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Abstract 

Background: Understanding inequality in infectious disease burden requires clear and unbiased indicators. The Gini 
coefficient, conventionally used as a macroeconomic descriptor of inequality, is potentially useful to quantify epi-
demiological heterogeneity. With a potential range from 0 (all populations equal) to 1 (populations having maximal 
differences), this coefficient is used here to show the extent and persistence of inequality of malaria infection burden 
at a wide variety of population levels.

Methods: First, the Gini coefficient was applied to quantify variation among World Health Organization world 
regions for malaria and other major global health problems. Malaria heterogeneity was then measured among 
countries within the geographical sub-region where burden is greatest, among the major administrative divisions 
in several of these countries, and among selected local communities. Data were analysed from previous research 
studies, national surveys, and global reports, and Gini coefficients were calculated together with confidence intervals 
using bootstrap resampling methods.

Results: Malaria showed a very high level of inequality among the world regions (Gini coefficient, G = 0.77, 95% 
CI 0.66–0.81), more extreme than for any of the other major global health problems compared at this level. Within 
the most highly endemic geographical sub-region, there was substantial inequality in estimated malaria incidence 
among countries of West Africa, which did not decrease between 2010 (G = 0.28, 95% CI 0.19–0.36) and 2018 
(G = 0.31, 0.22–0.39). There was a high level of sub-national variation in prevalence among states within Nigeria 
(G = 0.30, 95% CI 0.26–0.35), contrasting with more moderate variation within Ghana (G = 0.18, 95% CI 0.12–0.25) 
and Sierra Leone (G = 0.17, 95% CI 0.12–0.22). There was also significant inequality in prevalence among local village 
communities, generally more marked during dry seasons when there was lower mean prevalence. The Gini coefficient 
correlated strongly with the standard coefficient of variation, which has no finite range.

Conclusions: The Gini coefficient is a useful descriptor of epidemiological inequality at all population levels, with 
confidence intervals and interpretable bounds. Wider use of the coefficient would give broader understanding of 
malaria heterogeneity revealed by multiple types of studies, surveys and reports, providing more accessible insight 
from available data.
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Background
Describing levels of inequality of disease burden among 
populations is vital for epidemiology and global health, to 
highlight those who are affected disproportionately, and 
better target control interventions [1]. Most infectious 
disease and epidemiological reports do not give clear 
quantitative overviews on inequality, and the topic has 
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been noted as requiring more attention in pursuit of the 
United Nations Sustainable Development Goals (UNS-
DGs) [2]. The particular UNSDG focusing on health 
includes an aim to end malaria as a public health problem 
by the year 2030 [3], encouraging control efforts, surveil-
lance, and estimates of the situation through the World 
Health Organization (WHO) annual World Malaria 
Reports as well as national Malaria Indicator Surveys [4].

The Gini coefficient, an index widely used to describe 
income inequality, has been utilized previously to analyse 
general global health inequality [5, 6], sub-national differ-
ences in mortality [7], and for ecological studies [8], but 
only rarely for specific infectious diseases [9, 10]. Disease 
burden variation among populations is more commonly 
presented using general measures of dispersion such as 
interquartile range, standard deviation, and sometimes 
the coefficient of variation (a scale-invariant coefficient 
obtained by dividing the standard deviation by the mean) 
[11]. However, these typical descriptors do not easily 
facilitate comparisons, whereas a benefit in using the 
Gini coefficient of inequality is that it has a standardized 
range from 0 (all populations equal) to 1 (populations 
having maximal differences) so that levels of inequality 
can be benchmarked.

Here the Gini coefficient is applied to illustrate inequal-
ity in malaria at several population levels, global, regional, 
sub-national and local. This shows that global inequity is 
higher than for other diseases, and is not decreasing in 
the areas that are most highly affected, while there are 
significant differences among countries in levels of sub-
national inequity, and local as well as seasonal variation.

Methods
Gini coefficient of inequality
The Gini coefficient is a measure of variation among dif-
ferent populations or groups, either of a positive resource 
or of an undesired burden, that is derived from the Lor-
enz curve of inequality [12]. In macroeconomics, it 
compares the proportion of ‘wealth’ owned by each sin-
gle sub-population or group and describes the resulting 
inequality when considering the total. Applied to malaria 
or other diseases, it can be focused on comparing data at 
any level, for example among geographical regions glob-
ally or among local communities within a defined area. In 
such analysis, the Lorenz curve estimates how the distri-
bution of disease burden (or other relevant measure such 
as infection prevalence) deviates from a theoretical line 
of perfect equality, and this deviation is summarized in 
the Gini coefficient. A coefficient of 1 is ‘perfectly une-
qual’, whereas a zero value represents ‘perfectly equal’ 
distribution.

The Gini coefficient (G) is estimated by comparing 
the values of the relevant indicator (such as prevalence) 

among all populations, and calculating all pairwise dif-
ferences among them, 

 using the following formula:
where  xi is the value for each individual population i, 

and  xj is the value for each of the individual populations 
j with which it is compared pairwise, there are n popu-
lations and µ is the mean value across all populations.

Gini coefficients were calculated in this study using 
STATA Version 15.3, with replicate analyses performed 
using Microsoft Excel and R version 3.6.3 to ensure 
consistency. Confidence intervals around the Gini coef-
ficient were calculated using bootstrap resampling [13]. 
Equal bootstrap samples of size n are repeatedly drawn 
by sampling, and data are replaced after each sample. 
Bootstrap confidence intervals were calculated using 
R version 3.6.3, using command scripts as detailed in 
Additional file  1: Text S1, with resampling of k = 500 
replicates as there is no significant benefit in using 
higher values of k in this context [14].

Global and regional estimates for malaria and other public 
health challenges
Variation in disease burden across the different WHO 
world regions (African Region, Region of the Ameri-
cas, South-East Asia Region, European Region, Eastern 
Mediterranean Region, and Western Pacific Region) 
was first analysed using estimates of numbers of cases 
in the most recent WHO annual report or fact sheet 
for each global health problem. Malaria was analysed 
[4], as well as tuberculosis [15], HIV/AIDS [16], and 
Hepatitis C infection [17] representing major global 
infectious diseases, and the four groups of non-commu-
nicable diseases with highest overall mortality (cancer, 
respiratory disease, cardiovascular disease, and diabe-
tes) [18–20]. Data were expressed as estimated number 
per 100,000 of the population in each region before cal-
culating Gini coefficients (Additional file  1: Table  S1). 
Malaria estimates were also presented as a percentage 
proportion of population at risk yearly between 2010 
and 2018 (Additional file 1: Table S2).

The Gini coefficient was also calculated for variation 
across 16 West African countries using World Malaria 
Report estimates of numbers of cases for each year 
between 2010 and 2018 (Additional file 1: Table S3) [4], 
based on estimated numbers of cases in proportion to 
the number of people in areas of risk.

G =

∑n
i = 1

∑n
j = 1

∣

∣xi − xj
∣

∣

2 n2µ
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Malaria data at national, sub‑national and local levels
Recent national Malaria Indicator Surveys (MIS) in four 
West African countries (Nigeria, Ghana, Sierra Leone 
and Burkina Faso) were analysed to compare the levels of 
sub-national variation in heavily affected countries [21–
24]. Data were analysed from surveys of infection preva-
lence in under 5 year old children in 35 States in Nigeria 
(excluding one state that did not have sufficient data) 
[21], 10 Regions as previously defined in Ghana [22], 13 
Regions in Burkina Faso [23], and 14 Districts in Sierra 
Leone [24]. Sub-national prevalence measurements from 
the MIS data analysed are tabulated in Additional file 1: 
Table S4.

To illustrate local variation in malaria infection prev-
alence and investigate temporal variation in highly 
endemic communities, data from The Garki Project were 
examined, given the availability of data from multiple 
cross-sectional surveys of multiple local village commu-
nities in an area of high prevalence in northern Nige-
ria in the early 1970s [25], from the archived database 
(https ://garki proje ct.nd.edu/). This analysis focused on 
an 18-month pre-intervention phase of the study dur-
ing which eight successive parasitological cross-sectional 
surveys were conducted approximately every 10 weeks in 
each of 16 villages (data on a further six villages were not 
analysed as they were not surveyed at all eight rounds). 
Presence of P. falciparum was determined by micros-
copy and village-specific prevalence of P. falciparum at 
each survey is shown in Additional file 1: Table S5, after 
extraction from the archived project database. Data 
from a more recent study from The Gambia were also 
analysed for comparison, incorporating 20 villages with 
similar malaria seasonality [26], with variation in percent 
prevalence of P. falciparum determined by microscopy 
compared among villages in wet and dry seasons. Gini 
coefficient estimation from these and other previous data 
was performed using STATA version 15.3 with bootstrap 
confidence intervals calculated using R version 3.6.3.

Results
Global variation in major health problems
Across the six WHO world regions, inequality was 
greater for each of the infectious diseases compared to 
the major non-communicable diseases (Fig.  1). There 
was most extreme inequality in malaria burden (Gini 
coefficient, G = 0.77, 95% CI 0.66–0.81), which was sig-
nificantly higher than for each of the other diseases as 
demonstrated by bootstrap confidence intervals (Fig.  1 
and Additional file 1: Table S1).

Removing the Europe WHO region from the malaria 
calculation (which had no reported cases in 2018) did 
not greatly reduce the index of inequality (G = 0.73, 95% 

CI 0.59–0.77). Removing the African WHO region (con-
taining approximately 90% of all malaria cases), showed 
residual inequality among remaining regions to be much 
lower but still substantial (G = 0.40, 95% CI 0.26–0.54), 
reflecting that most other global cases are in Asia or the 
Western Pacific. There was no decline in levels of global 
inequality between 2010 and 2018 based on data esti-
mates from the World Malaria Report (G values for each 
year remained between 0.76 and 0.78, Additional file  1: 
Table S2).

Variation in malaria within West Africa
As the African region has the majority of the malaria 
burden, and more than half of the cases are estimated to 
occur in West Africa, we analysed the inequality among 
the 16 countries that constitute The West African sub-
region according to the UN definition. This shows the 
variation in estimated malaria burden as a proportion 
of overall populations among countries in West Africa 
between 2010 and 2018, and the persistent inequality is 
revealed by the Gini coefficient (Fig.  2 and Additional 
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Fig. 1 Exceptionally high global inequality of malaria burden 
compared with other major public health indices. Gini coefficients 
of inequality of disease burdens among the six major regions of 
the world were calculated for eight major public health problems. 
The world regions are Africa, The Americas, South East Asia, Europe, 
Western Pacific, and Eastern Mediterranean as defined by the World 
Health Organization (WHO). Analyses are based on data or estimates 
extracted from the most recent fact sheets or world reports, or Global 
Health Estimates by WHO (listed in Additional file 1: Table S1). Malaria, 
HIV, and tuberculosis (TB) estimates represent new infections in 2018 
[4, 15, 16], while Hepatitis C estimates represent new infections in 
2015 [17]. For the four non-communicable diseases with highest 
mortality, different types of estimates are used as examples: diabetes 
estimates were based on prevalence in adults in 2014 [18], cancer 
estimates refer to new cases in the year of 2018 [19], while estimates 
for cardiovascular and respiratory disease refer to attributable deaths 
in 2016 [20]. The inequality of malaria burden was higher than for the 
other indices, as shown by the Gini coefficient estimates (with 95% 
bootstrap confidence intervals)

https://garkiproject.nd.edu/
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file  1: Table  S3). Although there have been moderate 
reductions in malaria overall, and notable reductions in 
a few countries, the average burden is still high and vari-
ation among countries persists (Fig. 2a). Accordingly, the 
Gini Coefficient of inequality remained high, between 
0.27 and 0.32 in each year (Fig. 2b). In 2018, the final year 
estimated, there was still marked inequality in malaria 
burden among countries in West Africa (G = 0.31, 95% 

CI 0.22–0.39) and no indication of this having reduced 
from 2010 onwards.

Sub‑national variation in malaria within high burden 
countries in West Africa
Sub-national variation within four of the highest burden 
countries was analysed using Malaria Indicator Survey 
data of malaria infection prevalence in children under 

Fig. 2 Inequality of malaria burden among countries in West Africa has not reduced between 2010 and 2018. a Malaria burden in individual 
West African countries was calculated as the estimated annual number of cases divided by population at risk. Estimated number of cases were as 
presented in the WHO World Malaria Report annexes [4], divided by the estimated population at risk (Additional file 1: Table S3). Data are plotted 
for all countries except Cape Verde for which numbers of cases were at or close to zero in each year. b The Gini coefficient estimates (with 95% 
confidence intervals) show no decreases in inequality of malaria burden among the countries over time, values of the coefficient being moderately 
high and remaining between 0.27 and 0.31 in all years (with overlapping 95% confidence intervals)
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    Nigeria            Ghana            Burkina             Sierra       
                  Faso                Leone    

    Nigeria            Ghana          Burkina            Sierra       
                  Faso                Leone    

a 

b 

Fig. 3 Inequality of malaria prevalence among major administrative 
regions within four high burden countries in West Africa. a Each 
point represents the community prevalence of slide-positive malaria 
infection in children 6–59 months of age in the major administrative 
geographical regions within each of four countries as reported their 
most recent malaria indicator surveys (MIS). Data are analysed for 
35 States in Nigeria from the 2015 MIS (having excluded one that 
did not have sufficient data) [21], 10 Regions within Ghana from the 
2016 MIS [22], 13 Regions in Burkina Faso from the 2017 MIS [23], 
and 14 Districts in Sierra Leone from the 2016 MIS [24], as presented 
in Additional file 1: Table S4. b. The within-country Gini coefficient 
of inequality was highest for Nigeria (G = 0.30, 95% CI 0.26–0.35), 
indicating a similar amount of variation within that country as exists 
among all 16 countries of West Africa. This was significantly greater 
variation than within Ghana or Sierra Leone

5  years of age, with surveys between the years of 2014 
and 2016 allowing prevalence to be analysed for each of 
the principal formal administrative divisions within each 
country (States in Nigeria, Regions in Ghana and Burkina 
Faso, Districts in Sierra Leone) (Fig.  3 and Additional 
file 1: Table S4). Sierra Leone had the highest mean prev-
alence, but the highest level of sub-national inequality in 
malaria parasite prevalence was seen in Nigeria (G = 0.30, 
95% CI 0.26–0.35), followed by Burkina Faso (G = 0.25, 
95% CI 0.19–0.29), with more moderate sub-national ine-
quality within Ghana (G = 0.18, 95% CI 0.12–0.25) and 
Sierra Leone (G = 0.17, 95% CI 0.12–0.22).

Seasonal malaria heterogeneity among villages in a highly 
endemic area
Local variation was investigated among villages in the 
Garki Project, a large study conducted in northern Nige-
ria in the early 1970 s [25]. The P. falciparum prevalence 
was compared among 16 villages for which there were 
data at eight different survey timepoints (each survey 
separated by approximately 10  weeks) during the pre-
intervention phase of the project (Fig. 4a and Additional 
file  1: Table  S5). An overall seasonal peak of malaria 
prevalence is evident which corresponds to the late wet 
season and immediate post-wet season (surveys 5 and 6), 
while lower prevalence is seen during the annual dry sea-
sons (surveys 2 and 3 for one year, and surveys 7 and 8 
for the following year). The Gini coefficients are highest 
at survey timepoints 2, 3, and 7, which coincide with the 
dry seasons (Fig. 4b). This demonstrates the ability of the 
Gini coefficient to track local variation in epidemiology, 
including temporal changes and effects of seasonality. 
To test for consistency in variation among villages across 
years, the rank order of prevalence in villages at survey 
2 and survey 7 (representing similar points in consecu-
tive dry seasons) was tested and shown to be significantly 
correlated (Spearman’s rho = 0.55, P = 0.028). This indi-
cates that a significant component of the inter-village 
variation was maintained for at least a year.

Data were then analysed from a study of 20 villages 
in The Gambia [26], where malaria endemicity is lower 
and surveys were conducted shortly after malaria had 
declined significantly throughout the country [27, 
28]. Comparing across all villages surveyed  using the 
data provided  in the original publication, heterogene-
ity was  slightly higher in the dry season (G = 0.55) than 
the wet season (G = 0.40)  (Additional file  1: Figure S1). 
Focusing on the eastern part of The Gambia where 
malaria prevalence is highest also showed  greater vari-
ation among villages in the dry season compared to the 
wet season (Additional file 1: Figure S1). Variation among 
villages was generally higher than seen in the data from 
The Garki Project.

Comparison to the coefficient of variation
There is a strong correlation between the values of the 
Gini Coefficient presented here, and the values of the 
Coefficient of Variation (CV, standard deviation divided 
by the mean) calculated for each of the same datasets 
(Spearman’s rho = 0.982, P < 10–4). Gini coefficient values 
ranged from 0.05 to 0.77, while CV values ranged from 9 
to 198%, with a strong correlation over the whole range 
(Fig. 5). As the Gini coefficient is bounded between 0 and 
1 and has bootstrap confidence intervals (not plotted in 
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Fig.  5), it offers advantages for interpretation compared 
to the use of an unbounded CV index.

Discussion
Inequality in malaria burden among populations is effec-
tively summarized into a single index using the Gini coef-
ficient, as shown here. Among leading global infectious 
and non-communicable public health problems, malaria 
shows the highest amount of inequality among differ-
ent world regions, with a Gini coefficient of 0.77 being 
closer to the theoretically maximum possible value of 1.0 
than to zero which would indicate equitable distribution. 
This coefficient has not been reduced in recent years, 
so there clearly needs to be increased effort to reducing 
the malaria burden in the most highly affected African 
region, while sustaining recent reductions of malaria 
elsewhere. This global need is already qualitatively clear 
[4], but the use of the Gini coefficient highlights the 
extreme situation for malaria in comparison to other dis-
eases, and shows the measurability of inequality which is 
essential for future monitoring of progress.

Of equal importance, the Gini coefficient is also shown 
to be useful for summarising inequality at other popula-
tion levels, from regional to local. Within West Africa, 
the sub-region with the highest overall malaria burden 
globally, the coefficient shows that malaria inequal-
ity among countries has not declined in recent years, 
reflecting that relative reductions in malaria burden have 
not been particularly great in the countries with most 
malaria. Moreover, the amount of sub-national inequality 
within four high burden countries in West Africa is also 
shown to be significantly variable. For example, there is 
more inequality in the infection prevalence among differ-
ent states in Nigeria than among the major administra-
tive areas within Ghana or Sierra Leone, analysing data 
from national Malaria Indicator Surveys that employ 
broadly comparable survey methods. The causes of such 
sub-national inequality will be complex and require more 
research attention for future malaria control.

The Gini coefficient is sensitive to village-level, area-
level, and seasonal variation, as illustrated here by re-
analyses of research survey data from studies previously 
conducted in different parts of West Africa. The coeffi-
cient has features that make it potentially a more useful 
descriptor of epidemiological heterogeneity than other 
summary indices. The Gini coefficient demonstrates a 
defined lower and upper boundary of 0 (perfect equal-
ity) and 1 (perfect inequality) while the coefficient of 
variation (CV) based on standard deviation does not. 
Although there is a strong correlation in their quantifi-
cation of heterogeneity, the CV summarizes variation in 
an unbounded range that can transcend 100%. The Gini 
coefficient is therefore more appropriate for use in the 

context of epidemiological studies and disease reports, to 
enable a more standardized quantitative interpretation of 
inequality.
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Fig. 4 Local inter-village heterogeneity in malaria prevalence varies 
over time and shows seasonality captured by the Gini coefficient. 
Temporal variation is analysed in data from successive community 
surveys during the pre-intervention phase of The Garki Project, a 
classic epidemiological study previously conducted in a rural district 
in northern Nigeria. a Malaria parasite slide positive prevalence data 
were obtained from 8 cross-sectional surveys conducted 10 weeks 
apart (spanning approximately 70 weeks in total). Annual peak of 
infection prevalence was seen during and immediately following the 
rainy season (survey 5 and 6), and lower prevalence is evident during 
and immediately following the dry season (surveys 2 and 3 for 1 year, 
surveys 7 and 8 for the following year). Data are shown for the 16 
villages that had surveys at all 8 timepoints (data from a total of 5797 
participants were included). Prevalence data were extracted from The 
Garki Project archived database (https ://garki proje ct.nd.edu/) and are 
shown in Additional file 1: Table S5. b Gini coefficients representing 
the extent of inter-village heterogeneity in malaria in each of the 
surveys with bootstrap confidence intervals. Overall variation among 
the villages was moderately low, with a peak G = 0.17, showing 
significant seasonal variation in Gini coefficients as more inequality 
occurred in the dry season

https://garkiproject.nd.edu/
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While the Gini coefficient is a useful descriptor, limi-
tations should be considered. Technically, although 
bootstrap resampling is a generally robust method of 
calculating confidence intervals for the Gini coefficient, 
it has been suggested that in small samples of uniform, 
normal, or lognormal distributions bootstrap confidence 
intervals may be calculated as too narrow [14, 29], and 
robustness of these intervals increases with larger num-
bers of sampled populations. Statistical methods have 
been developed to mitigate this issue by approximating 
the Lorenz curve of a log-normal distribution [30], and 
could be investigated in future to check the sensitivity 
of confidence interval estimations. Also, although this 
was not a particular issue with the data analysed here, 
Gini coefficients could be skewed by ‘small number 
bias’ if they were based on samples of populations with 
extremely low prevalence, essentially corresponding to 
sampling noise that gives a systematic bias towards an 
inflated Gini coefficient in such situations.

Epidemiologically, the Gini coefficient needs to be rec-
ognized as a simple relative measure that does not pre-
sent absolute differences, and different distributions of 
measurements may produce the same Gini coefficient. 
Demographic and socioeconomic differences, as well 
as ecological, genetic and geographical determinants all 

combine together [31, 32] and the effect of each is not 
explored or separately accounted for by the Gini coeffi-
cient. Indeed, in its more usual application to economic 
inequality, it has been well pointed out that use of the 
Gini coefficient should not preclude other analyses that 
can help understand details of the underlying heteroge-
neity [33]. Clearly, the coefficient does not substitute for 
separate analyses of hypothetical epidemiological deter-
minants, or for maps of disease distribution, where these 
are available or where they may be estimated [34, 35]. 
Instead, it should be applied alongside presentation of 
more detailed or qualitative data, and used to advocate 
focus on populations most affected and where control 
of malaria is most needed, aiming to reduce the extreme 
inequity that continues to prevail at multiple levels.

Conclusion
The Gini coefficient is a useful index for descriptive epi-
demiology, particularly relevant for malaria, which shows 
exceptional levels of global inequality compared to other 
diseases. As illustrated here, it is applicable to a wide 
variety of data sources to show the degree of inequality 
among world regions, or countries within a region, as 
well as sub-nationally or locally. It should be more widely 
used in the presentation of prevalence data, disease bur-
den reports, national indicator surveys, and for a broad 
range of population-based research.
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 Additional file 1: Text S1. Calculating the Gini coefficient and bootstrap 
95% confidence intervals using R version 3.6.3. Table S1. Gini coefficients 
of inequality among WHO world regions in the estimated burden (per 
100,000 of the population) of major global diseases. Table S2. No decline 
in the Gini coefficient of global malaria inequality based on estimated 
malaria cases as a percentage of Population at Risk between 2010 and 
2018. Table S3. No decline in the Gini coefficient of malaria inequality 
among 16 West African countries based on estimated malaria cases as a 
percentage of Population at Risk between 2010 and 2018. Table S4. Gini 
coefficients show differences among West African countries in the levels 
of sub-national variation in malaria parasite prevalence in community sur-
veys of children <5 years of age. Table S5. Gini coefficients show extent 
of variation in community prevalence of P. falciparum among 16 villages 
in the Garki Project in northern Nigeria in eight cross-sectional surveys 
during the pre-intervention phase of the project. Figure S1. High Gini 
coefficients of variation in P. falciparum prevalence among villages in The 
Gambia with seasonal malaria transmission. Variation was analysed among 
20 villages each surveyed at two seasonal times.
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