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Fig 7. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the
conditional probabilities of accepting treatment for any given pair of sequential rounds (these are hence homogeneous in time
and the process is Markovian) given treatment (filled points) or non-treatment (hollow points) in a previous round. Right
column: The same as the left column but with allowed time dependence in the conditional probabilities of accepting
treatment in each respective round (highlighted in orange on the horizontal axes). In each case the components corresponding
to a given round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour
independent adherence and hence the likelihood is given in Appendix S1. Different colours for each point correspond to
different lengths in time for the dependencies in behaviour. The datasets used are from the 50+ age category from the
TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the male sub-group; and
bottom row corresponds to the female sub-group.
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S3 Appendix.

Summary. In this supplementary information, we analyse some of the existing models
of adherence from the literature in the context of our proposed framework.

The Plaisier model

Several models of MDA treatment programs employ an adherence model developed by
Plaisier in the context of onchocerciasis control [8, 20]. The Plaisier model assigns a
probability of adherence to each individual which they then retain for the duration of
the MDA program [14,15]. As such, this model would be characterised by us as a
heterogeneous population, time-independent model with no explicit individual
dependence on past behaviour. The individual probability of adherence is given by
U (1−c)/c, where U is a uniform random number and c is expected probability of
treatment and hence the expected coverage. The model is therefore completely
parameterized by the overall expected coverage. The PDF for the adherence probability
for this process is given by

π(p) =
c

1− c
p(2c−1)/(1−c) . (49)

The PDF of p rises monotonically from zero to one for all values of c > 0.5 and falls
monotonically for c < 0.5 (for c = 0.5, it is flat). Note that π(p) is a beta distribution:
π(p) = Beta[p; c/(1− c), 1]. For this distribution, the mean failure run length is hence
given by

E(nF) =
c

2c− 1
. (50)

Note that in this model, adherence failure run length becomes undefined at a coverage
of 50% or less. Additionally, one can show that the variance of this random variable
becomes undefined for values of coverage below 66%, suggesting that failure run lengths
in finite populations drawn from this distribution will exhibit extreme variability.

The probability of an individual being untreated across N rounds of MDA in this
model can also be calculated, giving

πun =

∫ 1

0

(1− p)NBeta[p; c/(1− c), 1] dp =
c

1− c
B[c/(1− c), N + 1] , (51)

where B(·, ·) is the beta function. Fig 8 shows the distribution of adherence
probabilities for 2 different coverage values and also the probability of an individual not
adhering with treatment across a 4-round MDA program.

The Griffin Model

The adherence model used by Irvine et al [5] to model MDA adherence in the treatment
of lymphatic filariasis was originally created by Griffin et al in the context of intevention
strategies against malaria transmission [21]. The original Griffin model is quite broad
and deals with multiple simultaneous interventions and the correlations in their uptake.
It does not include conditional dependencies for an individual’s behaviour and is
therefore a heterogeneous population, time-independent, individually past behaviour
independent model in its simplest form. Each individual in the population is assigned a
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Fig 8. A) Probability of an individual with adherence drawn from the Plaisier distribution of not adhering with treatment
during a 4 round MDA program. B) The probability distribution for adherence for coverages of 25% and 75%.

correlation parameter, ui, drawn from a normal distribution with mean u0 and variance
σ2. These parameters are retained throughout the MDA program. At each round a
MDA round, each individual draws a unit-variance normal deviate with mean ui, z.
Treatment is accepted if z < 0. The expected coverage is given by φ(−u0/

√
1 + σ2),

where φ is the standard normal cumulative probability function. This leaves one free
parameter to control the distribution of adherence probabilities across the population.

The cumulative distribution of adherence probability, p, is given by

π(p) = φ[φ−1(p; 0, 1) + u0; 0, σ2] , (52)

giving a PDF

P (p) ∝ exp

[
−1− σ2

2σ2

(
φ−1(p) +

u0
1− σ2

)2
]
. (53)

The function φ−1(p; 0, 1) varies monotonically in the range (−∞,∞) with p. In Eq (53),
the parameter σ = 1 acts to discriminate between two functional forms. For σ < 1, the
distribution has a ‘normal’ shape with a single local maximum, while for σ > 1, the
distribution has asymptotes with local maxima at the p = 0 and/or 1. In this, it is very
similar, qualitatively, to the beta distribution (see Fig 9).
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Fig 9. Adherence probability distributions with A) σ = 1.2 and B) σ = 0.5 for mean coverages of 25% and 75%. The
probability distribution for adherence for coverages of 25% and 75%.
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