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Abstract 

Melioidosis is a tropical infectious disease caused by the Gram-negative bacillus, 

Burkholderia pseudomallei that is often lethal in many endemic areas. The objective of this 

study was to characterize the transcriptome in melioidosis patients and identify genes 

associated with outcome. RNA-seq was performed on whole blood RNA in a discovery set of 

29 melioidosis patients and 3 healthy controls using Ion AmpliSeq Transcriptome. 

Transcriptomic profiles of patients who did not survive to 28 days were compared with 

patients who survived and healthy controls. RT-qPCR of 28 differentially expressed genes 

was performed in a validation set of 60 melioidosis patients and 20 healthy controls. In RNA-

seq analysis, 65 genes were significantly up-regulated and 218 were down-regulated in non-

survivors compared to survivors. Up-regulated genes were involved in myeloid leukocyte 

activation, Toll-like receptor cascades and reactive oxygen species metabolic processes. 

Down-regulated genes were hematopoietic cell lineage, adaptive immune system and 

lymphocyte activation pathways. RT-qPCR in the validation set of patients confirmed 

differential expression of a subset of genes. IL1R2, GAS7, S100A9, IRAK3, and NFKBIA 

were significantly higher in non-survivors compared with survivors (P < 0.005) and healthy 

controls (P < 0.0001). The AUROCC of these genes for mortality discrimination ranged from 

mailto:narisara@tropmedres.ac


0.80-0.88. In survivors, expression of IL1R2, S100A9 and IRAK3 genes decreased 

significantly over 28 days (P < 0.05). Whole blood transcriptomics characterizes the host 

response in melioidosis. Expression levels of specific genes are potential biomarkers to 

predict outcomes. These findings augment our understanding of this severe infection. 

 

Keywords: RNA-sequencing, Transcriptomics, Melioidosis, Biomarkers, Burkholderia 

pseudomallei, Outcome, Immune response 

 

Introduction 

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei, a 

Gram-negative bacterium and biothreat agent [1]. The disease is highly endemic in the 

tropics, particularly in Southeast Asia and northern Australia but reported cases are 

increasing globally. Melioidosis carries a mortality rate of 40% or higher in many endemic 

regions where resources are limited. This poor outcome from melioidosis has remained 

unchanged for many years [2,3]. Melioidosis is associated with several host factors, but 

diabetes is the major risk [4,5]. Pneumonia and bacteremia are the most common 

manifestations of disease; infections of these systems are frequently associated with septic 

shock and contribute to high mortality [2].    

A comprehensive understanding of the individual response to infection is necessary to 

develop effective and targeted therapies. Additionally, biomarkers that predict outcome may 

be useful to guide patient management. Evaluation of the entire transcriptome of cells offers 

both the possibilities of characterizing pathways activated in disease and identifying potential 

biomarkers. In murine melioidosis, blood transcriptomic profiling reveals the regulation of 

many immune pathways, which reflect severity of disease [6] and can be used to identify a 

potential marker of acute lung infection [7]. Transcriptomic changes have been reported in 



human melioidosis during acute infection, highlighting the involvement of host immunity 

against infection [8]. Recent studies based on microarrays showed that blood transcriptional 

profiles can distinguish B. pseudomallei infection from sepsis caused by other 

microorganisms [9,10]. These studies suggest that these transcriptomic profiles may be useful 

in understanding the immune response during infection and serve as informative biomarkers 

of infection. RNA-sequencing (RNA-seq) is a unbiased approach and powerful tool to define 

the transcriptome [11]. However, to date, RNA-seq has not been used extensively to 

characterize human melioidosis. The aims of this study were to use RNA-seq (i) to analyze 

whole blood transcriptomic profiles of acute melioidosis patients to define biological 

pathways associated with death, and (ii) to identify host prognostic gene biomarkers that are 

associated with mortality.  

 

Methods 

 

Study design and patients 

A prospective study of whole blood transcriptomic analyses in 97 individuals with 

melioidosis was conducted at seven hospitals in Northeast of Thailand: Udon Thani Hospital, 

Nakhon Phanom Hospital, Mukdahan Hospital, Roi Et Hospital, Buriram Hospital, Surin 

Hospial, and Sisaket Hospital. This study was part of a multi-centre study of patients aged 

≥15 years who were culture-positive for B. pseudomallei from any type of clinical samples 

and admitted to the hospitals between January 2015 and December 2019. The inclusion and 

exclusion criteria were described previously [12]. B. pseudomallei were identified by 

biochemical tests and latex agglutination [13] at the microbiology laboratories of the 

hospitals and further confirmed by Matrix-Assisted Laser Desorption Ionization Mass 

Spectrometry (MALDI-TOF MS) as previously described [14]. Whole blood samples were 



collected at the time of enrolment (within 24 hours of culture results, defined as day 0) and 

day 5, day 12, and day 28 after enrolment. Clinical information was obtained from the 

medical records. Mortality of patients was recorded at the hospitals or by phone calls for 28 

days of follow up.  

Twenty-three healthy individuals aged ≥ 18 years were recruited from Udon Thani 

Hospital and Mukdahan hospital as baseline controls for discovery and validation data sets. 

Inclusion and exclusion criteria for these controls were previously described [15].  

This study was designed by the process of 3 data sets as follows: discovery set, 

validation set, and follow-up set as described in Supplementary Figure 1.   

 

Ethical approval  

The study was approved by the ethical committees of Faculty of Tropical Medicine, 

Mahidol University, Udon Thani Hospital, Nakhon Phanom Hospital, Mukdahan Hospital, 

Roi Et Hospital, Buriram Hospital, Surin Hospial, and Sisaket Hospital. Written informed 

consent was obtained from all participants or their representatives. 

 

Sample collection  

Three milliliters of whole blood were collected from melioidosis patients and healthy 

controls into TempusTM Blood RNA Tubes (Thermo Fisher Scientific) and stored at -20°C or 

-80°C at the hospitals. The frozen samples were transported on dry ice to the laboratory in 

Bangkok for RNA extraction. 

 

RNA extraction 

Total RNA was extracted from Tempus-stabilized blood using the MagMAX™ for 

Stabilized Blood Tubes RNA Isolation Kit (Life technologies). Total RNA concentration and 



its purity were assessed by determining the A260/280 and A260/230 ratios, respectively on 

the NanoDrop Spectrophotometer (Thermo Fisher Scientific). RNA integrity number (RIN) 

was assessed with the Agilent RNA 6000 Pico kit on 2100 Bioanalyzer (Agilent 

Technologies). Genomic DNA contamination was checked by RT-qPCR using primers for 

the Peptidylprolyl isomerase A (PPIA) gene [16]. 

 

Library preparation for RNA-seq 

 Libraries were prepared from 50 ng of RNA per sample using Ion AmpliSeq™ 

Transcriptome Human Gene Expression Kit (Thermo Fisher Scientific). Targets of 20,802 

genes were amplified with Ion AmpliSeq™ Transcriptome Human Gene Expression core 

panel (Life Technologies). The primer sequences were then digested, and DNA adaptors (Ion 

P1 Adaptor and Ion Xpress Barcode Adaptor, Life Technologies) were ligated to the targets. 

Adaptor ligated targets were purified using the Agencourt AMPure XP reagent (Beckman 

Coulter) and eluted into an amplification mix containing Platinum PCR SuperMix High 

Fidelity and Library Amplification Primer Mix (Life Technologies) for further amplification. 

Size-selection purification was performed using Agencourt AMPure XP reagent (Beckman 

Coulter). Amplicons were quantified using a Fragment AnalyzerTM instrument with a DNF-

474 High Sensitivity NGS Fragment Analysis Kit (Advanced Analytical Technologies, 

INC.). Samples were then pooled together with four samples per pool and performed an 

emulsion PCR on the Ion Chef System using the Ion PI Hi-Q Chef Kit (Life Technologies). 

The emulsion PCR samples were loaded on Ion PI v3 chips and sequenced on an Ion Proton 

System using an Ion PI Hi-Q Sequencing 200 Kit chemistry (Life Technologies) to obtain 

approximately 200 bp read length.  

 

Transcriptomic data analysis 



Sequencing data were generated using Torrent Suite Software version 5.4.0 with 

AmpliSeq RNA plugin (Thermo Fisher Scientific) and normalized using reads per million 

mapped reads (RPM) method. The normalized transcripts were analyzed using GeneSpring 

GX software version 14.9 (Agilent Technologies) to identify differentially expressed genes 

(DEGs) within the 10th -100th percentile. One-way ANOVA was used to compare DEGs 

among non-survivors, survivors, and healthy controls. Moderated t-test was used to compare 

DEGs between non-survivors and survivors. An adjusted P value < 0.05 was deemed 

significant (Benjamini-Hochberg correction method). Functional analysis was derived using 

Metascape tool (http://metascape.org). Area under the receiver operating characteristic curves 

(AUROCC) were plotted using GraphPad Prism version 6.0. 

DEGs were initially selected for validation based on fold change ≥ 2 and adjusted P 

value ≤ 0.05 between non-survivors and survivors.  

 

Quantitative reverse-transcriptase PCR (RT-qPCR) 

Two-step RT-qPCR was used to quantitatively validate gene expression. Total RNA 

from whole blood was converted into cDNA using the iScriptTM cDNA Synthesis Kit (Bio-

Rad). The amplification was performed in duplicate in a total volume of 10 μl containing 5 μl 

of iTaq Universal SYBR Green (Bio-Rad), 2 μl of 4 ng cDNA, 0.4 μl of 10 mM forward 

primer, 0.4 μl of 10 mM reverse primer, 2.2 μl of distilled water. The cycle conditions were 

as follows: 1 cycle of 95°C for 30s followed by 40 cycles of 95°C for 10s and 60°C for 30s. 

After amplification, melting curve analysis was carried out from 65°C to 95°C. Primers were 

designed using NCBI PrimerBlast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). All 

primer pairs are listed in Supplementary Table 1. Peptidylprolyl isomerase A (PPIA), Human 

large ribosomal protein P0 (RPLP0), and Tata-box binding protein (TBP) were used as 

reference genes for calculating the relative expression levels of other genes [16] The 

http://metascape.org/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/


expression levels were calculated by using the 2−ΔCt method, where ΔCt = mean Ct of target 

gene – mean Ct of the three reference genes.  

 

Statistical analysis 

Mann-Whitney or Kruskal-Wallis tests followed by Dunn’s multiple comparison tests 

correction were used to test the difference in gene expressions among subject groups. Mean, 

median, interquartile range (IQR), standard deviation (SD), area under the receiver operating 

characteristic curve (AUROCC) values and 95% confidence intervals (CI) were assessed 

using Prism 6 (GraphPad Software). The classification accuracy of the 12 gene signature was 

determined using the randomForest machine learning R package (v. 4.16) [17] applied to the 

qRT-PCR data. The AUROCC curve was visualised using the pROC package (v. 1.10).  

 

Results 

Whole blood transcriptomic profiles of survivors and non-survivors 

To identify genes associated with mortality, we performed whole blood 

transcriptomic analysis of a discovery set consisting of 29 Thai melioidosis patients, fourteen 

of whom survived and fifteen of whom died within 28 days, and 3 healthy controls. The 

clinical characteristics of the patients are shown in Table 1. The quality of 32 RNA samples 

were analyzed for integrity and read count/mapped read numbers. Overall average RNA 

integrity numbers (RIN) of 6.0-8.6, average OD ratios 260/280 > 1.8, 260/230 < 1, and 

average of 22 million reads with mapping rate of > 58% were achieved from each cDNA 

library. Out of 20,802 genes, 18,713 genes with expression values between 10th - 100th 

percentiles were further analyzed using one-way ANOVA and 5,189 genes were statistically 



different among groups as shown in three dimensional principal component analysis (3D-

PCA) plots (Figure 1).  

Analysis of differentially expressed genes (DEGs) between non-survivors and 

survivors performed using the moderated t-test method identified 283 DEGs. Hierarchical 

cluster analysis of these genes was generated by GeneSpring (Figure 2). Whole blood of non-

survivors presented more down-regulated genes compared to survivors (fold change ≥ 2). 

RNA-seq data of 65 up-regulated genes and 218 down-regulated genes with P value ≤ 0.05 

and fold change ≥ 2 are shown in Supplementary Table 2. In comparison to melioidosis 

patients who survived, the fold changes of up-regulated genes in non-survivors ranged 

between 2.00 to 15.72 and P value = 1.70 x 10-3 to 5.47 x 10-9. The fold change of down-

regulated genes ranged between 2.00 to 9.42 and P value = 9.50 x 10-5 to 2.54 x 10-9. The 

volcano plot in Figure 3 shows the distribution and relationship between fold change and P 

value of 65 up-regulated genes and 218 down-regulated genes in non-survivors in relation to 

survivors.   

 

Functional enrichment analysis of DEGs between survivors and non-survivors 

In order to gain insight into the biological function of DEGs, the genes found 

significantly differential expressed (65 up-regulated and 218 down-regulated) between 

survivors and non-survivors were analyzed using the Metascape tool. The analysis was based 

on combined datasets for enrichment analysis, including gene ontology, KEGG pathways, 

reactome gene sets, canonical pathways, and CORUM complexes. The data in Figure 4 show 

that the significant DEGs were involved in functions of host immune response (n = 7), stress 

response (n = 6), cell development (n = 35), signaling transduction (n = 23), catabolic process 

(n = 16), and metabolic process (n = 24). The significant 65 up-regulated DEGs in non-

survivors were involved in myeloid leukocyte activation (n = 14), Toll-like receptor cascades 



(n = 8), and reactive oxygen species metabolic processes (n = 8) (Figure 4A) while the 

majority of 218 down-regulated genes set in non-survivors were hematopoietic cell lineage (n 

= 10), adaptive immune system (n = 24) and lymphocyte activation (n = 23) (Figure 4B). 

Gene names and details of each functional group are shown in Supplementary Table 3. 

 

Pathway analysis of DEGs between melioidosis survivors and non-survivors 

To gain better understanding of the underlying mechanisms of the 283 altered genes 

in non-survivors compared to survivors, we performed KEGG pathway analysis. 

Interestingly, KEGG identified six pathways in immunological response that were associated 

with 65 up-regulated genes (Supplementary Table 4). These included pathways of Toll-like 

receptor signalling, Th17 cell differentiation, MAPK, IL-17 signalling, FoxO signalling, HIF-

1 signalling. Moreover, KEGG identified seven pathways in immunological response that 

were associated with 218 down-regulated genes. These included hematopoietic cell lineage, 

cell adhesion molecules (CAMs), intestinal immune network for IgA production, Th1 and 

Th2 cell differentiation, Th17 cell differentiation, antigen processing and presentation and B 

cell receptor signalling pathway.  

 

RT-qPCR validation of DEGs to predict mortality in melioidosis 

Twenty-eight DEGs were manually selected to confirm the expression by RT-qPCR 

in a validation set of 30 non-survivors, 30 survivors and 20 healthy controls. The DEGs were 

selected according to (i) their degree of alteration (fold changes and P value) (Supplementary 

Table 2) and (ii) their functions related with immunological responses (Supplementary Table 

4). These DEGs included 20 up-regulated genes and 8 down-regulated. RT-qPCR results in 

the validation set confirmed significantly higher expression in non-survivors compared with 

survivors and healthy controls for 16 of the 20 up-regulated genes and 1 of the 8 down-



regulated genes, respectively (Figure 5 and Supplementary Table 5). RT-qPCR in the 

validation set confirmed significantly lower expression in non-survivors compared with 

survivors (P = 0.016) and healthy controls (P < 0.0001) for 1 of 8 down-regulated genes: 

CD160.  

 

ROC assessment of gene expression as predictive markers for mortality 

Receiver operating characteristic (ROC) curves were constructed based on the RT-qPCR 

results from the validation set of melioidosis patients to examine the classification accuracy 

of each DEG for distinguishing between non-survivors and survivors (Figure 6A-C). The 

highest area under the ROC (AUROCC) were obtained from the genes listed in 

Supplementary Table 6. Among these, S100A9 showed the highest AUROCC value (0.88) 

followed by IL1R2 (0.87) and TLR4 (0.86). The down-regulated gene with the highest 

AUROCC was CD160 (0.77). A combined signature of the expression of the 12 genes with 

best individual discriminatory ability was able to classify the non-survivors from the 

survivors in a Random Forest model (AUROCC 0.85, CI = 0.74 – 0.94), and completely 

discriminated the melioidosis patients from the healthy controls (Figure 6D). 

 

Trajectory of gene expression profiles in survivors after enrolment  

Five up-regulated DEGs (S100A9, IL1R2, IRAK3, NFKBIA and GAS7) were selected 

based on AUROCC ≥ 0.82 and whether the genes have secretory functions of proteins as they 

may be better suited to a point-of-care assay. Gene expression was measured by RT-qPCR in 

survivors (n = 8) at day 0, day 5, day 12, and day 28 to test whether expression decreases as 

patients recovered. The trend of gene expression at day 0, day 5, day 12, and day 28 were 

determined by calculating the fold change reduction. None of the five genes had major 

changes in expression at day 5 but S100A9, IRAK3 and IL1R2 subsequently had decreased 



expression over time as patients recovered (Figure 7 and Supplementary Table 7). Expression 

of S100A9, IRAK3, IL1R2 and NFKBIA significantly decreased at day 28 relative to day 5. 

Expression of S100A9, IRAK3, and NFKBIA in patients decreased at day 28 but did not reach 

to the expression level of healthy controls (P < 0.0001). However, expression of IL1R2 and 

GAS7 rapidly decreased to the same level of healthy controls and did not change further after 

day 12 (P < 0.05). The mean fold changes (day 28/day 5) for gene expression of 8 individual 

patients and 95% CI are shown in Supplementary Table 8. 

 

Discussion 

Our study demonstrated that the whole blood transcriptome of melioidosis patients 

who survived was distinguishable from non-survivors, with 283 DEGs significantly 

associated with mortality. The majority of these DEGs were related to the immune response, 

cellular functions and metabolism. Twenty-eight DEGs were selected by functional 

enrichment and pathway analyses and RT-qPCR of these genes in a validation cohort 

confirmed 16 up-regulated and 1 down-regulated gene associated with mortality. ROC 

analyses of the validation set identified the 15 most predictive genes. Subsequent RT-qPCR 

of four selected genes (S100A9, IRAK3, IL1R2, and NFKBIA) in surviving patients followed 

over time demonstrated a trajectory expression profile with decreased differential expression 

by day 12 and day 28 after enrolment.  

Genes of melioidosis patients associated with death include IL1R2, IRAK3, IL18RAP, 

MGAM, LPL, HGMB2, S100A9, GAS7, NFKBIA, TLR2, TLR4, MAPK14, GPR27, HIF1A, 

and ITGAM. Many of these genes or their proteins have been reported in related studies. 

Elevation of IL1R2 expression and soluble IL1R2 concentrations are correlated with severity 

of Escherichia coli and Staphylococcus aureus infections [18]. Increased expression levels of 

the IRAK3 gene are correlated with the development of acute lung injury in patients with 



severe sepsis [19]. In melioidosis, Wiersinga et al. reported up-regulation of IRAK3 is related 

to attenuated capacity of monocytes to respond to B. pseudomallei stimulation and this 

coincided with mortality [20]. In parallel to our study, a recent study reported that 

extracellular S100A8 and S100A9 (S100A8/A9), a Ca2+ sensor in cytoskeleton rearrangement 

and arachidonic acid metabolism, are the key mediators of sepsis secreted from neutrophils 

and monocytes during inflammation [21]. The S100A9 serve as damage associated molecular 

patterns and induce pro-inflammatory cytokine expression and secretion via toll-like receptor 

4 (TLR4) activation [22,23]. Increasing evidence supports that NFKBIA-mediated 

inflammation is linked to susceptibility to infectious and inflammatory diseases [24-26]. A 

report demonstrated an up-regulation of NFKBIA expression in mouse macrophages in 

response to B. pseudomallei infection [27] and our data confirmed that increased NFKBIA 

expression is associated with fatality in melioidosis patients.  

A recent study suggests that HLA-DPA1 and -DRB3 are under-expressed in whole 

blood of sepsis patients caused by B. pseudomallei, which distinguished melioidosis from 

sepsis caused by other organisms [9]. In addition, we found HLA-DPB1 was down-regulated 

in non-survivors in our discovery cohort. Our data also revealed that non-survivors had 

reduced expression of HLA-DPB1, HLA-DOA, HLA-DOB and HLA-DRA representing MHC 

class II molecules, which are important for antigen presentation. Our results in melioidosis 

are similar to the results of other studies [28-30] suggesting that non-surviving patients with 

severe sepsis from melioidosis or other infections exhibit decreased MHC class II expression 

and that can contribute to persistent failure of T cell activation [31,32]. We did not observe 

the changes of these MHC class I at transcriptional levels. However, Dunachie et al. showed 

the presence of MHC class I genes, HLA-B46 and HLA-C*01 was associated with an 

increased mortality in an acute melioidosis cohort [8].  



Enrichment analysis demonstrated a number of GO terms, including the up-regulation 

of myeloid leukocyte activation and down-regulation of lymphocyte activation in non-

survivors compared with survivors. KEGG pathway analysis revealed many up-regulated 

genes involved in signal transduction pathways associated with severe melioidosis. Among 

these, TLRs are known to recognize B. pseudomallei LPS and initiate inflammation [33-36] 

and acute septic melioidosis patients had increased expression of many TLRs in leukocytes 

[34]. The activation of MAPK signaling and Th17 pathway in melioidosis patients have also 

been demonstrated in previous studies [37-39] [40]. Multiple signaling pathways were down-

regulated in severe melioidosis suggesting that prolonged bacterial persistence exacerbates 

inflammatory responses that may lead to immune exhaustion, immune suppression, and poor 

outcome of the disease.  

Expression of several genes, assayed on day 0, had high mortality discrimination, 

including S100A9 and IL1R2. Notably, expression of these genes decreased significantly in 

surviving patients by day 12, suggesting that the gene expression tracks with clinical 

condition. Therefore, these genes and their encoded proteins could be considered as candidate 

biomarkers for predicting clinical outcomes in patients with melioidosis, and deserve further 

study in comparison to other clinical and biological prediction tools.  

Strengths of our study were the multi-center design, prospective subject enrolment 

and sample collection, serial sampling over time in a subset of patients, and validation of 

selected findings. Some limitations are the relatively small number of samples in the 

discovery cohort, enrolment into our study only after the diagnosis of melioidosis was 

confirmed (rather than at the time of admission to hospital), and validation of only a subset of 

genes.  

In conclusion, our findings provide new knowledge about transcriptional host 

responses in circulating leukocytes from hospitalized melioidosis patients and suggest several 



candidate biomarkers for further study. These data are important to ongoing efforts to reduce 

the burden of this often severe infection. 
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Figure 1. Three-dimensional principal component analysis (3D-PCA) of differentially 

expressed genes among non-survivors and survivors and healthy controls. One point per 

subject in yellow, red, and light blue, represents groups of melioidosis patients who survived 

(n = 14) and did not survive (n = 15), and healthy controls (n = 3), respectively. Each axis 

shows percent variation explained by each group. 

 

Figure 2. Hierarchical clustering analysis of 283 differentially expressed genes (DEGs) 

in whole blood of surviving and non-surviving melioidosis patients. High expression of 

genes is shown in green whereas low expression of genes is shown in red. Each column 

represents individual subjects and each row in the figure represents one altered gene that 

significantly expressed at P ≤ 0.05 and fold change ≥ 2. Subjects from our study are 

melioidosis survivors (n = 14), melioidosis non-survivors (n = 15). 



 

Figure 3. Differential expression analysis of survivors compared to non-survivors at the 

time of diagnosis (day 0). Gene expression profile of patients with melioidosis that survived 

after 28 days (n = 14) compared to patients that did not survive (n = 15). Color indicates 

statistically significant genes (adjusted P value ≤ 0.05, correction method = Benjamini-

Hochberg) dark blue: down-regulated genes ≥ 2 fold change, dark red: up-regulated genes ≥ 2 

fold change with grey corresponding to genes showing no expression change. 



 

Figure 4. Functional enrichment analysis of DEGs in non-surviving melioidosis patients 

compared with patients that survived. (A) Top 20 enriched terms of 65 up-regulated genes 

in non-surviving melioidosis patients. (B) Top 20 enriched terms of 218 down-regulated 

genes in non-surviving melioidosis. Saturation of color corresponds to P values. 



 

Figure 5. Validation of the differential expression analysis of 28 DEGs in whole blood 

from melioidosis patients. Genes that were found to be differentially expressed in patients 

with melioidosis that did not survive and survived were validated with real-time qPCR. The 

Kruskal-Wallis test was performed for comparing three groups. Subjects from our study were 

melioidosis survivors (n = 30), melioidosis non-survivors (n = 30), and healthy controls (n = 

20). 



 

Figure 6. Area under the receiver operating characteristic curve (AUROCC) of DEGs 

in discrimination among non-survivors, survivors and healthy controls. (A) AUROCC of 

10 DEGs between non-survivors versus survivors. (B) AUROCC of 10 DEGs between non-

survivors versus healthy controls. (C) AUROCC of 10 DEGs between survivors versus 

healthy controls. (D). Random Forest model of a combined gene signature discriminates 

survivors and non-survivors. The 12 genes which individually discriminated clinical groups 

with AUROCC > 0.80 in qRT-PCR were combined to create a single model, which was used 

to classify the separation between survivors (S), non-survivors (NS) and healthy controls 

(HC) in the qRT-PCR dataset 



 

Figure 7. One month follow-up of S100A9, IRAK3, IL1R2, GAP7, and NFKBIA in 

surviving melioidosis patients over the course of illness. Whole blood samples from 

melioidosis survivors (n = 8) were collected at the various times from diagnosis (day 0, day 

5, day 12, and day 28). The P values were calculated by Mann-Whitney test. Data of healthy 

individuals were plotted as the controls. 



 

Table 1. Characteristics of melioidosis patients and healthy controls 



 

 

Supplementary Figure 1. Flow chart of the study. 

 Discovery cohort Validation cohort Follow-
up 

cohort 
(n=8) 

Healthy 
control 
(n=23) 

Characteristics Non-
survivors 

(n=15) 

Survivors 
(n=14) 

Non-
survivors 

(n=30) 

Survivors 
(n=30) 

Mean age in 
years  
(range) 

57 
(36-81) 

51 
(28-74) 

62 60 50 
(32-70) 

43 

(45-84) (34-80) (28-68) 

Male (%) 11 (73%) 10 (71%) 26 (87%) 21 (70%) 8 
(100%) 

14 
(61%) 

Comorbidity 
   Diabetes (%) 9 (60%) 7 (50%) 18 (60%) 17 (57%) 7 (88%) - 
   Alcoholism (%) 3 (20%) 6 (43%) 7 (23%) 10 (33%) 3 (38%) - 
   Kidney disease 
(%) 2 (13%) 1 (7%) 5 (17%) 3 (10%) 5 (63%) - 

   Hypertension 
(%) 5 (33%) 2 (14%) 13 (43%) 7 (23%) 3 (38%) - 

   Thalassemia (%) - 2 (14%) - 1 (3%) - - 
   Cancer (%) 2 (13%) - 2 (7%) 1 (3%) - - 

   None (%) 3 (20%) 1 (7%) 4 (13%) 4 (13%) - 23 
(100%) 

Clinical symptom 
   Bacteremia (%) 14 (93%) 8 (57%) 28 (93%) 23 (77%) 7 (88%) - 
Fever 
   <15 days (%) 14 (93%) 11 (79%) 28 (93%) 23 (77%) 7 (88%) - 
   ≥15 days (%) 1 (7%) 3 (21%) 2 (7%) 7 (23%) 1 (13%) - 



 

Supplementary Table 1. Oligonucleotide primers used for quantitative RT-PCR (RT-
qPCR). 



 

 
Gene 

symbol Gene description Primer sequences (5’-3’) Amplicon 
size (bp) 

TM 
(°C) References 

PPIA Peptidylprolyl isomerase A 
S_GCTGGACCCAACACAAATGG 

86 
59.68 

[1] A_TTGCCAAACACCACATGCTT 59.17 

TBP Tata-box binding protein S_ATGGTGGGGAGCTGTGATGT 101 61.21 [1] A_AAACCAGGAAATAACTCTGGCTCA 60.20 

RPLP0 Human large ribosomal protein 
P0 

S_GCTTCCTGGAGGGTGTCC 105 59.33 [1] A_GGACTCGTTTGTACCCGTTG 58.86 

TLR4 Toll like receptor 4 F_CAACCATTTGCCAGACACCA 143 58.96 This study R_ACGGGAAGCACAACCATCTA 59.02 

TLR2 Toll like receptor 2  F_TGCAAGCAGGATCCAAAGGA 111 59.59 This study R_CAAGACCCACACCATCCACA 59.89 

CD160 CD160 molecule  F_GCTTTGTAAGCCTTGTGCCA 119 59.33 This study R_CCTGTGCCCTGTTGCATTCT 60.90 

IL1R2 Interleukin 1 receptor type 2 F_TGTGCTGGCCCCACTTTC 101 60.20 [2] R_GCACAGTCAGACCATCTGCTTT 61.13 

S100A9 S100 calcium binding protein A9 F_TGGAGGACCTGGACACAAATG 109 59.93 [3] R_TCGTCACCCTCGTGCATCTT 61.53 

NFKBIA NFKB inhibitor alpha F_CTCCGAGACTTTCGAGGAAATAC 135 58.65 [4] R_GCCATTGAAGTTGGTAGCCTTCA 61.37 

HIF1A Hypoxia inducible factor 1 
subunit alpha 

F_CATAAAGTCTGCAACATGGAAGGT 148 59.54 [5] R_ATTTGATGGGTGAGGAATGGGTT 60.25 

PLK3 Polo like kinase 3  F_TCACTGGGCTGTGTCATGTA 96 58.65 [6] R_GTGAACCTGCTTGATGCAG 56.92 

GADD45A Growth arrest and DNA damage 
inducible alpha 

F_AGAAGACCGAAAGCGACCC 131 59.71 This study R_GTTGATGTCGTTCTCGCAGC 59.91 

CD22 CD22 molecule F_GCCAGAGCTTCTTTGTGAGG 182 58.84 [7] R_GGGAGGTCTCTGCATCTCTG 59.25 

HLA-DOA Major histocompatibility 
complex, class II, DO alpha 

F_TTTGCCCGCTTTGACCCGCA 118 65.99 This study R_TCACCCGTGGAGGCACGTTG 65.10 

LCK LCK proto-oncogene, Src family 
tyrosine kinase 

F_TGCCATTATCCCATAGTCCCA 95 58.29 This study R_GAGCCTTCGTAGGTAACCAGT 59.18 

LAT Linker for activation of T cells F_CTACCCACCTGTCACCTCCT 129 60.25 This study R_CTGTTGGCACCATCAGAATC 56.78 

HLA-DPB1 Major histocompatibility 
complex, class II, DP beta 1 

F_CCTGGTGATGCTGGAAATG 105 56.26 This study R_GACTGTGCCTTCCACTCCA 59.25 

CD72 CD 72 molecule F_CAGCTCCGCCTCAAGATAAC 177 58.42 This study R_TTGCAAGGTCTCCTTCGTCT 58.95 

IRAK3 Interleukin 1 receptor associated 
kinase 3 

F_CAGCCAGTCTGAGGTTATGTTT 110 58.32 [8] R_TTGGGAACCAACTTTCTTCACA 58.30 

ITGAM Integrin subunit alpha M F_ATGCAGAAACAGGGATGGGA 71 59.00 This study R_GATAGCAGCGTGGAACCAAG 58.99 

KL Klotho F_ACTGGATCACCATCGACAACCC 192 62.32 This study R_CAATGGACACCTGACCTCCCT 61.46 

FKBP5 FKBP prolyl isomerase 5 F_GAGTTACATCCCCCATGCCAA 149 60.06 This study R_GGGGATTGTCGCTTCGTAGT 59.82 

IL18RAP Interleukin 18 receptor accessory 
protein 

F_CGTTCAGATACAAAAGCTGGCAGT 125 61.86 This study R_TCCCTTTCAGTTGGTCAAGGCT 61.83 

PER1 Period circadian regulator 1 F_GAGGACACTCCTGCGACCAG 192 62.22 This study R_TCCCCCATCAGCCCCTTCTA 61.91 

MGAM Maltase-glucoamylase F_CACCCTCCCTACATGCCACA 95 61.56 This study R_GAGCCGTCTGGGAGGATCTG 61.74 

HMGB2 High mobility group box 2 F_CCCTGGCCTATCCATTGGGG 176 62.09 This study R_CAGGGCCCTTCTTTCCTGCT 62.15 

GAS7 Growth arrest specific 7 F_TGCGACTACTTCTGGGCTGA 102 60.90 This study R_CTGCATTTGTTTGCCCTTCA 57.47 

MAPK14 Mitogen-activated protein kinase 
14 

F_GGGGCTGAGCTTTTGAAGAAA 180 59.04 This study R_GGCTTGGGCCGCTGTAATTC 62.00 

GPR27 G protein-coupled receptor 27 F_GCAAGATGTTCTACGCCGTCA 194 61.00 This study R_GTCCCTCAGCTCCCTGTTGAA 61.72 

LPL Lipoprotein lipase F_ACGGGCTCAGGAGCATTACC 142 61.97 This study R_GGCTCCAAGGCTGTATCCCA 61.64 

ACVR1B Activin A receptor type 1B F_CAGCAGAACCTTGGCGGTTTA 85 61.15 [9] R_GTTGGCAGATCCCAGAGGCTAC 62.70 



Supplementary Table 2. Differentially expressed genes in whole blood of melioidosis 
patients who were survived and died. The data show 65 up-regulated genes and 218 down-
regulated genes in non-survivors. 

Gene  Description Fold 
change 

P value Regulation 

IL1R2 Interleukin 1 receptor type 2 15.72 5.5E-09 up 
GRB10 Growth factor receptor bound protein 10 5.88 9.0E-07 up 
MYO10 Myosin X 5.48 7.6E-06 up 
TDRD9 Tudor domain containing 9 5.25 2.2E-05 up 
MERTK MER proto-oncogene, tyrosine kinase 5.16 3.7E-06 up 
KL Klotho 4.27 3.8E-06 up 
ST6GALNAC3 ST6 N-acetylgalactosaminide alpha-2,6-

sialyltransferase 3 
4.02 2.4E-06 up 

FKBP5 FKBP prolyl isomerase 5 4.02 6.3E-07 up 
MYO1B Myosin IB 3.67 1.3E-04 up 
IRAK3 Interleukin 1 receptor associated kinase 3 3.53 2.6E-06 up 
IL18RAP Interleukin 18 receptor accessory protein 3.43 1.2E-04 up 
SH3PXD2B SH3 and PX domains 2B 3.10 3.5E-04 up 
CLEC4D C-type lectin domain family 4 member D 3.10 6.3E-04 up 
PER1 Period circadian regulator 1 3.06 1.4E-06 up 
ASPH Aspartate beta-hydroxylase 3.04 4.6E-06 up 
GADD45A Growth arrest and DNA damage inducible alpha 3.01 1.0E-05 up 
BASP1 Brain abundant membrane attached signal 

protein 1 
2.96 9.8E-05 up 

PGS1 Phosphatidylglycerophosphate synthase 1 2.93 3.7E-04 up 
SLED1 Proteoglycan 3, pro eosinophil major basic 

protein 2 pseudogene 
2.87 4.6E-04 up 

ITPKC Inositol-trisphosphate 3-kinase C 2.86 2.6E-06 up 
PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 
2.86 6.3E-05 up 

SLC26A6 Solute carrier family 26 member 6 2.68 7.4E-05 up 
SCN5A Sodium voltage-gated channel alpha subunit 5 2.68 6.0E-04 up 
PECR Peroxisomal trans-2-enoyl-CoA reductase 2.66 1.8E-05 up 
MGAM Maltase-glucoamylase 2.65 9.5E-04 up 
SLC2A3 Solute carrier family 2 member 3 2.64 1.3E-04 up 
HMGB2 High mobility group box 2 2.64 1.6E-06 up 
SYCP2 Synaptonemal complex protein 2 2.62 4.6E-04 up 
SULT1B1 Sulfotransferase family 1B member 1 2.59 2.6E-04 up 
S100A9 S100 calcium binding protein A9 2.59 1.9E-04 up 
ADAM9 ADAM metallopeptidase domain 9 2.57 1.3E-05 up 
GAS7 Growth arrest specific 7 2.55 2.1E-04 up 
NFKBIA NFKB inhibitor alpha 2.52 1.4E-04 up 
ARMC12 Armadillo repeat containing 12 2.48 9.1E-05 up 
TLR2 Toll like receptor 2 2.37 8.9E-05 up 
CCNA1 Cyclin A1 2.37 3.4E-03 up 
RALGAPA2 Ral GTPase activating protein catalytic alpha 

subunit 2 
2.35 2.7E-04 up 

RNF144B Ring finger protein 144B 2.35 1.2E-04 up 
KRT8 Keratin 8 2.33 5.3E-05 up 
TLR4 Toll like receptor 4 2.32 3.2E-04 up 
FAR2 Fatty acyl-CoA reductase 2 2.31 1.3E-05 up 
GNG10 G protein subunit gamma 10 2.31 5.6E-04 up 
KLF7 Kruppel like factor 7 2.30 9.3E-05 up 
PLK3 Polo like kinase 3 2.29 7.8E-04 up 
LHX4 LIM homeobox 4 2.29 1.2E-03 up 
ZNF438 Zinc finger protein 438 2.27 1.2E-03 up 



ACVR1B Activin A receptor type 1B 2.25 6.9E-05 up 
CEACAM4 Carcinoembryonic antigen related cell adhesion 

molecule 4 
2.23 8.1E-05 up 

DUSP1 Dual specificity phosphatase 1 2.22 9.8E-05 up 
MAPK14 Mitogen-activated protein kinase 14 2.21 4.7E-04 up 
TPK1 Thiamin pyrophosphokinase 1 2.20 8.8E-05 up 
GPR27 G protein-coupled receptor 27 2.15 5.7E-04 up 
DYSF Dysferlin 2.12 2.8E-03 up 
CCDC71L Coiled-coil domain containing 71 like 2.11 6.1E-04 up 
ALOX5 Arachidonate 5-lipoxygenase 2.10 1.2E-03 up 
WDFY3 WD repeat and FYVE domain containing 3 2.08 1.2E-03 up 
TLR8 Toll like receptor 8 2.08 8.1E-04 up 
HIF1A Hypoxia inducible factor 1 subunit alpha 2.07 7.4E-04 up 
TCTEX1D1 Tctex1 domain containing 1 2.06 2.1E-03 up 
PLIN5 Perilipin 5 2.05 1.7E-03 up 
PPP1R3D Protein phosphatase 1 regulatory subunit 3D 2.05 2.6E-04 up 
TMED8 Transmembrane p24 trafficking protein family 

member 8 
2.04 9.9E-06 up 

LPL Lipoprotein lipase 2.04 2.4E-03 up 
PYGL Glycogen phosphorylase L 2.01 2.9E-03 up 
ITGAM Integrin subunit alpha M 2.00 1.7E-03 up 
CD160 CD160 molecule 9.42 2.5E-09 down 
FCRL6 Fc receptor like 6 8.35 4.9E-06 down 
ADGRG1 Adhesion G protein-coupled receptor G1 8.27 4.3E-06 down 
GZMM Granzyme M 5.90 4.6E-06 down 
CLIC3 Chloride intracellular channel 3 5.65 7.1E-06 down 
XCL2 X-C motif chemokine ligand 2 5.39 6.3E-07 down 
TCL1A T cell leukemia/lymphoma 1A 5.19 1.3E-05 down 
GPR18 G protein-coupled receptor 18 4.96 2.6E-07 down 
GPR174 G protein-coupled receptor 174 4.89 3.9E-06 down 
CXCR5 C-X-C motif chemokine receptor 5 4.80 1.3E-05 down 
FCER2 Fc fragment of IgE receptor II 4.36 4.0E-05 down 
LGALS2 Galectin 2 4.34 5.3E-05 down 
HLA-DPB1 Major histocompatibility complex, class II, DP 

beta 1 
4.32 5.3E-05 down 

CD22 CD22 molecule 4.20 1.0E-04 down 
PTGDR2 Prostaglandin D2 receptor 2 4.10 8.4E-05 down 
HLA-DOB Major histocompatibility complex, class II, DO 

beta 
3.93 3.9E-05 down 

HLA-DOA Major histocompatibility complex, class II, DO 
alpha 

3.91 7.7E-06 down 

PYHIN1 Pyrin and HIN domain family member 1 3.85 6.2E-05 down 
RASGRP1 RAS guanyl releasing protein 1 3.85 6.8E-06 down 
CD72 CD72 molecule 3.84 3.0E-06 down 
NCR3 Natural cytotoxicity triggering receptor 3 3.83 1.2E-05 down 
MYBL1 MYB proto-oncogene like 1 3.79 3.1E-05 down 
MS4A1 Membrane spanning 4-domains A1 3.72 2.3E-04 down 
FLT3LG Fms related tyrosine kinase 3 ligand 3.70 1.9E-06 down 
VPREB3 V-set pre-B cell surrogate light chain 3 3.56 2.5E-05 down 
LPAR5 Lysophosphatidic acid receptor 5 3.43 1.3E-05 down 
PIK3C2B Phosphatidylinositol-4-phosphate 3-kinase 

catalytic subunit type 2 beta 
3.37 3.4E-05 down 

SNX29P2 Sorting nexin 29 pseudogene 2 3.37 1.4E-05 down 
PAX5 Paired box 5 3.33 1.6E-04 down 
LBH LBH regulator of WNT signaling pathway 3.31 1.7E-05 down 
CYSLTR2 Cysteinyl leukotriene receptor 2 3.30 4.7E-07 down 
FCRLA Fc receptor like A 3.25 1.4E-03 down 
ZNF683 Zinc finger protein 683 3.24 2.6E-05 down 



CRIP2 Cysteine rich protein 2 3.14 6.6E-05 down 
ERBB2 Erb-b2 receptor tyrosine kinase 2 3.13 1.5E-05 down 
LDOC1 LDOC1 regulator of NFKB signaling 3.12 5.7E-05 down 
TRABD2A TraB domain containing 2A 3.11 9.6E-06 down 
HABP4 Hyaluronan binding protein 4 3.05 2.8E-06 down 
NDRG2 NDRG family member 2 3.02 1.7E-06 down 
HLA-DRA Major histocompatibility complex, class II, DR 

alpha 
3.01 7.0E-04 down 

BTLA B and T lymphocyte associated 2.99 1.5E-04 down 
PCBP4 Poly(rC) binding protein 4 2.97 1.0E-04 down 
CD101 CD101 molecule 2.97 4.3E-04 down 
CROCC Ciliary rootlet coiled-coil, rootletin 2.94 6.3E-06 down 
ZNF483 Zinc finger protein 483 2.91 6.8E-07 down 
AK5 Adenylate kinase 5 2.86 5.4E-06 down 
CA5B Carbonic anhydrase 5B 2.85 4.4E-05 down 
CD79A CD79a molecule 2.83 2.4E-03 down 
CD200 CD200 molecule 2.81 2.9E-05 down 
PVRIG PVR related immunoglobulin domain containing 2.80 4.8E-06 down 
CYP4V2 Cytochrome P450 family 4 subfamily V member 

2 
2.79 1.9E-04 down 

CHI3L2 Chitinase 3 like 2 2.77 8.3E-04 down 
BLK BLK proto-oncogene, Src family tyrosine kinase 2.77 1.3E-03 down 
MLLT3 MLLT3 super elongation complex subunit 2.75 7.4E-06 down 
APBA2 Amyloid beta precursor protein binding family A 

member 2 
2.74 2.8E-05 down 

FBXL16 F-box and leucine rich repeat protein 16 2.72 4.4E-05 down 
TMEM229B Transmembrane protein 229B 2.70 4.5E-04 down 
LAT Linker for activation of T cells 2.69 6.4E-06 down 
NMUR1 Neuromedin U receptor 1 2.68 4.7E-05 down 
CASS4 Cas scaffold protein family member 4 2.68 2.5E-03 down 
SFMBT2 Scm like with four mbt domains 2 2.67 2.1E-04 down 
AGMAT Agmatinase 2.67 4.8E-05 down 
ZXDB Zinc finger X-linked duplicated B 2.66 4.1E-06 down 
GPR68 G protein-coupled receptor 68 2.66 4.4E-06 down 
HIVEP3 HIVEP zinc finger 3 2.65 3.5E-04 down 
RHOF Ras homolog family member F, filopodia 

associated 
2.65 9.8E-06 down 

ATP1A3 ATPase Na+/K+ transporting subunit alpha 3 2.64 9.0E-06 down 
ADRB2 Adrenoceptor beta 2 2.64 6.2E-05 down 
DOCK10 Dedicator of cytokinesis 10 2.63 8.0E-05 down 
KLHL3 Kelch like family member 3 2.63 9.1E-09 down 
CCN3 Cellular communication network factor 3 2.63 3.6E-04 down 
APOL3 Apolipoprotein L3 2.63 1.6E-03 down 
PLEKHO1 Pleckstrin homology domain containing O1 2.63 1.4E-05 down 
MAN1C1 Mannosidase alpha class 1C member 1 2.59 7.2E-08 down 
RHOBTB2 Rho related BTB domain containing 2 2.59 1.3E-04 down 
LTA Lymphotoxin alpha 2.58 1.5E-04 down 
USP28 Ubiquitin specific peptidase 28 2.58 7.7E-05 down 
CCDC88C Coiled-coil domain containing 88C 2.58 7.3E-05 down 
LDLRAD4 Low density lipoprotein receptor class A domain 

containing 4 
2.56 2.0E-05 down 

ZDHHC14 Zinc finger DHHC-type containing 14 2.56 2.9E-05 down 
UTP20 UTP20 small subunit processome component 2.55 4.2E-04 down 
NOL6 Nucleolar protein 6 2.55 4.4E-04 down 
DNPEP Aspartyl aminopeptidase 2.53 1.6E-04 down 
ZXDA Zinc finger X-linked duplicated A 2.53 3.2E-07 down 
GSE1 Gse1 coiled-coil protein 2.51 5.7E-05 down 
MRPL4 Mitochondrial ribosomal protein L4 2.51 9.3E-04 down 



EFNB1 Ephrin B1 2.50 1.4E-04 down 
EXOG Exo/endonuclease G 2.50 1.2E-04 down 
CEP290 Centrosomal protein 290 2.48 1.1E-05 down 
ZFPM1 Zinc finger protein, FOG family member 1 2.48 2.9E-04 down 
RPS6KA5 Ribosomal protein S6 kinase A5 2.45 6.0E-05 down 
ARRB1 Arrestin beta 1 2.44 1.4E-05 down 
OBSCN Obscurin, cytoskeletal calmodulin and titin-

interacting RhoGEF 
2.43 1.4E-04 down 

PPP1R13B Protein phosphatase 1 regulatory subunit 13B 2.43 5.2E-05 down 
CTSO Cathepsin O 2.42 4.3E-05 down 
TMEM263 Transmembrane protein 263 2.42 4.2E-04 down 
S1PR5 Sphingosine-1-phosphate receptor 5 2.42 1.5E-03 down 
LINC00926 Long intergenic non-protein coding RNA 926 2.42 1.1E-03 down 
NIPA1 NIPA magnesium transporter 1 2.40 2.6E-06 down 
GPR162 G protein-coupled receptor 162 2.39 5.5E-05 down 
NOP14 NOP14 nucleolar protein 2.39 6.1E-05 down 
VCL Vinculin 2.39 2.0E-03 down 
SMYD2 SET and MYND domain containing 2 2.38 6.9E-06 down 
RRP7A Ribosomal RNA processing 7 homolog A 2.38 7.3E-04 down 
PRKX Protein kinase X-linked 2.37 3.0E-04 down 
CHIC1 Cysteine rich hydrophobic domain 1 2.37 5.4E-05 down 
SH2D3A SH2 domain containing 3A 2.37 4.9E-04 down 
SNURF SNRPN upstream reading frame 2.36 2.0E-05 down 
LTB Lymphotoxin beta 2.35 2.2E-05 down 
ZNF548 Zinc finger protein 548 2.33 1.4E-05 down 
POGLUT3 Protein O-glucosyltransferase 3 2.33 8.2E-05 down 
ZNF853 Zinc finger protein 853 2.32 7.2E-05 down 
CACNA2D2 Calcium voltage-gated channel auxiliary subunit 

alpha2delta 2 
2.31 4.2E-04 down 

SNPH Syntaphilin 2.31 9.4E-05 down 
PKIA cAMP-dependent protein kinase inhibitor alpha 2.31 1.4E-04 down 
TPPP3 Tubulin polymerization promoting protein 

family member 3 
2.30 2.3E-03 down 

NOM1 Nucleolar protein with MIF4G domain 1 2.30 6.3E-04 down 
SLC9A7 Solute carrier family 9 member A7 2.29 1.1E-04 down 
PATZ1 POZ/BTB and AT hook containing zinc finger 1 2.29 2.5E-05 down 
REXO4 REX4 homolog, 3'-5' exonuclease 2.28 6.7E-05 down 
PRSS23 Serine protease 23 2.28 2.1E-04 down 
SLC4A4 Solute carrier family 4 member 4 2.28 6.2E-05 down 
CEP126 Centrosomal protein 126 2.27 2.3E-06 down 
RPUSD2 RNA pseudouridine synthase domain containing 

2 
2.27 6.3E-04 down 

PIK3R6 Phosphoinositide-3-kinase regulatory subunit 6 2.27 8.8E-07 down 
MSANTD2 Myb/SANT DNA binding domain containing 2 2.27 5.1E-05 down 
TPCN1 Two pore segment channel 1 2.27 5.6E-05 down 
ZNF571 Zinc finger protein 571 2.27 1.9E-06 down 
CCR4 C-C motif chemokine receptor 4 2.26 4.8E-04 down 
PABPC3 Poly(A) binding protein cytoplasmic 3 2.25 1.0E-04 down 
PEA15 Proliferation and apoptosis adaptor protein 15 2.25 5.5E-04 down 
ICOSLG Inducible T cell costimulator ligand 2.24 1.0E-03 down 
LOC389906 Zinc finger protein 839 pseudogene 2.24 1.2E-04 down 
CFAP36 Cilia and flagella associated protein 36 2.24 1.3E-05 down 
EARS2 Glutamyl-tRNA synthetase 2, mitochondrial 2.23 3.0E-04 down 
EPHA4 EPH receptor A4 2.22 3.6E-04 down 
IGFBP3 Insulin like growth factor binding protein 3 2.22 3.4E-04 down 
IL11RA Interleukin 11 receptor subunit alpha 2.21 2.7E-05 down 
LMTK3 Lemur tyrosine kinase 3 2.20 3.0E-04 down 
ICAM2 Intercellular adhesion molecule 2 2.20 1.6E-04 down 



LINC00299 Long intergenic non-protein coding RNA 299 2.20 2.1E-03 down 
NARS2 Asparaginyl-tRNA synthetase 2, mitochondrial 2.19 1.3E-03 down 
ZC3H8 Zinc finger CCCH-type containing 8 2.17 9.6E-06 down 
ARHGEF19 Rho guanine nucleotide exchange factor 19 2.17 4.1E-05 down 
KIF5C Kinesin family member 5C 2.17 5.1E-04 down 
GPA33 Glycoprotein A33 2.17 2.8E-04 down 
LOC10050554
9 

Uncharacterized LOC100505549 2.17 3.9E-04 down 

CCDC102A Coiled-coil domain containing 102A 2.17 6.6E-05 down 
FAM227B Family with sequence similarity 227 member B 2.16 1.4E-04 down 
SETD6 SET domain containing 6, protein lysine 

methyltransferase 
2.15 5.5E-05 down 

ZNF573 Zinc finger protein 573 2.15 2.4E-05 down 
GALNT12 Polypeptide N-acetylgalactosaminyltransferase 

12 
2.15 1.1E-05 down 

RANGAP1 Ran GTPase activating protein 1 2.15 7.3E-04 down 
PTER Phosphotriesterase related 2.14 3.8E-04 down 
L3MBTL2 L3MBTL histone methyl-lysine binding protein 

2 
2.14 9.6E-04 down 

KIAA1328 KIAA1328 2.14 1.8E-04 down 
STK39 Serine/threonine kinase 39 2.13 2.9E-05 down 
GFI1B Growth factor independent 1B transcriptional 

repressor 
2.13 8.8E-04 down 

FAM120C Family with sequence similarity 120C 2.13 2.5E-05 down 
LAS1L LAS1 like, ribosome biogenesis factor 2.13 2.0E-03 down 
GSPT2 G1 to S phase transition 2 2.13 2.8E-05 down 
ZNF485 Zinc finger protein 485 2.13 3.2E-06 down 
ITGA6 Integrin subunit alpha 6 2.12 3.6E-05 down 
FAM50B Family with sequence similarity 50 member B 2.12 2.5E-04 down 
SMPD3 Sphingomyelin phosphodiesterase 3 2.12 1.7E-04 down 
PDZD4 PDZ domain containing 4 2.12 4.5E-04 down 
TCEAL3 Transcription elongation factor A like 3 2.12 4.2E-04 down 
CAMKMT Calmodulin-lysine N-methyltransferase 2.12 1.9E-05 down 
TRMT10B tRNA methyltransferase 10B 2.12 5.3E-05 down 
MDC1 Mediator of DNA damage checkpoint 1 2.12 1.4E-03 down 
ADGRL1 Adhesion G protein-coupled receptor L1 2.12 8.0E-05 down 
SGPP1 Sphingosine-1-phosphate phosphatase 1 2.11 2.0E-04 down 
MAK16 MAK16 homolog 2.11 2.3E-04 down 
RPS27 Ribosomal protein S27 2.11 5.7E-05 down 
PDLIM2 PDZ and LIM domain 2 2.11 3.7E-06 down 
KMT2A Lysine methyltransferase 2A 2.11 4.4E-05 down 
UBE2Q2 Ubiquitin conjugating enzyme E2 Q2 2.10 6.1E-04 down 
POU6F1 POU class 6 homeobox 1 2.10 2.4E-04 down 
TRANK1 Tetratricopeptide repeat and ankyrin repeat 

containing 1 
2.10 2.4E-04 down 

GIMAP6 GTPase, IMAP family member 6 2.10 8.3E-04 down 
BEX2 Brain expressed X-linked 2 2.10 1.2E-04 down 
DDX24 DEAD-box helicase 24 2.09 3.5E-04 down 
KNOP1 Lysine rich nucleolar protein 1 2.09 1.4E-04 down 
UNK Unk zinc finger 2.09 1.9E-05 down 
PARP16 Poly(ADP-ribose) polymerase family member 

16 
2.09 2.0E-04 down 

FAM53B Family with sequence similarity 53 member B 2.08 9.0E-04 down 
CMC1 C-X9-C motif containing 1 2.08 7.5E-05 down 
TTC12 Tetratricopeptide repeat domain 12 2.08 4.6E-05 down 
ZNF527 Zinc finger protein 527 2.07 3.2E-05 down 
NLE1 Notchless homolog 1 2.07 9.9E-04 down 
DENND2D DENN domain containing 2D 2.07 1.3E-05 down 



CCDC92 Coiled-coil domain containing 92 2.07 1.7E-04 down 
PAIP2B Poly(A) binding protein interacting protein 2B 2.07 2.4E-05 down 
PAXX PAXX non-homologous end joining factor 2.07 2.0E-04 down 
NLRP1 NLR family pyrin domain containing 1 2.06 1.6E-04 down 
GNAO1 G protein subunit alpha o1 2.05 2.7E-03 down 
ZNF354C Zinc finger protein 354C 2.05 3.3E-04 down 
DYRK2 Dual specificity tyrosine phosphorylation 

regulated kinase 2 
2.05 3.4E-04 down 

SLC25A26 Solute carrier family 25 member 26 2.05 7.2E-04 down 
PDGFD Platelet derived growth factor D 2.05 4.0E-04 down 
PIGM Phosphatidylinositol glycan anchor biosynthesis 

class M 
2.04 3.3E-03 down 

USP46 Ubiquitin specific peptidase 46 2.04 4.3E-04 down 
TRIM44 Tripartite motif containing 44 2.03 4.0E-04 down 
HEATR1 HEAT repeat containing 1 2.03 7.8E-04 down 
IPO4 Importin 4 2.03 2.0E-04 down 
SOGA1 Suppressor of glucose, autophagy associated 1 2.02 9.1E-05 down 
MFSD6 Major facilitator superfamily domain containing 

6 
2.02 3.7E-04 down 

CCDC28B Coiled-coil domain containing 28B 2.02 1.4E-04 down 
KLHL42 Kelch like family member 42 2.02 1.4E-04 down 
THTPA Thiamine triphosphatase 2.02 2.3E-04 down 
AKT3 AKT serine/threonine kinase 3 2.02 8.9E-06 down 
TMEM99 Transmembrane protein 99 (putative) 2.01 1.4E-04 down 
HHLA3 HERV-H LTR-associating 3 2.01 2.7E-04 down 
RPL32 Ribosomal protein L32 2.01 3.5E-04 down 
SARS2 Seryl-tRNA synthetase 2, mitochondrial 2.00 1.7E-03 down 
LCK LCK proto-oncogene, Src family tyrosine kinase 2.00 1.6E-07 down 
CUL1 Cullin 1 2.00 1.9E-03 down 
TMEM42 Transmembrane protein 42 2.00 9.5E-05 down 

 

Supplementary Table 3. Enriched functional analysis of 65 up-regulated and 218 down-
regulated genes in non-survivors. The biological functions were analysed using MetaScape. 

 

Up-
regula
tion 

   

Term Accession No
. of 
ge
ne
s 

Gene 

GO:00
02274 

Myeloid 
leukocyte 
activation 

14 ALOX5, MAPK14, ITGAM, PYGL, S100A9, SLC2A3, TLR2, TLR4, 
DYSF, ADAM9, IL18RAP, MGAM, TLR8, CLEC4D 

R-
HSA-
168898 

Toll-like 
Receptor 
Cascades 

8 MAPK14, ITGAM, NFKBIA, S100A9, TLR2, TLR4, IRAK3, TLR8 

GO:00
72593 

Reactive 
oxygen 
species 
metabolic 
process 

8 MAPK14, GADD45A, HIF1A, ITGAM, TLR2, TLR4, SH3PXD2B, 
PLIN5 



GO:00
45648 

Positive 
regulation of 
erythrocyte 
differentiatio
n 

4 ACVR1B, MAPK14, HIF1A, HMGB2 

GO:00
38066 

p38MAPK 
cascade 

4 MAPK14, GADD45A, DUSP1, PER1 

GO:00
45600 

Positive 
regulation of 
fat cell 
differentiatio
n 

4 MAPK14, LPL, CCDC71L, SH3PXD2B 

GO:00
19915 

Lipid storage 4 LPL, NFKBIA, DYSF, PLIN5 

R-
HSA-
449147 

Signaling by 
Interleukins 

8 ALOX5, MAPK14, HIF1A, ITGAM, NFKBIA, IL1R2, IL18RAP, 
IRAK3 

GO:00
09251 

Glucan 
catabolic 
process 

3 PPP1R3D, PYGL, MGAM 

GO:00
05975 

Carbohydrate 
metabolic 
process 

9 MAPK14, HIF1A, PFKFB3, PPP1R3D, PYGL, SLC2A3, DYSF, 
MGAM, KL 

GO:00
06909 

Phagocytosis 7 CEACAM4, ITGAM, MYO10, TLR2, TLR4, DYSF, MERTK 

M1270
5 

SIG 
CD40PATH
WAYMAP 

3 MAPK14, DUSP1, NFKBIA 

GO:00
09746 

Response to 
hexose 

5 GPR27, HIF1A, LPL, KLF7, SLC26A6 

GO:00
07140 

Male meiotic 
nuclear 
division 

3 CCNA1, SYCP2, TDRD9 

R-
HSA-
679131
2 

TP53 
regulating 
transcription 
of cell cycle 
genes 

3 PLK3, GADD45A, CCNA1 

GO:00
31331 

Positive 
regulation of 
cellular 
catabolic 
process 

6 PLK3, HIF1A, PFKFB3, ADAM9, RNF144B, PLIN5 

GO:00
22411 

Cellular 
component 
disassembly 

7 ASPH,PLK3, HIF1A, HMGB2, ITGAM, IRAK3, SH3PXD2B 

GO:00
06979 

Response to 
oxidative 
stress 

6 PLK3, DUSP1, HIF1A, TLR4, ADAM9, IL18RAP 

GO:00
43470 

Regulation of 
carbohydrate 
catabolic 
process 

3 HIF1A, PFKFB3, PPP1R3D 



GO:00
32787 

Monocarbox
ylic acid 
metabolic 
process 

7 ALOX5, MAPK14, HIF1A, LPL, PFKFB3, PECR, PLIN5 

    

Down 
regula
tion 

   

Term Accession No
. of 
ge
ne
s 

Gene 

hsa046
40 

Hematopoieti
c cell lineage 

10 MS4A1, CD22, FCER2, FLT3LG, HLA-DOA, HLA-DOB, HLA-
DPB1, HLA-DRA, IL11RA, ITGA6 

R-
HSA-
128021
8 

Adaptive 
Immune 
System 

24 BLK, CD22, CD79A, CTSO, HLA-DOA, HLA-DOB, HLA-DPB1, 
HLA-DRA, ICAM2, 
LCK,CD200,CUL1,CD101,AKT3,RASGRP1,CD160,ICOSLG,KLH
L3,LAT,KLHL42,UBE2Q2,FBXL16,BTLA,NCR3 

GO:00
46649 

Lymphocyte 
activation 

23 CXCR5, MS4A1, CD22, CD79A, EFNB1, ERBB2, FLT3LG, 
GPR18, HLA-DOA, HLA-DPB1, LCK, RASGRP1, CD160, 
ICOSLG, PATZ1, LAT, DOCK10, ZC3H8, PIK3R6, BTLA, 
ZFPM1, ZNF683, NCR3 

GO:00
30098 

Lymphocyte 
differentiatio
n 

14 MS4A1, CD79A, ERBB2, FLT3LG, GPR18, HLA-DOA, LCK, 
RASGRP1, PATZ1, DOCK10, ZC3H8, PIK3R6, ZFPM1, ZNF683 

GO:00
42274 

Ribosomal 
small subunit 
biogenesis 

6 RPS27, NOP14, UTP20, RRP7A, HEATR1, NOM1 

GO:00
48872 

Homeostasis 
of number of 
cells 

10 CCR4, FLT3LG, CCN3, AKT3, LAT, NLE1, DOCK10, ZC3H8, 
GPR174, ZFPM1 

GO:00
35025 

Positive 
regulation of 
Rho protein 
signal 
transduction 

4 ARRB1, GPR18, ADGRG1, GPR174 

R-
HSA-
373076 

Class A/1 
(Rhodopsin-
like 
receptors) 

11 ADRB2, CXCR5, CCR4, GPR18, XCL2, GPR68, NMUR1, 
PTGDR2, S1PR5, CYSLTR2, LPAR5 

M177 PID EPHA 
FWDPATH
WAY 

4 BLK, EPHA4, LCK, PIK3R6 



 

 

Supplementary Table 4. Summary of KEGG pathways of up-regulated and down-regulated 

genes in whole blood of non-survivors compared with survivors. 

Regulation Term KEGG 
pathway 

Log10 
(P) 

Log10 
(Q) 

Number 
of gene 

Genes symbols 

Up hsa04620 Toll-like 
receptor 

-5.08 -2.55 5/104 MAPK14, NFKBIA, 
TLR2, TLR4, TLR8 

GO:00
71902 

Positive 
regulation of 
protein 
serine/threoni
ne kinase 
activity 

11 ADRB2, ARRB1, EPHA4, ERBB2, TCL1A, PEA15, RASGRP1, 
STK39, PARP16, PDGFD, PIK3R6 

GO:00
32729 

Positive 
regulation of 
interferon-
gamma 
production 

5  HLA-DPB1, LTA, RASGRP1, CD160, ZFPM1 

M34 PID TCR 
PATHWAY 

5 HLA-DRA, LCK, RASGRP1, LAT, STK39 

GO:00
48535 

Lymph node 
development 

3 CXCR5, LTA, LTB 

GO:00
32793 

Positive 
regulation of 
CREB 
transcription 
factor 
activity 

3 CD200, RPS6KA5, LPAR5 

R-
HSA-
379726 

Mitochondria
l tRNA 
aminoacylati
on 

3 SARS2, NARS2, EARS2 

M155 PID S1P 
META 
PATHWAY 

3 GNAO1, S1PR5, SGPP1 

GO:00
35162 

Embryonic 
hemopoiesis 

3 FLT3LG, KMT2A, ZFPM1 

GO:00
50853 

B cell 
receptor 
signaling 
pathway 

6 BLK, MS4A1, CD22, CD79A, LCK, PAX5 

hsa042
61 

Adrenergic 
signaling in 
cardiomyocyt
es 

6 ADRB2, ATP1A3, RPS6KA5, CACNA2D2, AKT3, PIK3R6 

GO:00
08045 

Motor neuron 
axon 
guidance 

3 EPHA4, ERBB2, KIF5C 



signaling 
pathway 

hsa04659 Th17 cell 
differentiation 

-2.54 -0.62 3/107 MAPK14, HIF1A, 
NFKBIA 

hsa04010 MAPK 
signaling 
pathway 

-2.33 -0.46 4/255 MAPK14, GADD45A, 
DUSP1, IL1R2 

hsa04657 IL-17 signaling 
pathway 

-2.71 -0.74 3/93 MAPK14, NFKBIA, 
S100A9 

hsa04068 FoxO signaling 
pathway 

-2.28 -0.42 3/132 PLK3, MAPK14, 
GADD45A 

hsa04066 HIF-1 signaling 
pathway 

-2.61 -0.67 3/101 HIF1A, PFKFB3, 
TLR4 

       

Down hsa04640 Hematopoietic 
cell lineage 

-7.73 -3.42 10/97 MS4A1, CD22, 
FCER2, FLT3LG, 
HLA-DOA, HLA-
DOB, HLA-DPB1, 
HLA-DRA,  
IL11RA, ITGA6 

hsa04514 Cell adhesion 
molecules 
(CAMs) 

-4.27 -1.19 8/145 CD22, HLA-DOA, 
HLA-DOB, HLA-
DPB1, 
HLA-DRA, ICAM2, 
ITGA6, ICOSLG 

hsa04672 Intestinal 
immune 
network for IgA 
production 

-4.10 -1.11 5/49 HLA-DOA, HLA-
DOB, HLA-DPB1, 
HLA-DRA, ICOSLG 

hsa04658 Th1 and Th2 
cell 
differentiation 

-3.72 -0.92 6/92 HLA-DOA, HLA-
DOB, HLA-DPB1, 
HLA-DRA, LCK, LAT 

hsa04659 Th17 cell 
differentiation 

-3.37 -0.73 6/107 HLA-DOA, HLA-
DOB, HLA-DPB1, 
HLA-DRA, LCK, LAT 

hsa04612 Antigen 
processing and 
presentation 

-2.28 -0.09 4/77 HLA-DOA, HLA-
DOB, HLA-DPB1, 
HLA-DRA 

hsa04662 B cell receptor 
signaling 
pathway 

-2.41 -0.19 4/71 CD22, CD72, 
CD79A, AKT3 

P, P value; Q, P value adjusted using the Benjamini-Hochberg procedure; hsa, Homo sapient 

 

Supplementary Table 5. P values of Dunn's multiple comparisons test of differentially 
expressed genes in whole blood among groups of non-survivors, survivors, and healthy 
controls. 

Gene ID Regulation 
P value 

NS vs S NS vs HC S vs HC 
IL1R2 Up < 0.0001  < 0.0001  0.0032  
HMGB2 Up < 0.0001  0.0001  > 0.9999  
GADD45A Up 0.0002  < 0.0001  0.1096  
TLR4 Up 0.0004  < 0.0001  0.0004  



GAS7 Up 0.0004  < 0.0001  0.0105  
S100A9 Up 0.0005  < 0.0001  < 0.0001  
GPR27 Up 0.0009  < 0.0001  0.0018  
IL18RAP Up 0.0013  < 0.0001  0.0033  
MGAM Up 0.0015  < 0.0001  0.0002  
HIF1A Up 0.0020  < 0.0001  0.0091  
IRAK3 Up 0.0023  < 0.0001  < 0.0001  
MAPK14 Up 0.0038  < 0.0001  < 0.0001  
NFKBIA Up 0.0040  < 0.0001  < 0.0001  
TLR2 Up 0.0047  < 0.0001  0.0007  
ITGAM Up 0.0054  < 0.0001  0.0017  
PLK3 Up 0.0100  < 0.0001  0.0010  
FKBP5 Up 0.0110  < 0.0001  0.0002  
CD160 Down 0.0159  < 0.0001  < 0.0001  
PER1 Up 0.0383  < 0.0001  < 0.0001  
HLA-DPB1 Down 0.0579  > 0.9999  0.0966  
HLA-DOA Down 0.1274  > 0.9999  0.7229  
CD22 Down 0.1986  0.6618  0.0239  
GPR56 Down 0.3047  > 0.9999  0.3343  
LPL Up 0.5096  < 0.0001  < 0.0001  
ACVR1B Up 0.4826 < 0.0001  < 0.0001  
LCK Down 0.6225  0.2826  0.0222  
CD72 Down 0.6719  > 0.9999  0.3161  
LAT Down 0.8859  0.0793  0.0093  

NS, non-survivors; S, survivors; HC, healthy controls 

 

Supplementary Table 6. Area under the receiver operating characteristic curves (AUROCC) 
of 28 DEGs in discrimination between non-survivors and survivors. 



 

Note: NS = Non-survivors, S = Survivors, and HC = Healthy controls. 

Supplementary Table 7. P values of Mann-Whitney test of differentially expressed genes in 
melioidosis patients at different time points. 

Gene 
ID 

Median (IQR) P values 

Day 0 Day 5 Day 
12 

Day 
28 

Day 
0  
vs  

Day 
5 

Day 0  
vs  

Day 
12 

Day 0  
vs  

Day 
28 

Da
y 5  
vs  
Da
y 
12 

Da
y 5  
vs  
Da
y 
28 

Da
y 
12 
 vs  

Da
y 
28 

Gene ID Regulation 
AUROCC (95% CI) 

NS vs S NS vs HC S vs HC 

S100A9 Up 0.88 (0.79-0.97) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
IL1R2 Up 0.87 (0.78-0.96) 1.00 (1.00-1.00) 0.86 (0.76-0.96) 
TLR4 Up 0.86 (0.77-0.95) 1.00 (1.00-1.00) 0.93 (0.84-1.01) 
FKBP5 Up 0.85 (0.74-0.96) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
IRAK3 Up 0.83 (0.73-0.94) 1.00 (1.00-1.00) 0.99 (0.97-1.01) 
MGAM Up 0.83 (0.73-0.93) 1.00 (1.00-1.00) 0.99 (0.96-1.01) 
HMGB2 Up 0.82 (0.71-0.94) 0.87 (0.77-0.97) 0.51 (0.34-0.67) 
MAPK14 Up 0.82 (0.72-0.93) 1.00 (1.00-1.00) 1.00 (0.99-1.00) 
NFKBIA Up 0.82 (0.72-0.93) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
GAS7 Up 0.82 (0.71-0.93) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
GADD45A Up 0.82 (0.70-0.93) 1.00 (0.95-1.02) 0.82 (0.69-0.96) 
GPR27 Up 0.82 (0.71-0.93) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
IL18RAP Up 0.80 (0.68-0.91) 0.99 (0.98-1.01) 0.83 (0.72-0.94) 
CD160 Down 0.77 (0.65-0.89) 0.99 (0.98-1.01) 0.98 (0.93-0.02) 
ITGAM Up 0.77 (0.65-0.89) 1.00 (0.98-1.01) 1.00 (1.00-1.00) 
TLR2 Up 0.77 (0.65-0.89) 1.00 (1.00-1.00) 0.85 (0.75-0.96) 
HIF1A Up 0.76 (0.64-0.88) 0.99 (0.98-1.01) 0.76 (0.63-0.89) 
PLK3 Up 0.76 (0.63-0.89) 0.98 (0.95-1.02) 1.00 (1.00-1.00) 
PER1 Up 0.75 (0.63-0.88) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
HLA-DPB1 Down 0.68 (0.54-0.82) 0.51 (0.32-0.70) 0.68 (0.53-0.83) 
HLA-DOA Down 0.66 (0.51-0.80) 0.53 (0.31-0.74) 0.61 (0.41-0.80) 
LPL Up 0.64 (0.50-0.78) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
ACVR1B Up 0.64 (0.49-0.78) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
CD22 Down 0.64 (0.49-0.78) 0.62 (0.43-0.80) 0.76 (0.62-0.90) 
GPR56 Down 0.62 (0.47-0.77) 0.52 (0.34-0.70) 0.67 (0.49-0.85) 
LCK Down 0.59 (0.44-0.74) 0.65 (0.48-0.81) 0.76 (0.62-0.90) 
CD72 Down 0.59 (0.44-0.73) 0.58 (0.38-0.78) 0.69 (0.52-0.86) 
LAT Down 0.58 (0.44-0.73) 0.74 (0.59-0.90) 0.81 (0.67-0.94) 
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Supplementary Table 8. Temporal changes in gene expression of melioidosis patients 
relative to day 0, day 5, and day 12. 

Gene ID 
Gene expression fold change of 8 individual patients 

Day 5/Day 0 
Mean fold 

change 
(95% CI) 50-076 50-080 50-081 50-091 50-092 50-208 50-209 50-211 

GAS7 19.84 1.28 0.45 0.11 0.21 0.31 1.02 1.92 3.14 
(-1.56 -7.84) 

NFKBIA 5.71 2.13 0.28 0.16 0.43 0.39 0.56 1.88 1.44 
(0.14-2.74) 

IL1R2 1.10 0.66 0.71 0.68 0.64 0.60 11.20 1.29 1.29 
(-0.44-4.66) 

S100A9 5.59 1.71 0.44 0.17 0.43 0.22 0.19 0.40 1.14 
(-0.16-2.44) 

IRAK3 1.10 1.17 0.53 0.40 0.41 0.75 0.53 2.93 0.98 
(0.40-1.56) 

 

 

Gene ID 
Gene expression fold change of 8 individual patients 

Day 12/Day 0 
Mean fold 

change 
(95% CI) 50-076 50-080 50-081 50-091 50-092 50-208 50-209 50-211 

GAS7 5.31 0.83 0.35 0.04 0.05 0.24 0.14 0.27 0.90 
(-0.34-2.15) 

NFKBIA 1.88 1.26 0.22 0.13 0.19 0.16 0.36 1.26 0.69 
(0.21-1.16) 

IL1R2 0.26 0.54 0.37 0.54 0.11 0.20 0.21 6.05 1.04 
(-0.37-2.44) 

S100A9 1.28 0.70 0.22 0.14 0.55 0.16 0.05 0.22 0.41 
(0.13-0.70) 

IRAK3 0.22 0.56 0.34 0.30 0.11 0.30 0.13 0.97 0.37 
(0.17-0.56) 



 
 

Supplementary Table 8. Temporal changes in gene expression of melioidosis patients 
relative to day 0, day 5, and day 12 (Cont.) 

 

Gene ID 
Gene expression fold change of 8 individual patients 

Day 28/Day 0 
Mean fold 

change 
(95% CI) 50-076 50-080 50-081 50-091 50-092 50-208 50-209 50-211 

GAS7 7.08 1.26 0.11 0.45 0.13 0.07 0.14 0.25 1.86 
(-0.49-2.86) 

NFKBIA 1.57 1.41 0.11 0.29 0.16 0.06 0.11 0.17 0.49 
(0.52-0.92) 

IL1R2 0.19 0.46 0.09 0.56 0.04 0.33 0.35 1.93 0.49 
(0.07-0.91) 

S100A9 0.56 0.91 0.15 0.14 0.35 0.11 0.04 0.10 0.30 
(0.09-0.50) 

IRAK3 0.19 0.59 0.19 0.72 0.08 0.16 0.17 0.36 0.31 
(0.15-0.47) 

 

 

Gene ID 
Gene expression fold change of 8 individual patients 

Day 12/Day 5 
Mean fold 

change 
(95% CI) 50-076 50-080 50-081 50-091 50-092 50-208 50-209 50-211 

GAS7 0.27 0.65 0.79 0.39 0.25 0.78 0.13 0.14 0.43 
(0.23-0.62) 

NFKBIA 0.33 0.59 0.79 0.82 0.44 0.42 0.65 0.67 0.59 
(0.47-0.71) 

IL1R2 0.20 0.50 0.56 0.76 0.17 0.31 0.35 0.54 0.42 
(0.28-0.56) 

S100A9 0.23 0.41 0.51 0.84 1.27 0.72 0.28 0.54 0.60 
(0.37-0.84) 

IRAK3 0.20 0.48 0.65 0.75 0.26 0.40 0.24 0.33 0.41 
(0.28-0.55) 

 
 
 

Supplementary Table 8. Temporal changes in gene expression of melioidosis patients 
relative to day 0, day 5, and day 12 (Cont.) 

 

Gene ID 
Gene expression fold change of 8 individual patients 

Day 28/Day 5 
Mean fold 

change 
(95% CI) 50-076 50-080 50-081 50-091 50-092 50-208 50-209 50-211 

GAS7 0.36 0.98 0.24 3.99 0.61 0.25 0.13 0.13 0.84 
(-0.07-1.74) 

NFKBIA 0.28 0.66 0.41 1.80 0.37 0.16 0.20 0.09 0.50 
(0.11-0.88) 

IL1R2 0.14 0.42 0.14 0.79 0.06 0.51 0.58 0.17 0.35 
(0.17-0.53) 

S100A9 0.10 0.53 0.35 0.82 0.82 0.49 0.22 0.25 0.45 
(0.26-0.63) 

IRAK3 0.17 0.50 0.36 1.80 0.20 0.21 0.31 0.12 0.49 
(0.07-0.84) 

 



 
 

Gene ID 
Gene expression fold change of 8 individual patients 

Day 28/Day 12 
Mean fold 

change 
(95% CI) 50-076 50-080 50-081 50-091 50-092 50-208 50-209 50-211 

GAS7 1.33 1.52 0.31 10.10 2.42 0.31 1.01 0.93 2.24 
(-0.01-4.49) 

NFKBIA 0.84 1.12 0.51 2.20 0.83 0.38 0.31 0.13 0.79 
(0.34-1.24) 

IL1R2 0.73 0.84 0.25 1.03 0.36 1.63 1.67 0.32 0.85 
(0.46-1.24) 

S100A9 0.44 1.30 0.68 0.97 0.64 0.68 0.79 0.46 0.75 
(0.55-0.94) 

IRAK3 0.88 1.05 0.56 2.38 0.74 0.53 1.27 0.37 0.97 
(0.53-1.42) 
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