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ABSTRACT
Background Approaches in malaria risk mapping 
continue to advance in scope with the advent of 
geostatistical techniques spanning both the spatial and 
temporal domains. A substantive review of the merits of 
the methods and covariates used to map malaria risk 
has not been undertaken. Therefore, this review aimed to 
systematically retrieve, summarise methods and examine 
covariates that have been used for mapping malaria risk in 
sub- Saharan Africa (SSA).
Methods A systematic search of malaria risk mapping 
studies was conducted using PubMed, EBSCOhost, Web of 
Science and Scopus databases. The search was restricted 
to refereed studies published in English from January 1968 
to April 2020. To ensure completeness, a manual search 
through the reference lists of selected studies was also 
undertaken. Two independent reviewers completed each of 
the review phases namely: identification of relevant studies 
based on the Preferred Reporting Items for Systematic 
Reviews and Meta- Analyses guidelines, data extraction 
and methodological quality assessment using a validated 
scoring criterion.
Results One hundred and seven studies met the inclusion 
criteria. The median quality score across studies was 
12/16 (range: 7–16). Approximately half (44%) of the 
studies employed variable selection techniques prior 
to mapping with rainfall and temperature selected in 
over 50% of the studies. Malaria incidence (47%) and 
prevalence (35%) were the most commonly mapped 
outcomes, with Bayesian geostatistical models often (31%) 
the preferred approach to risk mapping. Additionally, 29% 
of the studies employed various spatial clustering methods 
to explore the geographical variation of malaria patterns, 
with Kulldorf scan statistic being the most common. 
Model validation was specified in 53 (50%) studies, with 
partitioning data into training and validation sets being the 
common approach.
Conclusions Our review highlights the methodological 
diversity prominent in malaria risk mapping across 
SSA. To ensure reproducibility and quality science, best 
practices and transparent approaches should be adopted 
when selecting the statistical framework and covariates 
for malaria risk mapping. Findings underscore the need 
to periodically assess methods and covariates used in 
malaria risk mapping; to accommodate changes in data 
availability, data quality and innovation in statistical 
methodology.

INTRODUCTION
Global efforts to control and eliminate 
malaria are intrinsically linked to the Sustain-
able Development Goals.1 Specifically, the 
Global Technical Strategy (GTS) for Malaria 
(2016–2030) reiterates the need to reduce 
both malaria case incidence and mortality 

Summary box

What is already known?
 ► The disproportionate decline of malaria risk over-
time and between/within countries in sub- Saharan 
Africa attributed to biological, environmental, social 
and demographic factors has triggered a renewed 
interest in its fine- scale epidemiology.

 ► Enhanced computational ability and availability of 
data of high quality and volume has enabled the 
quantification malaria risk burden in space and time 
leading to the proliferation of methods within a for-
mal statistical framework.

 ► The complexity of spatio- temporal models has in-
creased, making inferential and predictive processes 
difficult to undertake.

What are the new findings?
 ► The production of more granular estimates of ma-
laria risk hinges on accessibility to and collection of 
timely data at finer resolutions.

 ► Variable selection should be objectively developed 
to contribute to the maximum predictive accuracy of 
the spatio- temporal model.

What do the new findings imply?
 ► Spatio- temporal approaches need to robustly quan-
tify the sub- national burden of malaria risk, as an ep-
idemiological prerequisite to intervention strategies.

 ► Investments in primary data collection at subnation-
al scales, development and continuous application 
of robust modelling tools and approaches will be im-
portant for orienting malaria control and elimination 
efforts in the next decade.

 ► As the malaria landscape diversifies, new tools will 
be required to not only highlight changes locally, but 
also to provide evidence- based insights into factors 
driving the change.
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rates by up to 90%2 in high burden countries, mostly 
concentrated in sub- Saharan Africa (SSA), and elim-
inating malaria in at least 35 countries and preventing 
resurgence in malaria- free countries.2 However, in 2018, 
SSA had an estimated 213 million clinical episodes of 
malaria, caused mainly by Plasmodium falciparum parasite3 
. To address this high burden, the GTS emphasises on 
the need to target interventions according to subnational 
disease risk stratification.2

The importance of malaria risk mapping in Africa can 
be traced back to the mid- 1950s when malaria epidemi-
ology formed a critical prelude to the design of inter-
ventions aimed at eliminating malaria.4 A resurgence in 
malaria cartography emerged in the 1990s,4–6 coinciding 
with an era of intensive control and elimination activities. 
Over the last 20 years, national and subnational malaria 
risk maps have been developed in many endemic coun-
tries in SSA.4 7 8 This has led to a proliferation of methods 
and an increase in data quality and quantity—prompted 
by the demands for robust and reliable characterisation 
of malaria risk in space and time.

The science of malaria cartography has evolved from 
hand- drawn risk maps to contemporary digital maps 
due to the demand for computational solutions and 
methodologies. These are needed to produce accurate 
estimates at a high spatial and temporal resolution to 
facilitate monitoring elimination progress within and 
between countries in SSA.8 Modern mapping embracing 
novel statistical techniques at high spatial and temporal 
resolution are increasingly being used to inform public 
health policy.9 10 Most recently, this has been aided by 
the availability of curated spatial databases, geograph-
ical information systems, enhanced computational 
capabilities and the advancement in spatial statistics. 
Standardised nationally representative survey initiatives, 
such as the geolocated Malaria Indicator Survey and the 
Demographic and Health Survey platforms, have availed 
geocoded malaria data with relevant covariates.11 12 This 
has enabled the characterisation of malaria risk at a high 
spatial resolution over which health policy is made.

Previous reviews have been conducted to; iden-
tify environmental risk factors of malaria transmis-
sion,11 13 summarise methodological and computational 
power advancement.12 Despite the increase in the number 
of malaria risk mapping studies, there are no recent and 
comprehensive reviews of the changes in methodological 
frameworks and covariates used. Consequently, we aimed 
to identify and review malaria risk mapping studies, to 
assess analytical methods and covariates used in the last 
five decades.

METHODS
The protocol guiding this review has been previously 
published.14 Our results are reported according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta- Analyses guidelines .15 16 A notable deviation from 
our protocol was limiting the review scope to SSA where 

the burden of malaria is highest and countries have 
broadly similar malaria vector and parasite ecologies 
and health system contexts, compared with low- income 
and middle- income countries.3 17 A rigorous three- 
phase process was undertaken to transparently identify 
and summarise spatio- temporal studies based on their 
methodical framework and covariates employed used in 
malaria risk mapping.

Phase 1: Identification of relevant studies/keyword search.

Search terms and databases
All studies published between 1 January 1968 and 30 April 
2020 were systematically searched through four elec-
tronic databases (PubMed, Web of Science, EBSCOhost 
and Scopus) using search terms defined in online supple-
mental table 1. To improve the search strategy, themati-
cally mined keywords were funnelled using Boolean oper-
ators and truncations before being employed across the 
selected electronic reference databases. The starting year 
(1968) corresponded to the year when the first global 
audit of malaria endemicity was undertaken.5 12 Relevant 
studies were imported into Endnote, version X9 (Clari-
vate Analytics, Philadelphia, Pennsylvania, USA) (online 
supplemental table 1).

Phase 2: Study selection
Studies were screened independently by two authors 
JNO and CK for possible inclusion based on information 
provided in the title and abstract. Relevant studies based 
on the research questions were subsequently appraised 
on their eligibility for full- text review. The full- text review 
entailed the application of a more stringent inclusion/
exclusion criteria for selecting studies to be included 
for data extraction. Additional papers were identified 
by examining the reference lists of retrieved studies and 
by contacting the authors where necessary. Emerging 
discrepancies were resolved by consensus and by an 
independent arbitrator (BS). A comprehensive and pilot 
tested form was used for data extraction.

Inclusion and exclusion criteria
Peer- reviewed studies that employed spatial, temporal 
and spatio- temporal modelling techniques in malaria 
risk mapping in SSA were considered. A spatial model 
was defined as one that explicitly included a geograph-
ical index, while a temporal model included a time 
index. Studies using at least one visualisation or model-
ling technique (with or without covariates) for assessing 
the burden of malaria were included. Commentaries, 
expert reviews and/or reports that did not include orig-
inal research were read, and only relevant studies cited 
included.

Phase 3: Data extraction
A standardised extraction form was used to independently 
extract the data by two reviewers (JNO and CK). The tool 
was first piloted and refined accordingly. Discordance 
between the reviewers with respect to the information 
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extracted was resolved by consensus and by consulting 
with an independent arbitrator (BS). For each selected 
study, the following information was extracted (online 
supplemental table 2) namely:
i. Bibliographic information (Author, year, study set-

ting and period, primary unit of analysis, spatial and 
temporal resolution).

ii. Study objective(s)
iii. Data aspects (data sources, malaria data, covariate 

type)
iv. Analytical method (modelling approach(es), as-

sumptions, cluster detection techniques, statistical 
tests, diagnostic/validation checks).

v. Results and discussions (key findings, modelling 
gaps, recommendation(s)).

Quality assessment
A previously used 8- point scoring criteria18 was adapted 
and modified to assess the quality of the individual 
studies based on their aims and objectives, input data, 
model validity, results and conclusions (online supple-
mental table 3). Screening questions/criterion were 
used to guide the scoring process, with the score ranging 
from 0 (poor) to 2 (good) on each criterion. The overall 
quality level assigned to individual studies were summa-
rised into four broad categories; very high (>13), high 
(11–13), medium (8–10) and low (<8) (online supple-
mental table 3).

RESULTS
Literature search, data synthesis and quality assessment
A total of 7189 studies were retrieved from the various 
databases with 170 studies fully screened after the title and 
abstract review. Ultimately 107 studies were included for 

review and underwent quality assessment and synthesis 
(figure 1).

The distribution of studies by geographical scale and 
scope varied across SSA. Five (5%) studies were conti-
nental in scale, 48 (45%) studies were national and 52 
(49%) studies were subnational. Kenya (10 studies) and 
Tanzania (9 studies) had the highest number of publica-
tions included in the review (figure 2).

The longest study period spanned 115 years,19 while the 
shortest study period was 3 months.20 Fifty- eight (54%) 
studies had an overall study period ranging between 3 
months and 5 years, while 21 (20%) studies had their 
study period ranging between 6 and 10 years and 28 
(26%) studies spanned more than 10 years. Overall, the 
number of publications increased over the review period 
(figure 3).

The median score was 12 out of 16, with 16 representing 
the highest possible quality. The overall quality score of 
the reviewed studies ranged from 7 to 16. Two studies 
were of low quality, 22 studies were of medium quality, 42 
studies were of high quality and 41 studies were of very 
high quality (online supplemental table 3).

Data sources, covariate selection and preprocessing
From the review, global, continental, national and subna-
tional databases/repositories provided a rich source of 
both malaria data and covariates used for modelling. 
These sources comprised of geographically referenced 
surveys used by 34 (32%) studies, 20 (19%) studies used 
population databases and 10 (9%) studies used govern-
ment records. Routinely collected data from the Health 
and Demographic Surveillance System were used in 16 
(15%) studies. Sources of climatic and environmental 
covariates consisted of ground station observations 
used by 17 (16%) studies and remotely sensed satellite 
surrogates of climate, urbanisation and topography were 
employed by 49 (46%) studies (table 1).

In this review, variable selection techniques were explic-
itly specified by 47 (44%) studies. These techniques varied 
substantially; with the frequentist approach used in 14 
(13%) studies to assess the (uni and multi) variate associ-
ation between malaria outcomes and its covariates being 
the most common. Significant covariates were included 
if their nominal p value was less than 0.001,21–24 0.05,25–27 
0.1,28 0.15,29 300.2.31 32 and 0.25.33 The generalised linear 
models used by nine (8%) studies identified the best 
covariate subset based on Wald’s p value20 32 34–36 and the 
variance inflation factor.37 Additionally, six (6%) studies 
used the total- sets analysis based on Bayesian information 
criterion (BIC) statistic to identify the optimal variable 
combination. Principal component analysis was employed 
by eight (8%) studies to reduce dimensions and avoid 
collinearities in environmental factors,38 39 meteorolog-
ical factors38 40 and household demographics.32 33 41–43 
The Bayesian stochastic search was used by three (3%) 
studies to identify covariates with the highest inclusion 
probability. Other techniques employed included the 
least absolute shrinkage and selection operator (LASSO) 

Figure 1 Study flow from literature search to data 
extraction and analyses.
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penalty, the Spike and slab and the Bayesian model aver-
aging cumulatively used by five (5%) studies. Two studies 
(2%) reviewed covariates used in past studies to identify 
and adopt the best suite of covariates to be included in 
their model (table 2).

Data preprocessing procedures were employed in 
37 (35%) studies. The verification of geographical 
coordinates by either paper maps44 or global digital 

maps8 31 34 36 42 44–58 used in 20 (21%) studies was the 
most common procedure. Algorithms based on the cata-
lytic conversion models8 36 46 48–50 55 59–61 were used in 10 
(9%) studies to generate age- adjusted malaria prevalence 
predictions, that is, age range of 2–10 years. Continuous 
variables were standardised in seven (7%) studies; by log 
transformation,62 centring on the mean47 63–66 and zero.47 
Four (4%) studies excluded study regions with incon-
sistent datasets8 19 67 68 while two (2%) studies used the 
average of its nearest values.69 70 Other approaches used 
included the multivariate stepwise regression,71 using 
data values extracted from previous surveys.32

Modelling covariates
The type and number of covariates included in malaria 
models varied across studies. Different categories encom-
passing climatic and environmental, sociodemographic 
and malaria intervention covariates were identified. The 
most common covariates in the environmental domain 
were rainfall and temperature used in 61 (57%) and 
59 (55%) studies, respectively; while the most common 
sociodemographic covariates used in 12 (11%) studies 
were population size and age. Malaria interventions 
(insecticide- treated bed nets, indoor residual spraying 
and artemisinin- based combined therapy) used in 32 
(30%) studies and transmission seasonality used in 28 
(26%) studies were also common. Detailed variations 
and adaptations covariates are presented in table 3.

Figure 2 Geographical scale and scope of studies. Geographical scale (municipality, district, province/state, country) 
of studies is given in grey boxes. The studies covered 27 countries in sub- Saharan Africa with East Africa being the most 
represented subregion.

Figure 3 Bar—chart with a trend line (red) showing the total 
number of included studies.



Odhiambo JN, et al. BMJ Global Health 2020;5:e002919. doi:10.1136/bmjgh-2020-002919 5

BMJ Global Health

Table 1 Data sources

Type Source No References

Global/continental 
databases

Malaria Transmission Intensity and 
Mortality Burden across Africa

1 88

Mapping Malaria Risk in Africa 
databases

9 29 31 44 45 63 67 73 97 98

World Pop/Afripop 14 25 41 46–48 59 60 72 75 88 99–102

Food and Agriculture Organisation- 
Food Security and Nutrition Analysis 
Unit

1 59

Global Rural and Urban Mapping 
project

2 41 99

WHO database on malaria drug 
resistance

1 98

Global Lakes and Wetlands Database 3 34 48 49

UN World Urbanisation prospects 
database

4 25 49 50 64

National databases Health and Demographic 
Surveillance System

16 28 32 38 42 79 100 102–111

Census 6 21 22 68 108 112 113

National statistical agencies 10 40 51 65 69 107 114–118

Demographic Health Survey 7 23 26 52 61 66 98 101

Malaria Indicator Survey 12 37 41 43 49 52 60 66 75 76 99 117 119

Subnational databases Cross- sectional surveys 9 8 20 46 48 49 53 120–122

Cohort studies 5 33 39 54 84 123–125

Cluster surveys 1 34

Entomological/parasitological 
surveys

5 77 113 120 126 127

Remote sensing Moderate Resolution Imaging 
Spectroradiometer

28 25 27 29 30 34 37 38 41 48 55 59–61 65 66 72 75–79 99 100 103 104 

128–130

Africa Data Dissemination Service 8 29 30 65 71 76–79

United States Geological Survey- 
Earth Resources Observation and 
Science Centre

8 27 28 30 35 43 76 77 99

Health Mapper 8 27 29 30 41 61 65 68 76 77

Shuttle Radar Topographic Mission 5 28 60 72 99 129

WorldClim- Global Climate database 7 23 34 37 59–61 100

Tropical Rainfall Measuring Mission 3 104 128 130

Early Warning System 3 66 72 88

Climate Research Unit 3 23 71 131

National Oceanic and Atmospheric 
Administration

2 109 132

Water Resources Institute 1 63

World Wildlife Fund 1 37

Africover 1 34

Famine Early Warning Systems 
Network Land Data Assimilation 
System

1 88

Ground station data Meteorological data 17 21 22 35 38 40 54 69–71 84 103 106 113 126 133–135
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Spatial, temporal and spatio-temporal methods
A variety of spatial, temporal and spatio- temporal methods 
were employed to visualise malaria risk patterns, explore 
spatial clusters and model risk across space and time 
in SSA. Measurement of malaria burden varied across 
studies with the type of outcome informing the model-
ling framework. The most common malaria metric used 
in models, was incidence used in 50 (47%) studies and 

prevalence used in 37 (35%) studies. Table 3 presents a 
summary of the malaria outcomes that were considered 
in the papers included in the review.

In settings of low malaria transmission, local and 
global spatial cluster detection methods were used in 31 
(29%) studies to identify significant geographical varia-
tion in malaria risk patterns (table 2). These were the 
Kulldorf spatial scan statistic, Getis’ Gi*(d) local statistic; 

Table 2 Analytical methods used in malaria risk mapping

Category Method No References

Variable selection 
techniques

Stepwise procedures 11 20 28 34–36 44 45 61 67 73 135

Preliminary frequentist analysis 14 21 22 24–27 29–32 61 63 84 134

Total- set analysis 6 8 48 49 58–60

Principal component analysis 6 32 39–43

Bayesian stochastic search 3 72 77 119

LASSO penalty 2 47 88

Literature review 2 30 74

Spike and slab 2 72 99

BMA 1 100

Visualisation Rate map 63 8 19 24 26–32 34 35 37 40 41 43 45 46 49–51 53 55 57–68 71–80 84 88 97 98 

100–102 108 109 111 112 114 117 119 122 124 135 136

Dot map 25 20 27 29 31 36 39 42 48 50 55–57 63 65 72 99 105 113 120 121 123 125 127 

132 137

Case counts 16 21 25 41 44 54 65 66 72 76–78 98 106 115 118 131

Spatial cluster 
‘hotspot’ analysis

Spatial scan statistic 15 33 38–40 42 51 54 105 114 120 122 123 127 134 137

Global Moran’s/ 6 23 56 57 68 115 121

Getis Ord statistic 3 32 112 113

Local Moran’sI 7 23 32 68 102 108 117 118

Spatial/spatio- 
temporal modelling

Geostatistical models 27 8 26 27 29–31 34 36 37 41 43 46 48–50 53 59–61 63–65 74–78

Bayesian CAR models 15 19 21 22 24 25 44 47 66 84 102 103 119 129 131 135

Time series models 9 40 51 69 70 107 125 128 130 133

Bayesian Kriging 5 45 62 67 72 73

Conventional Poisson 7 97 104 109–112 126

Conventional logistic 4 28 35 52 113

GAM 2 38 40

Negative binomial regression 1 117

GWR 1 57

ANN 1 116

BRT 1 55

Model validation/
predictive ability

Data partitioning 24 8 19 27 34 36 37 41 46 48–50 53 58 61 63–65 76–78 80 88 109 110

Deviance information criterion 19 21–25 30 34 60 64 66 75 79 84 102 103 110 125 131 135

Akaike information criterion 8 37 60 66 75 79 113 128 130

Root mean squared error 7 35 47 55 64 79 88 130

Variogram- based algorithm 7 19 47 72 79 84 99 119

Mean absolute prediction error 6 8 48 49 58 59 61

Mean error 3 34 36 47

Bayesian information criterion 2 23 107

ANN, Artificial neural network; BMA, Bayesian model averaging; BRT, Boosted regression tree; CAR, Conditional autoregressive; GAM, 
General additive model; GWR, Geographically weighted regression; LASSO, Least absolute shrinkage and selection operator.
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Table 3 Covariates used in malaria risk mapping

Indicator Metric No References

Malaria Outcome Malaria incidence/cases 50 21–25 33 38–40 47 51 54 57 62 64 66 68 70–73 84 88 97 102 105 107–110 

113–119 123 125 127–131 133–138

Malaria prevalence 37 8 19 20 26 29 31 34 36 37 42 44–46 48–50 52 53 55 56 58–61 67 73–75 99 

100 112 120–122 124 126 132

Malaria risk 12 27 28 30 35 41 43 63 65 76–78 101

Malaria mortality/deaths 5 32 69 98 103 104

EIR/Estimate/Mosquito density/ 
abundance

3 79 80 106

Rainfall indices Rainfall/precipitation 44 21 22 27–31 34 35 40 44 45 47 55 57 58 60 63 64 66 67 69–72 75–78 80 100 

101 103 104 110 113 116 118 119 128 129 132 134 135

Monthly rainfall 10 25 73 97 102 107 109 126 130 131 133

Annual rainfall 5 23 24 48 49 59

Weekly rainfall 2 54 88

Temperature indices TSI 10 8 25 37 48 49 58–60 80 110

LST 19 27 29 30 39 47 65 72 76–79 99–101 104 110 119 129 130

Mean/min/max temperature 28 21 22 24 31 36 44 45 55 57 63 66 67 69 70 73 97 102 103 106 109 116 118 

128 131–135

Weekly temperature 2 40 88

Vegetation indices NDVI 31 24 27 29 30 35 38 43–45 47 55 63 65 67 71–73 77 79 80 100 101 103 104 

109 119 129–132 135

EVI 17 8 29 34 36 39 47–49 58–60 64 66 75 110 128 130

Annual EVI 2 25 64

Monthly EVI 1 37

Leaf area index 1 29

GIS Derived Distance to nearest water source 34 20 23 27 29 30 33–37 44 47–49 55 58 59 61 63 65 67 75 76 79 80 97 100 106 

113 115 117 119 129 134

Distance to main road 6 28 35 61 100 115 117

Distance to health facility 4 32 35 61 100

Distance to urban centre 2 57 61

Distance to border 1 97

Elevation Altitude 10 20 36 55 72 75–77 101 119 129

Elevation 11 28 30 31 35 37 43 60 78 79 100 135

Land cover Land cover 8 47 55 67 72 77 78 99 119

Humidity Relative humidity 8 21 22 40 60 69 70 106 118

Weekly humidity 1 88

Evapotranspiration 2 31 130

Vapour pressure 3 24 88 131

Evaporation 1 69

Digital Elevation 
Models - DEM 
derivatives

Wetness index/CTI 2 37 55

Slope 5 28 35 37 61 100

TWI 1 47

Aridity index 1 37

Reflectivity Stable lights 1 37

Visibility 1 70

Wind Wind speed 3 40 70 118

Continued
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local Moran’s I statistic and the Global Moran’s I statistic. 
On the other hand, nine (8%) studies used temporal 
models to explore and forecast malaria risk at different 
temporal resolutions, with the autoregressive integrated 
moving average (ARIMA) model used in seven (6%) 
studies being the most common. Two studies (2%) used 
a univariate seasonal ARIMA model to explore malaria 
risk patterns (table 2).

The Bayesian spatial only and space- time kriging—a 
statistically unbiased and robust interpolation method 
appropriate for study settings with limited data; was 
used in five (6%) studies, to predict risk at unsampled 
locations,67 72 improve predictions in geographical areas 
with considerable variation between observed values 
and model predictions45 73 and model the spatial and 
temporal correlations of monthly malaria morbidity 
cases.62

Using point- referenced data sourced from multiple 
independent surveys, 27 (25%) studies applied both 
the model- based geostatistical (MBG) and Bayesian 
MBG methods to analyse, predict and map malaria risk. 
In this framework, the spatio- temporal dependency 
was modelled as a Gaussian process in fourteen (13%) 
studies.8 34 36 37 43 46 48–50 53 59 60 64 74 Spatial only random 
effects (dependency) were modelled via the Gaussian 
prior distribution26 27 29–31 41 63 65 75–78 in 12 (11%) studies. 
Temporal random effects were assigned a first order 

autoregressive AR (1) prior distribution in three (3%) 
studies37 75 79 and second order autoregressive AR(2) 
prior distribution8 in one (1%) study (table 4).

Using observations aggregated over distinct geograph-
ical region/spatial partitions/adjacent units (eg, census 
tract, administrative boundaries); 15 (14%) studies used 
the Bayesian conditional autoregressive (CAR) models, 
to explore the spatial and spatio- temporal variation of 
malaria risk. To account for the temporal dependency 
between consecutive time points; seven studies (6%) 
used the first order autoregressive AR (1) prior process, 
whereas one study (1%) used the random walk of order 
one RW (1) prior process (table 4).

Other models
Generalised linear modelling framework, such as the 
Poisson, logistic regression, negative binomial and 
geographically weighted regression, was used in fifteen 
studies (14%). These models explored the association of 
malaria counts or rates and its correlates, using appropriate 
exponential distribution families. Machine learning tech-
niques such as the artificial neural network and the boosted 
regression tree were used to analyse incidence patterns and 
to examine malaria prevalence, respectively (table 4).

Model validation, performance and uncertainty
A range of different validation techniques were used to 
assess model fitness and to select the optimal predictive 

Indicator Metric No References

Demographic factors SES 9 26 32 42 43 99 100 102 108 122

Gender/Sex 6 26 32 57 84 100 113

Age 12 26 32 42 43 57 75 84 99 100 103 106 113

Population density/size 12 25 37 45 57 67 75 98 100 112 115 117 135

Livestock ownership 2 42 57

Urbanisation 8 8 26 36 48 58–60 72

Development 1 113

Wealth index/category 4 75 99 119 129

Building/Housing material 4 42 57 100 123

Time Year/Month of survey 3 34 115 126

Time period 1 84

Transmission seasonality 28 25 28 32 35 37 40 44 51 59 60 63 67 69 70 80 84 100 101 104 113 115–117 

119 125 129–131

Malaria intervention ITN/LLIN ownership/coverage/use 19 32 33 42 43 57 66 74 75 99 100 103 112 113 119 122 123 126 129 134

IRS 8 26 33 74 75 99 100 112 117

ACTs 5 74 98 99 119 129

Treatment seeking rate 3 66 119 129

Reporting and testing 1 66

None None 19 19 46 50–53 56 62 68 105 114 120 121 124 125 127 136–138

ACTs, Artemisinin- based combined therapy; CTI, Compound topographic index; DEM, Digital elevation models; EIR, Entomological 
inoculation rate; EVI, Enhanced vegetation index; GIS, geographical information system; IRS, Indoor residual spraying; ITN, Insecticide- 
treated bed nets; LLIN, Long lasting insecticidal nets; LST, Land surface temperature; NDVI, Normalised difference vegetation index; NDWI, 
Normalised difference water index; SES, Social economic status; TSI, Temperature suitability index; TWI, Topographic wetness index.

Table 3 Continued
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Table 4 Structure of the spatio- temporal models

ID References Year Space Time Space time

1 Abellana et al84 2008 CAR

2 Alegana et al64 2016 Markov random field – Gaussian

3 Alegana et al25 2013 – – CAR

4 Alemu et al51 2013 – Temporal trend – ARIMA –

5 Amek et al79 2012 Gaussian AR (1) –

6 Amratia et al61 2019 Gaussian – –

7 Appiah et al62 2011 – – STOK

8 Awine et al133 2018 – – SARIMA

9 Bejon et al39 2010 Cluster analysis Temporal trends –

10 Bejon et al105 2014 Cluster analysis – –

11 Belay et al106 2017 – Temporal trends –

12 Bennett et al60 2013 – – Gaussian

13 Bennett et al75 2016 Gaussian – –

14 Bennett et al66 2014 CAR CAR CAR

15 Bhatt et al74 2015 Markov random field AR (1) Gaussian

16 Bisanzio et al113 2015 Markov random field B – splines with RW (2) –

17 BM & OE44 2007 CAR – –

18 Bousema et al123 2010 Hotspot analysis – –

19 Ceccato et al71 2007 Cluster analysis – –

20 Chipeta et al50 2019 – – Gaussian

21 Chirombo et al109 2020 Markov random field Markov random field Gaussian

22 Cissoko et al38 2020 Cluster analysis Temporal trend

23 Colborn et al88 2018 – – Gaussian

24 Coulibaly et al54 2013 Cluster analysis – –

25 DePina et al118 2019 Cluster analysis Temporal trend _

26 Diboulo et al41 2016 Gaussian – –

27 Ferrão et al70 2017a – Temporal trend - ARIMA –

28 Ferrão et al69 2017b – Temporal trend - ARIMA –

29 Ferrari et al124 2016 Cluster analysis – –

30 Gaudart et al125 2006 Cluster analysis Temporal trend - ARIMA –

31 Gemperli et al67 2006 Exponential correlation 
function

– –

32 Gething et al98 2016 – P – splines with RW (1) –

33 Giardina et al78 2015 Gaussian – –

34 Giardina et al65 2012 Multivariate Normal – –

35 Giardina et al101 2014 Gaussian – –

36 Giorgi et al46 2018 – – Gaussian

37 Gómez- Barroso et al20 2017 Cluster analysis – –

38 Gosoniu et al27 2012 Gaussian – –

39 Gosoniu et al76 2010 Gaussian – –

40 Gosoniu et al63 2006 Gaussian – –

41 Houngbedji et al77 2016 Normal – –

42 Ihantamalala et al114 2018 Cluster analysis – –

43 Ikeda et al116 2017 – – SOM

44 Ishengoma et al126 2018 – Temporal trends –

Continued
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ID References Year Space Time Space time

45 Kabaghe et al43 2017 Gaussian – –

46 Kabaria et al55 2016 – – BRT

47 Kamuliwo et al117 2015 Cluster analysis – –

48 Kang et al37 2018 Gaussian AR (1) –

49 Kangoye et al127 2016 Cluster analysis – –

50 Kanyangarara et al28 2016 – – –

51 Kazembe et al31 2006 Gaussian – –

52 Kifle et al107 2019 Cluster analysis Temporal trends - SARIMA

53 Kigozi et al128 2016 – Temporal trend- ARIMA –

54 Kleinschmidt et al45 2000 Kriging – –

55 Kleinschmidt et al73 2001a Kriging – –

56 Kleinschmidt et al97 2001b Kriging – –

57 Kleinschmidt et al136 2002 Normal Normal –

58 Mabaso et al131 2005 CAR – AR (1)

59 Mabaso et al24 2006 CAR AR (1) –

60 Macharia et al53 2018 – – Gaussian

61 Mfueni et al52 2018 – – –

62 Midekisa et al130 2012 – Temporal trend - SARIMA –

63 Millar et al100 2018 – – –

64 Mirghani et al120 2010 Cluster analysis – –

65 Mlacha et al56 2017 Cluster analysis – –

66 Mukonka et al138 2014 – Temporal trends –

67 Mukonka et al115 2015 Cluster analysis – –

68 Mwakalinga et al121 2016 Cluster analysis – –

69 Ndiath et al57 2015 Cluster analysis – –

70 Ndiath et al42 2014 Cluster analysis – –

71 Nguyen et al110 2020 Gaussian – Gaussian

72 Noor et al48 2013a Gaussian – GRF

73 Noor et al34 2008 Gaussian – –

74 Noor et al58 2012b – – GRF

75 Noor et al36 2009 – – GRF

76 Noor et al8 2014 Gaussian AR (2) –

77 Noor et al49 2013b – – GRF

78 Noor et al59 2012a Gaussian – Stationary 
Gaussian

79 Nyadanu et al108 2019 Cluster analysis – –

80 Okunola et al23 2019 Cluster analysis – –

81 Onyiri29 2015 Gamma – –

82 Ouedraogo et al40 2018 – Temporal trend- ARIMA –

83 Ouédraogo et al111 2020 CAR AR (1) / Temporal trends

84 Peterson et al134 2009 Cluster analysis – –

85 Pinchoff et al35 2015 – – –

86 Raso et al30 2012 Multivariate Normal – –

87 Rouamba et al102 2020 CAR CAR Gaussian

88 Rumisha et al80 2014 Gaussian AR (1) –

Table 4 Continued

Continued
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models. The most commonly used approach entailed 
partitioning the data for model training and validation 
and was employed in 24 (22%) studies. The training set 
was then used to validate the predictive model fit, whereas 
the validation set was used for assessing the model 
predictive ability. The representative holdout datasets 
were selected using a spatially and temporal declustered 
algorithm,8 48 49 59 stratified sampling approach75 and 
randomly.35 46 50 53 80 Information criteria, that is, the devi-
ance information criterion, Akaike information criterion 
and the BIC were used in seventeen (16%) studies. Seven 
(7%) studies used variogram- based algorithms to iden-
tify estimates falling within the 95% credible interval. 
Model precision and accuracy metrics included the mean 
prediction error, root mean squared error, mean abso-
lute prediction error, mean error and the SD (table 2).

Summarised modelling framework
The rapid expansion of methods and data informs the 
need to guide future spatial and spatio- temporal model-
ling of infectious diseases in SSA (online supplemtal 
table 4). We illustrate a framework composed of four 
fundamental modelling entities, namely: inputs, process, 
stochastic components and output. Malaria data and 
covariates sourced from different spatial and temporal 
resolutions are considered to be the model inputs. A 
series of progressive and interdependent steps/processes 
on the model inputs are then used to generate the outputs 

(posterior marginals). Posterior marginals can then be 
approximated using iterative computational techniques 
such as the Markov Chain Monte Carlo methods or by 
using numerical integrations via the Integrated Nested 
Laplace Approximations method.81 82(figure 4)

DISCUSSION
Scalable guidelines for rigorous and transparent statistical 
methodology are necessary for reproducible malaria risk 
estimation. This review offers a comprehensive appraisal 
and synthesis of methods and covariates used in malaria 
risk mapping in SSA in the last five decades.

Sources of malaria data
High- resolution maps revealing the spatio- temporal vari-
ation of malaria endemicity are useful for estimating 
malaria burden, quantifying the effectiveness of control 
initiatives and assessing the progress towards its elimina-
tion nationally and subnationally. However, malaria risk 
mapping efforts in SSA are rarely based on routinely 
collected data. Instead, periodic and costly household 
survey’s data have traditionally been used in modelling 
malaria risk. To address this challenge and obtain robust 
estimates reflective of the subnational burden, WHO initi-
ated the high burden to high impact approach in 2018, 
which underscored the need for reliable national data 
systems. This is considered central to the understanding 

ID References Year Space Time Space time

89 Selemani et al32 2015 Cluster analysis – –

90 Selemani et al103 2016 CAR AR (1) –

91 Sewe et al104 2016 – Natural cubic spline –

92 Seyoum et al137 2017 Cluster analysis – –

93 Shaffer et al122 2020 Cluster analysis Temporal trends –

94 Simon et al112 2013 Cluster analysis – –

95 Siraj et al135 2015 CAR – –

96 Snow et al19 2017 CAR CAR –

97 Snow et al132 1998 – – –

98 Solomon et al33 2019 Cluster analysis – –

99 Ssempiira et al119 2018a CAR AR (1) / temporal trend –

100 Ssempiira et al129 2018b CAR AR (1) / temporal trend –

101 Ssempiira et al99 2017b CAR – –

102 Ssempiira et al72 2017a – – –

103 Sturrock et al47 2014 CAR Temporal trend –

104 Yankson et al26 2019 Gaussian – –

105 Yeshiwondim et al68 2009 – – –

106 Zacarias and Andersson22 2011 CAR AR (1) –

107 Zacarias and Majlender21 2011 CAR RW (1) –

AR, autoregressive; ARIMA, autoregressive integrated moving average; BRT, boosted regression tree; CAR, conditional autoregressive; GRF, 
Gaussian random field; RW, random walk; SARIMA, seasonal autoregressive integrated moving average; SOM, self- organising maps; STOK, 
space- time ordinary kriging.

Table 4 Continued
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of malaria burden in low transmission settings and in the 
most vulnerable populations.3 Additionally, the approach 
has availed more malaria data in malaria- endemic 
settings, and caution is needed when gathering and inter-
preting findings generated from data at fine spatial and/
or temporal scales with varying degree of completeness 
and representativeness.83

The steady growth of satellite, remote sensing plat-
forms and curated databases has made available a rich 
suite of both environmental and socioeconomic covari-
ates at a finer level of detail useful for mapping malaria 
risk at high spatial and temporal resolution. Validating 
the quality of available satellite data prior to their inclu-
sion in malaria studies remains central to achieving 
robust estimates.

While malaria incidence and prevalence metrics can 
be modelled from routine health information systems 
and sample surveys respectively, caution should be taken 
when interpreting estimates as both metrics are products 
of interacting factors such as interventions, sociodemo-
graphic and environmental factors that may contribute 
to the overall risk. A concise picture may be achieved 
by measuring malaria indicators at a finer spatial scale 
and exploring the nature and scope of the interaction. 
Data on malaria mortality as an outcome were sparse, 
and efforts must be made to increase data collection and 
improve the sensitivity and specificity of malaria mortality 
burden attribution in SSA.74 83As many countries in SSA 
transition epidemiologically from high to low malaria 
transmission zones, obtaining useful metrics for mapping 
risk from sparse national surveys at low, moderate and 
heterogeneous transmission settings possess unique chal-
lenges for measuring progress and impact.84

The paucity of continuous, reliable data necessary to 
yield estimates with greater geographical and temporal 
richness is a growing concern in the era of evidence- 
based public health. A high- quality, routinely collected 
data avail an alternative source of malaria metrics for 
continuous analysis over time.83 Investments should be 
channelled towards establishing and addressing inad-
equacies in the health information systems to enable 
subnational mapping of malaria risk. However, the urge 
for quality data and the increasing need of accurate 
estimates can significantly be improved by adoption of 
data- driven modelling approaches that leverage both 
routine and household survey data in their model frame-
work.85 Additionally, detailed information on critical data 
sources, preliminary data adjustments undertaken before 
modelling should be availed as an important step towards 
enhancing reproducibility of methods and estimates.86

Understanding covariates used in mapping malaria risk
Improving the precision of malaria risk estimates largely 
depends on limiting subjective decisions. These deci-
sions may impact on the modelling process, even as more 
covariates becomes accessible at finer geographical and 
temporal resolutions. Studies have shown large variables 
to be desirable for prediction, whereas small sets of vari-
ables to be meaningful for inference.87 It is important 
to understand the complex relationship between covar-
iates at the same spatial or temporal resolution, to avoid 
overfitting. The trade- off between model interpretability, 
predictive ability, spatial and temporal scope, data acces-
sibility and computational limitations are critical factors 
worth considering when selecting candidate covariates. 
Evidentially variable selection is an important prelim-
inary step for a robust malaria risk mapping exercise. 
However, this approach continues to receive little atten-
tion amidst the growing diversity of covariate layers that 
need to be identified and included in the models.

Environmental and climatic factors influence 
mosquito vector abundance, distribution and longevity; 
at different time scales88 and are important for mapping 
malaria risk.59 A scoping review by Zinszer et al89 high-
lighted the importance of climatic- related predictors 
in malaria risk prediction. Understanding the different 
facets and extent of how climatic influences on malaria 
risk variation; has been enhanced by advances in remote 
sensing and satellite imagery technology, increasing 
the availability of remotely sensed climatic data at high 
spatial resolution.35 In this review proxies of; tempera-
ture (land surface temperature, temperature suitability 
index, mean/min/max/weekly) and rainfall/precipi-
tation (weekly/monthly/annual) were the most widely 
used environmental factors related to malaria transmis-
sion in SSA. Vegetative indices such as elevation, surface 
moisture, land use and land cover were included in 
malaria risk maps, primarily due to their association with 
temperature and precipitation which indirectly influ-
ences90 the distribution of malaria. Remote sensing will 
continue to feature prominently as a cost- effective tool 

Figure 4 Schematic illustration of the spatio- temporal 
modelling framework for malaria risk in sub- Saharan Africa.
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for mapping malaria risk in SSA and an important source 
of environmental and climatic covariates.91 The review 
further demonstrates the significance of non- climatic 
determinants such as malaria interventions and demo-
graphic factors in malaria risk mapping.

Modelling frameworks in malaria risk mapping
Complex decisions involving key modelling components 
such as covariates to include, preliminary data preproc-
essing and diagnostics checks demands advanced statis-
tical knowledge. Extensive computational algorithms and 
complex spatio- temporal data structures may limit the 
applicability of these modelling approaches to experts. 
Furthermore, complex models used to represent malaria 
heterogeneity may not necessarily represent the truth on 
the ground. Thus, the statistical uncertainties around 
model estimates should be carefully examined, and the 
varying quantities and quality malaria data, that informs 
modelling approaches accounted for.

The review highlights the prominence and flexibility 
of geostatistical methods in modelling spatial and spatio- 
temporal malaria patterns, at policy- relevant units and 
thresholds.46 Geostatistical methods provide a useful 
framework for interpolating imperfect data from multiple 
independent surveys by estimating spatial dependence 
from the data. At low spatial resolution, the Bayesian 
geostatistical framework accounts for uncertainty 
resulting from sparsely sampled point- referenced data 
by assigning priors that allows ‘borrowing of strength’ 
from adjacent regions leading to robust estimates and 
predictions.92 Amidst the current scarcity and imperfec-
tions of routine, high resolution and spatially expansive 
malaria data in many SSA countries, using geostatistical 
methods with data from multiple independent georefer-
enced surveys, continues to be important for generating 
reliable estimates.

Bayesian hierarchical CAR models are useful for 
modelling spatially correlated areal data by smoothing 
noisy estimates and leveraging information from adjacent 
regions. However, choosing an appropriate prior speci-
fication for the parameters defining the spatial interac-
tion is inevitable and sometimes challenging. Notably, 
the spatial dependence among neighbouring regions is 
accounted for by assuming a CAR process in the random 
effects. For example, in the Besag York and Mollie/
convolution model, location- specific spatial effects are 
assumed to follow a normal distribution with the mean 
equal to the average of its neighbours and the variance 
considered to be inversely proportional to the number of 
neighbours. In the Leroux et al model, the spatial depen-
dence is based on the weighted average of both the inde-
pendent random effects and spatially structured random 
effects.93 94 The intrinsic CAR and Besag, York and Mollie 
(BYM) were the most frequent global spatial smoothing 
specifications used in the review; given their easy imple-
mentation in a range of softwares. However, caution 
should be taken to minimise over smoothing—obscuring 
the underlying geographical patterns. Future modelling 

studies should compare the impact of using other spatial 
smoothing priors.

Overall, malaria risk mapping has increased dramati-
cally over the last decades, with novel methods advanced 
to meet the quest for accurate estimates of malaria burden. 
Whereas most approaches are built on classical statistical 
methods, recent advances in computing, availability of 
geographically referenced data have ushered/propa-
gated new techniques designed to address existing chal-
lenges. These approaches include ensemble modelling, 
neural networks, simulation- based methods and boot-
strap models to better capture space- time interactions.

Recommendations for best practices
As malaria landscape diversifies in the next decade, 
investments in primary data collection at subnational 
scales, development and continuous application of robust 
modelling tools will continue to be important priorities 
in malaria control and elimination efforts. In the era of 
open data policy and reproducible research, our review 
reiterates the importance of periodically reviewing, vali-
dating and updating malaria maps to accommodate new 
data sources, improved data quality, enhanced computing 
power and novel methodological approaches. Variable 
selection procedures should be data driven and objec-
tively developed to the maximise the predictive accuracy 
of malaria risk mapping. The spatio- temporal model-
ling framework should incorporate practical challenges 
facing control and elimination of malaria in SSA. These 
challenges are: human migration within and among 
endemic zones, mapping asymptotic infection reservoirs 
and accounting for differential immunity within a popu-
lation.95 96

Strengths and limitations
The review search strategy was exhaustive and trans-
parent, in accordance with the current methodological 
guidelines and included studies have provided a fair 
depiction of malaria risk mapping efforts in SSA. The 
methodological approach of the included studies was 
diverse, making meta- analysis inappropriate. The review 
considered only studies published in English and rele-
vant papers published in other languages might have 
been excluded.

CONCLUSIONS
Malaria risk mapping remains an important compo-
nent for understanding the burden of malaria in SSA. 
The review has described modelling approaches and 
examined covariates used in mapping malaria risk in 
different epidemiological contexts. As malaria transmis-
sion continues to decline in SSA, the use of metrics that 
accurately describes changes in its transmission intensity 
across space and time will be important for the design 
and implementation of evidence- based control and elim-
ination measures.
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