectors e& and ϵ&, both regarding ethnic group and deprivation decile, were 

calculated using United Kingdom Census data from 2011[41] 

 

To assess how preferential mixing within social groups breaks down over multiple 

generations of contact (e.g. 2 generations of contact reflects contacts of contacts), I 

estimated the proportion of the nth generation of contacts in each LSOA from each LSOA 

as CI. Hence the proportion of nth generation contacts of ethnic group b that are ethnic 

group I is given by:  

 

h5&,'(;:; = (CI ∙ e&) ∙ ϵJ 

 

I calculated the value for the within ethnic group proportion of nth generation contacts, 

h5&:5,'(;:;, for each ethnic group for generations up to 200.  

 

 Results  

In general, ethnic groups mixed within their own group more than expected. The ethnic 

group that mixed most disproportionately within their own group were Bangladeshi, 

whose contacts were 6.7 times more likely to be Bangladeshi than would be expected by 

proportionate mixing (Figure 5.4). Broader ethnic groups appeared to mix with each other 

more frequently also, particularly Asians, where Indians, Pakistanis and Bangladeshis all 

mixed with each other more than expected. This was also true of black ethnicities 
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(Caribbean, African and Other Black) although this was to a lesser extent than Asian 

ethnicities.  

 

The same was true when stratifying the population by deprivation status. Children were 

more likely than expected to mix with others of the same or similar deprivation status 

(Figure 5.5). This was particularly true of the most affluent and most deprived deciles, 

where children mixed with others in their own deprivation decile 6.1 and 9.3 times more 

than expected respectively. 

 

Figure 5.4 Proportion of contacts in each ethnic group by ethnic group, relative to proportion of the 

population. 

A	

B	
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Figure 5.5 Proportion of contacts in each deprivation decile by deprivation decile, relative to 

proportion of the population. 

 

Over multiple generations of contact, disproportionate representation of contacts within 

each ethnic group reduces. However, at 200 generations of contacts there is still 

substantially disproportionately high representation from the same ethnic group for 

Asians. This was particularly true for Bangladeshi children, where there was still 2.5 

times as many 200th generation contacts that were Bangladeshi than would be expected 

by proportional mixing. Similarly, integration of deprivation deciles improves at 

increasing generations of contact.  

 

A	

B	
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Figure 5.6 Proportion of contacts in the same social group after n generations of contacts 

A) Proportion of contacts in the same ethnic group by ethnic group over the first 200 generations of 

contacts B) Proportion of contacts in the same deprivation decile by deprivation decile over the first 

200 generations of contacts 

 

 Discussion of results 

Quantifying the extent of interaction between social groups is a key part of understanding 

how different populations’ experience of an outbreak of infectious disease may differ, 

leading to measured inequalities in risk. I have used national school data to assess the 

opportunities for children from different ethnic groups and deprivation quintiles to 

interact through schools.  

 

In general, children mixed more than expected within their own ethnic group and 

deprivation status than would be expected if mixing were proportional to ethnic group 

population size. The most affluent and most deprived areas appear to be most likely to 

mix more within their own group. Likewise, Bangladeshi children mixed most 

disproportionately within their own ethnic group. 

 

A	

B	
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At multiple generations of contacts, for the majority of ethnic groups, representation of 

ethnicity amongst contacts becomes proportionate to the population within the first 20 

generations. For Bangladeshi children, however, the 200th generation contacts were still 

2.5 times more likely to be Bangladeshi than expected by proportional mixing, which 

suggests that Bangladeshi children are relatively clustered within the school system, even 

over multiple generations of contact. Similarly, for deprivation status, increasing 

generations of contacts generally moved out of the similar deprivation status groups.  

 

The effects observed suggest that early phases of an outbreak may stay within particular 

ethnic or social groups, in the case where transmission between school children is driving 

the dynamics of the outbreak. However, the assimilation to proportionate representation 

over the course of several generations of contacts suggests that the outbreak would 

become well-mixed within a few generations of transmission. The high level of over 

representation of Bangladeshi’s both in first degree contacts and slower assimilation to 

proportionate representation of Bangladeshi contacts indicates that the effects are likely 

to be most pronounced for this group than others, and it may take longer for an outbreak 

to become more well mixed in the population.  

 

This analysis makes some major assumptions about school attendance and contact 

behaviour within schools. Firstly, the framework assumes that school choice of children 

from a particular LSOA is independent of ethnicity. This assumption is necessary for this 

analysis, as no clear data on trends in school choice by ethnicity are available at this time. 

It is likely however that certain ethnic groups are more likely to choose particular schools, 

particularly when schools assume a particular religious identity. Secondly, this analysis 

assumes proportional mixing within schools. Again, there is a chance that there is some 
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degree of ethnic homophily within friendships formed within schools, as has been found 

in previous studies [39]. This could also be true for socio-economic status. Homophily of 

this kind, however, is unquantified for the setting assessed here, and may vary 

significantly between ethnic groups and schools. Both of these factors would serve to 

increase segregation between ethnic groups and deprivation quintiles; therefore, this 

analysis is likely to under-predict the overall segregation within the school system, but 

serves to provide a minimum necessary segregation of children through schools.  

 

Finally, the data I used for this analysis only includes state-funded schools. Independent 

schools could impact the results in two ways. Firstly, since they account for the education 

of some proportion of the school-aged population which will provide links between 

LSOAs in a way that is not captured here. Secondly, although admission to independent 

schools is becoming more equitable, there remains an overrepresentation of white and 

affluent children in these schools. This may serve to further isolate children by ethnicity 

and deprivation status.  

 

In conclusion, analysis of data on residence of pupils of London schools supports the 

notion that ethnic and social groups are necessarily segregated through the school system. 

This may be a contributing factor in observed inequalities in risk between ethnic groups 

and areas of differing deprivation status. This is especially likely in the early phase of an 

outbreak but might be expected to reduce over a number of generations of transmission. 

Outbreaks that initiate in Asian communities or highly affluent or highly deprived areas 

are most likely to lead to observed disparities. Higher risk in Bangladeshi groups may last 

for more of the outbreak as disproportionate representation of contacts remains for a high 

number of generations. 
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 Summary 

This chapter introduces two frameworks for analysing national school data for the 

purpose of inferring relative contact between social groups and identifying routes through 

which infectious pathogens are likely to spread through the population. In the remaining 

analysis chapters, I have applied these methods to research questions around the relative 

risk of infection within different social groups in London and the role schools might play 

in clustering of unvaccinated children in the Netherlands.  
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6 Analysis C: Modelling influenza 

outbreaks on a school network in 

London: geographic, ethnic and 

socio-economic heterogeneity in 

risk 
 

 

 

 

 

 

Objective: Evaluate the potential role of schools in creating inequalities in influenza 

outbreaks in London. 
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 Introduction 

As discussed in chapter 2, inequalities in influenza outcomes were observed between 

socio-economic and ethnic groups in the early phase of the 2009 Influenza A H1N1 

epidemic in both London and Birmingham [1, 2]. Similar disparities were reported in 

multiple settings globally [3–5]. Although there are factors unrelated to transmission 

which could provide explanation for measured differences in influenza related health 

outcomes[6–9], the analysis in chapter 3 details patterns in cases reported by ethnic and 

social groups which is consistent with higher rates of transmission within the South Asian 

population and in more deprived communities. 

 

As discussed in chapter 2, risk of infection can be influenced by individual level factors, 

such as contact rate and susceptibility to infection [10]. Community-level factors such as 

the structure of the network of contacts surrounding an individual can also play an 

important role in how an infection spreads through a population. Clustering (the 

propensity for two contacts of an individual to also be contacts of each other) and 

modularity (the existence of assortative communities, where contact is more likely within 

the community than outside the community) in a network can have important implications 

for the rate at which an infectious outbreak progresses, its final size and the effectiveness 

of control interventions [11, 12].  

 

In addition to impacting relative incidence over the course of an uninterrupted outbreak, 

community structure might also affect the ability of public health authorities to intervene 

and contain an outbreak in its initial phase[13]. Moreover, localised clustering of 

particular social or ethnic groups may introduce a perception of temporally changing 

relative risks as the infection spreads through communities with different ethnic or 
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socioeconomic composition. However, the same local clustering may also introduce 

inequalities if the local structure within one part of the network provides better conditions 

for sustained transmission than another. 

 

Community structure within social contact networks can arise from geographical and 

social factors such as the concentration of contacts within towns and cities[14], with 

reduced contact between them[15], cultural and social divisions, where relationships may 

be more likely to form within social groups than between them, and through 

infrastructure, such as work places, transport hubs and educational institutions[16]. Large 

scale clustering has been modelled by making use of transport data between residential 

and metropolitan areas or between nations. However, identifying clustering within a 

single urban setting is challenging due to a lack of data on networks of contacts in 

particular locations or populations. 

 

There is substantial evidence that school aged-children contribute disproportionally to 

influenza transmission and dynamics [17, 18] a property consistent with analysis in 

chapter 3. Estimates from social contact data in chapter 4 indicate that over 85% of 

contact exposure time between children occurs at school or at home, supporting previous 

findings that school and home contacts play a disproportionately large role in 

transmission[19]. Schools therefore provide a useful setting for studying contact structure 

and have been the subject of much analysis [20–25]. The body of work exploring within-

school contact networks provides important insight into how children contact each other 

in that specific context. To complement this body of research, in chapter 5 I set out a 

method for using routinely collected government school data to provide insight into where 

children from each school live and how the schools may be linked through households 
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and therefore how children contact each other between schools. In the current chapter, I 

use the method I presented to perform simulation studies with the aim of understanding 

how the network structure of the school-aged population may create heterogeneity in 

transmission and response during an influenza outbreak in London. 

 

London has a population of 8.7 million (2015 estimate) including 1.4 million school-aged 

children (16% of the population), living across 33 local authorities (Figure 6.1). The city’s 

population has substantial socioeconomic diversity, containing both the most affluent and 

deprived areas of the UK. The population is also ethnically diverse with large numbers 

of multiple ethnic minorities resident in the Greater London area. There is a high level of 

geographic clustering by socio-economic status and ethnic group (Figure 6.1, Figure 1 in 

Appendix C). There is also substantial geographic variation in household size, which is 

correlated with high concentrations of certain ethnic groups, particularly ethnically South 

Asian populations (Indian, Pakistani and Bangladeshi). Although it is clear that these 

populations are clustered geographically, the strength of preferential mixing within 

particular ethnic or social groups is not well quantified.  

 

In this analysis I approximated the natural community structure that arises within the 

school-aged population of London by building a network of contact between schools. I 

evaluated the local structure around each school and the implications for outbreak 

response. Finally, I simulated outbreaks across the network, translated cases from schools 

to small geographical areas to estimate incidence by socio-economic and ethnic-group 

from areal census data. Using the relative incidence, I assessed the implications for 

inequalities in risk of infection.  
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Figure 6.1 Geography, Socio-economic variation and household size in London. 

A) Local authorities in London referred to as Boroughs (Names of boroughs given in key). B) 

Choropleth of National Lower Super Output Area (LSOA) level Index of Multiple Deprivation rank, 

a rank of 1 (yellow) corresponds to the most deprived the highest rank value (purple) corresponds to 

the most affluent. C) Choropleth of mean household size (Per child).  

 

B	 C	

A	



 
 

 150 

 Methods 

Summary 

To evaluate how local differences in contact network structure may introduce 

heterogeneity in transmission, I constructed a network of schools in London using the 

method detailed in Chapter 5, where the edges between schools were weighted by the 

number of pairs of children that reside in the same household. 

 

Explicit data for pupils who share a household was not available for London, instead I 

estimated the number of pairs of children that live in the same household across each pair 

of schools, using the rate at which children transfer from each primary school to each 

secondary school. I assumed that households send their children to one primary school 

and one secondary school. I analysed this network to evaluate heterogeneity in risk, both 

of experiencing an outbreak of influenza and of initiating uncontrolled outbreaks.   

 

School data 

Aggregates from the national school census were accessed via the Greater London 

Authority, London Data Store – Schools’ Atlas Project[26]. One dataset detailed rate of 

transfer of children from 1843 primary schools to 559 secondary schools for the years 

2014, 2015 and 2016. A second data set detailed the residence of pupils of each by Lower 

Super Output Area (LSOA) as the number of children in each school who live in each 

LSOA.  

 

Ethnicity, socio-economic and household data 

I accessed UK government census data via the UK online data service[27]. UK census is 

carried out every 10 years.  I used Data from the 2011 census, to reflect the most recent 
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measurement of the population relative to the school data used. I used data aggregated at 

the 2011 Lower Super Output Area definition, which matches the school data aggregates. 

I used data detailing:  

 

Household size: Number of households in each LSOA with 1, 2, 3, 4, 5, 6, 7, and 8 or 

more members.  

 

Ethnic group: The number of people between the age of 4 and 19 who identify as each of 

the 19 census-defined ethnic groups.  

 

Deprivation: National Index of Multiple Deprivation (IMD) rank. The rank of the LSOA 

out of all 34,753 LSOAs in England and Wales based on the IMD, a deprivation measure, 

which captures multiple facets of deprivation including wealth, income, living conditions, 

quality of life and health outcomes.  

 

Construction of between school networks 

To estimate for contact between schools, I constructed a series of networks from national 

school data, which I then used to analyse transmission properties of the network (Figure 

6.2).  

 

Contact network 

A detailed description of this method can be found in Chapter 3, however I provide a brief 

description here for continuity.  
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The majority of schools in the UK provide either primary education for ages 4 – 11 years, 

or secondary education for ages 11 – 18 years. From government-collected data, I used 

the rate of transfer of pupils between primary and secondary schools to infer the number 

of pairs of contacts between schools who reside in the same household as each other. For 

each secondary school, i, the number of children transferring from each primary school, 

j, in a given year is denoted R250
)* .  

 

For a household size distribution i	{S} and an average age gap between siblings of 

I'&1, the estimated number of contact pairs between schools is given by: 

 

P)* 	= XP)*
;

;

= R250
)* ∙ I'&1 ∙XY

S;(1 − 1)
1

∙ ';Z
;

 

 

Where, ';  is the average number of contact pairs in a household with n school-aged 

children: 

'; =
1

1 − 1
X 10(1 − 10)

;=!

;&:!

 

 

A detailed description of this approximation can be found in Chapter 3.  

 

For this analysis I assumed an average age-gap between siblings of 3 years, which is the 

median gap between 1st and 2nd children of the same mother in the UK according to data 

from the United Kingdom Office for National Statistics (ONS) [27].  
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Approximation of the distribution of the number of school aged children per household 

Census records did not provide explicit data on the number of children in the household. 

Instead I used household size figures to estimate this value. From this, I calculated the 

distribution of number of children per household unit per child.  

 

Importantly, the estimation of contact rates between schools required me to estimate the 

number of children in a household at the point where children are transitioning from 

primary to secondary school. Under the assumption that most siblings are relatively close 

in age, this can be assumed to be the total number of siblings in a family. This is not 

directly observed in household size at a one time, as some households will be observed 

with fewer children than their maximum if either some children are yet to be born or some 

children have left home. 

 

Firstly, to estimate the observed number of children per household from household size 

data, I assumed there were 2 adults per house with the rest children i.e. a household with 

5 members consists of 2 adults and 3 children.  

 

I then approximated the true distribution of number of children per household as follows. 

I assumed that children are generally born into and leave households one at a time 

(neglecting multiple birth). Also, assuming the age gap between siblings is constant, I'&1 

and that children stay in the home with parents (and other siblings) until they are j3(&K( 

years of age, each observation fails to identify LG&)3,; actual households with n associated 

children. Under these assumptions I'&1(1	 − 	1)  there are fewer than the maximum 

number of children in the house because some have not yet been born, and for 
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I'&1(1	 − 	1) there are fewer than the maximum number of children in the house because 

some have left home.  

	

LG&)3,; = L;,250
2I'&1(1	 − 	1)

j3(&K( +	I'&1(1	– 	1)
	 

 

Similarly, the observation process falsely identifies L2K(H,;  households with a higher 

total number of children (> n) as having n children before some are born and after some 

leave the family home. Concretely, household with more children would be observed as 

having n children for 2I'&1 years.  

 

Since household size is censored in the census data at 8 members, I assumed a maximum 

number of children to be 1L&M = 6 for simplicity. i.e. all households of 8 (2 adults and 6 

children) or more members are taken as households of 8 members. 

 

	L2K(H,; = X
I'&1L250,N

j3(&K( + I'&1	(5 − 	1)

;)$*

N:	;O!

				

 

Hence, I estimated the number of households with n children as:  

 

L; = L250,; + LG&)3,; − L2K(H,;

= L250,; _1 +
2I'&1(1	 − 	1)

j3(&K( + I'&1(1	– 	1)
` − X

2I'&1L250,N
j3(&K( + I'&1	(5 − 	1)

;)$*

N:	;O!
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For this analysis I have used an age gap of 3 years between siblings, which is the median 

interval between births to the same mother in the UK. I assumed children leave home at 

the age (j3(&K() of 18 years old.   

 

Transmission probability network 

I used the contact network to estimate the probability of transmission between each school 

experiencing an outbreak and each of its adjacent schools assuming density dependent 

transmission within households.  

 

I equated the probability of transmission between schools as the complement of the 

probability that transmission does not occur between any pair of pupils who share 

household, assuming each pair has the same probability of transmission between them: 

 

@.H&;0,)* = 1 − d1 − @*
?@)

@[@)
ABe

%(' 

 

The contact in an infected school, 9, had probability of @*?  of being infected. I assumed 

this to be the proportion of the school infected during an outbreak, approximated by 

solving the final size equation:  

 

@*
? = !*(∞) = 1 − ^="!"'(F) 

 

Where, !# is the basic reproduction number for school-based transmission and !*(∞) is 

the final size of an outbreak (proportion recovered at time m = ∞) in school 9. 
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Each contact in adjacent school 8 had probability @)@ of being susceptible, assumed to be 

1 in this analysis to reflect an unvaccinated population. Transmission between children 

within the household occurs with probability [. The probability of an outbreak in school 

8 in the event of a single child becoming infected was @)AB.  

@)
AB = a1 −

1
!#
b 

For the purposes of this analysis, to simulate an outbreak similar to Influenza A H1N1 

09, I used !#	 values between 1.1 and 2 based on previous analysis of !#  during 

2009/2010 [28–30]. I chose a probability of transmission between siblings, [, of 0.15, 

based on the results of a detailed analysis of transmission between siblings in Japan [31]. 

 

Under this framework, an outbreak was seeded in a particular school which I refer to as 

the index school, the outbreak can spread between schools, where infected schools seed 

outbreaks in adjacent schools with probability @.H&;0,)*	. 

 

Figure 6.2 Contact networks, transmission networks and outbreak networks 

A) A schematic of a contact network, the width of the edges shows the relative probability of 

transmission between schools B) A schematic of a transmission probability network calculated from 

the contact network, the shading of the edges shows the relative probability of transmission between 

schools. C) A schematic of a realisation of a binary outbreak network (sampled from A), where edges 

are weighted 1 with probability given by the equivalent edge in the transmission network, or 0 

otherwise. Blue highlighted nodes show those in the largest connected component. In each network 

nodes show the location of schools. 

B										Transmission	Network	 C											Binary	Outbreak	Network	A										Contact	network	
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Binary outbreak network 

To estimate the risk of an outbreak in each school I simulated multiple realisations of 

outbreaks on the network according to the calculated probabilities between schools. Since 

the proportion susceptible in each school was assumed to be 1, the probability of 

transmission in each direction is equal; hence the network in each realization can be 

approximated as a non-directed  binary outbreak network (Figure 4.2), where edges were 

weighted 1 or 0. An edge weight of 1 indicates that transmission would occur between 

these schools in the event of an outbreak in one of them; an edge weight of 0 indicates no 

transmission occurs between schools. Edges were weighted 1 with a probability of 

@.H&;0,),*	.  Creation of such networks was computationally faster than using an iterative 

“diffusion” method progressing across the network from a particular school because 

although every edge in the network must be evaluated, it allows every school to be 

analysed with little additional computational effort in a single network realisation. 

 

Describing the network 

I calculated the degree (the number of connected schools and weighted degree) number 

of contact pairs, of each school in the contact network. I evaluated how these varied 

geographically and by socioeconomic status. To assess the relationship to household size 

I used Spearman’s rank to quantify the correlation between estimated mean number of 

children per household represented in the school and the degree and weighted degree. 
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Transmission characteristics of individual schools 

To assess the relative ability for public health authorities to contain an outbreak 

originating in each school across the network, I used the transmission probability network 

to calculate two school level transmission metrics: 

1. Mean number of outbreaks seeded in adjacent schools; if a large number of 

schools are infected by the index school it is likely that contact tracing will be 

more challenging. 

2. Mean proportion of students infected before seeding an outbreak in an adjacent 

school; if only a small proportion of the school is infected it is less likely that 

authorities would identify the outbreak before a second school is seeded. 

 

I used the transmission probability network of schools (Figure 6.2 B) to calculate each of 

these metrics for each school.  

 

Mean number of outbreaks seeded in adjacent schools  

To establish the expected number of adjacent schools infected in the event of an outbreak 

in each individual school, I calculated the sum of the probabilities of transmission to all 

adjacent schools. This is simply the weighted degree of the school in the probabilistic 

transmission network.  

 

Mean proportion of students infected before seeding an outbreak in an adjacent school 

To estimate the expected proportion of the school infected by the time the first outbreak 

was seeded in an adjacent school, I calculated the proportion of children infected which 

would lead to a 50% chance of infecting another school (i.e. @.H&;0,)*(m) =
!

P
). 
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@.H&;0,)*(m) = 1 − d1 − h);G[@)
ABe

%(' 	=
1
2

 

Hence, 

h);G =
1

[@)
AB 	n1 −

1

√2
+(' p 

Where, h);G is the proportion of the school infected by the time to seeding is expected.  

 

Risk of infection by school 

Connected components  

 To establish each school’s risk of infection over the course of an uninterrupted outbreak, 

I identified connected components of 1000 unique realisations of a binary outbreak 

network. A connected component is a collection of schools that are all connected by at 

least one network path (chain of edges weighted 1). For a given connected component of 

the binary outbreak network, every school will infect every other school in the component 

when seeding an outbreak. Likewise, each school would be infected if an outbreak is 

seeded by any other school in the component. Complementarily, a school cannot be 

infected by, or infect any school outside their connected component. Each school is either 

part of only one connected component, or is unconnected to any node.  

 

I quantified risk of infection to children in each particular school as the proportion of 

children in the network who attend the schools in the connected component to which their 

own school belongs, i.e. the proportion of children who could initiate an outbreak across 

the school network that leads to their infection. I repeated the analysis for values of !# 

ranging from 1.1 to 2, which is considered consistent with estimated !# for an influenza 

outbreak in the UK[28–30].  
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Establishing inequalities between social groups 

To assess the geographic, socio-economic and ethnic variation in risk, I estimated the risk 

to children living in each specific LSOA by total weighted risk in school children living 

in the LSOA in attendance. i.e. I weighted each schools risk by the proportion children 

living in the LSOA. Using national census data (2011) on LSOA level deprivation status 

and the number of school-aged-children from each ethnic group in each LSOA; I 

calculated mean risk for each quintile of the Index of Material Deprivation and ethnic 

group. For each social group (ethnic and socio-economic) I calculated the relative risk as 

the ratio of the individual groups risk and the mean risk for the whole network. 

 

Changing relative risks over the course of an outbreak 

Due to clusters with a high concentration of particular ethnic and socio-economic groups 

in certain parts of the network, the distribution of cases by ethnic group and socio-

economic status may vary over the course of the outbreak depending on the school where 

the outbreak initiates. To evaluate how inequality in incidence varies depending on the 

index school, I estimated the relative risk of infection in each ethnic group and deprivation 

quintile at the first 15 generations of an outbreak, where a generation is defined such that 

the schools infected by the index school form the first generation, schools infected by the 

first generation form the second generation etc. Relative risks at each generation were 

calculated using the cumulative incidence in schools infected up to and including the 

generation considered. I evaluated the changing relative risk over the course of outbreaks 

initiated in every secondary school in the network.  
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Figure 6.3 Graphs of the first 15 generations of outbreaks in the 9 schools with the highest weighted 

degree, for a given sampled binary outbreak network with && of 1.5. 

coloured nodes indicate the location of schools in successive generations of the outbreak (yellow to 

purple). Grey nodes indicate the location of schools not involved in the first 15 generations of the 

outbreak.  

To establish each progressive generation of infection I extracted ego-networks (networks 

centred around a particular ‘index’ school) from unique realisations of a binary outbreak 

network. I evaluated the ego-networks around every secondary school in the network with 

radius 1 to 15, where the radius is the minimum number of edges that link the index school 

and the most distant schools in the ego-network.  

 

To estimate the ethnic and socio-economic distribution of infection after each generation 

of an outbreak, I calculated the proportion of children in each ethnic group and 

deprivation quintile at each network radius. From this I estimated the relative risk of 

infection in each ethnic and deprivation quintile as the ratio of the proportion of the 
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infected schools that belong to each group to the proportion of the total school population 

of London belonging to the same group.  

 

Sensitivity of the network to variation in R between schools 

The transmission network presented in this analysis relies upon two key epidemiological 

parameters. Firstly, !# which describes the strength of transmission within schools and 

secondly q which defines the transmission probability between members of the same 

household. In this section I examine the implications of the way these parameters are 

implemented in the model. 

 

Firstly, the approach I used to simulate outbreaks required !#  to be equal across all 

schools buts this is unlikely to be the case. !# is not a fixed value even within a particular 

population and is therefore unlikely to be fixed even within one school over time. To 

evaluate the impact of variation in !#  between schools, I applied four regimes of 

variation, two with un-correlated variation, where !# is A) normally and B) log-normally 

distributed across the network, and two where !#  is dependent on the ‘phase’ of the 

school (primary or secondary). All regimes were evaluated with a mean !# of 1.5 and 1.3 

with a coefficient of variation of 0.133. deviation in !#   

Regime Mean !#  = 1.5 Mean !#  = 1.3 

Normal !# ~ NORM(1.5, 0.2) !#  ~ NORM(1.3, 0.178) 

Lognormal !#  ~ LOGNORM(1.5, 0.2) !#  ~ LOGNORM(1.3, 0.178) 

Higher in 
Primary schools 

!QH)  = 1.55,  
!0(/ 		 = 1.35 

!QH) = 1.35,  
!0(/ = 1.15 

Higher in 
Secondary 
schools 

!QH)  = 1.45,  
!0(/ 		 = 1.25 

!QH) = 1.65,  
!0(/ = 1.45 

Table 6.1 Sensitivity analysis regimes for variation in R between schools 
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I evaluated the impact on the degree distribution of the transmission probability network 

and the expected component size of a few select schools. In the framework I present, 

allowing !#  to vary between schools, results in different transmission probabilities in 

different directions along the same edge of the network. The transmission network can 

therefore only be fully expressed as directed graphs. As a result, a connected component 

of the, now directed, binary network no longer indicates the outbreak size expected from 

each school in that component. Instead, I evaluated the outbreak size by taking the full 

chains of ‘successors’ (more detailed discussion of successors in the methods section of 

chapter 8 of this thesis) on the directed graph from a given school for each of the regimes, 

over 100 realisations of the binary outbreak network (equivalent to 201,100 outbreak 

simulations). I used the components to evaluate the relative risk of infection in each 

deprivation quintile and ethnic group as described in the main analysis. 

 

Secondly, In the main analysis I chose a probability of 0.15 between members of the same 

household. To evaluate the impact of changing this parameter value, I have calculated the 

overall relative risk of infection by deprivation quintile and ethnic group with half 

(q=0.08) and double (q=0.3) the probability of transmission between members of the 

same household.  

 Results 

School contact network 

The contact network between schools contained 2,027 schools, of which 1,954 of them 

were in the largest component of the network. The remaining schools were in effect 

disconnected from the network and in components of three (n. 1), two (n. 23) and one (n. 
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24) schools. The mean degree of the contact network, the average number of adjacent 

schools with at least one contact pair, is 4.5 schools. The mean weighted degree of the 

contact network, the average number of contact pairs with other schools, is 205.3.  

 

Degree distributions vary between schools located in different boroughs (Appendix C 

Figure 2). In particular the Boroughs of Newham, Redbridge, Waltham Forest, Tower 

Hamlets and Brent had broader distributions, with generally higher number of contact 

pairs between schools. The borough with the highest mean number of contact pairs per 

school was Newham, 442 The borough with the lowest mean number of contact pairs per 

school was City of London, 49. The school with the lowest number of contact pairs was 

a primary school in the borough of Merton with 8.72 unique contact pairs. The school 

with the largest number of contact pairs was a secondary school in the London Borough 

of Newham and had 1900 unique contact pairs connecting it to adjacent schools.  

 

The weighted degree of each school was moderately correlated with mean household size 

(Figure 6.4) with a Spearman’s rank (SR) of 0.34 (p << 0.01). The association between 

weighted degree and household size was stronger amongst primary schools (SR = 0.66 

(p<<0.01)) than secondary schools (SR=0.32 (p<<0.01)). The degree, or number of 

unique connected schools, was also weakly correlated with household size with a 

Spearman’s rank of 0.12 (p << 0.01), but more strongly for primary schools amongst 

which Spearman’s rank increases to 0.5 (p << 0.01), indicating that regions with large 

households have higher connectedness within the school network.  
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Transmission characteristics of individual schools 

To quantify the rate of transmission at a school level, I calculated three metrics for each 

school based on their weighted degree, the number of unique contact pairs with adjacent 

schools in the network.  

 

Expected number of adjacent schools infected 

The expected number of adjacent schools infected was strongly correlated with the 

weighted degree of each school at low values of !# (Spearman’s Rank 0.99 (p<<0.01) at 

!# = 1.1), reducing in correlation as !# increased (Spearman’s Rank 0.87 (p<<0.01) at 

!# = 2). Conversely the expected number of adjacent schools infected was most strongly 

correlated with the degree at higher values of !# (Spearman’s Rank 0.98 (p<<0.01) at !# 

= 2), with weaker correlation at low values (Spearman’s Rank 0.82 (p<<0.01) at !# = 

1.1) (Appendix C Figure 3). This suggests that the number of adjacent schools has more 

influence on the number of seeded outbreaks at higher !# and the number of between-

children contacts is more important at low values of !#. 

 

The mean expected number of adjacent schools infected increased with !# from 0.35 with 

!# of 1.1 to 3.55 with !# of 2.  The average was higher in secondary schools than primary 

schools, with a secondary school mean of 6.76 with !#	of 2 compared to a primary school 

mean of 2.42.  
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Figure 6.4 The degree (A) and weighted degree (B) distributions of the between school contact 

network constructed from National School Census data. 

The degree of a school is the number of schools adjacent to it in the network irrespective of the number 

of contact pairs. The weighted degree is the number of contact pairs between a school and all its 

adjacent schools. Relationship between degree (C) and weighted degree (D) and the mean household 

size of children each school. 

 

As the expected number of adjacent schools infected was strongly correlated with the 

weighted degree of the between school contact network, similar geographic variation was 

present to the mean number of unique contacts (Appendix C Table 1). East London 

boroughs of Newham, Redbridge and Tower hamlets were consistently highest. The 

school with the highest expected number of adjacent schools infected, was a secondary 

school in Tower Hamlets, expecting 39.6 outbreaks in adjacent schools on average when 

!# was 2. 

 

In general, South Asian children were most likely to attend schools that infect adjacent 

schools than average, with mean expected adjacent schools infected 16%, 19% and 36% 
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higher for children of Indian, Pakistani and Bangladeshi ethnicity respectively, with a 

within school !# of 1.1. This relative difference reduced with increasing !#, to 4%, 6% 

and 21% higher with a within school !# of 2.0 (Figure 6.6). 

 

Figure 6.5 A) Proportion of school infected before seeding an outbreak in an adjacent school plotted 

against the weighted degree of the between school contact network. B) Histogram of the proportion 

of school infected before seeding an outbreak in an adjacent. 

 

Expected proportion infected before onward seeding 

For a particular value of !# and [ (the probability of transmission between household 

members), the expected proportion infected before onward seeding is dependent only on 

the total number of unique contact pairs with adjacent schools. It therefore monotonically 

decreases with the weighted degree of the school in the school contact network (Figure 

6,5).  

A	

B	



 
 

 168 

 

The median expected proportion of the school population infected before the outbreak on 

the school seeds an outbreak in an adjacent school was 46% with an !# of 1.1 compared 

to an estimated final size of 18% infected. This proportion dropped to 9% with an !# 

equal to 2, compared to a final size of around 80%. A secondary school in Newham had 

the minimum value; with !#  equal to 2 the estimated proportion infected was 0.4% 

(approx. 5 pupils) before starting an outbreak in another school. There were a number of 

schools in the network which had a probability of seeding a second outbreak of lower 

than 0.5, even when the whole school was infected.  

 

Figure 6.6  (A) Relative magnitude of expected number of adjacent schools infected, (B) and mean 

proportion infected before seeding a second outbreak, by ethnic group, for values of && from 1.1 to 2. 

 

 

A	

B	
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On average, children of South Asian ethnicities attended schools with a proportion 

infected before seeding an outbreak in an adjacent school, between 29% and 35% lower 

than average for !# between 1.1 and 2 respectively (Figure 6.6). Similarly, children living 

in more deprived LSOAs on average attended schools which had a lower proportion of 

the school infected before onward seeding would be expected (Figure 6.7).  However, the 

difference between deprivation quintiles was not as clear as between ethnic groups.  

 

Figure 6.7 (A) Relative magnitude of mean number adjacent schools infected. (B)  Mean proportion 

infected before seeding a second outbreak, by deprivation quintile, for values of && from 1.1 to 2. 

Overall risk of infection 

Over all realisations of the binary outbreak network, the size of the largest component of 

the binary outbreak networks increased rapidly at low values of !# (Figure 6.8). From a 

mean of 19.5 schools (1% of schools) and interquartile range of 16 - 23 schools at !# of 

1.1 to a mean of 1571.7 (78% of schools) and interquartile range of 1562 – 1604 at !# of 

1.4. At an !# of 2.0 the largest component had a mean of 1871 (92% of schools) and 

A	 B	
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interquartile range of 1865 - 1877. For all !# the majority of schools outside of the largest 

component were in small components of less than 10 schools (Figure 6.8).  

 
Largest component 

R0 mean lower quartile median upper quartile 

1.1 19.5 16 19 23 

1.2 192.0 144 174 224 

1.3 1105.2 919 1178 1279 

1.4 1571.7 1562 1585 1604 

1.5 1713.6 1703 1713 1724 

1.8 1840.7 1835 1840 1847 

2 1871.0 1865 1871 1877 

 

Table 6.2 The largest component of Binary Outbreak Networks calculated over 1000 realisations, 

 

The change in the size of the largest component at low values of !# meant that variation 

in overall risk of infection was also highly dependent on the value of !# (Figure 6.9). At 

low values of !#, between 1.1 and 1.3, there is substantial variation in risk across the 

network, resulting in inequalities by London borough, ethnic group and socio-economic 

status.  

 

Schools attended by children living in North East London boroughs of Tower Hamlets, 

Newham, Redbridge and Enfield were found to be at particularly high risk. West London 

boroughs of Harrow, Hounslow, Ealing and Brent also have higher risk than the London 

mean.  
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Figure 6.8 Example component size distribution of binary outbreak networks  

with &&  of 1.1 to 2.0. points show counts of components with x schools. Colour indicates &&. Red 

rings show the largest component for each && value.  

 

Figure 6.9 The relative risk of infection in outbreaks on the school network 

Relative risk of infection by A) deprivation quintile and B) ethnic group. Markers show the overall 

relative risk of infection during an outbreak initiated in any school on the network at && values from 

1.1 to 2.0. 

A	

B	
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Similar to school level metrics above, there is notably higher than expected risk of 

infection in south Asian children with a peak relative risk of 1.58, 1.66 and 1.61 in Indian, 

Pakistani and Bangladeshi children respectively with !#  of 1.2 (Figure 6.9). This 

coincides with lower than expected incidence in white British children (RR 0.75). There 

is also notably lower risk (RR 0.48 at !# = 1.2) in the most affluent quintile at the same, 

lower values of !#. The variation in overall risk diminishes at higher values of !#, with 

similar distribution in risk of infection in schools across London, regardless of geographic 

location, deprivation status or ethnic composition.  

 

Changing risk of infection in the early phase of an outbreak 

To assess how relative risk of infection varies over the first 15 generations of an outbreak 

with each secondary school as the index school, I extracted ego-networks from a binary 

outbreak network with each secondary school as the index case. I calculated the relative 

risk of infection by ethnic group and deprivation quintile after each generation of an 

outbreak for ego-networks of radius 1 to 15.  Early in the outbreaks, all ethnic groups had 

instances of either disproportionately high or low risk, depending on the index school. 

South Asian populations (Indian, Pakistani and Bangladeshi) showed the greatest 

deviation from equitable risk of infection, with much reduced and increased risk at the 

beginning of the outbreak (generation 1). Bangladeshi children had maximum relative 

risk of around 16 and minimum relative risk of 1/16 (Figure 6.10).  

 

In most ethnic groups, the risk of infection became proportionate within the first 15 

generations for almost all outbreaks. However, in South Asian children, a large number 
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of outbreaks were simulated where the risk remained either disproportionately high or 

disproportionately low. 

 

 

Figure 6.10 Relative risk by Ethnic Group in the first 15 generations (of schools) of outbreaks seeded 

in each secondary school in the Network 

with && of 1.5 (A), 1.8 (B) and 2.0 (C). Grey lines show the relative risk in each ethnic group at 

progressive generations of outbreaks originating in each school. The red lines show a relative risk of 

1, which indicates proportionate risk for each ethnic group 

 

 

A	

B	

C	
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Similarly, the risk of high deviation from equal distribution of infection between 

deprivation quintiles was greatest early in the outbreak (Figure 6.11). The greatest 

deviation was observed in the most affluent and most deprived quintiles, with 

intermediate quintiles showing lower potential inequalities. 

 

 

Figure 6.11 Relative risk by deprivation quintile in the first 15 generations (of schools) of outbreaks 

seeded in each secondary school in the Network 

with && of 1.5 (A), 1.8 (B) and 2.0 (C). Grey lines show the relative risk in each deprivation quintile 

at progressive generations of outbreaks originating in each school. The red lines show a relative risk 

of 1, which indicates proportionate risk for each deprivation quintile. 

 

Sensitivity of the network to variation in R between schools 

At a high level, introducing variability in !# had minimal impact on the network. The 

degree distributions of the transmission probability network remained comparable for all 

regimes. Unstructured variation in !# between schools resulted in a slight reduction in 

mean weighted degree, for example for a mean !# of 1.3,  from 1.85  (1.76, 1.95; 95% 

CI) with no variation to 1.57  (1.48, 1.67; 95% CI) and 1.56 (1.47, 1.65; 95% CI) for 

normally and log-normally distributed !# respectively. Increasing !# in primary schools 

and reducing it in secondary schools reduced the mean degree to 1.36 (1.29, 1.44; 95% 

CI), whereas reducing !#  in primary schools and increasing in secondary schools 

increased the mean degree to 1.98 (1.88, 2.08; 95% CI). 
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Figure 6.12 Sensitivity analyses – Variation in && between schools 

 A) Weighted degree distributions of the transmission probability network for each regime of variation 

in &&. Relative risk of infection by deprivation quintile for mean && of 1.5 and standard deviation of 

0.2 (B) and mean && of 1.3 and standard deviation of 0.178 (C). Relative risk of infection by ethnic 

group (South Asian ethnicities) for mean && of 1.5 and standard deviation of 0.2 (D) and mean && of 

1.3 and standard deviation of 0.178 (E). Combinations of &&	 for primary and secondary schools with 

mean && of 1.5 and 1.3 are shown in Table 6.1. 

 

The introduction of variation in !# had very little impact on the inequalities calculated 

for networks with a mean !# of 1.5 (Figure 6.12 (B and D)). Changes in relative risk were 

greater for mean !# of 1.3, particularly for inequalities by ethnicity where uncertainty in 

relative risk increased markedly when !#	varied randomly (both normally and log-

normally distributed, however the range of values remained similar. Notably the lower 

A

D

C

B

E

Mean R = 1.5 Mean R = 1.3
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quartile of relative risk values simulated straddle equity (relative risk equal to 1.0) for 

Pakistani ethnicity with normal distributed !#  and for Pakistani and Bangladeshi 

Ethnicities for log-normal distribution of !#. Despite these differences the results remain 

qualitatively similar. Assigning different values of !# to primary and secondary schools 

reduced relative risks in all ethnicities marginally, with little change to the variation 

between realisations of binary outbreak networks. 

 

Sensitivity of the network to the within-household transmission probability (q) 

Changing the probability of transmission between household members had a greater 

impact on relative risks at low values of !#. In essence, reducing transmission probability 

had the impact of shifting the results such that they were more similar to lower values of 

!# with the original values of q (Figure 6.13). Complementarily, when q was increased 

the results were shifted such that they were more similar to higher values of !#. Typically 

for values of  !# greater than 1.2 reducing q increased inequalities, whilst increasing q 

reduced them.  Broadly the overall values of relative risk remained similar across the 

whole range of values of !#, but the values of !#to which they corresponded changed .  
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Figure 6.13 Sensitivity analyses – within-household transmission probability 

The relative risk of infection by deprivation quintile (A) and ethnicity (B) over the full range of &&	and 

q. Markers show the mean relative risk, bars show the interquartile range. 

 

 Discussion  

Inequalities in health outcomes have been observed during outbreaks of influenza in 

multiple settings. Community structure within contact networks can have important 

implications for transmission due both to clustering of particular groups and to providing 

a means for local differences in network properties to introduce inequalities in risk of 

infection.  

 

I used UK government collected school and census data to construct a network of schools 

linked by children who live in households with children attendant at other schools. I 

analysed the community structure within a contact network and its implications for 

variation in risk of transmission between schools across the network. In particular I used 

BA
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the network to assess whether the network possesses properties that promote higher risk 

of infection in certain socio-economic and ethnic groups.  

 

The school to school contact network revealed systematic differences in local network 

properties by geographic location, socio-economic and ethnic group, with higher number 

of household contacts linking schools in more deprived areas and in areas with a high 

proportion of South Asian children. The variation in contact between schools lead to 

differences in transmission related factors, which could contribute to inequalities in 

outbreaks.  

 

Firstly, I assessed the properties of each school to evaluate the relative onward 

transmission of infection following a school level outbreak. The higher rate of contact 

between schools in particular groups of the population caused an increase in the expected 

number of adjacent schools infected per school and a lower expected proportion infected 

before seeding a second outbreak. 

 

Each of these may impact the rate of transmission across school boundaries. In particular, 

South Asian children generally attended schools with higher rates of contact with other 

schools, however the relative differences in mean values were quite small (RR < 2.0). 

This relatively small difference makes it difficult to ascertain how much this may 

influence inequalities in reality. This is dependent firstly on how much the metrics will 

impact ability of Public Health Authorities to respond, and secondly how effective any 

intervention available to public health authorities may be in containing an outbreak if 

discovered early. Importantly, because these factors are correlated, they compound each 

other. Notably, there were 25 outlying schools that had between 1000 and 1850 unique 
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contacts with children in adjacent schools. A number of these had disproportionately high 

South Asian school populations. If there is significantly higher risk of an uncontrolled 

outbreak within these schools due to their connectedness, South Asian children would be 

disproportionately likely to be infected early in such an outbreak. 

 

Secondly, I assessed the overall risk of infection in each school to establish relative risk 

of infection to each ethnic group and deprivation quintile. At very low values of !# (1.1 

– 1.3), where outbreaks remain small, the risk posed to South Asian populations was 

higher. This is due to outbreaks in these areas generally having a higher final size, giving 

children in these populations a greater risk of infection overall. This disparity in overall 

risk was diminished at higher values of !# because outbreaks were expected to be much 

larger covering the whole geographic area of London, suggesting that in an uninterrupted 

outbreak on the network, pupils of all ethnicity and socioeconomic status are at a similar 

risk of infection at school. 

 

However, when I evaluated disparities in incidence over the course of the first 15 

generations of an outbreak, inequalities are more likely to be measured early in the 

outbreak. In particular, South Asian populations are highly clustered within the network. 

The increased variability in relative risk in South Asian children indicates that larger 

relative risks may be measured in this group relative to other ethnic groups in the 

population. The presence of this inequality is dependent on seeding, if an outbreak effects 

a South Asian population early in the epidemic, it is likely that large inequalities will be 

measured in the initial phase, whereas if no infection is introduced into that population 

early in the epidemic, reduced risk will be measured in this group. 
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It is possible that although there is no indication from the network that an uncontrolled 

outbreak would disproportionately impact South Asians at values of !#  over 1.3, the 

combination of lower containability and the potential for large inequalities means that 

South Asians may be at higher risk of infection in the early stages of an influenza 

outbreak. In order to determine this the ability for public health authorities to respond and 

contain a school outbreak would need to be quantified.  

 

A possible explanation for repeated reports of outbreaks with higher incidence in minority 

groups is that of confirmation bias. Instances where outbreaks have reached populations 

of particular ethnicity early in the outbreak may have been highlighted due to the 

perceived presence of inequality, whereas instances where such populations are infected 

later in the outbreak, the inequalities have been overlooked, due to a general lack of 

interest in reduced risk in minority groups. It is important to note that this analysis is 

based entirely on the London school system. In other settings, variation between parts of 

the network may increase, particularly in settings that contain suburban and rural regions, 

where factors influencing school choice may differ from large urban centres.   

 

The framework I applied was intended to be a method to parsimoniously evaluate the 

implications of the school network on inequalities explicitly. To maintain parsimony 

some important simplifications were made which are likely to impact the way the results 

of these analyses relate to epidemiology observed in a real outbreak.  

 

Most importantly this framework only aims to simulate transmission in two settings, 

schools and households, between one particular age group in the population (school aged 

children. Firstly, there is likely to be a sizeable contribution to transmission between 
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school-aged children in other settings for example out of school activities such as sports. 

Moreover, these other transmission routes may also vary by socio-economic status and 

ethnic group creating further variation in out-of-school contact rates and potentially 

increasing rates of contact between schools in certain parts of the network. Secondly, 

although transmission of influenza has been demonstrated to be strongest amongst 

school-aged children, transmission in other age groups is likely to contribute in a 

meaningful way to dynamics. This also may create additional routes between schools in 

the network, not accounted for by connecting households. 

 

I simplified within-school transmission to homogenous frequency-dependent 

transmission amongst all children in the school. In reality, transmission dynamics in 

school settings are likely to be more complex [21, 24, 25]. Firstly, transmission is unlikely 

to be homogenous but instead likely be higher between members of the same school year, 

class and gender [20, 25]. This would likely result in smaller eventual outbreak sizes 

within schools. This has an asymmetrical impact on the model since the final size would 

be affected but the risk of outbreak in the school would not be. In this consideration the 

potential for multiple introductions in different school years becomes more important, 

which cannot be investigated under the framework presented. Secondly, the assumption 

of frequency dependent transmission means that transmission rate is independent of 

school size. There is no clear suggestion that this would not be the case, however, if 

transmission were density dependent (transmission increased with school size) I would 

expect the results to be impacted such that pupils in regions with larger schools would be 

at higher risk of infection. In general, larger schools tend to be in more deprived areas 

suggesting that this assumption may increase inequalities overall. 
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As the exact data required to construct the network was not available to me, I inferred the 

number of contacts between schools using data on transfer of children between primary 

and secondary schools. This process carries uncertainty and if the true data were to 

become available it’s use would be preferable. Another limitation this introduces is that 

the network produced is a bi-partite network of primary and secondary schools. This is 

unrealistic as you would expect some links between primary schools and between 

secondary schools. This would have the effect of making the network more connected, 

where schools have a higher degree than the one presented here. One might then expect 

transmission across the network to occur more quickly (in fewer generations) and this 

may have the impact of reducing the initial inequalities more quickly than is simulated in 

this model.  

 

The simulation framework used in the main analysis requires all schools to share a single 

value of !# . To evaluate the impact of this simplification I performed a sensitivity 

analysis allowing variation in !#  between schools using a slight variation on the 

framework over fewer iterations. Although there was a small difference in degree 

distribution, there were not qualitative differences in the results and therefore it is unlikely 

that this constraint of the model has impacted the conclusions of this study overall. The 

sensitivity analysis evaluates the impact of normally and lognormally distributed !# 

amongst all schools as well as setting !# to different values in Primary and Secondary 

schools. There could be other systematic differences in !# that I have not tested which 

could impact inequalities, in particular, if there are differences in !# that correlate with 

deprivation status or ethnic group. To my knowledge, there is not yet any evidence of 

such systematic variation in !# between schools.  
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The nature of transmission between household members is unclear. The most recent 

findings suggest that transmission is neither frequency- nor density-dependent, but 

behaves somewhere between the two [31]. I chose to use a density-dependent 

transmission assumption for methodological convenience and have chosen a transmission 

probability based on a recent study of household transmission in Japan. Making a 

frequency-dependent assumption instead would reduce the probability of transmission 

between each pair of children in larger households. The role of household size would 

therefore be reduced in the relative connectivity of the network. My analysis of the 

sensitivity of the inequalities to the within-household transmission probability shows that 

although the overall relative risks can change significantly, the changes are not substantial 

enough to impact the conclusions of this analysis.  

 

An important limitation of this model is that only state-sponsored schools have been 

included in the analysis. There are therefore a number of independent schools in London, 

which receive no money from the state and are not included in the school census. 

Exclusion of these schools may impact the dynamics of transmission. The full 

implications of this omission are not clear. Independent schools are more frequently 

attended by children from more affluent backgrounds and ethnic minority groups are 

underrepresented. On one hand, the addition of more schools in the network would 

increase the rate of contact between schools in more affluent areas. On the other hand, 

since independent schools are generally smaller than state sponsored schools, it is likely 

that their connection to the network is generally weaker, since there are fewer 

opportunities for contact pairs to form through households, therefore reducing the relative 

connectedness of schools in areas of higher affluence. It is also likely that independent 

schools are particularly well connected to each other forming strong communities of their 
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own, this would likely serve to partition more affluent students from the rest of the 

network even more than is currently observed. If this data were to become available, re-

analysis of the network including independent schools may bring to light additional 

inequalities, which are not identified here.  

 

The findings in of this analysis complement those of chapter 1. In similarity, they both 

identify that differences in transmission between populations may have the potential to 

promote inequalities in infection for pathogens with low transmissibility. Building on the 

findings of chapter 1 this analysis demonstrates that differences in overall transmission 

rate may not be necessary to create inequalities and that these may be a result of 

differences within the transmission network structure, without increase in individual rates 

of transmission. 

 

To conclude, variation in the local structure of the between school transmission network 

is unlikely to, in itself, introduce systematic inequalities in influenza incidence over an 

entire uninterrupted outbreak, or when considered over multiple outbreaks. Factors 

affecting the containability of an outbreak (proportion of a school infected before 

infecting adjacent schools, and average number of schools infected by a school) may 

mean that some populations are more likely to observe sustained and uncontrolled 

outbreaks than others, however this is difficult to quantify. Due to clustering of ethnic 

and socio-economic groups within particular parts of the network, inequalities are likely 

to be common at the beginning of an outbreak. No particular group is substantially more 

likely to experience disproportionately high risk than others, but South Asian populations 

are likely to experience the most pronounced increase in risk due to their relative isolation 

in the network. This means that early in an outbreak, increased risk in South Asian 
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populations may be more likely to be reported, even when concurrent outbreaks exist in 

different parts of the network. There is a chance that inequalities are more frequently 

reported explicitly when marginalised or minority groups are disproportionately affected 

giving the impression that ethnic minorities and deprived communities are at substantially 

higher risk of disease.  
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7 Analysis D (part 1): Analysis of a 

between school contact network – 

Clustering of children by faith 

denomination 
 

 

 

 

 

Objective: Analyse the impact of faith schools on clustering of children who are 

susceptible to measles and resultant measles epidemiology in the Netherlands 
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 Introduction 

In the previous chapter I evaluated the implications of clustering of social groups in a 

network of schools and differences in local network properties, for inequalities in 

infectious disease. I showed that for the school network in London, the greatest 

heterogeneities between social groups are seen for pathogens with a low reproduction 

number (!#  < 1.3). In the case of Analysis C, a naïve population was exposed to a 

pathogen with low transmissibility. Another case where these dynamics may be important 

is in a situation of sub-optimal vaccination of a pathogen with a higher reproduction 

number. Moreover, where clustering of unvaccinated children within particular schools 

can be identified, the network may be able to identify key areas of the network (groups 

of schools) within which there is a particularly high risk of outbreak.   

 

In Analysis D, which comprises this chapter and the next, I look at the school network in 

a setting known to have sub-optimal vaccination uptake, and where vaccination uptake 

has already been estimated at a school level. I propose that a school network and vaccine 

uptake at school level can be used to create spatial prediction of outbreaks. To test this, I 

constructed a school network of the Netherlands from Dutch government records and 

combine this with vaccination estimates at a school level. In the first part of the chapter I 

evaluate network structure with a particular focus on religious affiliation (which is known 

to associate strongly with vaccine uptake). In the second part of this analysis, described 

in the Chapter 8, I used the network to simulate outbreaks. To establish the importance 

of: A) the specific network links between schools, and B) the school-level clustering of 

unvaccinated children, I evaluated the spatially aggregated risk predicted by the 

simulations against outbreak data from a recent measles outbreak and compared to a 

spatial approximation of interaction between schools.  
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Measles in the Netherlands 

A measles vaccine has been included on the routine vaccination register in the 

Netherlands since 1979[1]. The Mumps, Measles and Rubella (MMR) vaccine was 

introduced in 1989. Since introduction there have been outbreaks reported at irregular 

periods. In the past 20 years there have been 3 outbreaks (1999/2000, 2008 and 2013/14). 

The 2008 outbreak was relatively small, with 99 reported cases [2]. However, outbreaks 

in 1999/2000 and 2013/2014 were larger with over 3,200 and 2,700 cases reported 

respectively [3].   

 

Uptake of MMR  

Uptake of MMR is relatively high in the Netherlands overall with over 95% vaccinated 

with one dose before the age of 14 months for the past 20 years and 93% vaccinated with 

2 doses by the age of 10 for the past 10 years [1]. However, uptake of MMR is highly 

heterogeneous across the population. As a result some municipalities report uptake as low 

as 66% [4] (Figure 7.1). 

 

There is strong evidence that low uptake is related to particular socio-religious groups 

who refuse vaccination on mass for religious or philosophical reasons. Most notably the 

orthodox protestant community, approximately 1% of the Dutch population[5–8]. This 

group is distributed relatively sparsely along a diagonal strip from the North East to the 

South West of the Netherlands, and are visible in the choropleth of regional vaccination 

uptake rates in figure 5.1. A smaller group called the Anthroposophic community is also 

thought to have particularly low uptake of MMR[9, 10]. Although this community 

represents a smaller proportion of the Dutch population, it may still be important for 
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clustering of susceptible children demonstrated by an outbreak within this community in 

2008 consisting of 99 reported cases.   

 

 

 

Figure 7.1 MMR first dose uptake by 14 months by municipality in the Netherlands (Lochlainn et. al., 

2017) [4] 

 

Motivation 

It has been suggested that clustering of unvaccinated people by socio-religious groups 

may be responsible for the potential for very large outbreaks to occur, such as in 

1999/2000 and 2013/14. Periodic outbreaks have meant the age of most individuals 

infected with measles has been lower than the rest of Europe despite high vaccine uptake. 

For example in the large outbreak in 2013/14, the vast majority (90%) of cases occur in 

school-aged children [11]. By comparison, the proportion of cases in this age group across 

the whole of Europe each calendar year varied between 50 and 80% in the decade between 

2008 and 2018 [12]. From chapter 4 and previous analysis [13], a great deal of potentially 

infectious contact between children is likely to occur within the social networks 



 193 

associated with their school and household. On this basis, I propose that the structure of 

the Netherlands education system might provide a means of quantifying the extent of 

social clustering within particular groups known to refuse vaccination at high rates.  

 

Network analysis is a broad discipline for studying complex systems. One example of its 

use is the evaluation of networks of patient transfer between health care units to evaluate 

the risk of transmission of antimicrobial resistant infections across healthcare systems in 

the United Kingdom and the Netherlands[14–17]. 

 

In a similar way, for this analysis I constructed a network of schools in the Netherlands, 

I analysed key properties of the network pertaining to clustering of unvaccinated children 

in schools using various network analysis techniques, to identifed whether the structure 

of the school network may contribute to clustering of unvaccinated children at local and 

national scales.    

 

Overview of Education in the Netherlands 

General structure 

Although education is compulsory in the Netherlands from the age of 5 to the age of 16, 

the majority of children start attending from the age of 4 and some elements of high school 

can continue until the age of 18. Students attend a primary school (basisschool: ‘basic 

school’) until the age of 12. Following this they are transferred into secondary school 

(voortgezet onderwijs: "continued education"). Secondary school is divided into three 

tiers (Figure 7.2): pre-vocational secondary education for 4 years (VMBO), senior general 

secondary education for 5 years (HAVO) or pre-university education for 6 years (VWO) 

[18]. Each of these prepares students for different types of further education or careers. 
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Notably there are many instances where there are multiple streams represented within a 

single institution, many of them on the same site. 

 

Advanced or struggling students can also move to a more appropriate tier as they pass 

through secondary school.  

 

 

Figure 7.2 The education system in the Netherlands has 2 stages. The second stage has 3 tiers based 

on academic ability. 

 

Special schools (bijzondere) 

Another important discrimination within the school system is by faith or educational 

philosophy. In particular, bijzondere schools are government-funded institutions, but 

affiliated with either a religious community or educational philosophy. There are 27 

different denominations of schools coded for the analysis in this chapter (table 7.1): public 

schools (Openbaar), a denomination to represent all non-religious special denominations 

(Algemeen bijzonder); 15 religious denominations and 9 collaborations between the 

existing 17 coded denominations.  

 

Primary	educa,on	

pre-voca,onal	
(VMBO)		

Senior	general	
(HAVO)	

Pre-University	
(VWO)	

		4	years	old	

12	years	old	

18	years	old	

16	years	old	
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Special schools comprise a major part (~69%) of the Dutch education system, with non-

religious public (Openbaar) schools only comprising ~31% of schools and ~28% of 

pupils. Approximately 9% of special schools are non-religious (Algemeen bijzonder).  

 

 

Table 7.1 Faith schools in the Netherlands. The number of schools, primary schools and secondary 

schools in each faith denomination in the Netherlands. 

 

The remaining denominations are religious and comprise 60% of schools in the 

Netherlands. Of these denominations Roman Catholic (Rooms-Katholiek) and 

mainstream Protestant (Protestants-Christelijk) schools are the distinctively the largest 

Denomination Dutch name Schools Primary Secondary 
Public school  Openbaar 2810 2466 344 
Roman Catholic Rooms-Katholiek 2554 2258 296 

Mainstream protestant Protestants-
Christelijk 2147 1904 243 

Special educational 
philosophy  

Algemeen bijzonder 807 579 228 

Dutch Reformed Reformatorisch 208 181 27 

Reformed liberated Gereformeerd 
vrijgemaakt 118 118 0 

Anthroposophic  Antroposofisch 81 70 11 
Islamic Islamitisch 44 43 1 
Interconfessional Interconfessioneel 21 15 6 
Reformed Liberated  Gereformeerd 18 0 18 
Evangelical  Evangelisch 16 12 4 
Hindu Hindoeistisch 6 6 0 
Other Overige 4 0 4 
Jewish Joods 2 2 0 

Moravian Church Evangelische 
broedergemeenscha 2 2 0 

Potestiant/Evangelical  Protestants-
Christelijk/Evange 1 0 1 

Jewish Orthodox Joods orthodox 1 0 1 

Potestiant/Reformed  Protestants-
Christelijk/Reform 1 0 1 
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denominations by proportion of schools (~28% and ~23% respectively) and proportion 

of students attending (~30% and 21% respectively). The remaining 9% of schools are 

made up of 12 relatively small denominations, the three largest of which are Dutch 

Reformed (Reformatisch), Reformed-Liberated (Gereformeerd vrijgemaakt) and 

Anthroposophic (Antroposophisch). It is these three denominations, which most closely 

align with populations that are known to refuse vaccination for religious reasons.  

 

 Methods 

To evaluate whether schools cluster by faith denomination I constructed a network of 

schools based on links through households and performed a series of descriptive analyses 

of this network. Firstly, to identify key predictors of community structure without 

explicitly testing specific faith affiliations I partitioned the network to establish its natural 

community structure. I then analysed this structure to evaluate the importance of 

belonging to geographic administrative regions and religious faith denominations for 

belonging to particular communities of schools. Secondly, I explicitly analysed the 

connections between schools of the same and different faith dominations calculating 

homophily by faith denomination and then estimated long range connections by 

evaluating the relationship between geographic distance and shortest paths on the school 

network.  

 

School data 

School and pupil data were provided by the Dutch ministry for education (DUO), which 

holds data on each school (n. 9200) and individual child in the educational system on the 

31st October 2013. This data includes place of residence and school attended. DUO 
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publishes aggregates of this data by school including educational stage (e.g. primary or 

secondary), location by postcode and geographic coordinates, residence of students 

aggregated at the 4-digit postcode (PC4) level, and religious affiliation. DUO also keeps 

detailed data on pupils, including household level residence data. I was able to collaborate 

with members of the data team to access bespoke aggregates pertinent to the analysis 

discussed below.  

 

School contact network 

With the data provided by the Dutch Education Executive Agency (DUO) I constructed 

a network of schools where edges were weighted by the number of unique contact pairs, 

where a contact pair comprises two children who reside in the same household but attend 

different schools. This is discussed in detail in Chapter 5. Networks were constructed and 

analysed using the NetworkX package in the python programming language [19, 20].  

 

Analysis of school network characteristics – general understanding of the network 

Analysis of degree distributions 

I assessed the general properties of the network starting with the degree (number of 

connected schools) and weighted degree (number of unique pairs) of each school. I 

evaluated the distributions of these measures and relationship between weighted degree 

and degree to quantify a distribution of the mean number of pairs per school. I repeated 

this analysis for primary and secondary schools separately and individually for schools 

of Roman Catholic, Mainstream Protestant, Dutch Reformed and Anthroposophic 

denominations to assess any differences in these key characteristics by denomination.  

 



 
 

 198 

Finally, to establish the role of primary and secondary schools in the network I calculated 

the proportion of contact pairs between two primary schools, two secondary schools and 

a primary and secondary school.  

 

Communities within the network 

Before explicitly investigating the strength of connection between particular 

denominations, I evaluated natural communities of schools within the network. The aim 

of this is to reveal groups of schools that are well connected with a hypothesis-free 

methodology.  

 

Community detection algorithms offer a set of tools for evaluating the structure of a 

network in a way that is naïve to the node labels (e.g. denomination of the school). 

Typically, the communities identified represent some modular structure[21, 22], which 

aligns with the particular constraints defined in the framework used to detect it.  

 

In previous, similar evaluation of network communities, networks with a strong 

geographical component have demonstrated community structures which broadly form 

geographically contiguous clusters[14]. If school choice were entirely defined by 

geographical proximity, the same may be expected for the school network. The presence 

of religious affiliation with schools presents an additional factor: should the religious 

affiliation of schools be substantial, then communities may be expected to reflect these 

groups as well as geographical groups, which would indicate strong connectivity between 

these schools on the basis of shared faith. In turn, if that faith is associated with low 

vaccination, high connectivity arising as a result of religious affiliation may correspond 
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to high connectedness between schools with low MMR uptake. vaccination, may 

correspond to high connectedness between schools with low MMR uptake.  

 

Community detection framework 

I used a variation of the Leiden[23] to partition the graph, which modifies the popular 

Louvain algorithm to overcome a key problem of identifying disconnected communities 

(communities which from multiple components). I chose this framework as the 

community definition is explicit in this method, which makes interpretation of the 

resulting communities more straightforward in this case as I explicitly sought assortative 

communities, which is problematic for, generally more robust, frameworks based on 

statistical inference. The version of the Leiden algorithm I used maximises a quality 

function: 

 

q =X_j)* −
#r)r*
2s

`t(P) , P*)
)*

 

 

where j is the adjacency matrix, r)  is the (weighted) degree of node 8, s is the total 

number of edges (or total edge weight), P) denotes the community of node 8	and t(P) , P	) 

1 if P) 	= 	P* and 0 otherwise.  

 

# is a resolution parameter taking a value between 0 and 1, which moderates the scale of 

the communities detected: the higher the value of # , the smaller the communities 

detected. To establish the most meaningful scale of communities, I partitioned the 

network with values of # between 0.1 and 1. I evaluated the partitions against four metrics 
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to establish the most appropriate resolution parameter. For each of the metrics higher 

values suggest a better partition for our purposes. The metrics I used were:  

 

Internal edge density[24]: 

This metric measures the proportion of possible edges that are present in community C, 

expressed as: 

 

'% =	
s%

½	1%(1% − 	1)
 

 

where s%  is the number of edges internal to community P  and 1%  is the number of 

schools in community P. This takes a value between 0 and 1 and provides a quantification 

of the absolute connectivity within the community, irrespective of connectivity with other 

communities. 

 

Modularity density [25]:  

Modularity density normalises the quality function by the number of schools in the 

community, hence removing dependence on community size. This provides a better 

comparison of modularity between partitions with different community sizes. This is 

expressed: 

 

qR(;0(() = 	X
1
1%
n	Xr)%

);

)∈%

−	Xr)%
2T.

)∈%

	p
%∈@
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where 1%  is the number of schools in P, r)%
);

 is the degree of node i within P (edges to 

schools inside the community) and r)%
2T.

 is the degree of node 8  outside P  (edges to 

schools outside the community) for a partition (. 

 

Neman Girvan modularity [26]:  

A classic metric of how strongly defined communities in a partition are from the rest of 

the graph. Is calculated as: 

 

q9U(() =
1
s
X_s% −

(2s% + v%)P

4s
`

%∈@

	 

 

where s is the number of graph edges, s%  is the number of community’s edges, v%  is the 

number of edges from schools in P	to schools outside P.  

 

Surprise [27]:  

Surprise is a quality metric assuming that edges between nodes emerge according to a 

hyper-geometric distribution. According to the Surprise metric, the higher the score, the 

less likely that the communities detected occurred at random and therefore the better the 

quality of the partition. 

 

Modularity optimisation algorithms, such as the Leiden algorithm used here, are 

stochastic processes, and hence the exact partition recovered in each iteration of the 

algorithm depends on the order in which the nodes are sorted[21, 28–30]. First, I explored 

the variation in partitions by evaluating the normalised mutual information between each 

pair of partitions.  
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Ensemble partition 

To establish a stable summary partition, I ensembled the partitions resultant from multiple 

iterations to find a consensus partition of the network. For this I employed a method of 

ensembling proposed by Lancichinetti and Fortunato[29], following the steps:  

 

1. Find NV partitions of the graph using the community detection algorithm 

2. Construct a similarity matrix D where each entry DWX is the proportion of 

partitions that nodes i and j are partitioned into the same community. 

3. Find NV partitions of the graph with adjacency matrix defined by the similarity 

matrix.  

4. Perform steps 2 and 3 until all NV partitions are identical. 

 

Although this method provides a stable partition, it does not necessarily produce the 

optimal partition in terms of modularity or statistical significance[21, 29]. Therefore, in 

addition to the consensus partition I identified schools that are partitioned into the same 

communities 100% of iterations. I also evaluated the particular partition with the highest 

Newman Girvan modularity[26], as this represents the initial partition with the most 

clearly defined communities.  

 

Analysing community composition 

Finally, to quantify the composition of the communities in the partition in terms of 

denomination and administrative province, I calculated the mean pairwise probability that 

any two schools of the same particular denomination or province fall into the same 

community over the partitioned networks. Explicitly, for each denomination, I calculated 
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proportion of times each school in the denomination was in the same community as each 

other school in the denomination. I then calculated the mean pairwise probability as the 

mean of these values over all schools. I then repeated the same for each province. 

 

Preferential contact between schools of the same denomination 

To assess the local connectivity of schools by denomination, I used two network measures 

to evaluate if schools of certain denominations are more connected to schools of the same 

than would be expected at random.  

 

Firstly, I quantified the preference for connections between schools of the same religious 

affiliation by calculating the Basic Homophily (L)) by denomination for the 17 coded 

individual denomination, which is the average proportion of connected schools that 

belong to the same denomination.  

L) =
|)

|) + })
 

 

Here, |) is the number of neighbours of the same denomination and }) is the number of 

neighbours of a different denomination. Secondly, I calculated the Coleman Homophily 

Index[31], which gives the proportion of neighbouring schools that align with the same 

religious denomination relative to the proportion of schools that belong to that 

denomination.  

 

-L) =
L) −S)
1 − S)
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To address longer-range connections in the network, I compared geographical and 

network distance between pairs of schools, similarly to Donker et al [16]. To ensure 

network distance was shortest for the most connected schools, I defined it as the length 

of the shortest path between schools on the reciprocal contact network. The edges in the 

reciprocal network are equal to the reciprocal of the number of unique contact pairs 

between pairs of schools. The network distance for a path is therefore ∑ !

%(,-,(

9%$/0=!
):!  

where P)O!,) is the number of contact pairs between consecutive schools in a shortest path 

and R1&.7 is the number of schools in the shortest path (Figure 7.3).  

 

 

Figure 7.3 Calculation of network distance between schools 1 and 5 is the sum of the edges along the 

shortest path between those schools. 

 

I calculated the network distance and geographic distance of 1000 randomly sampled 

pairs of schools from the biggest faith-based school denominations in the Netherlands: 

Roman Catholic (Rooms-Katholic) and mainstream Protestant (Protestants-Christelijk). I 

also calculated the distances for Dutch reformed and Anthropasophic denominations, 

which are most closely associated with low vaccination uptake.  

 

Geographical	distance	=	X	km	

1	

2

3	

4

5

Network	distance	=	1/C12	+	1/C23	+	1/C34	+	1/C45		
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For each denomination I calculated the ratio of network distance and geographic (km) 

distance (distance ratio) for each of the pairs sampled. Schools with a low distance ratio 

are more closely connected on the network relative to their geographic distance than 

schools with higher distance ratios.  I calculated distance ratios for pairs of schools of the 

same denomination to that of schools in the rest of the network, defined as all schools not 

associated with that denomination. 

 

Connectedness of schools through households may be substantially impacted by 

demography, geography and infrastructure, such as population density and location of 

waterways and transport links.  The relationship between geographical distance and 

network distance may therefore be highly dependent on the locations of the schools 

considered. To account for the potential effect of school location, I sampled a school from 

the ‘rest of the network’ from the same two-digit postcode area as each school sampled 

from the particular denomination studied.  

 

To correct for the potential for homophily within the particular denomination of interest 

to impact the shortest network path between schools in the ‘rest of the network’, I 

removed all schools of this denomination when calculating the network distances for the 

‘rest of the network’. This correction itself could introduce bias by reducing the number 

of schools in the network. To balance this effect when I calculated network distances 

between schools of a particular denomination, I removed randomly selected schools 

located in the same two-digit postcode area as those from the denomination of interest. 
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 Results 

Network Characteristics 

I constructed a network of schools connected by pairs of students who reside in the same 

household (e.g. siblings) but attend different schools (contact pairs) using a national 

school registration dataset from the Netherlands, provided by the Education Executive 

Agency (DUO). The total number of schools in the network was 8095 including 6736 

primary schools and 1359 secondary schools. The network is connected i.e. there exists 

a path from each school to every other school. Secondary schools have a mean degree of 

103, (schools connected by at least one contact pair, the number of edges that connect 

each school to the network); this is more than primary schools, which have an average 

degree of 22 (Figure 7.4). The same is reflected in the weighted degree (mean number of 

contact pairs with all connected schools i.e. the sum of the edge weights), where 

secondary schools have a median of 660 and primary schools have a median of 88. The 

major special schools (Roman Catholic and mainstream Protestant) exhibited similar 

median connected schools, 97 and 101 respectively for secondary schools and 21 for both 

denominations in primary. The median number of unique contact pairs was slightly higher 

with values of 752 and 672 for Roman Catholic and Protestant schools respectively.  

 

Of the denominations most associated with low MMR uptake, Dutch reformed secondary 

schools had a much higher median number of unique contact pairs 1553, this however 

was paired with a lower median value for connected schools than the rest of the network, 

85. Primary schools of this denomination had a similar median number of connected 

schools to the rest of the network 23. However, like secondary schools, the median 

number of unique contact pairs was much higher at 230.  
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Primary and secondary Anthroposophic schools both had a higher median number of 

connected schools, 149 and 26 respectively. However, the median number of unique 

contact pairs was lower than that of the whole network, 574 for secondary and 81 for 

primary.  

 

The relationship between weighted and un-weighted degrees shows that in general the 

number of contact pairs per school is highest for those of the Dutch Reformed 

denomination. In contrast the number of contact pairs per connected school is generally 

lower in Anthroposophic schools than in the rest of the network. 

 

 

Figure 7.4 Scatter plots of degree (number of connected schools) and weighted degree (the number of 

unique pairs). Points show schools from A) the whole network, B) roman catholic denomination, C) 

Mainstream protestant denomination, D) Dutch Reformed denomination and E) Anthroposophic 

denomination. Marker size indicates school population size. 

 

Communities in the Network  

I partitioned the network using a range of resolution parameters # between 0.1 and 1.0 to 

define the quality function, all metrics increased with resolution parameter (Figure 7.5). 

This suggests that smaller communities had both clearer definition from the rest of the 
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network and were less likely to occur at random than larger communities found using the 

lower values of #. For this reason, I chose to use a resolution parameter of # = 1.0 for 

the remainder of the analysis, which corresponds to the unmodified Leiden algorithm 

[23]. 

 

 

Figure 7.5 Quality metrics for various values of resolution parameter + for partitions recovered using 

the modified Leiden algorithm.  

Panels A to D show the scores for Internal Edge Density, Newman-Girvan Modularity, Modularity 

Density and Surprise respectively. 

 

I generated 20 partitions of the network using the Leiden algorithm (Figure 7.6 A). Each 

of these had a clear geographical component to the community structure. Although each 

of the partitions was unique, the normalised mutual information was high between all 

partitions (greater than 0.8 and greater than 0.9 in most cases) (Figure 7.6 D). This 

B

A

D

C
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indicates that the partitions generated in each iteration were similar, which in turn 

corresponds with relatively stable community structure in the network. 

 

 

 

Figure 7.6 partitions of the school network in the Netherlands 

A to C show the locations of schools in the Netherlands, the colour of the markers indicates the 

community of schools in the partition. The panels in A show the 20 initial partitions, B shows the 

partitions from the first round of the ensembling algorithm. C shows each community in a separate 

panel in the final consensus partition, grey points show the locations of other schools (not in the 

community in that panel). D shows a matrix normalised mutual information (NMI) between the initial 

partitions. 

 

Using the 20 partitions, the ensemble algorithm converged after two iterations, attesting 

to the stability of the initial partitions. Further, the first round revealed two unique 
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partitions which were very similar (Figure 7.6 B), with a normalised mutual information 

score of 0.98 between them.  

 

The consensus partition itself revealed largely geographically organised communities 

(Figure 7.6 C) with high probability of schools in the same province being assigned the 

same community. In general, any preference of connection between schools of the same 

religious affiliation was not sufficient to overpower the strong geographical component 

in the communities. 

 

However, one community (Figure 7.6C, community 9) was not comprised only of schools 

that were close geographically. Like the other communities in the consensus partition, 

this community, labelled as community 9, had a strong geographical component 

containing an overwhelming majority of schools in the province of Zeeland; however, the 

community also contained 151 schools in other provinces, 129 of which were affiliated 

with the Dutch reformed denomination and 22 to the mainstream protestant denomination 

(Figure 7.7). For all the provinces represented in the community, more than 80% of Dutch 

reformed schools were included in the community. In each province other than Zeeland, 

fewer than 2.5% of mainstream protestant schools were included in the community (Table 

7.2). The initial partition with highest modularity also included a community similar to 

that shown in Figure 7.6 with the vast majority of schools overlapping between the two 

communities (Appendix D Table 1, Figure 1). Similarly grouping schools only if they 

were partitioned into the same community in every initial partition revealed that 107 

Dutch Reformed schools from outside Zeeland remained in the same community in every 

partition (Appendix D Table 2, Figure 2), which form a subset of those in the community 

shown in Figure 7.7. 
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Figure 7.7  Community 9 of the consensus partition 

Locations of schools in the Netherlands. Markers with green fill show schools in Community 9, 

markers with grey fill indicate schools not in Community 9, red edges indicate Dutch Reformed 

schools, and grey edges indicate schools of other denominations.  

 

The pairwise probability that schools of the same province fell into the same partitioned 

communities was high with a mean of 0.75 (Table 7.3, Appendix D Figure 1 and Figure 

2). In contrast the mean pairwise probability that schools of the same denomination were 

partitioned into the same communities was much lower with a mean of 0.28. There were 

three denominations with exceptionally high mean pairwise probability, they include 

Jewish schools (Joods) and Moravian Church (Evangelische broedergemeenscha) 

schools, which both have only a small number of geographically clustered schools in the 
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population. The third was Dutch Reformed (Reformatorisch) schools, which despite 

relatively sparse geographic distribution and being the third largest religious 

denomination in the school system, showed a mean pairwise probability of 0.55.  

 

 

Table 7.2 Composition of Community 9 in the final consensus partition detailing number of schools 

by province and denomination in the community and in the whole network. 

 

Table 7.3 The mean pairwise probability (95% CI) that schools of each denomination and province 

are partitioned into the same community. 

calculated from 20 iterations of the Louvain modularity maximisation algorithm. Denominations with 

only 1 school have been precluded.  

Province Denomination
All 

schools
In Consesnsus 

community
% 

Protestants-Christelijk 356 6 1.7%

Reformatorisch 52 42 80.8%

Noord-Brabant Reformatorisch 4 3 75.0%

Noord-Holland Reformatorisch 2 2 100.0%

Overijssel Reformatorisch 22 7 31.8%

Protestants-Christelijk 207 4 1.9%

Reformatorisch 16 16 100.0%

Algemeen bijzonder 22 19 86.4%

Antroposofisch 1 1 100.0%

Gereformeerd vrijgemaakt 3 3 100.0%

Openbaar 96 79 82.3%

Overige 1 1 100.0%

Protestants-Christelijk 63 56 88.9%

Reformatorisch 36 36 100.0%

Rooms-Katholiek 48 45 93.8%

Samenwerking PC, RK 10 10 100.0%

Protestants-Christelijk 524 12 2.3%

Reformatorisch 65 59 90.8%

Gelderland

Utrecht

Zeeland

Zuid-Holland

Denomination Mean pairwise probability Province Mean pairwise probability
Joods 0.925, (0.739, 1.000) Groningen 0.996, (0.996, 0.996)
Reformatorisch 0.550, (0.546, 0.554) Friesland 0.988, (0.988,  0.989)
Evangelische broedergemeenscha 0.500, (0.000, 1.000) Noord-Holland 0.950, (0.949, 0.950)
Hindoe�stisch 0.280, (0.081, 0.479) Zeeland 0.887, (0.885, 0.889)
Gereformeerd 0.268, (0.220, 0.317) Limburg 0.857, (0.855, 0.858)
Interconfessioneel 0.233, (0.196, 0.271) Noord-Brabant 0.784, (0.784, 0.785)
Gereformeerd vrijgemaakt 0.210, (0.203, 0.217) Drenthe 0.755, (0.753, 0.758)
Evangelisch 0.149, (0.105, 0.193) Utrecht 0.723, (0.722, 0.725)
Rooms-Katholiek 0.147, (0.147, 0.147) Flevoland 0.734, (0.681, 0.686)
Islamitisch 0.147, (0.132, 0.162) Overijssel 0.546, (0.544, 0.547)
Openbaar 0.129, (0.128, 0.129) Zuid-Holland 0.442, (0.441, 0.442)
Protestants-Christelijk 0.125, (0.124, 0.125) Gelderland 0.343, (0.342, 0.344)
Algemeen bijzonder 0.122, (0.121, 0.122)
Antroposofisch 0.118, (0.110, 0.125)

Mean 0.28 Mean 0.75
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Homophily by faith denomination 

I calculated the Basic Homophily (BH) and Coleman Homophily Index (CHI) of the 

schools by denomination. The majority of denominations had positive homophily indices, 

suggesting that households are more likely to have children in two or more schools of the 

same denomination than would be expected at random. 

 

The four denominations with the highest Coleman Homophily index were Dutch 

Reformed, Athroposophic, Roman Catholic and Mainstream Protestant, With CHI 

ranging from 0.62 to 0.12. Notably the two denominations with the highest CHI were 

Dutch Reformed (Reformatorisch) (BH = 0.63, CHI= 0.62) and Anthroposophic 

(Antroposofisch) (BH = 0.25, CHI = 0.24), which are the two denominations thought to 

most closely align with populations who systematically refuse vaccination (Figure 7.8).  

Distances across the network 

I compared network and geographic distances for schools within Roman Catholic, 

Mainstream Protestant, Dutch Reformed and Anthroposophic denominations.  

 

The mean ratio of network to geographic distance (calculated for a sample of 500 schools) 

was 2.33 x10-3 (2.05 x10-3 - 2.62 x10-3, 95% CI) pairs-1 km-1 for the whole network, 0.96 

x10-3 (0.84 x10-3 - 1.08 x10-3, 95% CI) pairs-1 km-1 for Dutch Reformed, 3.03 x10-3 (2.65 

x10-3 - 3.42 x10-3) pairs-1  km-1 for Anthroposophic, 2.76 x10-3 (1.89 x10-3   - 3.63 x10-3, 

95% CI) pairs-1 km -1 for Roman Catholic and 2.41 x10-3 (2.15 x10-3   - 2.67 x10-3, 95% 

CI) pairs-1 km-1 for mainstream Protestant (Figure 7.9). This indicates that The Dutch 

Reformed denomination alone forms extended chains of schools strongly linked through 

households, whereas the other denominations are generally as connected as any schools 

in the whole network. 
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Figure 7.8 The 11 denominations with the highest Coleman Homophily Index (CHI).  

A) Bars show the basic homophily of each denomination.  B) Bars show the CHI of each 

denomination. In A and B the red bars highlight the Dutch reformed and Anthroposophic 

denominations, where vaccination uptake is known to be low.  

 

I calculated the network and geographic distances for Dutch Reformed and 

Anthoroposophic denominations and compared them with a geographically equivalent 

comparator sample from the rest of the network. The scatter plots of network distance 

against geographic distance revealed that in both cases network paths were shorter 

between the Dutch Reformed and Anthroposophic schools than between randomly 

selected geographically equivalent schools.  

 

The distance ratio (network distance divided by geographic distance) distribution was 

lower for Dutch Reformed schools and Anthroposophic schools than their comparison 

A	

B	
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samples. With mean distance ratios of 0.90x10-3  pairs-1 km -1 (0.77x10-3  - 1.04x10-3, 95% 

CI) and 2.37x10-3  pairs-1 km -1 (2.07x10-3  - 2.66x10-3, 95% CI) for Dutch reformed and 

Anthroposophic schools respectively and 5.70 x 10-3 pairs-1 km -1 (4.81x10-3  - 6.59x10-3, 

95% CI) and 4.40x10-3 pairs-1 km -1 (3.85x10-3 -  4.95 x 10-3, 95% CI ) for their respective 

comparators. 

 

 

Figure 7.9 Boxplot of distance ratio for pairs of Dutch Reformed and Anthroposophic schools and 

geographically equivalent sample from the rest of the network. 

 

 Discussion 

Due to close association of certain socio-religious groups with low MMR uptake and the 

tradition of faith schools in the Netherlands, it has previously been suggested that 

unvaccinated children cluster within schools of particular faith denomination[9, 11, 32]. 

However, it has been unclear how large-scale and long-range clustering of unvaccinated 

populations is maintained when uptake of MMR is high within the general population. I 

constructed a network of schools in the Netherlands from national school data, where 

schools are the nodes of the networks and the edges are weighted by the number of unique 

contact pairs, which form by residing in common households. I analysed the network to 
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assess the potential for local and long-range clustering of unvaccinated children by 

contact connections through households.  

 

Degree and weighted degree distributions of the whole network and subsets of the 

network by denomination (Mainstream Protestant (Protestants-Christelijk), Roman 

Catholic (Rooms-Katholiek), Anthroposophic (Antroposofisch) and Dutch Reformed 

(Reformatorisch)) show that the largest denominations, Roman Catholic and Mainstream 

Protestant, have a very similar distribution to the whole network, however the 

denominations most associated with low vaccination uptake had distinct differences. 

Dutch Reformed presents a very low number of connected schools but with much higher 

number of unique contact pairs per school, suggesting that parents of children attending 

Dutch Reformed schools are more consistent and selective in where they send their 

children to school. This could be amplified by larger than average family sizes[33], as a 

larger number of school going children may result in a higher number of unique contact 

pairs through households. Anthroposophic schools displayed the opposite relationship, 

with a lower number of unique contacts but a relatively large number of connected 

schools, suggesting that children from Anthroposophic schools have siblings in a more 

diverse selection of schools. It could also indicate that children in Anthroposophic schools 

belong to households with a lower number of children than average. 

 

The analysis suggests that schools are generally clustered by province, where most 

communities in the consensus partition were strongly clustered geographically, and not 

by denomination. However, one community contained a large number of Dutch Reformed 

schools, independent of their location, suggesting high degree of connectedness between 

these schools relative to the schools that were closest geographically.  
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Most denominations had a positive Coleman Homophily Index, indicating that in general 

schools are more likely to be connected to schools of the same denomination than would 

be expected at random. The CHI was particularly high for Dutch Reformed schools (0.62) 

and Anthroposophic schools (0.24), which are both associated with low vaccination 

uptake. High homophily between schools with low vaccination uptake indicates increased 

propensity for an outbreak in one school with low uptake to seed to another of the same 

denomination.  

 

By evaluating the ratio of network and geographic distances, it was evident that the Dutch 

reformed schools had much shorter paths between them compared to the rest of the 

network in general. Although the paths were consistently shorter between 

Anthroposophic schools compared to the rest of the network, the difference was not as 

pronounced as that for the Dutch Reformed schools. This indicated that although both 

Dutch Reformed schools and Anthroposophic schools showed high homophily, the Dutch 

reformed schools formed long-range chains of strong links between schools, whereas the 

strong connections between Anthroposophic schools was much more local. The low 

values of distance ratio for Dutch Reformed schools suggest that in addition to local 

homophily, household links between Dutch Reformed schools form strong chains across 

the network independent of geographic, demographic or infrastructural effects. 

 

The distinct network proximity of geographically distant Dutch Reformed schools 

indicates the potential for long range and large-scale clustering of unvaccinated children 

from this particular population, without the need for long-range transmission events. 

However for Anthroposophic schools these the connection between distant schools was 
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not as strong, suggesting that these schools do not contribute to long range clustering of 

unvaccinated children, if an outbreak occurred in a school of this denomination long-

range transmission events are likely to be required to spread an outbreak beyond the area 

local to where the first cases occur.  

 

This finding is consistent with outbreaks in the past decade, where an outbreak in an 

Anthroposophic school in 2008 was contained to 99 cases in a relatively local area, 

whereas an outbreak in the Dutch Reformed community in 2014 spread to distant parts 

of the country infecting an estimated 30,000 people, 90% of which were children and 

84% belonged to the Dutch Reformed community.  

 

There are a number of important limitations to this analysis. Firstly, the framework cannot 

capture connectivity between schools through any means other than household. It may be 

the case that connectivity through other means, such as activities connected religious 

provide clearer connections between other religious affiliations that are not highlighted 

here. Furthermore, religious identity may not in all cases strongly align with school 

denomination, however there is independent evidence that there is low vaccine uptake in 

schools affiliated with Dutch Reformed and Anthroposophic groups.  

 

Community detection is one of the most researched areas in network science and its 

application is of much interest in multiple fields of scientific study. Over recent decades 

many algorithms have been developed to detect communities in a network, which vary 

greatly in approach and even the definition of the “communities” which they seek [21], 

each have advantages and limitations. The most traditional definition of a community 

could be described as a set of nodes that are more connected to each other than to the rest 
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of the network [26, 34, 35]. This is not the case for some more recent community detection 

frameworks, which are capable of finding groups of nodes which interact with each other 

and other communities in a statistically similar way but with no constraint related to a 

higher degree of connection within the community than the rest of the graph [21, 30, 36]. 

In particular, this is true of a lineage of methods that has developed out of the practice of 

using Stochastic Block Models in a generative framework to estimate modular structure. 

This was seemingly born out of the practice of generating benchmark networks to 

evaluate community detection performance, hence inference frameworks which use such 

models perform well when attempting to recover the communities under this definition. 

Although there are special cases where SBMs can be uses to find assortative communities 

explicitly [37, 38] these methods have not yet been implemented for weighted graphs. 

Hence, although the more principled SBM approach to community detection offers a 

stable and principled methodology for detecting communities in networks[36], the current 

accessible implementations are not appropriate for this application. Instead, I chose a 

modularity maximisation framework as the community definition is explicit in this 

method, which makes interpretation of the resulting communities more straightforward 

in this case as I explicitly sought assortative communities, which is problematic for, 

generally more robust, frameworks based on statistical inference[37, 38].  

 

The chief limitation of the Leiden algorithm is a resolution limit which limits the 

algorithms ability to detect small communities [39], hence smaller communities within 

the partitions detected may exist. As such there could be other communities within 

provinces which are formed predominantly of particular religious groups. For the purpose 

of this analysis the scale of the communities observed was deemed appropriate and 

meaningful. The observation of strong connectivity between schools affiliated with the 
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Dutch reformed church (Reformatorisch) over multiple provinces is informative 

regardless of whether smaller community structures also exist. 

 

To conclude, there are important correlations between religious faith and vaccination 

refusal in the Netherlands. In particular the traditions associated with low vaccine uptake 

are the Dutch Orthodox Reformed Church and the Anthroposophic community. The 

popularity of faith-based schools in the Netherlands can lead to schools with low overall 

vaccine uptake. Our network analysis of the connections between schools through shared 

households reveals that there are stronger connections between schools of the same 

denomination than would be expected at random. This is particularly clear within the 

Dutch Reformed Church. Although present, the effect is weaker for Anthroposophic 

schools.  

 

The isolation of these particular socio-religious groups may have implications for the 

epidemiology of outbreaks in the Netherlands as a whole, particularly for measles, where 

vaccination uptake must be very high (~95%) to interrupt transmission effectively. 

Moreover, looking to the conclusions in Analysis A, the relative differences in vaccine 

uptake by religious affiliation and variation in isolation from the general population of 

schools may introduce substantial differences in risk to unvaccinated children depending 

on their religious group as a product of the overall network over and above the vaccine 

uptake in the particular school. 

 

The nature of outbreaks on this network and the implications of the findings of this 

chapter are assessed in chapter 8 by means of outbreak simulation studies employing a 

disease transmission model constructed using this network.   
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8 Analysis D (part 2): A network of 

schools in the Netherlands: 

Implications for measles 

epidemiology  
 

 

 

 

Objective: Analyse the impact of faith schools on clustering of children who are 

susceptible to measles and resultant measles epidemiology in the Netherlands 

 

 

  



 
 

 226 

 Introduction 

Since the introduction of mumps, measles and rubella vaccine (MMR) in the Netherlands 

in 1989, sporadic measles outbreaks have persisted [1–5]. Most notably, in 1999 [6] and 

2013  large outbreaks were recorded, both with c. 3000 cases reported and an estimated 

total incidence of around 30,000 cases [7]. The majority of reported cases (94%) were 

unvaccinated individuals, 84% were individuals who refused vaccination for religious or 

political reasons and 90% were children (< 20 years)[5]. 

 

Uptake of MMR in the Netherlands is generally high, with 95% uptake for the first dose 

of MMR by the age of 14 months and 93% uptake for the second dose of MMR by the 

age of 10 years [5, 8]. It is broadly understood that low vaccination coverage in particular 

socio-religious groups contributes substantially to the large outbreaks observed [9–15], 

however these groups are relatively sparsely distributed geographically. An outbreak of 

measles in such a highly vaccinated population would not be expected to infect such a 

large proportion of susceptible individuals without a high degree of clustering of 

unvaccinated people. Although the association of particular religious groups provides a 

basis for this clustering, the mechanism and extent of clustering has not been well enough 

quantified to explain the size and frequency of observed outbreaks. Previous modelling 

analyses [16] of these outbreaks have relied on strong assumptions of homogenous 

contact exclusively within unvaccinated communities to reproduce outbreak sizes 

observed. Moreover, although large outbreaks have been observed with an a period of 12 

to 13 years, other smaller outbreaks have been recorded in the intermittent years[1–3]. It 

is unclear whether timing of the outbreak or location or faith affiliation of the initial cases 

has a part to play in the final size.  
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In Analysis D (part 1), I analysed the household based social contacts between schools in 

the Netherlands. I showed higher homophily and general contact network proximity 

between faith schools of the same denomination than between schools that did not share 

the same faith denomination. Schools that are affiliated with the Dutch Reformed Church, 

a denomination of the Christian faith who generally refuse vaccination, are particularly 

well connected to each other on the contact network. The results of Analysis D (part 1) 

indicate that schools and households may provide enough contact to connect a large 

proportion of unvaccinated children, particularly those in the Dutch Reformed 

community. But the questions remain: 

 

Is the concentration of unvaccinated children in particular schools sufficient to explain 

the large outbreaks of measles observed in 1999/2000 and 2013/14? and how important 

is the clustering of unvaccinated children in particular schools and the network proximity 

of schools with low vaccination?   

 

In this chapter I use the network of contact between schools to construct a model of 

measles transmission across the Dutch school system to address these questions. 

 

 Methods  

I used the network described in Analysis D (part 1) to construct a model of transmission 

of infectious disease. By incorporating estimates of school level uptake, estimated by 

Klinkenberg et al [17], I simulated outbreaks of measles to assess the size and 

geographical characteristics of an outbreak that would be expected if contact were made 
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only through school and households between school aged children. I performed two 

simulation studies to: 

 

1. Quantify the risk to (and posed by) each school in the network. Using this I 

evaluate how epidemics vary depending on the denomination of the school where 

they are initiated. 

 

2. Evaluate how clustering of unvaccinated children in schools affiliated with 

particular faiths may have contributed to large outbreaks of measles virus in the 

Netherlands;  

 

To evaluate the importance of clustering of unvaccinated children in particular schools 

(individual level clustering) and clustering in the network of schools with low vaccination 

(school level clustering) to the result of a simulated outbreak, I also performed the 

analysis in simulation studies A and B with two alternative networks. Firstly, with 

vaccination uptake in each school made equal to the uptake of the four-digit postcode 

areas (PC4s) of the children who attend that school. Secondly, I constructed a network 

with contact between the schools defined by a spatial kernel, as opposed to the network 

constructed from the national school data (figure 8.1).  

 

Overview of school contact network 

I used school and pupil data provided by the Dutch Ministry for Education (DUO), which 

holds data for each school (n. 9200) and individual child in the educational system on the 

31st October 2013.  
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Using data on the residence and school of each pupil in the database I constructed a 

network [18] of schools where edges were weighted by the number of unique contact 

pairs, where a contact pair comprises two children who reside in the same household but 

attend different schools. This is discussed in detail in Chapter 5.  

 

 

 

Figure 8.1 Schematic of the components of the different network models  

The baseline used the data driven contact network and school level uptake. Alternative Models: 1. 

Uptake based on four-digit postcode areas of the children who attend the school. 2. Interaction based 

on a spatial interaction kernel. 

 

Transmission model 

Using the information in the school contact network, I constructed a transmission 

probability network, where edges were weighted with the probability that an outbreak 

would be initiated in school i in the event of an outbreak in school j.  

 

I estimated probability of transmission between pairs of schools as follows:  
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First, I defined the probability of transmission between a single contact pair that form a 

link between school 8 and school 9. Considering one contact pair: I set the probability, [, 

of transmission between the pair, given that the child in the pair who attends school 9 is 

infected and the other child, who attends school 8, is susceptible. I denote the probability 

that the child from school 9 is infected to be @*? and the probability that the child from 

school i is susceptible to be @)@. The overall probability of transmission between a contact 

pair is given by the intersection of these:  

 

@)
?@*

@[ 

 

The probability that the newly infected child causes an outbreak in school 8 is denoted by 

@)
AB . The total probability of an outbreak being seeded in school 8  from an ongoing 

outbreak in school 9 over all P)* contact pairs is given by:  

 

@.H&;0,)* = 1 − d1 − @*
?@)

@[@)
ABe

%(' 

 

I estimated the probability that the child in school j is infected by the outbreak, @*? as the 

proportion of the school children infected by the outbreak (!*(∞	)) in that school, which 

I calculated by solving the final size equation [19]: 

 

!*(∞) = d1 − ]*e~1 −	^
=C!=D'E"!"(F)� 
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where ]* is the vaccination coverage in school 9. I estimated the probability that the child 

in school 8	 is susceptible, @)@ , to be equal to the proportion of school 8  that are 

unvaccinated according to the inferred school level uptake rates, (1 − ])). 

 

I took the probability of an outbreak in that school as a result of a single transmission 

event to be: 

 

@)
AB = a1 −

1
!(
b = a1 −

1
(1 − ]))!#

b 

 

which assumes a geometric distributed contact rate and homogenous mixing amongst 

children within schools[19]. Note that a key difference between this model and the one 

used in Analysis C is the explicit presence of vaccination coverage. Because of different 

vaccination coverage in different schools, the transmission probability network is now a 

“directed graph”, i.e. @.H&;0,)* 	≠ @.H&;0,*). 

 

School level vaccine uptake estimates 

Estimates of vaccine uptake in schools were taken from a separate analysis by 

Klinkenberg et. al. [17]. In this analysis, which is yet to be fully published, school level 

uptake was estimated using a hierarchical Bayesian framework incorporating vaccine 

uptake data at postcode level collected in 2014 [8], school catchment data from 2013 to 

2016 (at postcode level) and data on the transition of pupils from primary to secondary 

schools for the same years. The authors evaluated their estimates against measured uptake 

in schools in Utrecht, which demonstrated good agreement with the model. The results 

of this analysis quantified and corroborated other evidence of low uptake of MMR 
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vaccine in schools associated with Dutch Reformed and Anthroposophic socio-religious 

groups (figure 8.2). With agreement from the authors, I used the joint posterior 

distribution of the vaccine uptake by school from their analysis to parameterise the 

simulations.  

 

Alternative Model 1: Approximating school level vaccination from areal vaccination 

data.  

In the baseline model unvaccinated children were highly concentrated in particular 

schools, as quantified by Klinkenberg et al [17]. To test the importance of high clustering 

of unvaccinated children in particular schools to outbreak size and distribution, I analysed 

an alternative parameterization of the model where vaccination in each school was 

estimated using the vaccination rates of the PC4s (four-digit post code areas) of the 

children in attendance at the school. Assuming children had a probability of being 

vaccinated equal to the vaccine uptake of the PC4 where they lived. I used data provided 

by DUO on the residence of children in each school to calculate the proportion of children 

in each school who live in each PC4. School vaccination uptake was set as the weighted 

average of vaccination uptake rates at PC4 level, weighted by the proportion of children 

who live in each PC4.  
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A 

 

B 

 

C 

 

Figure 8.2 Ranked vaccine uptake in schools, points show mean, bars show interquartile range of the 

marginal distribution for each school.  

A: all schools, B: Dutch Reformed schools, C: Anthroposophic schools. 
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Alternative Model 2: Spatial interaction network 

Analysis D (part 1) shows that due to homophily between schools of particular 

denominations, the specific local structure of the network increases clustering of schools 

that are likely to have low vaccine uptake. To assess the importance of the specific 

network structure defined by the school data to the overall dynamics of outbreaks, I 

constructed an alternative school contact network where the geographic distance between 

connected schools followed a similar relationship to the baseline model, however contact 

is spread evenly over all schools according to that relationship.  

 

The spatial distribution of a school’s ‘neighbours’ can reasonably be described by a semi-

Gaussian spatial relationship. I used this relationship weighted by the degree of the 

connecting schools. To calibrate the spatial kernel, I matched the distribution of distance 

between schools connected by contact pairs to the school data derived network Appendix 

E. Interaction between all schools was calculated equally, regardless of primary and 

secondary status (Figure 8.3).  

 

 

Evaluation of school level infectivity  

To evaluate the infectivity of each school in the network, I calculated the weighted out-

degree of each school for multiple realisations of the transmission probability network. 

This value is the sum of the out-edges of each school and amounts to the expected number 

of adjacent schools infected if an outbreak were initiated in that school. 
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Figure 8.3 Ego-networks of the school where the 2013/14 measles outbreak was seeded  

Position of the nodes shows the relative location of the schools, node size gives their weighted degree 

(the number of unique contact pairs with the seed school), the edge width indicates the number of 

unique contact pairs between the schools. A. Connections are based on spatial interaction with all 

schools. B. Connections are based on the school data. 

 

Outbreak simulations 

I made the assumption that schools were one of: susceptible, infected or recovered. Each 

susceptible school, 8 , has susceptibility equal to 1 − ]) . Infected schools are those 

affected by an outbreak, and have a probability of infecting neighbouring susceptible 

schools (@.H&;0,)*) as defined above. After an outbreak has occurred, I assumed that the 

school had effectively depleted its susceptible population, and could not be re-infected.  

 

Once vaccine uptake is assigned to each school (e.g. sampled from the joint posterior 

distribution provided by Klinkenberg et.al.), probability of transmission between schools 

is constant resulting in a static directed network, where out-edges (probability of outward 

transmission from a school to its neighbour) are not necessarily equal to the equivalent 

in-edge (probability of inward transmission from a neighbour to a school).  

 

A	 B	
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For each set of school uptake values, I created 1000 instances of a directed binary 

outbreak network from the transmission probability network. Where a directed binary 

outbreak network is a network with edges equal to 1 or 0 between schools, where an edge 

of 1 from school 8 to school 9 indicates transmission would occur from school 8 to school 

9 in the event of an outbreak in school 8. For each instance, each edge is weighted 1 with 

probability informed by the equivalent edge value in the transmission probability 

network.  

 

Note, these networks differ from those discussed in Analysis C only because of the 

different vaccine uptake in each school. This difference in susceptible fraction 

necessitates the directed nature of the transmission probability network and the binary 

outbreak network. In Analysis C these were undirected as total susceptibility was 

assumed. 

 

Directed binary outbreak networks provide the information required to easily identify 

both: 

A) Schools at risk of infection from each school: The set schools which would be 

infected if an outbreak initiated in each particular school in the network (i.e. all 

the schools that would be infected by an outbreak initiated in school i). For each 

particular initial school, I identified schools that would be infected by an outbreak 

as those connected by chains of out-edges (out-component). i.e. each generation 

of the outbreak is comprised of the successors (figure 8.4) of the schools in the 

previous generation. (Appendix E) 
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Figure 8.4 Successors and predecessors in a directed network.  

A: The successors of a particular node, indicated by green, would be infected if an outbreak 

occurred in it. B: Predecessors, orange nodes, are those schools that would infect a particular 

school, indicated by green node, if there were an ongoing outbreak within their population. 

 

B) Schools from which each school is at risk of infection: The set of schools within 

which if an outbreak were initiated, it would lead to infection in each particular 

school (i.e. all the schools that would lead to school i becoming infected if an 

outbreak initiated in them). I identified these schools as those connected to the 

school by chains of in-edges (in-component). That is, schools that would infect 

each school in-edge of value 1 connecting them, i.e. the predecessors of that 

school. For each school I identified the schools whose outbreak would eventually 

infect that school. (Appendix E) 

 

Calculating average number of cases per postcode area (PC4) 

Data was made available to us by DUO detailing the number of children in each school 

whose residential address falls within each PC4. For each instance of the model I 

calculated the expected number of cases per PC4 (Å(1/Y) as the sum of the proportion of 

students in each infected school who reside in that PC4, multiplied by the proportion of 

the school that was infected in the outbreak.  

Successors	 Predecessors	
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Å(1/Y:1 =X@1,)!)(∞)
)

 

 

Where, @1,) is the proportion of school 8 residing in PC4 h, and !)(∞) is the proportion 

of students in school 8 who were infected in the outbreak. 

 

Simulation study 1: Risk by School  

To quantify the risk posed by each school in the network, I calculated the mean expected 

final outbreak size (schools and children) in the event of an outbreak initiated in each 

school in the network. To quantify the risk posed to each school in the network I 

calculated the number of schools in which an outbreak could be initiated in that could 

lead to infection in the school. I weighted each school’s contribution to risk by the 

probability of an outbreak successfully taking place. I took this to be the proportion of all 

unvaccinated children in the network who attend that school in the school, multiplied by 

the probability of a child seeding an outbreak 1 − 1/!(GG. 

 

I compared the risk posed by and to Dutch Reformed and Anthroposophic schools by 

evaluating risk relative to vaccine uptake in these denominations.  To quantify the 

importance of clustering of schools of a particular denomination in the network, I repeated 

this analysis for both the baseline model and Alternative Model 2, which uses spatial 

interaction between schools instead of household links. 

 

 

Simulation study 2: Simulating the 2013/14 Outbreak: Evaluating the Model 
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To evaluate the ability of the school network transmission model to describe observed 

outbreak dynamics, I analysed 1000 simulated outbreaks initiated in the schools where 

the first cases were reported in the 2013 outbreak.  

 

To compare the geographic distribution of cases in 2013/14 to those predicted by each 

model, I used a Receiver Operating Characteristic (ROC) at PC4 level. Where true 

positive PC4s are those where cases were predicted by the model, and also cases were 

observed in 2013 etc. 

 

Sensitivity is calculated as the proportion of PC4s that had cases reported, which the 

model also predicted cases in. Specificity is calculated as the proportion of PC4 areas 

where cases were predicted, that also had cases reported in the outbreak. 

 

To reflect the relative importance of PC4s with higher reported or simulated incidence, I 

also calculated a weighted ROC (wROC). For this measure, when calculating sensitivity, 

each PC4 with cases reported is weighted by its proportional contribution to all cases 

reported. Hence, whereas for the unweighted ROC the sensitivity value is the proportion 

of areas with cases reported that also had cases predicted, for the wROC the sensitivity 

value is the proportion of cases reported that occurred within PC4s where cases were 

predicted by the model.  

 

In addition, when calculating specificity, each PC4 area with cases predicted, is weighted 

by the proportion of cases predicted in the total model output located in that PC4 area. 
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Hence, the weighted specificity gives the proportion of cases predicted that were in PC4 

areas where cases were reported in the outbreak.  

 

To quantify the importance of clustering of unvaccinated children in school and clustering 

of schools in the broader network for explaining the size and geographical distribution of 

cases in 2013/14, I evaluated the performance of the baseline model (school data derived 

network with vaccination uptake informed by Klinkenberg et al) relative to the 

performance of Alternative Model 1 (PC4 level vaccination uptake) and Alternative 

Model 2 (Spatial interaction between schools). 

 

 Results 

Simulation study 1: Risk posed by school - Final size by initial school  

The overall risk posed by an outbreak in each particular school was quantified by finding 

the distribution of final outbreak size. For both the school data and spatial networks, the 

majority of schools had a very low mean outbreak size, as no sustainable transmission 

was observed in any simulation.  

 

For the baseline model, the maximum mean outbreak size was 171 schools and 23,766 

children and was associated with a Dutch Reformed school (Figure 8.5). In general, Dutch 

Reformed schools generated large outbreaks particularly for schools with very low 

vaccination coverage. Outbreaks seeded in Anthroposophic schools generally remained 

much smaller, with a maximum of 5 schools and 616 children.  
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Figure 8.5 Mean outbreak final size by school where outbreak is seeded.  

Red points indicate Dutch Reformed schools, green points indicate Anthroposophic schools, grey 

points indicate other schools. A: School data derived network- mean number of schools infected, B: 

School data derived network- mean number of children infected, C: Spatially derived model- mean 

number of schools infected, D: Spatially derived model- mean number of children infected. 

 

Outbreaks simulated on Alternative Model 2 were generally much smaller. There was a 

trend with vaccine uptake, however there remained schools where vaccine uptake was 

low that still only seed very small outbreaks. The schools that seeded the largest outbreaks 

using Alternative Model 2 had a mean of 25 infected schools and 5782 cases. The Dutch 

reformed schools seeded the largest outbreaks. However, the difference between Dutch 

Reformed and Anthroposophic schools was much less substantial with a number of 

Anthroposophic schools seeding outbreaks greater than predicted by the model derived 

from the school data, with a maximum of 23 schools and 4916 children. Notably the some 

A	 B	

D	C	
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Anthroposophic schools seeded outbreaks comparable to those seeded by Dutch 

Reformed schools with similar vaccine uptake. 

 

The risk posed to particular schools is summarised as the mean proportion of possible 

initial cases in unvaccinated children that would eventually lead to an outbreak in the 

school (i.e. the number of children who could be infected and initiate an outbreak which 

reaches the school). This shows a close relationship to the risks posed by the school in 

terms of the expected outbreak sizes. The highest risk school would have an outbreak 

seeded as a result of 40% of seed cases (Figure 8.6); this was a Dutch Reformed school. 

The mean proportion of seeds that would cause an outbreak in Dutch reformed schools 

was 33%. The risk posed to Anthroposophic schools was much lower, with a maximum 

and mean proportion of seeds leading to outbreaks in particular schools at 1% and 0.3% 

respectively.  

 

 

Figure 8.6 The proportion of unvaccinated children who if seeded an outbreak in their school, would 

cause an outbreak in each school plotted.  

Red indicates Dutch Reformed schools, green indicates Anthroposophic schools and grey indicates 

other schools. 
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Simulation study 2: Recreating the 2013/14 outbreak 

General description of the outbreaks predicted by each model 

Using the baseline model (National school data contact network and school level vaccine 

uptake estimates), 1000 outbreak simulations with the initial schools set to the two 

schools where the first cases were reported in the 2013 outbreak, resulted in a mean of 

28576 (28022 – 29078 95% CI) cases. The geographical distribution of cases was 

broadly consistent with the reported cases in 2013/14. There was a high likelihood of 

cases being reported in PC4 areas in the centre of the country and the southwest. There 

was also a high likelihood of detecting cases in a small region in the north east of the 

country (figure 8.7 C).  

 

When Alternative Model 1 was used, (national school data in combination with the 

vaccination uptake in schools estimated from PC4 level vaccine uptake), the mean final 

size of the outbreaks was 9093 (420 – 18209 95% CI). The cases were distributed in a 

narrow strip, with high frequency of cases stretching from the south west region to the 

north east of the central region (figure 8.7 B).  

 

When Alternative Model 2 was used (the spatially derived contact network and school 

level vaccine uptake estimates), the final size of the outbreak was 67 (10 – 163 95% CI) 

cases. The majority of cases predicted occurred in schools in the central region of the 

country, with low probability of detecting infection in any other regions (figure 8.7 A).  
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Figure 8.7 Mean number of cases across 1000 simulated in each PC4 region with a reporting rate of 

10% (from estimates in literature).  

A: the baseline model: School data network with school level uptake., B: Alternative Model 1: School 

data network with PC4 level uptake, C: Alternative Model 2: Spatial network with school-level uptake 

 

Model assessment using Receiver Operating Characteristic (ROC) and weighted ROC 

Using the unweighted ROC, the mean sensitivity (proportion of PC4s where cases 

reported that were predicted by the model) was 0.84, 0.28 and 0.18, for the Baseline 

model, Alternative Model 1 and Alternative Model 2 respectively (Figure 8.8 A). The 

mean specificity (proportion of PC4s where cases were predicted that also had cases 

reported) was 0.40, 0.54 and 0.57 for Baseline model, Alternative Model 1 and 

Alternative Model 2 respectively. 

 

Considering the weighted ROC, the mean sensitivity (proportion of cases reported that 

were in PC4 areas predicted by the model) was 0.94, 0.38 and 0.23 for the Baseline model, 

Alternative Model 1 and Alternative Model 2 respectively (Figure 8.5 B). The mean 

specificity (proportion of cases predicted that fell into PC4 regions where cases were 

reported) was 0.94, 0.91 and 0.91 for School data network with school vaccination, 

A	 B	 C	
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Spatial network with school vaccination and School data with PC4 level vaccination 

respectively. 

 

 

Figure 8.8 Sensitivity and specificity of the baseline and alternative network models.  

A: Unweighted sensitivity vs. specificity. B: Weighted sensitivity vs. specificity. 

 

 Discussion 

Despite high-average uptake of MMR vaccination over the past two decades. the 

Netherlands continues to experience large outbreaks of measles[1–5]. In general, these 

outbreaks are associated with socio-religious groups who refuse to vaccinate their 

children in large numbers. However, the geographical scale and total incidence of the 

outbreaks varies considerably between socio-religious groups, with outbreaks in the 

Dutch Reformed population generally being much larger and farther reaching than those 

in the Anthroposophic population. I used the Dutch national network of schools 

A B
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constructed from national school data, as a framework for simulating outbreaks of 

measles, seeded in Dutch Reformed, Anthroposophic and other schools in the network.  

 

Over two simulation studies of the network my model suggests that the school network 

has the capacity to explain key differences between outbreaks in Dutch Reformed and 

Anthroposophic populations, and can offer important insight into the epidemiology of 

measles in the Netherlands over the past 20 years, and the potential for large outbreaks to 

occur in the future. 

 

I have made observations, which have important implications for understanding the 

determinants of large outbreaks of measles in the Netherlands and their timing. 

 

Firstly, the results from spatially derived model suggests that high rates of community 

transmission and long-range transmission would be required to recreate the observed 

epidemiology as schools with low vaccination uptake were less clustered within the 

network. Although the data derived network and postcode level vaccination better explain 

the geographical distribution of cases than the spatially derived network, it falls short of 

the model using the same contact network with school level vaccination. In addition, the 

overall size of the outbreak is not reflected, suggesting that clustering of unvaccinated 

children in schools is important for explaining the full extent of the outbreak observed. 

These findings indicate that the distribution of unvaccinated children within particular 

schools, and the specific links between these schools greatly increase the potential for 

large outbreaks to occur. With these factors accounted for in the model, outbreaks similar 

to that observed in 2013/14 can be simulated by accounting for school and household 

transmission only. This finding suggests that, in a population with immunity provided 
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only by vaccination, outbreaks have a clear determinable reach, which is largely 

unaffected by chance encounters or rare long-range transmission events. 

 

Secondly, the specific connections between schools described in the network were able 

to explain the difference in outbreak size in the different socio-religious groups. 

Outbreaks seeded in Dutch Reformed schools frequently resulted in large outbreaks 

infecting over 100 schools. Using the data derived network, the outbreaks seeded in 

Anthroposophic schools remained small even when the vaccine uptake in the seed school 

was low. In the spatial comparison model, the outbreaks seeded in the Dutch Reformed 

schools were much smaller and more comparable to those seeded in Anthroposophic 

schools. These findings suggest that the structure of the school system provides a 

mechanistic explanation for the difference in outbreaks observed in the past decade. 

Further, since the variation in outbreak size are due to structural differences in the 

population, it is likely that future outbreaks in these communities would follow similar 

patterns, if the structure of the school system remains comparable in years to come. 

 

The purpose of this analysis was to identify whether the observed epidemiology of 

measles in the Netherlands is reproducible under these assumptions when explicit links 

between schools and households are accounted for in a model. This approach makes some 

important simplifying assumptions that the majority of transmission of measles between 

children occurs between contacts that either reside in the same home or attend the same 

school.  

 

First, the model made some assumptions about transmission routes in the population. The 

model does not model transmission between school-aged children that do not have contact 
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in school or at home. In addition, the model does not account for transmission outside of 

the school-aged population. In reality, adults and preschool-age infants are likely to 

contribute to transmission to some degree. These neglected routes of transmission could 

potentially influence transmission dynamics in a way that this model cannot capture. In 

2013/14 there were 438 cases (19%) in children between 1 and 4, lower than the 819 

(30%) and 868 (32%) cases in 5-9 and 10-14-year-old age groups, suggesting less but by 

no means negligible transmission within pre-school-age than school-aged children[5]. 

The presence of pre-school institutions in the network would, most likely, provide 

additional connectivity on the network. This may increase transmission opportunities 

between primary schools in particular.  

 

Secondly, my model does not simulate within-school transmission dynamics, but instead 

assumes a deterministic final size, which occurs with a probability determined by the 

effective reproduction number in that school. This cannot capture the contribution of 

outbreaks that do not reach sustainable transmission within schools, but still represent 

some small risk in terms of infecting other schools with the few pupils that are infected. 

Furthermore, the final size approximation I used assumes frequency dependent, 

homogenous transmission within the school population, which is a simplification. As 

discussed in previous chapters of this thesis, several surveys of school contacts reveal 

strong preference for mixing within school years [20–22]. This is likely to impact final 

size somewhat, although the impact of this on the propensity for outbreaks to pass 

between schools is likely to be small; due to the high infectiousness of measles, very few 

susceptible-infectious pairs between schools are required to successfully seed a new 

outbreak. 
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Thirdly, similarly to Chapter 6 of this thesis, the framework uses the same value of !# in 

schools and transmission probability [	in all households. This is unrealistic, however any 

impact of variation in !# is likely to be negligible compared to the variation in vaccine 

uptake observed in this setting. Furthermore, at high values of !#  and [  that are 

consistent with measles transmission, small variations have little impact on the 

transmission probability calculated between schools. 

 

Finally, the model works purely on a ‘generational’ basis, with no explicit temporal 

element. This restricts its use to modelling the overall incidence of an outbreak without 

modelling the temporal dynamics. This precluded the option of including weekends and 

school holidays in the model, where contact patterns have been shown to differ 

substantially [23–25]. Seasonal events have also been shown to affect the spatial 

distribution of cases, which has not been captured here [26]. 

 

Although these limitations are important for interpretation of the model output, they do 

not detract from the findings that the school system provides a system of contact that is 

able to facilitate large outbreaks amongst unvaccinated children in the Dutch Reformed 

population but not amongst children in Anthroposophic schools.   

 

Further analysis of this network could allow study of other infectious diseases such as 

mumps and rubella, which are also prevalent amongst school-aged children within the 

same socio-religious populations. The model could also be extended to analyse outbreaks 

of influenza, where a large degree of transmission occurs within school age children. 

Another use of this framework could be to evaluate the effectiveness of various other 

intervention strategies, such as school closure. This method could also be applied in other 
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settings where vaccine uptake is strongly related to particular social groups[11], although 

this relies on detailed schools data being made available.  

 

In conclusion, explicitly modelling connections between schools can provide important 

insights into the epidemiology of measles in the Netherlands, why it may vary between 

socio-religious groups. The results suggest that the preference for particular faith schools 

amongst families that choose not to vaccinate provides a mechanism for the clustering of 

unvaccinated children within the Dutch Reformed schools across the Netherlands. The 

same effect is not present in children that belong to the Anthroposophic community, 

resulting in much smaller outbreaks in this population.  

 

 References  

1. Wallinga J, Heijne JCM, Kretzschmar M. A measles epidemic threshold in a highly vaccinated 

population. PLoS Med. 2005, 2:e316. doi:10.1371/journal.pmed.0020316. 

2. Velzen E van, Coster E de, Binnendijk R van, Hahné S. Measles outbreak in an anthroposophic 

community in The Hague, The Netherlands, June-July 2008. Eurosurveillance. 2008, 13:18945. 

doi:10.2807/ese.13.31.18945-en. 

3. Hahne S, te Wierik MJM, Mollema L, van Velzen E, de Coster E, Swaan C, et al. Measles Outbreak, 

The Netherlands, 2008. Emerg Infect Dis. 2010, 16:567–9. doi:10.3201/eid1603.090114. 

4. van den Hof S, Meffre CM, Conyn-van Spaendonck MA, Woonink F, de Melker HE, van Binnendijk 

RS. Measles outbreak in a community with very low vaccine coverage, The Netherlands. Emerg Infect 

Dis. 2001, 7 3 Suppl:593–7. doi:10.3201/eid0707.010743. 

5. Woudenberg T, van Binnendijk RS, Sanders EAM, Wallinga J, de Melker HE, Ruijs WLM, et al. Large 

measles epidemic in The Netherlands, May 2013 to March 2014: changing epidemiology. Euro 

Surveill. 2017, 22. doi:10.2807/1560-7917.ES.2017.22.3.30443. 

6. van den Hof S, Meffre CM, Conyn-van Spaendonck MA, Woonink F, de Melker HE, van Binnendijk 

RS. Measles outbreak in a community with very low vaccine coverage, The Netherlands. Emerg Infect 

Dis. 2001, 7 3 Suppl:593–7. doi:10.3201/eid0707.010743. 

7. Woudenberg T, Woonink F, Kerkhof J, Cox K, Ruijs WLM, Van Binnendijk R, et al. Epidemiology 

and Infection The tip of the iceberg: incompleteness of measles reporting during a large outbreak in 

The Netherlands in 2013-2014. Epidemiol Infect. 2018, 147:1–7. doi:10.1017/S0950268818002698. 



 251 

8. Van Lier EA, Oomen PJ, Giesbers H, Conyn-van Spaendonck MAE, Drijfhout IH, Zonnenberg-Hoff IF, 

et al. Vaccinatiegraad Rijksvaccinatieprogramma Nederland Verslagjaar 2014. 2014. www.rivm.nl. 

Accessed 5 Dec 2019. 

9. Nic Lochlainn LM, Woudenberg T, van Lier A, Zonnenberg I, Philippi M, de Melker HE, et al. A novel 

measles outbreak control strategy in the Netherlands in 2013–2014 using a national electronic 

immunization register: A study of early MMR uptake and its determinants. Vaccine. 2017, 35:5828–

34. doi:10.1016/J.VACCINE.2017.09.018. 

10. Ruijs WLML, Hautvast JLLA, Van Der Velden K, De Vos S, Knippenberg H, Hulscher MEEJL. 

Religious subgroups influencing vaccination coverage in the Dutch Bible belt: an ecological study. 

BMC Public Health. 2011, 11:102. doi:10.1186/1471-2458-11-102. 

11. Fournet N, Mollema L, Ruijs WL, Harmsen IA, Keck F, Durand JY, et al. Under-vaccinated groups 

in Europe and their beliefs, attitudes and reasons for non-vaccination; two systematic reviews. BMC 

Public Health. 2018, 18:196. doi:10.1186/s12889-018-5103-8. 

12. Ruijs WLM, Hautvast JLA, van IJzendoorn G, van Ansem WJC, van der Velden K, Hulscher ME. How 

orthodox protestant parents decide on the vaccination of their children: a qualitative study. BMC 

Public Health. 2012, 12:408. doi:10.1186/1471-2458-12-408. 

13. van Lier A, van de Kassteele J, de Hoogh P, Drijfhout I, de Melker H. Vaccine uptake determinants 

in The Netherlands. Eur J Public Health. 2014, 24:304–9. doi:10.1093/eurpub/ckt042. 

14. Klomp JHE, van Lier A, Ruijs WLM. Vaccination coverage for measles, mumps and rubella in 

anthroposophical schools in Gelderland, The Netherlands. Eur J Public Health. 2015, 25:501–5. 

doi:10.1093/eurpub/cku178. 

15. Harmsen IA, Ruiter RAC, Paulussen TGW, Mollema L, Kok G, de Melker HE. Factors that influence 

vaccination decision-making by parents who visit an anthroposophical child welfare center: a focus 

group study. Adv Prev Med. 2012, 2012:175694. doi:10.1155/2012/175694. 

16. Bier M, Brak B. A simple model to quantitatively account for periodic outbreaks of the measles in 

the Dutch Bible Belt. Eur Phys J B. 2015, 88:107. doi:10.1140/epjb/e2015-50621-9. 

17. Klinkenberg D, van Hoek AJ, Veldhuijzen IK, Hahné S, Wallinga J. Measuring herd protection of 

unvaccinated children: measles-mumps-rubella vaccination coverage in schools in the Netherlands 

[Poster]. In: 7th International Conference on Infectious Disease Dynamics, 3-6 December. 2019. 

18. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using 

NetworkX. In: 7th Python in Science Conference (SciPy 2008). 2008. p. 11–5. 

http://conference.scipy.org/proceedings/SciPy2008/paper_2/. Accessed 6 Dec 2019. 

19. Diekmann O, Heesterbeek JAP. Mathematical Epidemiology of Infectious Diseases: Model 

Building, Analysis and Interpretation. Wiley Ser. 2000, :322. 

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471492418.html. 

20. Kucharski AJ, Wenham C, Brownlee P, Racon L, Widmer N, Eames KTD, et al. Structure and 

consistency of self-reported social contact networks in British secondary schools. 2018. 

doi:10.1371/journal.pone.0200090. 

21. Guclu H, Read J, Vukotich CJ, Galloway DD, Gao H, Rainey JJ, et al. Social Contact Networks and 

Mixing among Students in K-12 Schools in Pittsburgh, PA. PLoS One. 2016, 11:e0151139. 



 
 

 252 

doi:10.1371/journal.pone.0151139. 

22. Grantz, H. K, Cummings DAT, Zimmer SM, Vukotich CJ, Galloway DD, Schweizer M Lou, et al. Age-

specific social mixing of school-aged children in a US setting using proximity detecting sensors and 

contact surveys. 2020. doi:10.1101/2020.07.12.20151696. 

23. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing 

patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5:e74. 

doi:10.1371/journal.pmed.0050074. 

24. Danon L, Read JM, House TA, Vernon MC, Keeling MJ. Social encounter networks: characterizing 

Great Britain. Proc Biol Sci. 2013, 280:20131037. doi:10.1098/rspb.2013.1037. 

25. Eames KTD, Tilston NL, Edmunds WJ. The impact of school holidays on the social mixing patterns 

of school children. Epidemics. 2011, 3:103–8. doi:10.1016/j.epidem.2011.03.003. 

26. le Polain de Waroux O, Saliba V, Cottrell S, Young N, Perry M, Bukasa A, et al. Summer music and 

arts festivals as hot spots for measles transmission: experience from England and Wales, June to 

October 2016. Eurosurveillance. 2016, 21:30390. doi:10.2807/1560-7917.ES.2016.21.44.30390. 



 253 

9 Discussion  
 

 

In this thesis I have focused on differences in transmission and vaccination uptake 

between social groups, and how these may contribute to observed and previously 

unexplained transmission dynamics in diverse populations. I have approached this 

problem from a number of angles through a combination of data analysis and simulation 

studies that use mechanistic models that account for transmission within and between 

particular social groups within a population.  

 

 Summary of key results 

Previously there was broad evidence of differences in infectious disease outcomes 

between social and ethnic groups[1–6] as well as well-known differences in vaccine 

uptake between socio-religious groups in multiple settings around the world[7]. There 

was however little understanding of how the differences in disease outcome relate to 

transmission heterogeneity in the population, and the key differences between religious 

groups with low vaccination had not been adequately quantified. Although there had been 

extensive of work using mathematical models to understand heterogeneity in 

transmission, only two modelling analyses sought to understand inequalities in infectious 

disease as a result of transmission dynamics [8, 9]. Both of these demonstrated some 

potential contribution from geographical distribution by social class, to inequalities in 

rates of infection between socio-economic groups. Moreover, analysis of inequalities in 
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infectious disease outcome have not been detailed enough to confirm or rule out the role 

of transmission and control differences as key drivers. 

 

In chapter 2 I started this investigation by evaluating the relative potential contribution of 

differences in contact rate, susceptibility and vaccine uptake to inequalities in influenza 

and rubella infection. To assess how inequalities are impacted by vaccination by 

comparing rates of infection between groups before and after vaccination. I evaluated 

overall difference in rate of infection as well as specifically in two risk groups (elderly 

for influenza and women of childbearing age for rubella). I found that prior to vaccination 

differences in transmission were likely to cause overall inequalities in influenza but not 

rubella. However, when considering the particular risk group of women of childbearing 

age, a social group with reduced transmission (contact rate or susceptibility) would have 

higher risk compared to a social group with higher transmission. In a scenario with sub-

optimal vaccination, inequalities in influenza increase; the social group with higher 

transmission increased resulting with higher relative risk of infection than pre-

vaccination. In contrast, the increased risk of rubella in women of childbearing age in the 

low transmission group was reduced when vaccination was included. Variance based 

sensitivity analysis showed that for rubella inequalities were much more sensitive to 

disparities in vaccine uptake than differences in transmission. However, for influenza 

inequalities were similarly sensitive to both differences in vaccine uptake and 

transmission rate. These findings highlight that transmission may contribute 

meaningfully to disparities in infectious diseases but in particular is likely to impact those 

observed in infections with lower !# such as influenza. Infections with higher !#	such as 

rubella are highly sensitive to vaccination uptake and hence transmission rates are 

unlikely to play a role in inequalities when a vaccine is present.  
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Focusing on influenza and differences in transmission, in chapter 3 I analysed data from 

the early phase of the UK outbreak of influenza A H1N1 in 2009, where inequalities had 

been previously identified[10, 11]. By assessing how the ethnic and socio-economic 

distribution of infection changed over time in Birmingham and London, I observed that 

the initiation of sustained transmission in both settings coincided with an increase in 

relative risk of infection in more deprived areas and among South Asians. In the main, 

the inequalities observed by socio-economic status were in children (less than 19 years 

of age). These patterns, along with existing knowledge regarding the relative importance 

of children in transmission and control of influenza[12] provided motivation to 

investigate school-based social contact networks informed by national datasets.  

 

Chapter 5 sets out two frameworks for evaluating these contact networks. The first 

evaluates “opportunity for contact” in schools by estimating the rates at which each ethnic 

group and deprivation quintile attend the schools with each other ethnic group and 

deprivation quintile. The second uses data on residence or primary-secondary transition 

to construct a full network of schools, linked through shared homes. The findings show 

that, in London schools it is South Asian children who have the highest rates of school 

attendance within the same institutions, 6.7 times higher than expected by proportional 

mixing. The number of generations of contacts required to reach equal contact rates is 

also higher for South Asians than other ethnic groups, reflecting the fact that South Asian 

children are particularly clustered in the school system. This aligns with the observations 

in chapter 3 that South Asian children were disproportionately affected during the early 

phase of the 2009 Influenza A H1N1 outbreak in London and Birmingham. The analysis 
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also highlighted substantial socio-economic segregation, with the most affluent and most 

deprived quintiles interacting less than 20% of that expected through proportional mixing. 

 

By simulating outbreaks of influenza on a network of schools, I evaluated the naturally 

occurring variation in incidence at different stages of an epidemic in chapter 6. Although 

the analysis showed that the structure predicted only negligible inequality in risk over an 

entire outbreak for realistic values of !#, there is evidence that in most cases, the initial 

phase of an outbreak will not be well mixed in the population regardless of where it 

begins. The ethnic groups prone to the largest inequalities at the initial stages of an 

outbreak were South Asian and in particular Bangladeshi (Bangladeshi, Indian and 

Pakistani). There was also some evidence that outbreaks beginning in areas with large 

South Asian populations are likely to spread to a higher number of schools more quickly. 

However, it is not possible to quantify how this reflects on the containability of an 

outbreak without first quantifying the speed and effectiveness with which public health 

authorities’ might be able to respond to an outbreak in a school.  

 

By constructing a similar network of schools in the Netherlands, in chapter 7, I evaluated 

potential clustering of children in schools associated with low vaccination uptake: the 

Dutch Reformed and Anthroposophic schools. My analysis of the network revealed 

higher homophily and shorter relative network distances than expected in both faith 

denominations. However, the network proximity of Dutch Reformed schools is markedly 

more pronounced than Anthroposophic schools, potentially resulting in substantial 

clustering of unvaccinated children, not just within schools but also between them.  
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Finally, to evaluate whether the clustering of unvaccinated children observed in chapter 

7, was sufficient to explain the observed outbreaks in the MMR vaccine era, I used the 

same network to simulate outbreaks of measles; detailed in chapter 8. Specifically, I 

evaluated the role of the clustering within and between schools in the large outbreak of 

measles in 2013-14. Outbreak simulations on the network were able to describe the scale 

and geographical distribution cases better than an equivalent spatial approximation of 

interaction (without explicit information about clustering). Additional analysis revealed 

that outbreaks initiated in Dutch Reformed schools lead to a higher number of schools 

and children being infected than those initiated in Anthroposophic schools. This aligns 

with the findings in chapter 7 of higher connectedness between Dutch Reformed schools 

and shows that the social structure that results from the school system can account for 

key aspects of measles epidemiology in the Netherlands. 

 

The program of research has, through a set analyses, provided substantial evidence that 

social groups within a population could have important implications for the epidemiology 

of infectious diseases both through clustering of unvaccinated children by faithgroup and 

through segregation of particular social groups through the school system.  

 

 Strengths and limitations 

A key strength of this research program is that it offers fresh insights regarding interaction 

between social structure and heterogeneity in transmission and control of infectious 

diseases from three distinct angles.  
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Firstly, by conceptualizing the dynamics of two social groups in a minimal way in chapter 

1, I was able to clearly evaluate the relative importance of various heterogeneities to 

observable differences in risk. This provided a clear distinction in the behaviour of 

transmission-dependent inequalities between diseases with relatively low !#  (e.g. 

influenza), which were sensitive to differences in contact rate, and highly transmissible 

diseases like measles, which were much more sensitive the variation in vaccine uptake.  

 

Although the magnitude of the inequalities produced are not in themselves interpretable, 

the division between drivers of inequalities in diseases with low and high !# is in itself 

an important strength. This was useful in defining the analyses later in the thesis:  

Transmission dynamics of influenza and uptake of MMR. 

 

Secondly, by close analysis of case data in the early phases of the Influenza H1N1 

outbreak in 2009 I was able to assess, for the first time, how the observed inequalities 

developed over time. This revealed patterns consistent with concentrations of 

transmission within particular social groups – particularly groups of individuals of South 

Asian ethnicity. 

 

Thirdly, the government schools records offer a novel framework to explicitly model 

transmission between schools, which are known to be important reservoirs of susceptible 

hosts. The clarity of this framework allows specific evaluation of the impact of the school 

network structure on transmission of infectious disease and has proven itself useful in two 

quite different analyses.  
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This plurality of approaches amounts to a clear demonstration that social groups should 

continue to be a key focus of infectious disease research.  

 

Details of the limitations of each analysis are discussed at length in the relevent chapter 

of this thesis. Here I summarise some limitations to the overall work and challenges which 

limited research opportunities.  

 

A key limitation of the analysis of the Influenza H1N1 outbreak in the UK, was that data 

access restrictions and computational limitations meant that using this data to fit a 

mathematical model was not an option as part of this research program. Were these issues 

to be resolved, there would be an opportunity to combine this data with the analysis of 

school networks detailed in chapter 6. In turn this would allow quantification of the 

contribution of the school network to the observed outbreak dynamics. Likewise, if 

detailed time history of measles cases were available, a full analysis of the contribution 

of the school network to the scale of measles outbreaks could be evaluated.  

 

The networks used in the analysis later in the thesis approximate transmission between 

schools, such that an infected school can infect a susceptible school, assuming the 

outbreak reaches its estimated final size. This approximation neglects more complex 

transmission between the schools in two key ways:  

 

Firstly, simulations are ‘generation based’ which means that they do not strictly follow 

the temporal course of an outbreak but rather show how successive schools might be 

infected with no information about timescale. This precludes evaluating the modelled 

cases against epidemiological time series.  
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Secondly, although in my framework an infected school is constrained to infect an 

adjacent school and recover in the same step, in reality infection may be transmitted in 

both directions between two schools once both are infected. This may play a role in 

persistence and final size. For example, for schools that have a small number of cases but 

no large outbreak initially, there is a finite probability of re-entry of the infection from a 

school it infected with the few initial cases. The dynamics of this problem cannot be 

investigated under the framework as it is and introduce heterogeneity in persistence of an 

outbreak across the network.  

 

In order to include the potential for successive generations of schools to be infected at the 

same time and affect each other’s outbreaks, the model would need to increase 

significantly in complexity and computational demand. Under this analysis, where 

assessments are broadly performed either on the properties of individual schools or on an 

entire outbreak, temporal information is not required. This extension could be made to 

the modelling framework at a later date if required for future research pursuits. 

 

Another important limitation of the network model framework is that it only considers 

heterogeneity in transmission introduced through the school system. There may be other 

factors that affect these communities differently, such as attendance at religious 

gatherings, summer camps and general behavioural differences. If appropriate data were 

found to support additional assumptions these factors could be incorporated in an 

extended model, although complexity would likely increase as school units may not 

represent appropriate groupings to reflect this additional structure. This would have to be 
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addressed by either increasing computational resources or reducing the scale of the setting 

analysed. 

 

A very important limitation of the network models is also the simplification of within-

school transmission. There have been a number of excellent studies in schools to measure 

contact between pupils, which reveal strong clustering within age groups[13–15]. This 

was not included in the framework in the interest of parsimony. Future analysis could 

address this limitation by including grade structure within schools, however this would 

be challenging for large scale networks and would require data on contacts between 

schools by age group.  

 

Finally, data for explicit household links between schools were used in the model of the 

Netherlands but these were not available for London. Such data does exist for the UK, 

but due to arduous application procedures, access was unrealistic within the timeframe of 

the research program. Instead, I made estimates from available data on transfer of students 

from primary to secondary schools in London. If the data on the explicit links between 

schools were available for the whole of the UK, analysis of Birmingham and London 

would have been preferable to London alone to match the analysis of influenza case data 

from 2009. 

 

 Contributions of this research relative to previous knowledge 

This program of research provides several meaningful steps forwards from previous 

knowledge.  
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Firstly, previously there was a general understanding that due to herd effects populations 

with higher transmission would have reduced protection from vaccination[16]. Chapter 1 

extended this by evaluating the impact that might be expected on existing inequalities in 

disease due to suboptimal vaccination. Moreover, identifying that vaccine uptake 

dominates inequalities in highly transmissible infections, whereas transmission 

differences are more likely to play a part is infections with lower !#  is an important 

finding that helps to understand where observed inequalities in vaccine-controlled 

infections is likely to originate.  

 

Secondly, inequalities in influenza incidence in the UK had only been observed over large 

geographical regions and for the early phase of the 2009 outbreak[10, 11]. By closer 

analysis of this data I have provided important insight into how those inequalities 

developed over time. This supports understanding as to whether the inequalities are 

differences in disease or something else unconnected to transmission, such as reporting 

or severity. Importantly, the observation that inequality in disease may be present early 

in an outbreak but with no particular social group at structurally higher risk of these 

inequalities highlights the importance of evaluating inequalities even when majority 

groups are disproportionately affected as well as when minority groups are, rather than 

selectively reporting higher incidence in particular groups of interest. 

 

Thirdly, the work offers important developments in understanding measles dynamics in 

the Netherlands. I was able to show explicitly the relative proximity of Dutch Reformed 

schools. This leads to clustering of unvaccinated children across the Netherlands, which 

provides a basis for the large outbreaks of measles [17]. The framework can now be used 

to provide a better indication of risk at the early phases of an outbreak.  
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Finally, developing a modelling framework that effectively captures interaction between 

social groups in school-aged children is possibly the most important contribution of this 

work. Having a framework which is able to capture these dynamics in a parsimonious 

way is an important step towards understanding disease transmission dynamics between 

social groups in a population. Previous models[8, 9] have relied on detailed synthetic 

populations which, whilst able to capture multiple nuances in population structure, can 

provide challenges in interpretation. Furthermore, without specific parameterisation from 

similar data, they may not capture specific properties of the school network offered by 

the approach taken here.  

 

 Implications and future research opportunities  

This work has some important implications for the understanding of the potential impact 

of social structure on inequalities in risk and control of infectious disease. There are three 

particularly clear points: 

 

Firstly, the results shown in  Chapter 2 have important implications regarding how 

observed inequalities in childhood infections should be interpreted. Concretely, 

inequalities in diseases with a widely distributed vaccine program in place, are likely to 

be a result of variation in uptake as opposed to variation in transmission. However, this 

may not be the case for inequalities during outbreaks of influenza. Moreover, in a scenario 

where there are inequalities in transmission of influenza, suboptimal vaccine coverage 

may accentuate these disparities if not properly accounted for.  
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Secondly, Inequalities in influenza outbreaks are complex, single estimates of disparities 

in risk over a fixed time may be misleading. Importantly the dynamics of infection on the 

school network revealed that observations of inequalities were highly likely early in an 

outbreak. This coincides with the period when inequalities can be measured most 

precisely, as highly detailed data is often only available when case numbers are low. 

Although outbreaks which originate in South Asian communities showed more severe 

inequalities than among other ethnicities, and therefore may be more readily observed. 

Simulations showed that on average the network preferred higher risk in more affluent 

white children at early stages. This may point towards bias in reporting inequalities in 

marginalised groups over majority groups, this could explain the persistence of reports of 

higher risk within “ethnic minorities” in multiple countries[18–26] with no clear 

mechanism to link them, whilst there is also evidence that this effect is not systematic at 

all[27].  

 

Thirdly, my finding that the extent of measles outbreaks in the Netherlands can be 

explained by school and household transmission helps to elucidate a previously poorly 

understood phenomenon where a population with high vaccination uptake continues to 

sustain large outbreaks. Furthermore, the framework provides a means to evaluate the 

potential for an outbreak to reach large numbers of unvaccinated children. For example 

the difference between outbreaks originating in Anthroposophic and Dutch Reformed 

schools. Although the revelations do not provide a clear means to control these outbreaks, 

the support in understanding risk could aid proportionate and targeted response.  

 

Although this framework could, in principal, be applied to other countries, care should be 

taken when generalising the particular findings of this work. The results suggest that 
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concentration of unvaccinated children within particular schools can result in large 

clusters of unvaccinated children across a country. However, this probably needs to be 

replicated at multiple levels of education (e.g. primary and secondary schools) for this 

phenomenon to have full effect. Moreover, it is not uncommon for children in the 

Netherlands to travel between cities for secondary school, this is possibly due to an 

extraordinarily high population density and may not be replicated in other countries with 

sparser populations.  

 

The framework developed has the potential to provide a basis for analysis beyond the 

focuses of this thesis. For example, the network provides a natural tool for assessing the 

impact of school closures as an intervention to control outbreaks, the impact of making 

immunization mandatory within particular schools and assessment of spatial risk when 

outbreaks are detected in certain institutions. This work could easily be extended to 

multiple pathogens in multiple locations.  

 

An important next step is to validate the assumption in the model that transmission 

through households represents a good indicator of overall risk of transmission between 

groups. One approach may be to sequence influenza samples from infected school 

children and evaluate the relationship between network distance and phylogeny i.e. are 

closer strains more proximal on the network.  

 

This work was focused on the role of the network in particular epidemiological 

phenomena that can be observed. There is however, opportunity to explore more general 

properties of the network, which may provide information about transmission dynamics 

of childhood infections which prove useful for control (e.g. the relative infectiousness of 
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primary and secondary schools). If data were to be made available for the entire country, 

there would be an opportunity to evaluate the differences in network structure between 

settings. This may be useful in understanding the potential for an outbreak to spread 

between towns and cities. 

 

Finally, a clear opportunity for future research is evaluation of the difference in expected 

transmission dynamics and resultant epidemiology of particular pathogens between 

countries as a result of their different school systems. The United States for example have 

a much more regulated state school system than the UK or the Netherlands, as children 

are required to attend schools within their particular district[28]. This may to lead to much 

different dynamics from those seen in the UK and Netherlands, where families are offered 

more choice when selecting a secondary school. These fundamental differences in 

structure may also impact the effectiveness of school-based interventions, such as school 

closures or school-based vaccination programs. 

 

Social structure as a result of preferential contact within particular social groups, has 

demonstrable impact on the dynamics and control of infectious diseases. The effects of 

these heterogeneities are complicated and differ between settings and pathogens. The 

work in this thesis provides insight regarding these dynamics and provides a new 

framework for evaluating them within school-age children, a key population in the 

epidemiology of many acute infections. My hope is that this work can be developed and 

extended to provide further insights that can in turn support public health policy in the 

future and ultimately improve the control of infectious disease both in effectiveness and 

equity.  
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Appendix A. Suplementary 

material for Analysis A 
 

 

Additional file 1: Quantifying the impact of social groups and vaccination 

on inequalities in infectious diseases using a mathematical model 

 

Contents:  

• Mathematical model 

o Model Structure 

o Calculating force of infection 

• Parameterisation of the model 

o Integration of Social-groups 

o Difference in rate of contact between groups  

• Epidemiological results over the full parameter ranges 

• Sensitivity analyses 
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Mathematical model 

Model Structure 

We developed a Susceptible Exposed Infected Recovered (SEIR) model with two social groups and 15 age groups. The 

full system of ordinary differential equations is expressed as:  
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where -!,) , .!,) , '!,) , /!,) , 0!.)  are the proportion of the population in age group i and in social group G that are 

susceptible, exposed (infected but not infectious), infectious, recovered and vaccinated respectively. We define the 

parameters: 

μ is birth and death rate 

1 is the proportion of the population vaccinated 

%!$ is the rate of transmission from age group j to age group i 

+ is the relative susceptibility of group L 

, is the relative contact rate of group L 

) is the rate of contact between social groups relative to within group H 

2!,) is the proportion of the population in age group i and social group G \in {H, L} 

3 is the rate at which individuals become infectious after being infected 

4 is the rate at which individuals recover from infection (cease to be infectious) 

5! is the rate at which the population moves from age group i to age group i+1 

 

Calculating the force of infection, & 

To ensure that all parameterisations of differences in contact, susceptibility and social integration result comparable 

epidemiology, we kept the basic reproduction number (/+) constant by scaling the next generation matrix R linearly 

such that its largest eigenvalue was equal to the correct value of R0.  

 

Each element of the next generation matrix, /,-, gives the expected number of cases in age and social group a resulting 

in transmission from a single case in age and social group b in an otherwise totally susceptible population. The force 
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of infection vector can be written in terms of the next generation matrix R, which is a function of the matrix of 

transmission parameters, 6 and the infectious period 7. 

λ9⃗ = 6I⃑ =
1
γ?I⃑ 

 

Neglecting age groups initially, we rewrite the force of infection as a function of the transmission rate within age group 

H, % and the social interaction between the two social groups, X: 

λ9⃗ = %@I⃑, 

where, 

Bλ.λ/
C = % B 1 ξ

ηξ ηχC B
I.
I/
C 

We introduced age groups by first defining P as a normalised age dependent social contact matrix (such that the 

elements sum to unity) where each element, G!$ , is the rate of contact between age group j and age group i per individual 

in group i. We construct a matrix, H01023, to account for the transmission between age groups and between two social 

groups: 

H01023 = IH H
H HJ 

. 

We take the Hadamard (element-by-element) product of @  and H01023  to give a normalised age and social group 

dependent next generation matrix, é;2HL.  

é;2HL = X ∘ H01023 = a
1 6
56 53b ∘ ~

ê ê
ê ê

� = a
ê 6ê
56ê 53êb 

The next generation matrix is proportional to this normalised matrix,  

é = :é;2HL  

We select a value of r to give a fixed /+, defined as the spectral radius of	é.  

 

An alternative approach is to vary the ratio of total contact rate in group L and group H by adapting the parameterisation 

to the following form.  

é;2HL = X ∘ H01023 = a
1 6
56 53′

b ∘ ~ê ê
ê ê

� = a
ê 6ê
56ê 53′ê

b 

 

Where, χ4 = χ(χ − 1)ξ. The two approaches were found to have consistent results (results not shown). 

 



275 

 

Parameterisation of the model 

Integration of Social-groups 

To estimate the proportion of contacts occurring between social groups, we use data collected as part of the Great 

Britain arm of the POLYMOD survey[1]. Participants were asked to complete a diary of social contacts made over a 

24-hour period. As part of the survey, participants recorded the location of each contact event (home, work, school, 

leisure, transport or other place) and the duration of each contact. For each participant we assume that contact events 

that occurred within their home were with a member of their own social group. The mean number and time spent with 

household contacts account for 43% of contact events and for 47% of the total duration of contact the participants 

report, respectively. In addition, we assume 70–90% of contact that occurred outside the participant’s home was also 

with members of the participant’s own social group. The non-household contacts in the same social group then 

accounted for a mean of 44–56% of contact events and 37–48% of total duration of contact. We assume all remaining 

10– 30% of non-household contacts belong to the other social group.  To calculate the value of the integration 

parameter, ),	we use the ratio between the contact with other social groups and with the participant’s social group for 

each participant in the data set. As the mean ratio was between 0.06 and 0.22 for number of contacts and 0.06 and 0.20 

for total duration of contacts (Figure 2), we set ) between 0.05 and 0.25.  

 

 

 

 

 

 

Figure S1  Distribution of the ratio of A) number and B) total duration of contacts within 

the participants social group and outside of the participants social group (using the GB 

arm of the POLYMOD contact survey data). 

A B 
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Difference in rate of contact between groups  

We also estimated an appropriate range for the difference in rate of contact between groups by also analysing data 

collected as part of the POLYMOD survey. Firstly, we calculated the number of contacts from the same social group, 

under the same definition as for integration of social groups.   

 

As part of the POLYMOD survey household size of the participants was recorded. In this data and other contact 

surveys, household size has been shown to be a good predictor of contact rate, with higher rates in members of larger 

households[1–7]. In addition, household size distribution can vary significantly between social and ethnic groups. In 

order to choose an appropriate range for the difference in rate of contact between groups, we created 5 subsets of the 

sample population by sorting by Household size. We first stratified the population into 16 5-year age groups. To ensure 

the age distribution of each subset remained the same, subsequently we stratified each age group into 5 quintiles based 

on household size. We then assemble five final quintiles that comprise similar age distributions (Figure 2) but differing 

household size distributions (Figure 3). Consequently, the distribution of number of contacts and total duration of 

contact is also different for each of the quintiles (Figure 4 and Figure 5).   

 

We calculate the ratio of mean number of contacts for each pair of quintiles to give a range of values for the relative 

rates of contact between two social groups (Figure 7). We use this range as our relative difference in within-group 

contact parameter (, = 0.65 – 0.95).  

 

 

 

Figure S2 The age distribution of each household size quintile 
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Figure S3 Household size distributions of quintiles across all ages 

 

Figure S4 Kernel density estimate showing the distribution of number of contacts in each quintile 

 

Figure S5 Kernel density estimate showing the distribution of total duration of contacts in each quintile 

 

A B 
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Figure S6 Colour maps showing the ratio of A) number of contacts and B) total duration of contacts between 

each of the quintiles of POLYMOD participants stratified by household size. The range of the ratios was subsequently 

used to inform the contact rate in group L relative to group H. 

 

Epidemiological results over the full parameter ranges 

To measure the relative risk of infection resulting from a range of differences in contact rate, susceptibility and 

integration of social groups, we model an outbreak of influenza and endemic rubella in two social groups. We alter 

relative contact rates within social groups by varying a parameter, ,, relative susceptibility in the social groups by 

varying a second parameter, +, and the level of integration of the two social groups with each other by varying another 

parameter, ). Figures in the main text only contain results for ) = 0.15. This section presents figures for results with 

different values of ). 

 

 Figure 7 to Figure 12 show the cumulative incidence of influenza over an outbreak and cumulative risk of infection 

for rubella over the first 75 years of life. Each shows the result with no difference between the social groups (,, + =

1)	and the range of results in each social group over the full range of either relative contact rate, , = 0.65 − 0.95 

(Figure 7 – Figure 9), or relative susceptibility, + = 0.65 − 0.95 (Figure 10 – Figure 12), with for a fixed value of ) ∈

	{0.05, 0.15, 0.25}.  

 

Adding differences in contact rate and susceptibility between the two social groups changes the epidemiology and the 

risk of infection: specifically the risk of infection with influenza increases in group H and reduces in group L. When 

we increase the integration between the social groups ()), there is a reduction in the change in risk relative to when the 

subgroups are identical. When vaccination is introduced into the model at 80% of the critical vaccination threshold, 

The epidemiology of both infections changed markedly with overall reduction of risk of infection in both groups. 

However, indirect protection is greater in the social group L; the with lower rates of transmission (contact rate or 

susceptibility). This difference in a greater reduction in disease risk than in group H. The consequence is an increase 
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in the relative risk of infection in influenza in group H and a greater risk of infection from rubella in group H than 

group L (Figure 13).  
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Figure S7 The change in infection over time or by age predicted by the model for seasonal influenza and rubella. With  

no differences between two population groups under baseline parameters shown in black dashed line and with 

differences in susceptibility and contact rate for group H in the orange region and group L in the navy region. The 

results are based on a ratio of contact rate between groups (χ = 0.65 – 0.95) and low integration (ξ = 0.05) . A) the 

cumulative incidence of influenza over a single outbreak with no vaccination, B) shows the proportion of population 

infected with Rubella by age at endemic equilibrium with no vaccination, C) the cumulative incidence of influenza in 

remaining unvaccinated individuals with 37% vaccine uptake (80% of the critical vaccination threshold) and D) the 

proportion of remaining unvaccinated population infected with Rubella by age with 67% vaccine uptake (80% of the 

critical vaccination threshold). 

 

  

A C 

B D 
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Figure S8 As 7 but with intermediate integration (ξ = 0.15) 

 

  

A C 

B D 
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Figure S9   As 7 but with high integration (ξ = 0.25)  

A C 

B D 
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Figure S10 The change in infection over time or by age predicted by the model for seasonal influenza and rubella. 

With  no differences between two population groups under baseline parameters shown in black dashed line and with 

differences in susceptibility and contact rate for group H in the orange region and group L in the navy region. The 

results are based on a ratio of susceptibility between groups (η = 0.65 – 0.95) and low integration (ξ = 0.05). A) the 

cumulative incidence of influenza over a single outbreak with no vaccination, B) the proportion of population infected 

with Rubella by age at endemic equilibrium with no vaccination,  C) the cumulative incidence of influenza in remaining 

unvaccinated individuals with 37% vaccine uptake  (80% of the critical vaccination threshold) and D) the proportion 

of remaining unvaccinated population infected with Rubella by age with 67% vaccine uptake (80% of the critical 

vaccination threshold). 

  

A C 

B D 
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Figure S11 As 10 but with intermediate integration (ξ = 0.15)  

A C 

B D 
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Figure S12 As 10 but with high integration (ξ = 0.25)  

A C 

B D 
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Figure S13 Risk of infection in group H relative to group L in the total population and in risk groups, elderly and 

women of childbearing age (WCA). Relative risks shown with no vaccination and vaccination at 80% of critical 

vaccination threshold (37% for influenza and 67% for rubella). Forest plots show ranges of relative risk for a range of 

ratio of in contact rate in social groups (,=0.65-0.95) and ratio of susceptibility in social groups (+=0.65-0.95) with 

integration of ) = 0.05 (A) and B)) and integration of ) = 0.25 (C) and D)). 

 

Sensitivity analyses 

To test the sensitivity of our results to some of the key assumptions in our model, here we vary the relative size of the 

social groups and the age-specific mixing.  

 

Size of social groups 

The main analysis assumes that the size of each social group is equal (50% of the population each).. Now we assume 

80% of the population in the low transmission group, group L, leaving 20% of the population in group H (and vice 

versa).  

A C 

B D 
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Age assortativity in contact matrix 

To test the sensitivity of our findings to community structure, we vary relative age-stratified mixing pattern in between 

the two social groups. First we adjust the ‘age-assortativity’ (preference in contact with one’s own age group over other 

age groups). We adjusted this using an eigen decomposition method employed by Küchenhoff et al [8], which allows 

the relative strength of the ‘off-diagonal’ terms of the mixing matrix to be adjusted with single parameter k.  When k > 

1 age assortativity decreases (contact between age-groups increases), when k < 1 age assortativity increases (contact 

between age-groups decreases).  Transmission matrices for k = 0.6 and k = 1.8 in Group L are shown in Figure 14.  

  

Figure S14 Examples of the full, age and social group structured transmission matrix with A) less age assortativity of 

Group L (k=1.8) and B) more age assortativity in group L (k=0.6) 

 

We find that changing the age assortativity made little difference to the inequalities we measured, with the exception 

of rubella in women of childbearing age. In this special case, an increased age assortativity leads to higher rate of 

contact between children, decreasing the average age at infection in group L. In addition, lower rates of contact between 

adults and children leads to lower rate of transmission between children and susceptible adults. These factors have the 

effect of reducing the risk in group L relative to group H with no vaccination. With vaccination, the risk in group L 

relative to group H reduces as observed in our main analysis.  

 

Conversely, decreasing age assortativity leads to lower rate of contact between children, increasing the average age at 

infection in group L. Higher rates of contact between adults and children leads to higher rate of transmission between 

children and susceptible adults. These factors have the effect of increasing the risk in group L relative to group H with 

no vaccination. With vaccination, the risk in group L relative to group H reduced, as observed in our main analysis.   
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Although the values for relative risk of rubella infection in women of childbearing age vary notably from the main 

analysis as assortativity is varied, the qualitative result from our analysis does not change. Namely, …. 

 

Cultural differences in age-specific contact patterns 

Here we change the age-specific mixing between social groups by using two distinct empirical social mixing patterns 

for each social group. Specifically, we assume that group L has age-specific contact rates parameterised with data from 

the Italian arm of the POLYMOD survey, while group H has age-specific contact rates from the UK arm of the survey.  

Similar to the results of explicitly changing the age assortativity, we note some changes to relative risks of rubella 

infection in women of childbearing age. However, these changes did not impact the qualitative result of our analysis 

(Figure 15 and Figure 16).  
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Figure S15 Sensitivity analysis for relative risk in influenza infection due to difference 

in contact rate (3=0.65 – 0.95) with integration set as 6 = 0.15.  

 

 

Figure S16 Sensitivity analysis for relative risk in rubella infection due to difference in 

contact rate (3=0.65 – 0.95) with integration set as 6 = 0.15.  
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Appendix B. Supplementary 

material for Analysis B 
 

 

Missing data 
 

I evaluated the proportion of reported cases with a missing postcode by date collected, 

age, gender and case status:  

 

I ran a logistic regression for missing postcode with explanatory variables: Age, date 

recorded and whether tests were carried out.  

 

 

 

Missing postcodes per onset date 
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Figure 1 Missing postcodes per onset date 
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Missing postcodes per age group 
 

 
 
Figure 2 Missing postcodes per age group 
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Missing postcodes by test status 

 
 

 
 
Figure 3 Missing postcodes by test status 
 
 
 
Missing postcodes by gender 

 
 

 
Figure 4 Missing postcodes by gender 
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Logistic regression for predictors of missing post code: 

 
I performed a logistic regression to identify predictors of a missing postcode in the data. 
 
Table 1 Results from Logistic Regression  

Dep. Variable: PC_pres No. Observations: 28428 

Model: Logit Df Residuals: 28424 

Method: MLE Df Model: 3 

Date: Wed, 08 Nov 
2017 Pseudo R-squ.: 0.004056 

Time: 17:21:05 Log-Likelihood: -18108. 

converged: True LL-Null: -18182. 

  LLR p-value: 9.091e-32 

 

 coef std err z P>|z| [0.025 0.975] 

Intercept 0.4115 0.037 10.985 0.000 0.338 0.485 

age_system_gener

ated 0.0062 0.001 8.315 0.000 0.005 0.008 

day_rep_c -0.0010 0.002 -0.619 0.536 -0.004 0.002 

tested 0.2105 0.026 8.122 0.000 0.160 0.261 
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2 Percentage of cases tested and tests positive by ethnic group 

 

 
Figure 5 Percentage of cases tested and tests positive by ethnic group 
 
 

● The proportion of tests that were positive is much lower in the white population. 
This could mean that there was an inflated reporting rate in this population. 
 

● Noticeably, the test rate of cases was consistent for most ethnicities (around 60-
65%) but this drops to less than 40% in black caribbeans. There were very small 
number of cases though - so may not be significant. 
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Additional results:  
 

 

Figure 6 Ethnic breakdown of cases. i) Daily incidence in each ethnic group identified by Onomap, 

ii) Relative risk in White (Blue) and South Asian (Orange) populations for A) Birmingham , B) 

London, C) Adults in Birmingham (>19), D) Adults in London (>19), E) Children in Birmingham 

(<=19) and F) Children in London (<=19). 
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Appendix C. Suplementary 

material for Analysis C 
 

 

 

 

 

Figure 1 Choropleths with distribution of A) White, B) Black and C) Asian population 

in London. 
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Figure 2 Degree and weighted degree histograms per London Borough 

 

 

Figure 3 Scatter plots of expected number of infected schools and number of unique 

contact pairs (weighted degree of contact the school network) and number of adjacent 

schools (degree of the school contact network) for primary (blue) and secondary (red) 

schools in London, for different values of !#. 
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Table 1 Mean Expected number of schools 

infected and proportion of school infected before seeding an outbreak in an adjacent 

school for each ethnic group 
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Appendix D. Suplementary 

material for Analysis D (part 1) 

 

Table 1 Breakdown, by Province and Denomination, of community with majority of 

Dutch Reformed schools in community with highest modularity. 

 

        

 

Table 2 Breakdown, by Province and Denomination, of the group of nodes which were 

partitioned into the same community in every initial partition, with the highest proportion 

of Dutch Reformed schools. 

 

 

provincie Denomination
All 

schools
In Consesnsus 

community
% 

Protestants-Christelijk 356 6 1.7%

Reformatorisch 52 42 80.8%

Noord-Brabant Reformatorisch 4 4 100.0%

Noord-Holland Reformatorisch 2 2 100.0%

Overijssel Reformatorisch 22 7 31.8%

Protestants-Christelijk 207 4 1.9%

Reformatorisch 16 16 100.0%

Algemeen bijzonder 22 19 86.4%

Antroposofisch 1 1 100.0%

Gereformeerd vrijgemaakt 3 3 100.0%

Openbaar 96 79 82.3%

Overige 1 1 100.0%

Protestants-Christelijk 63 56 88.9%

Reformatorisch 36 36 100.0%

Rooms-Katholiek 48 45 93.8%

Samenwerking PC, RK 10 10 100.0%

Algemeen bijzonder 169 1 0.6%

Protestants-Christelijk 524 18 3.4%
Reformatorisch 65 59 90.8%

Gelderland

Utrecht

Zeeland

Zuid-Holland

provincie Denomination
All 

schools
In Consesnsus 

community
% 

Protestants-Christelijk 356 3 0.8%
Reformatorisch 52 38 73.1%

Noord-Holland Reformatorisch 2 1 50.0%
Protestants-Christelijk 207 2 1.0%
Reformatorisch 16 14 87.5%
Protestants-Christelijk 524 8 1.5%
Reformatorisch 65 54 83.1%

Gelderland

Zuid-Holland

Utrecht
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Figure 1 Subset of the similarity matrix for schools affiliated with each denomination 

(schools affiliated with multiple denominations excluded, denominations with only one 

school excluded). Entries in the matrix show as purple low to yellow high proportion of 

partitions with schools in the same community. 
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Figure 2 Subset of the similarity matrix for schools in each Province. Entries in the matrix 

show as purple low to yellow high proportion of partitions with schools in the same 

community.
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Appendix E. Suplementary 

material for Analysis D (part 2) 
Alternative Model 2: Spatial interaction between schools  
 

To evaluate the importance of the specific connections between schools in the network, I 

developed an Alternative Model of interaction between schools based on their geographic 

proximity to each other. The spatial interaction model was designed to have a broadly equivalent 

spatial distribution of contact between schools but with otherwise naïve interaction (i.e. no 

preference for contact within particular denominations or between tiers of education etc.). to do 

this I made attempt to match the distribution of the distance between schools connected by contact 

pairs.  

 

The spatial interaction parameter used in the analysis was 0.65, which was aimed at matching the 

peak of the distribution of contact described in the data. 

 

 

Figure 1 The distribution of distance between schools connected by contact pairs. The coloured 

lines show interaction based on spatial interaction model with parameters between 0.5 and 0.8. 

black line with cross markers shows the distribution in the household links from the data. 
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Risk by schools calculations 
 

The binary outbreak networks were used to identify schools, which would be infected by an 

outbreak initiated in each school in the network. This was achieved using the following approach:  

 

The binary outbreak network is a directional graph with edges weighted either 1 or 0. 1 means 

transmission occurs between the schools in the direction of the edge.  

 

The model can calculate both risk posed by each school (the number of schools and children 

eventually infected by an outbreak initiated in the school) and the risk posed to a school (the 

number of schools or children who could initiate an outbreak which would eventually infect the 

school). Both of these are found by following chains of edges away from the school of interest. 

The difference between extracting these from a binary outbreak network is the “direction of 

transmission” of the edges followed.  

 

To calculated the risk posed by a school, the schools eventually infected are those connected by 

chains of out-edges (schools infected by the previous generation of the outbreak) on the binary 

outbreak network. Figure A5.2 shows schools in progressive generations of an outbreak on an 

example network. The school of interest (i.e. the school posing the risk) is coloured red. In each 

network shows a different generation of the outbreak, where newly infected schools are shown in 

green and previous generations are shown in blue. There are 4 generations of transmission after 

the initial school infected and10 schools are eventually infected by the outbreak.  
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Figure 2 Schematic of a network showing chains of out-edges to form the out component of a 

node as a method for finding the schools at risk of infection from an outbreak initiated in a 

particular school. The initial school is shown in red, each new generation of schools connected 

by out-edges is shown in green, previous generations are shown in blue. Black arrows indicate 

the direction of successive generations 

 

 

To calculate the risk posed to a school, the schools who could seed an outbreak that would 

eventually infect the school are those connected by chains of in-edges (schools who would infect 

each generation of the outbreak) on the binary outbreak network. Figure A5.2 shows schools in 

regressive generations of an outbreak on an example network. The school of interest (i.e. the 

school posing the risk) is coloured red. Each network shows a different generation of the outbreak, 

where newly infected schools are shown in green and following generations are shown in blue. 

There are a maximum of 7 generations of transmission after with the school at risk is infected. 

There are schools are eventually infected. Outbreaks initiated in 13 schools would eventually 

infect the school.  
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Figure 3 Schematic of a network showing chains of in-edges to form the in component of a node 

as a method for finding the schools  from an outbreak initiated in a particular school. The school 

at risk is shown in red, each previous possible generation of schools connected by in-edges is 

shown in green, onward generations are shown in blue. Black arrows indicate the direction of 

regressive generations
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Appendix F. LSHTM ethics 

approval  
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Appendix G. License for re-

publication of BMC Medicine 

paper 
 

 

Extract from the BMC website regarding reproduction of published works: 

https://www.biomedcentral.com/getpublished/copyright-and-license 
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