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Summary:  This intensive three-year population-based cohort study in two contrasting settings in the 

Peruvian Amazon demonstrated the complexity of P. falciparum and P. vivax co-endemicity, driven 

by the complex interplay of human behavior, parasite biology and environmental determinants of 

mosquito prevalence.  
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ABSTRACT 

Background 

Malaria is highly heterogeneous; its changing malaria micro-epidemiology needs to be addressed to 

support malaria elimination efforts at the regional level.  

Methods 

A three-year, population-based cohort study in two settings in the Peruvian Amazon (Lupuna, 

Cahuide) followed participants by passive and active case detection from January 2013 to December 

2015. Incidence and prevalence rates were estimated using microscopy and PCR.  

Results 

Lupuna registered 1,828 infections (1,708 P. vivax, 120 P. falciparum; incidence was 80.7 

infections/100 person-years (95%CI [77.1–84.5]). Cahuide detected 1,046 infections (1,024 P. vivax, 

20 P. falciparum, two mixed); incidence was 40.2 infections/100 person-years (95%CI [37.9–42.7]). 

Recurrent P. vivax infections predominated onwards from 2013. According to PCR data, 

submicroscopic predominated over microscopic infections, especially in periods of low transmission. 

The integration of parasitological, entomological and environmental observations evidenced an 

intense and seasonal transmission resilient to standard control measures in Lupuna, and a persistent 

residual transmission after severe outbreaks were intensively handled in Cahuide.  

Conclusions 

In two exemplars of complex local malaria transmission, standard control strategies failed to eliminate 

submicroscopic and hypnozoite reservoirs, enabling persistent transmission. 

 

Keywords: malaria, transmission, cohort study, heterogeneity, incidence, prevalence, human biting 

rate, Amazon, Peru.  
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INTRODUCTION 

Malaria in the Americas declined from 673,723 reported cases in 2010 to 451,242 in 2015 [1]. In 

Peru, for instance, the Amazonian department of Loreto (~95% of Peruvian cases) [2] quintupled the 

reported malaria incidence by P. vivax (12,597 to 47,671 cases) and by P. falciparum (2,296 to 9,208 

cases) from 2010 to 2015 [3]. Leading explanations for this resurgence highlighted the lack of a long-

term national malaria control plan able to continue and sustain achievements attained in previous 

years with support of international donors [4–6], and to anticipate and react to dramatic environmental 

changes such as severe flooding in riverine villages like occurred in 2012.  

 

Designing one-size-fits-all national malaria control strategies applicable to local situations is not 

straightforward, given highly heterogeneous and changing malaria micro-epidemiologies driven by 

the complex local interactions among Plasmodium parasites, human behavior, and the vector habitants 

influenced by the environment [3]. Data obtained over the past decade in Loreto villages suggest that 

malaria infections missed by traditional surveillance (i.e. asymptomatic and submicroscopic 

infections, and carriers of P. vivax hypnozoites) [7–9] together with human movement related to work 

[10] and highly anthropophilic Nyssorhynchus darlingi mosquitoes biting frequently outdoors [11], 

can result in the human reservoirs of Plasmodium parasites moving malaria transmission across space 

and time. Knowledge gaps remain to be addressed, particularly to quantify how and to what extent 

silent malaria reservoirs contribute to the resilience to interventions and the sustaining of malaria 

transmission [12].  

 

Large prospective population cohorts with rigorous follow-up [13,14] aim to deepen the 

understanding of local malaria complexity in the Peruvian Amazon, accurately estimate the burden of 

silent malaria reservoirs, and explore their impact on malaria transmission in different ecological 

settings. This paper estimates population-based incidence rates of malaria between January 2013 and 

December 2015 in two different ecological settings in the Peruvian Amazon, Lupuna (LUP) with 
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riverine environment and Cahuide (CAH) with road-associated deforestation. These data, combined 

with entomological and genetic parasite diversity data, enable better understandings of temporal and 

spatial dynamics of malaria transmission.  

 

METHODS 

Study area 

The study sites Lupuna (LUP) and Cahuide (CAH) (Figure 1) have been previously described .  

December-May and June-November are typically the tropical rainy and dry periods in the area [8]. 

Between 2011 and 2015, however, unusually heavy rains generated earlier and higher river level 

peaks (compared to historical averages), exceeding the threshold for imminent flooding for several 

weeks (especially in 2012 and 2015) [15].  

 

Passive case detection (PCD) data (2009-2012) indicates that malaria is seasonal (March-June) in 

LUP, predominantly due to Plasmodium vivax [7]. Before the present study, routine malaria 

interventions in LUP were PCD and long-lasting insecticidal nets (LLINs) delivered in 2008 and 2010 

[16]. During the study period, indoor residual spraying (IRS) with 5% deltamethrin was conducted in 

August 2012, April 2013, October 2013 and December 2014 [11,17]. Malaria in CAH occurred at low 

levels from 2009-2011 [7]. After May 2012, two successive severe malaria outbreaks occurred, 

triggering six rounds of population screening-treatment interventions from May-December 2012 

including IRS in May-June 2012, and distribution of one LLIN per household in July 2012 [7]. IRS 

was also conducted in March 2013 and November 2014 [17].  
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Field procedures 

A three-year, population-based, longitudinal cohort study was conducted from January
 
1, 2013 to 

December 31, 2015, after census July-August 2012, baseline parasitological survey (microscopy, 

qPCR) September-October 2012 [7], and enrollment November-December 2012. The Ethical 

Committee of Universidad Peruana Cayetano Heredia (SIDISI code # 57395) and UCSD Human 

Subjects Protection Program (Project # 100765) approved the study protocol.  

 

Residents ≥ three years old providing written informed assent/consent were enrolled. Sample size 

estimation assumed the following: 20% residents had at least one microscopically-confirmed malaria 

infection annually; 2% precision; 25% loss to follow-up; 80% power; and 5% significance level.  

 

Cohort follow-up combined routine PCD at health posts (six days/week), weekly active case detection 

of symptomatic individuals (wACDS), and monthly population screenings (mPS). PCD relied on 

care-seeking behavior of individuals with malaria-compatible symptoms at health posts, where 

axillary temperature was taken, and microscopy-directed treatment done as appropriate. Household 

visits enabled weekly registration of axillary temperature and any malaria-compatible symptom. mPS, 

conducted in the first visit of each calendar month, involved finger-prick blood sampling for 

microscopy [18] and dried blood spots (DBS) (Supplementary Text 1). wACDS, in the remaining 

visits (2
th
-5

th
) of each month, collected blood samples for microscopy from participants who had 

malaria-compatible symptoms within the past seven days. Microscopically-confirmed infections in the 

baseline survey, PCD, wACDS and mPS were treated by a health worker according to national 

guidelines [19].  P. vivax infections received chloroquine (CQ) for 3 days (10 mg/g on days 1 and 2, 

and 5 mg/kg on day 3), plus primaquine (PQ) for 7 days (0.5 mg/kg/day); while P. falciparum 

infections mefloquine (MQ) (12.5 mg/kg/day for 2 days) plus artesunate (AS) (4 mg/kg/day for 3 

days). Although only the first day of treatment was directly observed, trained community health 

workers in sites and weekly visits of our field research teams enhanced treatment adherence. During 

weekly visits, >95% of participants with a positive microscopy in the previous two weeks reported 

had taken the prescribed antimalarials. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiaa526/5895494 by London School of H

ygiene & Tropical M
edicine user on 02 Septem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

8 
 

 

Data analysis 

Cohort/incidence data 

Every individual with positive microscopy during the cohort follow-up was defined as having a 

malaria infection, as long as he/she had not had prior infection with the same species in the previous 

14 days. This definition prevented double counting of infections. The additional presence or history of 

fever, headache, chills or general discomfort in the previous seven days defined symptomatic malaria.  

 

Incidence rates were calculated as the number of incident infections (x100) divided by the total 

person-months at risk in a given period from 2013 to 2015. A person-month indicated at least one 

follow-up by any method during the month, and the person-years (PY) were the cumulative person-

months divided by 12. Noteworthy, incidence in years 2012 and 2016 were estimated using weekly 

reported malaria data from national surveillance [20]. 

 

Differences in incidence by age, gender and residency time were assessed using trend charts, 95% 

Byar's confidence intervals (95%CI), and multivariate mixed-effects negative binomial models in R 

v.3.6.1. Final models yielded an adjusted incident rate ratio (Adj. IRR), indicating a change in the risk 

from an unexposed to an exposed group. Poisson spatial scan statistics identified clusters of 

households with high incidence (Supplementary Text 1) [21].  

 

Malaria prevalence, entomological and river level/hydrological data  

Malaria prevalence by qPCR [22] and the proportion of submicroscopic infections (qPCR+ 

microscopy-) were quarterly estimated from March 2013 to September 2015 (mPS data), and 

compared among subgroups with chi-square tests and post hoc tests (Bonferroni correction). 

Entomological data from 12-h mosquito collections by human landing catch (HLC) before the study 

in 2012, from January to June in 2013-2015, and in August, October and December 2013-2014 

[11,17]
 
were used to estimate monthly human biting rates (HBRs). Daily water levels of the Amazon 
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River were averaged monthly [23].  The relationships of monthly incidence rates to HBRs, river levels 

and malaria prevalence were assessed with trend charts and correlation analysis.   

 

RESULTS 

Cohort characteristics 

A total of 1,988 participants (LUP: 891; CAH: 1,107) were analyzed in the cohort from 2,447 

censused people (Figure 2; Supplementary Table 1). Unlike CAH, LUP was primarily inhabited by 

long-term residents (p<0.001). More participants reported malaria during their lifetime in LUP 

(73.5%) than in CAH (64.0%)(p<0.001) at enrollment; but malaria in the past 12 months was three 

times more common in CAH than in LUP (p<0.001) (Supplementary Table 2).  

Incidence of microscopically-confirmed malaria infections 

Participants were followed-up between 4 and 36 months in LUP (median: 34, interquartile range 

(IQR): 28-36) and CAH (median: 32, IQR: 25-35).  In LUP, 1,708 P. vivax infections were detected 

by microscopy in 627 participants (227 with single infections, 400 with 2-10 recurrent infections), and 

120 P. falciparum infections in 113 participants (106 with single infections, 7 with two infections); 

determining average incidence rates of 80.7 infections/100 person-years (PY) (95% confidence 

interval (95%CI)[77.1–84.5]) (Table 1).  About 40% of these infections occurred in 2014 (97.1 

infections/100 PY; IRR=1.3, 95%CI [1.2-1.5] compared to 2013).  

 

In CAH, 1,024 P. vivax infections were detected in 569 participants (314 with single infections, 255 

with two-nine recurrent infections), 20 P. falciparum infections in 19 participants (18 with single 

infections, 1 with two infections) and two mixed infections; yielding incidence rates of 40.2 

infections/100 PY (95%CI [37.9–42.7]) (Table 1). The vast majority of infections (68.1%) occurred in 

2013 (74.9 infections/100 PY; IRR=4.6, [3.8-5.6] compared to 2014).  

 

The proportion of participants with any P. vivax infection detected by microscopy was similar 

between sites during the first year (LUP: 41.5%; CAH: 40.8%; p>0.05); but differed at the end of the 
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study (LUP: 70.4%; CAH: 51.4%; p<0.001).  Asymptomatic P. vivax infections barely exceeded 

symptomatic ones in LUP, with the lowest (~0.3) and highest (~0.55) proportions (among total P. 

vivax infections) in the first months of respectively 2013 and 2015 (Supplementary Figure 1). In 

CAH, the proportion of asymptomatic P. vivax infections negatively correlated with P. vivax 

incidence (Spearman’s rho (rs)=-0.59, p<0.001), presenting the highest levels (0.7-1.0) in months with 

the lowest incidence in 2014 and 2015. The proportion of asymptomatic P. falciparum infections 

varied widely, mainly due to the low number of infections (Supplementary Figure 2). 

 

Factors associated with high malaria incidence 

Quarterly and yearly incidence rates stratified by demographic groups consistently showed increased 

P. vivax incidence in children aged 8-14 years over the study period in LUP (Figure 3A, 

Supplementary Figures 3A-4A, Supplementary Table 3). Interaction between age and time of 

residency in the multivariate model indicated that the association between high P. vivax incidence and 

children was significant only among long-term residents (Adj.IRR for age3-7y: 2.9, 95%CI [2.1-3.8]; 

Adj.IRR for age8-14y: 3.2, [2.7-4.1] compared to age>44 years) (Table 2; Supplementary Figures 5A-

6A). Increased P. vivax incidence was associated with short-term residency among individuals aged 

15-44 years (Adj.IRR: 2.3, [1.7-3.0]) and those>44 years (Adj.IRR: 2.7, 95%CI [1.7-4.7]). 

Interestingly, inter-year variations in P. vivax incidence rates were wider in long-term residents aged 

3-7 years (IRR2014-2013: 0.6, [0.4-0.8]; IRR2014-2015: 0.7, [0.5-1.0]) compared to those aged 8-14 years 

(IRR2014-2013: 0.7, [0.4-0.8]; IRR2014-2015: 0.8, [0.6-1.0]) (Supplementary Tables 4-5).  

 

In CAH, stratification of incidence rates by age showed increased P. vivax incidence rates at >7 years 

and residence times >5 years, especially during 2013 (p<0.05) (Supplementary Figures 7A-9A, 

Supplementary Table 6). Over the cohort period, the multivariate model confirmed this increased P. 

vivax incidence in individuals aged 8-44 years (Adj.IRR: 1.4, [1.1-1.7] compared to age 3-7 years) 

and in long-term residents (Adj.IRR: 1.3 95%CI [1.1-1.6]). Regarding P. falciparum, males (Adj.IRR: 
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2.0, 95%CI [1.4-2.9]) and individuals >7 years (Adj.IRR~2.5) had highest incidence rates in LUP 

(Supplementary Table 7).  

 

Recurrent infections among total P. vivax infections 

The proportion of recurrent infections detected by microscopy (following a prior infection) steadily 

increased in both sites during the first year (from 0 to 0.63 in LUP, and to 0.75 in CAH). Afterwards 

smaller increases were observed in LUP (maximum=0.92) or fluctuated between 0.56-0.83 in CAH 

(Supplementary Figure 1). Among long-term residents in LUP, individuals aged 8-14 years had the 

highest proportion of recurrent infections (p<0.001). No significant differences were found among 

short-term residents in LUP and total residents in CAH (Supplementary Figure 10). 

 

Spatial clusters of high malaria incidence 

Clusters of high P. vivax incidence in 2013 and 2014 were consistently found in southwest LUP (2013 

risk ratio (RR)=1.7, p< 0.001; 2014 RR =1.5, p=0.02), and the junction of the Iquitos-Nauta road and 

Itaya River in CAH (2013’s RR=1.7, p<0.001; 2014’s RR: 2.4, p<0.001) (Supplementary Figures 11-

12). In 2015, the P. vivax cluster in CAH (RR: 4.3, p<0.001) remained close to the junction, but was 

small. There were no significant spatial clusters for P. vivax in LUP in 2015, nor for P. falciparum in 

LUP and CAH in 2013, 2014 and 2015.  

 

Quarterly malaria prevalence by qPCR  

Lowest and highest malaria prevalence in LUP were observed in October 2012-March 2013 (≤5%) 

and March 2014 (20.5%); December 2014 (1.7%) and June 2013 (14.4%) in CAH (Figure 4; 

Supplementary Tables 8-9).  Positive correlation between prevalence by PCR and incidence rates was 

only found in LUP (rs vivax=0.64, p=0.03; rs falciparum=0.67, p=0.02). Submicroscopic P. vivax infections 

predominated over microscopic ones in both sites, with highest proportions in December 2014-March 

2015 in LUP (~0.8), and in September 2014-March 2015 in CAH (>0.9). High proportions in CAH 

were associated with low clinical incidence rates (rs=-0.84, p=0.001). 
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Stratified analysis of quarterly prevalence by demographic groups in LUP identified lowest P. vivax 

prevalence at ages 3-7 years in June 2013 and March 2014 (p<0.05), and highest prevalence at ages 8-

14 years in March 2015 (p<0.05)(Figure 3B; Supplementary Figures 3B-9B). In CAH, males had 

higher prevalence than females in September 2013 and March 2014 (p=0.02), and in long-term 

residents in June 2014 (p=0.04). 

 

Relationship between entomological/environmental variables and the incidence of microscopic 

malaria 

Amazon River levels from 2012 to 2015 correlated with HBRs in both sites (rs=0.64, p<0.001). 

Significant relationships between overall incidence rates and environmental and entomological 

variables during the cohort period (when found) occurred at 2-month lag time, with river levels in 

LUP (rs=0.54, p=0.001) and with HBRs in CAH (rs=0.68, p<0.001) (Figure 5).  

 

DISCUSSION  

This densely sampled, prospective, longitudinal, population-based cohort study is unique among the 

few such studies aimed at understanding heterogeneous and changing malaria transmission dynamics 

in P. vivax and P. falciparum co-endemic areas [24–26]. The assessment of parasitological rates 

across time and space, together with published data of genetic parasite diversity [27], entomological 

observations, river height measurements, and contextual surveillance/control information, provide 

valuable insights into contrasting epidemiological scenarios in the Peruvian Amazon. Residual 

transmission persisted after effectively controlling severe outbreaks in a malaria-epidemic prone site 

(Cahuide, CAH), and under conditions of intense, seasonal malaria transmission resistant to standard 

control measures (Lupuna, LUP). These sites epitomize the microheterogeneity of malaria 

transmission in environmentally diverse Amazonian settings, and are generalizable to other co-

endemic P. vivax and P. falciparum settings. 
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The location of malaria clusters areas of flood risk [7]  and the association of HBRs and malaria 

incidence support the hypothesis that environmental changes drove increased abundance and wide 

dispersal of Ny. darlingi leading to the 2012-2013 epidemic transmission in CAH. Malaria incidence 

in CAH in 2012 was similar to the worst epidemic recorded in Loreto (1996-1998) [28]. In 2013, 

incidence decreased but malaria transmission remained high despite outbreak responses and intense 

microscopy-directed treatment.  

 

Standard malaria surveillance is inherent limited in eliminating residual infections, as demonstrated 

by persistent malaria prevalence in 2014 and early 2015 [29]. Human mobility not vector movement 

most likely was responsible for dispersing P. vivax and P. falciparum infections from outside CAH. 

Published changes in the genetic diversity of P. vivax infections during and after malaria outbreaks in 

CAH are consistent with this proposed mechanism of maintenance P. vivax transmission [27]. Indeed, 

CAH´s population is not stable as indicated by the proportion of recent immigrants (>25% individuals 

with <2 years of residency) and the proportion of participants (one fourth) lost to follow-up due to 

migration. The accessibility to the 120 km road connecting the major city Iquitos to rural Nauta, and 

to a riverine port make CAH vulnerable area to imported malaria [30,31], because of intense human 

movement related to work and social interactions, within the same community and in proximity to 

other endemic communities [7,10]. With favorable conditions for vector development and high human 

mobility patterns, both endemic and imported strains would have dispersed rapidly across CAH 

villages and led to uncontrollable malaria outbreaks in 2012-2013, and the resurgence of malaria in all 

villages in late 2015 (year with floods, but less intense than in 2012). Hence human behavior converts 

anophelism without malaria to endemic malaria transmission. 

LUP also withstood floods, more severe in 2012 than in 2013. The spatial cluster of highest incidence 

close to Nanay River and the rise of seasonal HBRs [11,17] underlined the contribution of this 

environmental change to the increase in incidence rates by both P. vivax and P. falciparum in 2013. 

Integrating epidemiological and genotyping data was necessary to understand why malaria driven by 

floods in LUP did not lead to early increases in the malaria burden since 2012. The low prevalence of 

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiaa526/5895494 by London School of H

ygiene & Tropical M
edicine user on 02 Septem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

14 
 

parasitemic people (mainly submicroscopic) in October 2012 and the consistent seasonal patterns of 

low malaria incidence (2009-2012) in the relatively stable LUP population (long residency time and 

high levels of study retention) suggest that asymptomatic and low-parasite density infections were 

able to maintain low seasonal malaria transmission before 2013 [7]. These findings also suggest that 

population exposure to local parasite strains was sufficient for the development of clinical immunity 

to malaria disease and high-density parasitemia in the pre-cohort period [32,33]. However, this 

transmission scenario would have been altered with the introduction and spread of new P. vivax 

strains after March 2013 given microsatellite characterization of parasite populations [27]. In 2013, 

unlike 2012, increased human-vector contacts not only intensified the transmission of local strains, 

but also facilitated the spread of new imported ones. As result, the number of P. vivax incident 

infections (mostly symptomatic) reached unusual peaks in high transmission season of 2013, and 

participants with less-developed immunity such as children and with short-time residency were the 

most affected groups [26,34].   

 

The increased contribution of recurrent P. vivax infections to malaria incidence, the same location of 

the most likely cluster in 2013-2014, together with the decline in human-vector contacts following 

less severe flooding and indoor residual spraying in 2014, also suggest that P. vivax relapses may 

have played an important role in keeping high transmission levels in LUP. The rigorous study follow-

up facilitated the diagnosis and treatment of microscopic infections (mainly recurrent infections), but 

failed to identify the reservoir of low-density blood stage infections (composed of new and relapsing 

infections) and the reservoir of hypnozoite carriers (without blood-stage parasites) which together 

enabled disease across transmission seasons. The decrease in malaria incidence rates in 2015 (greater 

in young children than in old ones among long-term residents) would likely be due to the gradual 

acquisition of strain-specific P. vivax immunity providing some protection to LUP’s residents against 

malaria disease and high-density parasitemia [26,35,36] rather than a true reduction in transmission 

levels. Indeed, the submicroscopic reservoir (mainly by P. vivax) with persistent high levels (≥0.7) 

since December 2014 highlighted the potential epidemic risk when conditions for transmission were 
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more favorable. Unfortunately, the decrease of detection efforts after the cohort study ended was 

associated with an early seasonal peak of P. vivax incidence and a severe and prolonged outbreak of 

P. falciparum in 2016.  

 

The strengths of this study include its large sample size, three-year prospective design, rigorous 

parasitological follow-up, and the integration among epidemiological, vector and environmental data 

for better understanding malaria transmission dynamics. The main limitations were related to the 

fixed cohort design [37] and to loss of participants to follow-up (at least in part due to migration) 

together with the entry of new residents into the study villages after the study onset (who were not 

additionally enrolled). These findings may have affected incidence and prevalence estimations in 

unknown ways; for example by introducing new parasite strains, or by the introgression of malaria-

naïve individuals. However, the higher number of immigrants (12.1% in LUP and 23.8% in CAH) 

than emigrants (<5% according to population census at end of the cohort) may in part support the 

validity of our estimations at the population level. 

 

The data provided here are two exemplars of complex local malaria transmission in the Peruvian 

Amazon. The changing interactions across time between the co-endemic and biological distinct P. 

falciparum and P. vivax parasites and human-vector contact rates determined by human mobility and 

environmental-driven vector behaviors produced contrasting scenarios of malaria transmission with 

microheterogeneity observed within the same endemic villages. Standard control strategies may have 

contributed to a reduction of malaria after outbreaks, and to possibly reducing increases in morbidity 

during high transmission season. However these standard interventions did not eliminate 

submicroscopic parasitemics nor hypnozoite reservoirs [29,38], enabling continued low transmission 

in areas with variable malaria receptivity such as CAH, and areas with high seasonal transmission 

with relatively permanent malaria receptivity such as LUP. We observed, for instance, that prevalence 

levels of submicroscopic infections as low as 5% can represent a risk for malaria resurgence when 

conditions become favorable for transmission. Easy-to-use and highly sensitive molecular tests like 
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those based on loop-mediated isothermal DNA amplification (still under evaluation) [39] and 

treatment of confirmed blood-stage infections with shorter courses of effective drugs like tafenoquine 

(TFQ) [40,41] will definitively improve test-and-treat interventions, but carriers of liver-stage P. vivax 

parasites will remain unidentified [12]. Innovative strategies are needed to support malaria programs 

aimed to move from low to zero malaria transmission. Evidence from the dynamics of malaria 

transmission in CAH and LUP suggests the potential of seasonal focal drug administration with 

artemisinin-based combinations plus TFQ to high-risk individuals —such as individuals with malaria 

infections within the past one-two years, multiple recurrences and/or with high work-related 

mobility— for targeting and eliminating the parasite reservoir. Modelling [42] and field studies would 

be required to assess the effectiveness and cost-effectiveness of this strategy before implementation. 
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TABLES 

 

Table 1. Incidence rates of microscopically-confirmed malaria infections by study site 

  Lupuna (2264.2 PY+)   Cahuide (2598.9 PY+) 

  Infections Rate (/100 PY) [95% CI]   Infections Rate (/100 PY) [95% CI] 

          P. vivax* 1708 75.4 71.9 79.1 

 

1024 39.4 37.0 41.9 

P. falciparum* 120 5.3 4.4 6.3 

 

20 0.8 0.5 1.2 

Mixed infection 0 0.0 

   

2 0.1 0.0 0.2 

Overall* 1828 80.7 77.1 84.5 

 

1046 40.2 37.9 42.7 

          

Asymptomatic P. vivax* 667 29.5 27.3 31.8 

 

601 23.1 21.3 25.0 

Symptomatic P. vivax* 1041 46.0 43.2 48.8 

 

423 16.3 14.8 17.9 

Asymptomatic P. falciparum* 41 1.8 1.3 2.4 

 

11 0.4 0.2 0.7 

Symptomatic P. falciparum* 79 3.5 2.8 4.3   9 0.3 0.2 0.6 

* p<0.05 

+ PY: person-years 
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Table 2. Uni- and multivariate risk factor analysis for incidence of microscopically-confirmed P. 

vivax malaria infections in Lupuna (LUP) and Cahuide (CAH). 

    Infections PY Rate (Infections/100 PY)   IRR   Adjusted IRR 

    n PY Rate [95% CI]   IRR [95% CI]   IRR [95% CI] 

Lupuna              

    Year 

  

 

            2013 581 830.5 70.0 64.4 75.8 

 

Ref. 

  

Ref. 

    2014 679 751.6 90.3 83.7 97.3 

 

1.3* 1.2 1.4 

 

1.3* 1.2 1.4 

 

2015 448 682.1 65.7 59.8 72.0 

 

0.9 0.8 1.1 

 

0.9 0.8 1.1 

    Gender 

               Female 871 1141.1 76.3 71.4 81.5 

 

Ref. 

  

Ref. 

  

 

Male 837 1123.1 74.5 69.6 79.7 

 

1.0 0.8 1.1 

 

1.0 0.8 1.1 

    Age  

              3-7 y 372 404.0 92.1 83.1 101.8  2.1* 1.7 2.6     

 8-14 y 436 341.5 127.7 116.1 140.1  3.0* 2.5 3.8     

 15-44 y 650 941.8 69.0 63.9 74.5  1.6* 1.3 1.9     

 >44 y 250 576.9 43.3 38.2 49.0  Ref.       

    Residency (time) 

             

 

0-5 y 468 458.9 102.2 93.1 111.5 

 

1.5* 1.3 1.8 

      >5 y 1240 1805.3 68.7 64.9 72.6 

 

Ref. 

          Interaction  

    Age*residency 

             

 

For those with residency 0-5 y 

                 -Age 3-7 y           0.8 0.5 1.2 

    -Age 8-14 y           1.3 0.7 2.6 

     -Age 15-44 y           1.2 0.7 2.0 

    -Age >44 y           Ref.   

 For those with residency >5 y               

    -Age 3-7 y           2.9* 2.1 3.8 

    -Age 8-14 y           3.2* 2.7 4.1 

     -Age 15-44 y           1.5* 1.2 1.8 

    -Age >44 y           Ref.   

 For those aged 3-7 y               

    -Residency 0-5 y           0.7° 0.6 1.0 

    -Residency >5 y           Ref.   

 For those aged 8-14 y               

    -Residency 0-5 y           1.1 0.7 1.7 
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    -Residency >5 y           Ref.   

 For those aged 15-44 y               

    -Residency 0-5 y           2.3* 1.7 3.0 

    -Residency >5 y           Ref.   

 For those aged >44 y               

    -Residency 0-5 y           2.7* 1.7 4.7 

    -Residency >5 y           Ref.   

Cahuide              

    Year 

  

 

            2013 695 948.9 73.2 67.9 78.8  Ref.   Ref.   

  2014 136 860.0 15.8 13.3 18.6  0.2* 0.2 0.3  0.2* 0.2 0.3 

 

2015 193 790.0 24.4 21.2 28.1  0.3* 0.3 0.4  0.3* 0.3 0.4 

    Gender 

 

            

  Female 472 1276.1 37.0 33.8 40.4  Ref.   Ref.   

 

Male 552 1322.8 41.7 38.4 45.3  1.1° 1.0 1.3  1.1 1.0 1.3 

    Age  

 

            

 3-7 y 148 551.6 26.8 22.8 31.4  Ref.    Ref.   

 8-14 y 249 575.8 43.2 38.1 48.9  1.5* 1.2 2.0  1.4* 1.1 1.7 

 15-44 y 418 966.8 43.2 39.2 47.5  1.6* 1.3 2.0  1.4* 1.1 1.7 

 >44 y 209 504.8 41.4 36.1 47.3  1.5* 1.2 2.0  1.3° 1.0 1.7 

   Residency (time) 

 

            

 

0-5 y 437 1321.7 33.1 30.1 36.3  Ref.       

  > 5y 587 1277.3 46.0 42.4 49.8  1.4* 1.2 1.7  1.3* 1.1 1.6 

               

* p<0.05, ºp  between 0.1 and 0.05 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiaa526/5895494 by London School of H

ygiene & Tropical M
edicine user on 02 Septem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

24 
 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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