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Abstract

Cancer survival is a key indicator of the overall effectiveness of a health system in man-
aging treatment and care of cancer patients. At the national level, cancer survival statis-
tics facilitate overall surveillance of strategic importance. At the local level, they provide
valuable insights into the performance of local cancer services essential for public health
planning. There are however recurring concerns regarding both the estimation and dis-
semination of such survival outcomes, in particular at the smaller area level. The research
presented in this thesis aimed to address some of these concerns.

A summary indicator of cancer survival, named Index of Cancer Survival, is proposed for
all cancers combined designed to act as an overall measure of the effectiveness of cancer
services in England at both national and local level. To estimate the index a two-step
analytical approach was implemented, in which cancer survival is first estimated for each
small area separately followed by a joint smoothing and mapping technique to filter out
excessive variation from the resulting cancer survival maps. Such smoothed maps were
thought suitable for national health policy-makers to devise national surveillance strategies,
as they display in a simple way, the overall patterns of survival for the whole country. Funnel
plots were then extended to visualise the spread of individual small-area cancer survival
outcomes, mostly thought suitable for local health managers as a tool for monitoring the

performance of survival outcomes in their local areas.

However, the estimation of cancer survival for small-health geographies remained challeng-
ing. The last part of this thesis explored how Bayesian approaches could be used to improve
the estimation of cancer survival in the presence of sparse data, and when using more com-
plex data structures, including spatially arranged and hierarchical data. The feasibility of
an existing Bayesian model for the excess hazard using Poisson regression was explored to
estimate small-area patterns in cancer survival accounting for the spatial structure of the
data. A Bayesian flexible excess hazard regression model was then proposed based on the
full likelihood specification to improve the modelling of both the baseline excess hazard and
the smooth effect of continuous covariates using a special type of splines. The new model
also accommodates hierarchical data allowing more complex cancer data structures to be
modelled, such as patient level data nested within area of residence or hospital of care level
data.

In summary, the cancer survival index and both data visualisation techniques for cancer
survival greatly improved the interpretability and dissemination of such outcomes for non-
technical audiences, in particular health policy-makers. Meanwhile, the Bayesian excess
hazard model using Poisson regression improved the estimation when data were sparse
by incorporating the spatial data structure. The Bayesian flexible excess hazard model in
particular, enabled a better investigation of inequalities in cancer survival using a range of
covariate effects and facilitated the study of more complex cancer data structures.
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Chapter 1

Introduction

1.1 Background

1.1.1 The burden of cancer

The burden of cancer continues to increase worldwide, with an estimated 18 million new
cancer cases diagnosed in 2018 and 9.5 million cancer deaths [7], along with marked varia-
tions in survival observed across all the regions of the globe [8]. In England, incidence rates
are lower than in the European Union for men, but higher for women [7], with an estimated
annual number of newly diagnosed cancers in 2016 of just over 300,000 cases [9]. Although
prevention is preferable to cure, not all the cancers can be prevented. For a reduction in
cancer mortality to occur, both a reduction in cancer incidence and an increase in cancer
survival are essential [10]. Measuring the burden of cancer in the best possible way is a cru-
cial aspect in cancer research, in which incidence, mortality and survival statistics (among
others) are used to investigate the causes and outcomes of the disease [11-14]. The base-
line information generated supports the development and improvement of cancer control
strategies, as for instance, the prioritisation of regions for the implementation of cancer
awareness [15] or early diagnosis campaigns to improve those health outcomes [16, 17]. Un-
derstanding how cancer impacts a population and varies between different populations, and

over time is thus essential for public health planning and surveillance [18, 19].
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1.1.2 Cancer control programmes

Cancer control programmes, cancer plans or cancer strategies as defined by the World
Health Organisation (WHO) are public health programmes designed to reduce the number
of cancer cases and deaths in a population, and to improve the prognosis and the quality
of life of cancer patients. They are based on the implementation of systematic, equitable
and evidence-based strategies for prevention, early detection, diagnosis, treatment and

palliation of all cancer cases in a population [20].

In 2013, the Union for International Cancer Control (UICC) launched the World Cancer
Declaration, calling upon all government leaders and health policy-makers to reduce the
global cancer burden, promote greater equity, and integrate cancer control into the world
health and development agenda. The declaration set out one overarching goal: ‘There will
be major reductions in premature deaths from cancer, and improvements in the quality of

life and cancer survival’ [21].

1.1.3 Efficiency, equity and effectiveness of healthcare (£3)

Efficiency, equity and effectiveness, the so-called 3 E’s, are three terms used in healthcare
performance evaluation [22]. Efficiency can be defined as the allocation of the limited
economic resources to meet the healthcare needs of the population at minimum costs,
although there are many other ways in which efficiency can be defined, as for instance,
the maximisation of health benefits from available resources [23]. Equity refers to the fair
distribution or allocation of the resources within the healthcare system [24, 25]. Balancing
efficiency and equity has been the biggest dilemma for the National Health Service (NHS)
in England since its origin [26], in particular for those policies that increase efficiency but

also increase health inequalities, or improve equity whilst decreasing efficiency.

The NHS is the publicly funded national healthcare system in England. It was created in
1948, based on the core principle of equity, setting out that good healthcare should be
available to all, regardless of their wealth [27]. The three core principles that have guided
the implementation and development of the NHS over the last 70 years remain the same:

1) that it meets the needs of everyone; 2) that it be free at the point of delivery; and 3)
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that it be based on clinical need, not ability to pay. Equity within the NHS has been guided
mainly by an equal access principle rather than equal outcome. In an effort to reduce the
persistent and widening health inequalities that have been reported in England since the

1980s [28], equity has been put at the centre of all subsequent health policies.

Effectiveness relates to the extent to which certain policies on healthcare provision achieve
their intended purposes, in terms of best and equal outcomes for all the patients. It can
be measured in terms of resource allocation or access to healthcare, but an alternative
way to measure effectiveness is to use an outcome-based measure such a cancer sur-
vival. Quantifying disparities in cancer survival will enable the identification of differences

in the effectiveness of cancer patient care within the healthcare system [29].

1.1.4 The NHS structure and English health geographies

The NHS is formed by many independent bodies and sub-organisations as laid out by the
Health and Social Care Act [27, 30, 31]. The 2013 NHS restructuring created organisa-
tions such as the NHS England and the 211 geographically-based Clinical Commissioning
Groups (CCGs). NHS England is responsible for commissioning the planning and buying of
healthcare services, such as primary care services, and setting the priorities and direction
of the NHS. It also allocates 60% of the NHS budget to CCGs across England. CCGs
are clinically led statutory NHS bodies responsible for the planning and commissioning of
healthcare services, including General Practitioner (GP) services, planned hospital, urgent

and emergency care.

Prior to the creation of CCGs, several other health geographies were central in the organi-
sation of the NHS. Primary Care Groups have been created in 1999 to act as units of local
organisation for healthcare delivery in England. The initial 481 groups, were restructured
in 2001 to become 303 Primary Care Trusts (PCTs). These were further reduced to 152
PCTs in 2006 and to 151 PCTs two years later [32], before being abolished and replaced by
CCGs in 2013. Unlike PCTs, who held the budgetary responsibility for the delivery of care
for patients living in their catchment area, CCGs only hold the responsibility for managing

the healthcare delivery of patients registered in their practices.
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The numerous changes to English health geographies over the last decades [33], through
mergers, boundary changes, creation and cessation of geographies have complicated the
production of official cancer survival statistics [34]. These changes have in particular pre-
vented the availability of long-term survival trends for the affected geographies that could

provide valuable insights into the survival improvements in those areas.

1.1.5 Cancer survival deficit and inequalities in cancer survival

Since the mid-1990s, the level of cancer survival in England has been documented to con-
sistently fall below the European average, lower than most Western European countries
[35—38], and some non-European countries considered to be equivalent in terms of wealth
and healthcare organisation [39]. Several studies have also shown wide geographical vari-
ations within England for most of the common adults cancer types, including a persistent
North-South gradient, with lower survival in the North of England, suggesting that the
place of residence plays an important role in the survival of a cancer patient [18, 40—48]. In
addition, wide inequalities in cancer survival by socio-economic status have been extensively
described in England [46, 49-54], despite the existence of universal access to care within

the equity based NHS.

The widely documented English cancer survival deficit has generated much debate within
the political and health communities in the last three decades [55-57], to the extent that
improving quality of care, setting targets, increase investment and improving survival be-
came a top priority for the Government, working together with cancer charities and research
groups to achieve these objectives [57]. Since the Calman-Hine report was released in 1995,
launching a policy framework for commissioning cancer services [58] and with the subse-
quent implementation of the NHS Cancer Plan in 2000, a series of other national initiatives
have since reinforced the need for an integrated strategy to tackle cancer inequalities and
improve prevention, early diagnosis and survival in England [59—61]. As summarised by Alan
Milburn, Secretary of State for Health at the time of the introduction of the NHS cancer

plan [62, 63]:
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“The poor are still far more likely to get cancer than the rich, and their chances of survival are
lower too. Furthermore there are too many variations in the quality of care and treatment

across the country, leaving cancer patients frustrated by a postcode lottery.’

The cancer reform strategy, first introduced in 2007, [60, 64—66] stated along with other

points that:

1. ‘Cancer networks will support Primary Care Trusts in commissioning high quality, safe

and effective cancer services.’

2. 'Tools will be made available to Primary Care Trusts to enable them to commission

effectively and benchmark their performance...’

However, at the start of the research presented in this thesis, no official tools had been
defined to monitor and assess the cancer plan, and the reform strategy in terms of survival

outcomes for the most recent health geographies configurations.

1.1.6 Demands for national and local monitoring of survival

More recent initiatives, such as the NHS Long Term Plan for cancer [67] published in
early 2019, building on the Independent Cancer Taskforce strategy [68] published in 2015,
reinforce their ambitions and commitments to improve cancer outcomes in England over
the next ten years, in particular aiming at increasing the number of people surviving their
cancer for at least five years after diagnosis. As a result, monitoring improvements in these
outcomes in a timely and systematic way became even more crucial, leading to increased
demands and pressures from national policy-makers and local healthcare managers to have
available cancer survival monitoring tools for the most recent configurations of health
geographies [69]. National health policy-makers are mainly interested in understanding
the overall patterns of survival to help devise national surveillance strategies, whilst local
healthcare managers, are more interested in understanding how their local catchment area,
i.e. the health geography of their responsibility is performing and how they compare with the
national average performance. Addressing such demands in the best possible way depends

on several factors: a) the availability of adequate statistical methods for the estimation of
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cancer survival, in particular of methods that enable the analysis of more challenging data
structures, including for instance, smaller health geographies; b) the timely availability of
individual-level cancer patient data and other relevant healthcare system level information;
and c) the existence of visualisation tools for a more effective dissemination of survival

outcomes to non-expert audiences.

1.2 Research aims and objectives

The overarching aim of my doctoral research studies is to provide tools enabling robust
estimation of cancer survival and effective communication of survival outcomes. This thesis

if further divided into three main aims and specific objectives as described below.

Research aim 1
To summarise and monitor survival for all cancers combined in England at both

national and local level.

The specific objectives to achieve this aim are:

1.1 To design a summary survival indicator for all cancers combined using a

three-way standardisation technique;
1.2 To create suitable sets of weights to estimate the summary indicator;

1.3 To implement a modelling strategy to estimate the individual cancer survival
components needed for the summary indicator using excess hazard regression

models;

1.4 Application 1: to estimate 40-year trends in the summary survival indica-
tor using patients diagnosed with cancer between 1971-2011 in England, i.e.
estimate the summary indicator at national level;

1.5 Application 2: to estimate 16-year trends in the summary survival indicator
using patients diagnosed with cancer between 1996-2011 in each of the 211

CCGs in England, i.e. estimate the summary indicator at local level.
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Research aim 2
To improve the visualisation of cancer survival for a more successful dissemination

to policy-makers.

The specific objectives to achieve this aim are:

2.1 To adapt a joint smoothing and mapping technique for cancer survival that

produces smooth map surfaces based on small-area survival estimates;

2.2 To extend the use of funnel plots to visualise the spread of individual cancer
survival estimates around a pre-specified target value by formulating the correct

control limits for cancer survival;

2.3 Application: to use these two techniques to visualise the results of the index
of cancer survival by CCG (estimated in Aim 1), and to exemplify how the same
set of results can be used for national surveillance and for local monitoring of

cancer survival.

Research aim 3
To determine how Bayesian approaches can be used in the cancer survival setting to
improve the estimation of survival in the presence of sparse data, and when using

more complex data structures, including spatially arranged and hierarchical data.

The specific objectives to achieve this aim are:

3.1 To summarise the existing literature for the estimation of cancer survival
in the presence of sparse data;

3.2 To propose a flexible Bayesian excess hazard model formulated on the log-
excess hazard scale, and to demonstrate how net survival can be estimated from
such a model;

3.3 Application: to extend the model proposed in objective 3.2 to accommodate
random effects and use this model to investigate variation in net survival for

patients diagnosed with colon cancer living and receiving care in London.
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1.3 Research output: peer-reviewed publications

Four publications have been prepared based on the research conducted during my doctoral

studies. Three have been published and the last one is ready to be submitted for publication.

Research publication 1 Quaresma M, Coleman MP and Rachet B. 2015. 40-year trends
in an index of survival for all cancers combined and survival adjusted for age and sex
for each cancer in England and Wales, 1971-2011: a population-based study. The
Lancet, 385, 1206-1218.

Research publication 2 Quaresma M, Coleman MP and Rachet B. 2014. Funnel plots for
population-based cancer survival: principles, methods and applications. Statistics in

Medicine, 33, 1070-1080.

Research publication 3 Quaresma M, Carpenter J and Rachet B. 2019. Flexible Bayesian
excess hazard models using low-rank thin plate splines. Statistical Methods in Medical

Research. Published online first September 2019.

Research publication 4 Quaresma M, Carpenter J, Turculet A and Rachet B. Variation in
survival for patients diagnosed with colon cancer living and receiving care in London,

2006-2013: does it matter where you live? - ready to be submitted to The Lancet.

1.4 Thesis outline

The remainder of this thesis is organised as follows. Chapter 2 introduces the main con-
cepts for population-based cancer survival. Chapter 3 describes the main sources of data
available for cancer survival research. The main research chapters for aims 1, 2 and 3 are
presented in Chapters 4, 5 and 6, respectively. In each chapter the research publications
are intertwined with additional unpublished material relevant for the completeness of the
research presented. Chapter 7 makes some concluding remarks and suggests future lines of
research. The appendices present Stata and R code for all the analysis performed, describe
other relevant activities undertaken and give information regarding the ethical approvals

obtained for this research.



Chapter 2

Population-based cancer
survival: overview of measures and

estimators

This chapter presents an overview of the main measures and estimators for population-
based cancer survival research. Specific details of the methods used throughout this thesis

are given within each of the relevant research chapters.

2.1 What is population-based cancer survival?

Population-based cancer survival methodology refers to a collection of methods developed
to study the time between the diagnosis of cancer and the death of a patient [70]. The event
of interest is defined as the death due to cancer and the main aim is to quantify the survival
of a cohort of cancer patients that can be attributed only to the cancer of interest. Data
for population-based cancer survival research are routinely collected by population-based
cancer registries, which record information on all the cancer cases diagnosed within their
area of catchment, and thus cancer survival measured from such data represents the whole

population. Contrasting with survival estimates obtained from clinical trials, which are
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designed to quantify the highest achievable survival, using data from population-based

cancer registries will quantify the average survival achieved in that population.

Cancer survival is interpreted as the survival patients would experience if the cancer of
interest was the only possible cause of death. Some authors relate this interpretation to a
hypothetical world where patients cannot die from anything else. In the real world, patients
die from any cause, including their cancer, and thus such a measure is not directly relatable
to individual cancer patients since it does not quantify their prospects of survival. Cancer
survival is a measure of cancer prognosis, tailored for health policy to support the evaluation
of the effectiveness of healthcare systems in managing cancer. Cancer survival can be
monitored over time within the same population or compared between populations, without
having the influence of other causes of death, in particular without the influence of unequal

distributions of other causes between populations.

2.2 ‘Classical’ survival setting versus relative survival setting

‘Classical’ survival methodology provides a suit of methods for the estimation of time-
to-event (survival) outcomes [71, 72]. Overall survival for a cohort of cancer patients
is estimated defining as events all the deaths, regardless if cancer related or not. Such
a measure is not relevant in population-based cancer survival research for the reasons
mentioned in the previous section. Survival can also be derived from the cause-specific
mortality hazard where a specific cause (here the cancer) is the only event of interest,
whereas the events due to other causes are censored in order to remove such competing
risks. This estimator is of limited use to estimate population-based cancer survival due to
two main reasons [73]. First, to define the cause of death due to cancer as the event of
interest, the cause of death needs to be known for each cancer patient. This is rarely the
case at population-level, since the cause of death is often unknown or, in the absence of
a single study protocol (such as in the clinical trial context), unreliable [74, 75]. Second,
an important assumption in survival analysis is that the censoring process is assumed to
be independent from the process that generates the events, i.e. the censoring is non-

informative [71]. The process becomes informative when one or more factors influence both
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mortality hazards: the cancer-specific hazard and the other-causes hazard, leading to biased
estimates of survival [76]. For example, older patients are more likely to be censored than
younger patients due to other causes of death, making the censoring process informative

and leading to biased estimates of cancer survival [77, 78].

The framework (or setting) of relative survival was introduced in the 1950s to address
these challenges, defining a set of measures for population-based cancer survival. Many
estimators have since been proposed within this framework, all of which do not require
the information about the cause of death to be known [79, 80]. In contrast with the
‘classical’ survival setting, in which only observed event times, event indicators and in some
instances, patient- and tumour-level characteristics are used in the estimation of survival,
in the relative survival setting the all-cause mortality rates from the general population are

also used as an estimate of the competing risks of deaths due to causes other than cancer.

2.3 Main measures of interest: Net survival and Excess hazard

The two main measures of interest to be quantified in population-based cancer survival
are called net survival and the excess hazard. Net survival is defined as the survival that
would occur in a cohort of cancer patients if the cancer of interest was the only cause of
death that patients could experience [70, 81]. The excess hazard is defined as the hazard
of death that can be attributed only to the cancer of interest, i.e. in ‘excess to’, or after
accounting for all the other causes of death present in the general population from where

the cancer patients originated.

Similarly to the classical survival setting, where several useful relationships can be estab-
lished between the survival function and the hazard function, relationships hold between the
net survival function and the excess hazard function. Generically, T being a non-negative

random variable representing the observed survival times t, we define
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HE(t) = /Ot hE(U)dU (2.1)
Snet(t) = eXp(_HE(t)) (2-2)
He(t) = —10g(Snet(t)) (2.3)

where Hg(t) is the cumulative excess hazard function at time t, hg(t) is the excess hazard

function at time t and Spe¢(t) is the cumulative net survival function at time t.

2.4 Estimation of net survival and excess hazard

Several estimators have been proposed for net survival and for the excess hazard within the
relative survival setting. In the next sections, a summary of the main estimators for these

two measures is presented.

2.4.1 Non-parametric estimators

Three non-parametric estimators, Ederer | [82], Ederer Il [83] and Hakulinen [84], were
proposed for net survival between the 1960s and the early 1980s. These estimators follow
the same generic formulation, so-called ‘ratio-estimators’

So(t)
Sp(t)

Snet(t) = (2-4)

where Spet(t) is the net survival at time t, Sp(t) is the observed survival for the cancer
patient cohort at time t, and Sp(t) is the expected survival or background population
survival for the cancer patient cohort at time t, i.e. the survival of the cohort if patients

were disease-free.

The observed survival in the numerator, Sp(t), is estimated using classical survival esti-
mators, i.e. Kaplan-Meier or actuarial methods [85—-87] defining as event of interest all
the deaths in the cancer patient cohort, regardless if cancer related or not. The expected

survival in the denominator, Sp(t), is calculated using all-cause mortality rates from the
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general population. The three estimators differ in the way the expected survival is calcu-
lated, in successive attempts to best estimate net survival and to satisfy the non-informative
censoring assumption. Throughout the decades the term ‘relative survival estimates’ was
used in all the literature, although the original aim of these three estimators was to quantify

net survival.

In 2012, Pohar-Perme et al. [77] laid out these three estimators examining their properties
and defining what quantity they were estimating. The authors concluded that none of
the three estimators was adequately estimating net survival and that the non-informative
assumption was not taken into account correctly. The authors proposed a new estimator
that takes into account the informative censoring using as weights the probability of each
patient remaining at risk of death in the general population. Subsequent work compared
the performance of the new ‘Pohar-Perme’ estimator with the previous three estimators
confirming the magnitude of the biases introduced by the latter ones [88]. The ‘Pohar-
Perme’ estimator became the current gold standard for non-parametric estimation of net

survival [89].

‘Pohar-Perme’ net survival estimates can be calculated for the whole cohort or stratified
by different levels of categorical variables using the R command relsurv [90] or the Stata
command stns [91]. Both interval-specific and cumulative probabilities of net survival can
be estimated for specific times or for the entire follow-up time defined. Non-parametric
estimates of the excess hazard can also be derived using the ‘Pohar-Perme’ estimator, but
the excess hazard is more commonly estimated using regression models as described in the

next section.
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2.4.2 Regression models for the excess hazard

Modelling time-to-event data offers the possibility of investigating the effect of multiple
prognostic factors (or covariates) on the form of the hazard function, as well as estimating
the hazard for an individual patient or group of patients [72]. The use of regression models
in the ‘classical survival' setting became widespread in medical research with the introduc-
tion of the popular Cox proportional hazards model [92], which in its semi-parametric form
quantifies hazard ratios without having to specify a parametric form for the baseline haz-
ard. Other regression models have since been proposed in the literature for survival data,
including fully parametric models, such as the widely used Weibull regression model and
other more flexible alternatives using high dimensional polynomials, as for example spline

functions or fractional polynomials [93-98].

Regression models for the excess hazard defined within the relative survival setting are based
on the additive decomposition of the total (or overall) hazard into two components: the
hazard due to the cancer of interest (the excess hazard) and the hazard due to all other
causes of death in the general population (the expected population hazard or background
mortality),

h(t) = he(t) + hp(t) (2.5)

where h(t) is the total or overall hazard at time t, hg(t) is the excess hazard due to the

cancer at time t and hp(t) is the general population hazard at time t.

Estéve et al. [81] introduced the first regression model for the excess hazard based on the
full-likelihood specification using individual survival time data. In its original formulation,
this model was proposed on the log-excess hazard scale with the baseline log-excess hazard
modelled as a piecewise constant (or step function). Several extensions and refinements
have been proposed both to the model on the log excess hazard scale [99], as well as
introducing models defined on the log cumulative excess hazard scale [100] and formulations
based on Generalised Linear Models [101]. The proposed models mainly allowed the non-
proportionality and non-linearity assumptions to be relaxed for covariates and interaction
terms, and the baseline excess hazard to be modelled with flexible functions to avoid the

clinically implausible jumps in the hazard imposed by a piecewise constant function. The
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most common flexible functions used in excess hazard modelling are splines, in particular
B-splines [99] and restricted cubic splines [100], although fractional polynomials have also

been proposed [102].

The next section will introduce three of the most common formulations for excess hazard
models: 1) the model formulated on the log-excess hazard scale; 2) the model formulated
on the cumulative log-excess hazard scale; and 3) a Generalised Linear Model (GLM)
formulation modelling the number of observed deaths using Poisson regression. These
three models will be used in the research presented throughout the thesis, and the choice
of models is related to the availability of ready-to-use software, both in Stata [103] and R
software [104], at the time the different analysis were performed. Before introducing each
of the models, we start by formulating the likelihood function for a generic excess hazard

model.

2.4.2.1 The likelihood function

Let (t;,x;,0;), i=1,..., n, t; > 0, denote a set of n time to event observations, measured
from the date of diagnosis of a cancer until death, with covariates x; and vital status
indicator §; (6,=0 if censored, §;=1 if death occurred). The likelihood function of the full

vector of parameters of interest 6 = (61, 62,03, ...) is written in generic terms as

L(6) = ﬁh(t,-,x,',e)é’.S(t,,x,-,B) (2.6)

i=1

where h(tj,x;,0) is the hazard function and S(t;,x;,0) is the survivor function for an

observation t;.

Considering only the individual contribution of observation t; to the log-likelihood, the

function can be written as

logL(0) = d;.1og(h(ti,x;,0)) + log(S(ti,x;,6)) (2.7)
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Using the following relationship between the survival function and the cumulative hazard

function as expressed in equation (2.3)
ti
log(S(ti, x;),0) = —H(ti,x;,0) = —/ h(u,x;,0)du (2.8)
0

and replacing equation (2.8) into equation (2.7), the contribution of observation t; to the

log-likelihood can be rearranged as
ti
logL(0) = ¢;.1og(h(t;,x;),0) —/ h(u,x;,8)du (2.9)
0

Considering the additive decomposition of the total hazard, h(t;, x;, 6), into the two com-

ponents as defined in equation (2.5)
h(ti, x;, 0) = he(ti, x;, 0) + hp(a; + ti, z;) (2.10)

where he(t, x;, 0) is the excess hazard function for an observation t; and hp(a; + t;, z;) is
the population hazard function for an observation t;, evaluated at the attained age at death
(or age at censoring): a; + t;, with a; the age at diagnosis and z; (z; C x;) a subvector of
covariates. The population hazard is assumed to be a known quantity, taken as the age-
specific mortality rates from population life tables, stratified as finely as possible according
to z;, possibly including, in addition to age at death (or censoring), gender and calendar

year, socio-economic status, ethnicity or region of residence [105].

Replacing equation (2.10) into equation (2.9), the log-likelihood can be rewritten entirely

(up to a constant) as a function of the excess hazard and the population hazard
ti
logL(0) o d&;.log[he(ti, x;,0) + hp(a; + t;, z;)] —/ he(u, x;,0)du (2.11)
0

Given that the population hazard hp(a; + tj, z;) is assumed to be a constant, inferences
based on equation (2.11) are made by specifying an appropriate model for the excess hazard

function hg(t;, x;,0).
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2.4.2.2 Modelling the log-excess hazard

Estéve et al. [81] proposed the first regression model on the log-excess hazard scale mod-
elling the baseline log-excess hazard as a piecewise constant step function. Several flexible
functions have since been proposed to extend this model [99, 106—109], which assumes a

multiplicative effect of the covariates on the baseline excess hazard (hg,(t)) as

he(t,x,0) = hg,(t).exp(6.x) (2.12)

The model for the logarithm of the excess hazard can be written in generic terms by taking

the logarithm of equation (2.12) as

log(he(t,x,0)) = log(hg,(t)) + 01.x1 + g1(x2) + g2(t) X3 + . .. (2.13)

where log(hg,(t)) is now the baseline log-excess hazard function; 61 is a linear and propor-
tional effect on the log-excess hazard of covariate x1; g1(x2) is a non-linear and proportional
effect of a continuous covariate x»; g»>(t) is a non-proportional (i.e. time-dependent) effect

of a covariate xs.

Options available to fit models on the log-excess hazard scale include the Stata com-
mand strel (for the original Estéve et al. model) [110], the Stata command strcs [111] and

the R command mexhaz [112].

2.4.2.3 Modelling the cumulative log-excess hazard

Flexible parametric regression models have been proposed within the ‘classical’ survival
setting by Royston and Parmar [96]. These models use restricted cubic splines to model the
baseline cumulative hazard and the smooth effect of covariates and interaction terms [113].
Restricted cubic splines are piecewise polynomials that join at points called internal knots.
They are restricted to be linear before the first knot and after the last knot to improve
fit in the tails of the distribution. The choice of the location of the internal knots is not
always intuitive, and a default location is often suggested based on the centiles of the event

distribution, without compromising the goodness of fit of the models [100].
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The model set-up is derived from a common parametrisation of the Weibull survival function
as follows. Considering

S(t) = exp(=At") (2.14)

with S(t) the survivor function for a Weibull distribution at time t and X\ and -y the scale

and shape parameters of the distribution, respectively.

Transforming equation (2.14) into the log cumulative hazard scale

In(H(t)) = In(—In(S(t))) = In(\) +~In(t) (2.15)

And adding a set of covariates (6.x) to the formulation, rearranges into

In(H(t,x,0)) = In(\) +yIn(t) + 0.x (2.16)

The Royston and Parmar model originates from this formulation by relaxing the assumption
that the log cumulative baseline hazard function (/n(X\) +y/n(t)) is linear on the log-time
scale, and by modelling it with a spline adding more flexibility to the model. The model is
re-written as

In(H(t,x,0)) = s(In(t)|y, kn) + 6.x (2.17)
where s(/n(t)|ry, kn) is a restricted cubic spline of In(t) and kn are the spline knots.

Nelson et al. [114] have extended the Royston and Parmar model to the relative survival

setting, by considering the decomposition of the total cumulative hazard as

HT(t) = Hnet(t) + Hexp(t) (2.18)

where H7(t) is the cumulative total hazard at time t, Hpet(t) is the cumulative excess

hazard at time t and Hexp(t) is the cumulative expected hazard.

The log cumulative excess hazard is model is formulated as

In(Hpet(t,x,0)) = so(In(t)|y, kn) + 6.x (2.19)



Chapter 2. Population-based cancer survival: overview of measures and estimators 19

where so(/n(t)|y, kn) is now the restricted cubic spline modelling the baseline cumulative

log-excess hazard function.

This model can be fitted using the Stata command stpm2 [100].

2.4.2.4 Modelling the excess hazard using Poisson regression

An alternative regression model for the excess hazard was proposed by Dickman et al.
[101] formulated as a generalised linear model (GLM) with a Poisson error structure for
the observed number of deaths [115] and a piecewise constant excess hazard. A lexis
expansion of the data is required at pre-specified cut-off points of the follow-up period into

i intervals. The number of deaths d; in each follow-up interval i is modelled defining

di ~ Poisson(u;) and wuj = \;y; (2.20)

t

with intensity u; defined by \; the excess hazard function for the /t/ interval and y; the

person-time at risk.

A dedicated link function proposed by Dickman et al. for the excess hazard formulation
[101] is incorporated as

log(ui — d) = log(y;) + 6.x (2.21)
where /og(y;) is the offset and d is the expected number of deaths in interval /.

This model can be fitted by first using the Stata commands stspl/it and strs [116] to perform
the lexis expansion and to calculate the number of deaths in each interval /, the expected

number of deaths and the person-time at risk, followed by the conventional g/m command.
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2.4.3 Estimation of net survival using excess hazard regression models

Excess hazard regression models as described in the previous sections can be used to
derive model-based estimates of net survival for the whole cohort. Danieli et al. [117]
have recommended that variables which can compromise the non-informative censoring
assumption should be included in the model formulation when the aim is to estimate net
survival. The main variables are those commonly defined in the cancer patient population
and in the population life-tables, such as age, socioeconomic status and other relevant

variables by which the life-tables are stratified.

After fitting an excess hazard model, post-estimation procedures are used to predict ‘indi-
vidual’ excess hazard functions for each observation. From these, and using the combined
equations (2.1) and (2.2), an ‘individual’ net survival function is derived for each observa-

tion as

Spet,(t) = exp(—/o he (u)du) (2.22)

where Spet, (t) is the net survival function for observation i and hg,(t) is the corresponding

excess hazard function for observation 1.

Net survival for the whole cohort, i.e. the marginal net survival function, is derived by

averaging the ‘individual’ net survival functions for all the observations in the cohort as
1 n
Snet(t) = — z; Spet (1) (2.23)
1=

where Spet(t) is the marginal net survival function for the whole cohort.

The same procedure can be used to derive marginal net survival for subgroups of the cohort

by averaging the ‘individual’ net survival functions within those subgroups.



Chapter 3

Data for population-based cancer

survival research

This chapter introduces the main sources of data available for cancer research and de-
fines the main variables of interest. Specific details regarding the extracts of data used

throughout this thesis are described in each of the relevant chapters.

3.1 Population-based cancer registration

Population-based cancer registration is an essential component of any cancer control pro-
gramme. The main function and responsibility of a cancer registry is to systematically
collect and classify information on all the cancers that occur within a well-defined pop-
ulation, also known as catchment area [118]. This procedure is well established in many
countries throughout the world and follows guidelines set by entities such as the Interna-
tional Agency for Research on Cancer (IARC), UICC and WHO to ensure the best quality
and completeness of information [119, 120]. The data collected is used in a wide range
of cancer control areas, from aetiological studies, primary and secondary prevention, to

planning, monitoring and evaluation of cancer services and outcomes [121].

21
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3.2 National Cancer Registration in England

In England, a regional cancer registration system covering the whole country started col-
lecting data in 1962. The National Cancer Registry, then based at the Office for National
Statistics (ONS) collated the regional datasets to compile a national cancer data repository
and performed strict data quality checks before the data were released for analysis. Since
2016, the National Cancer Registration system was transferred from the ONS to Public
Health England, that now maintains the National Cancer Registration and Analysis Ser-
vice (NCRAS) to the same level of excellence regarding data quality procedures. Annual
reports on cancer registration statistics, include performance indicators on data complete-
ness, proportion of Death Certificate Only (DCO) registrations, records with zero survival,

and proportion of cancers that are microscopically verified to ascertain their malignancy.

Cancer registration is a dynamic process. The data repository is regularly updated and
revised, by either adding missed cancer registrations, deleting errors or updating information
on existing cancer records as it becomes available. Since each patient can be diagnosed with
more than one cancer, the data repository is based on individual cancer records instead of
cancer patients. A multiple cancer identifier connects each patient to their multiple cancer
records. A new cancer registration can only be completed after a minimum of six months
following the date of diagnosis to allow treatment information to become available. In
England, the target to complete cancer registration for a given calendar year is within 12
months from the end of that year. DCO cases only have a date of death recorded and
miss a date of diagnosis to become a full cancer registration. These cases are excluded
from further analysis since a survival time cannot be calculated. Some DCO cases can
successfully be traced back to medical notes to retrieve a date of diagnosis, becoming a full
cancer registration flagged as Death Certificate Initiated (DCl). Such records are included
in further analysis. Cancer records for which the diagnosis occurred on the same day of
death are flagged as ‘true zero survival’. For these records a small amount of time, usually

a day, is added to their survival time in order to include them in survival analysis [122].



Chapter 3. Data for population-based cancer survival research 23

3.2.1 Data items collected

The National cancer registration service collects a minimum set of information for every
cancer registration, including patient demographics, tumour characteristics and type of
treatment. The data items collected include: postcode of residence, gender, date of birth,
date of cancer diagnosis, date of death, anatomic location (cancer site codes based on
the International Classification of Diseases (ICD) [123]), morphological type (morphology
codes based on the International Classification of Diseases for Oncology (ICD-O) [124]),
behaviour of tumour, multiple tumour indicator, site (laterality), tumour grade, death
certificate only indicator, treatment indicators (for surgery, radiotherapy, chemotherapy,
hormonal therapy and others) and stage of disease at diagnosis for selected cancers. This
minimum set of information collected for the whole cancer patient population aims to
maximise record completeness and greater accuracy. Information is obtained from several
sources, including hospital records, pathological reports, cancer treatment departments

and General Practitioners medical files.

Since 1971, the National Cancer Registry dataset is routinely linked to the National Health
Service Central Register (NHSCR), that updates every individual cancer record with infor-
mation about the vital status of patients, flagging them as alive, emigrated, dead or not
traced. During the 1970s and 1980s, over 96% of all registered cancer patients were suc-
cessfully traced through the NHSCR, reaching over 99.6% since the 1990s. This follow-up
procedure by electronic linkage is defined as passive follow-up. This contrasts with active
follow-up procedures in operation in other countries, where patients are followed-up by
direct contact, including phone calls and home visits. In settings were the recording of
deaths is statutory and data linkage with cancer data is authorised, passive follow-up is the

preferred follow-up method in cancer registration.

The Cancer Survival Group at the London School of Hygiene and Tropical Medicine holds
the complete cancer registry database for individual patients diagnosed in England between
1971-2014 and followed up until 2015. This database was available for the research pre-
sented in this thesis. Specific data extracts used will be described in each of the relevant

chapters.
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3.2.2 Derived variables

Additional variables are derived for each cancer record based on the information collected
in the cancer data repository. The two most relevant variables derived for this research are

socioeconomic status and health geographies as detailed below.

3.2.2.1 Socioeconomic status

The English cancer registry does not collect information regarding the individual socioe-
conomic status (or deprivation) of cancer patients. Instead, an ecological measure of de-
privation is allocated to each patient based on their postcode of residence at the time of
their diagnosis. Several deprivation indexes have been developed based on census or admin-
istrative data, including the Carstairs Deprivation Index, the Townsend Deprivation Index
and the Index of Multiple deprivation (IMD) [125-129]. Each cancer patient's record is
linked to the smallest possible geography at which each deprivation index is defined. Tak-
ing the income domain scores of the IMD as an example, patients are categorised into five
groups, from least deprived (category 1) to most deprived (category 5), according to the
quintiles of the national distribution defined at the Lower Super Output Area (LSOA) level
(~ 1,500 inhabitants). It has been shown that the choice of deprivation index has little
impact on differences in cancer survival by deprivation, and that it is more important that
the underlying geographies for which the indexes are defined are as small as possible to
provide a good proxy of the individual deprivation of patients [130, 131]. The Townsend
Deprivation Index is used for patients diagnosed between 1971 and 1986, the Carstairs
Deprivation Index for patients diagnosed between 1986 and 1995, and the IMD income

domain for patients diagnosed after 1996.
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3.2.2.2 Health geographies

Two sets of health geographies were used in this reseach: Primary Care Trusts (PCTs)
and Clinical Commissioning Groups (CCGs). Every cancer record was allocated to a PCT
and a CCG of residence at diagnosis based on that patients’ recorded postcode. The
2011 PCT configuration was used to map each cancer patient to one of the 152 PCTs
in England. Using the same procedure, patients were assigned to one of 211 CCGs in
England. A map of the CCGs configuration is shown in Figure 3.1. Several boundary changes
and mergers have occurred to health geographies in England over the years. CCGs officially
replaced PCTs from the 15 April 2013, so that in order to achieve consistency in the
geographical units over time, both the PCTs and CCGs boundaries were applied to all
the records, based on a combined historic postcode directory covering the entire period of

available data [132].

London

D London Region

Clinical Commissioning Groups in England

Figure 3.1: Map of the configuration of CCGs in England
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3.3 Additional data sources for cancer research

In the last decade many efforts have been made to augment cancer registration data with
information contained in several other electronic health databases. The two main sources
of data relevant for this research are Hospital Episodes Statistics (HES) [133] and National
Bowel Cancer Audit data (NBOCA) [134]. Individual cancer registration records have been
linked to HES and NBOCA data, and were available for patients diagnosed between 2006-
2013. HES is an administrative database that records information on all admissions, A&E
attendance and outpatient appointments at NHS hospitals in England. Data collected in-
cludes clinical information about diagnoses and surgical procedures, lengths of hospital stay
and information regarding where patients are treated. NBOCA is a collaborative project of
clinical audit for bowel cancer in England and Wales, jointly run by the Clinical Effective-
ness Unit at the Royal College of Surgeons, the Association of Coloproctology of Great
Britain and Ireland (ACPGBI) and NHS Digital. The audit aims to measure the quality of
care and outcomes of all patients diagnosed with bowel cancer in England and Wales, and
collects data on a range of items which have been identified as good measures of clinical

care [135, 136].

3.4 General population life-tables for cancer survival

Mortality hazards from causes other than the cancer of interest are estimated from life
tables of the general English population. They are available by single year of age, sex,
Government Office Region and deprivation category for each calendar year of death since
1971. These were constructed by the Cancer Survival Group [105, 137] and can be down-

loaded from the website https://csg.1lshtm.ac.uk/life-tables/ [137].


https://csg.lshtm.ac.uk/life-tables/

Chapter 4

An Index of Cancer Survival: a tool

for national and local monitoring

"... | believe it is also our job to constantly assess the impact of our activities. One thing |
learned from my previous life is this: what gets measured gets done." Dr. Margaret Chan,

former WHO Director-General

In this chapter we aimed to summarise and monitor survival for all cancers combined in
England at both national and local level (Research Aim 1). We propose a summary survival
indicator for all cancers combined based on a three-way standardisation technique. Two sets
of weights used in the estimation of the survival index are also presented, depending on the
geographical level of the analysis. The implementation of a modelling strategy using excess
hazard regression models is described to overcome the additional challenge of estimating
the individual cancer survival components needed for the index. Two applications of the
cancer survival index are presented: 1) the estimation of 40-year trends in the cancer
survival index at one-, five- and ten-years after diagnosis using patients diagnosed with
cancer between 1971-2011 in England, i.e. the estimation of the survival index at national
level; and 2) the estimation of 16-year trends in the cancer survival index at one-year after
diagnosis using patients diagnosed with cancer between 1996-2011 in each of the 211

CCGs in England, i.e. the estimation of the survival index at local level.

27
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4.1 Introduction

Statistics on population-based cancer incidence, mortality and survival are three of the
optimal indicators to monitor progress in cancer control efforts [8, 138]. In countries and
regions covered by good functioning cancer registries, such statistics are published on
a regular basis by government agencies and other official public bodies [7]. In England,
several sets of cancer statistics have been published, on a yearly basis, by the Office for
National Statistics (ONS) covering the 50-year period since the early 70s [139]. Statistical
reports of cancer survival, in particular, have been published in a variety of formats, as
for instance, survival for different cancer types and periods of diagnosis, stratified by age
groups, regions of residence or socio-economic status [140-142]. The large amount of
cancer survival indicators generated over the years have provided crucial baseline evidence
to monitor the effectiveness of cancer services in England. Despite the many indicators,
national cancer policy-makers, through informal communication with the Cancer Survival
Group [143], requested the creation of a new indicator that could summarise the patterns
of survival for all cancers combined in ‘one single number'. The indicator was envisioned
to become an instrumental monitoring tool at both national and local level. At national
level, to act as a surveillance tool of strategic value for the government’s policy. At local
level, to serve as a monitoring tool for health service managers, that reflects the outcome

of cancer care for patients resident in their areas of catchment.

4.2 Specifications for the development of the index

The new summary indicator of cancer survival was intended to provide a convenient single
number that could summarise the overall patterns of cancer survival in each country or
region, in each calendar year, for men and women, young and old, and for a wide range of
cancers with very different survival. It should reflect that survival for most cancers is either
stable or rising steadily from year to year [144]. Patterns of cancer occurrence by age, sex
and type of cancer can shift quite quickly over time, especially in small areas. The survival
indicator should also reflect real progress (or otherwise) by providing a summary measure

of cancer survival that adjusts for any such shifts. It was intended to change only if cancer
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survival itself actually changes. The term ‘index of cancer survival’ was chosen for the new
all-cancers survival indicator to distinguish it from survival estimates for individual cancers

and minimise the risk of misinterpretation.

4.3 Formulation of the index

The index of cancer survival is proposed as a weighted average of cancer survival for every

pre-specified combination of sex, age group at diagnosis and type of cancer, as

/CS(t) = Z Wi jk X S/J"k(t) (4.1)

i,k
where /CS(t) is the index of cancer survival at time t after diagnosis, S; j «(t) is the cancer
survival at time t for every combination of sex i (i=1,2), age group j (j=1,2,..., J) and
cancer type k (k=1,2,..., K), and w;j are the ‘sex-age-cancer’ specific weights, which

will be defined in the next sections.

The standard error for the index is given by the weighted average of the standard errors of

the sex-age-cancer specific survival, applying the same set of weights

se(ICS(t) = [>_ w2, x se(Sjk(t))? (4.2)
ik

Figure 4.1 shows the number of generic combinations of sex, age group and type of cancer

needed to estimate the survival index.
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Figure 4.1: Generic combinations needed for the estimation of the index of cancer
survival using sex i (i= 1, 2), age group j (j=1, 2,..., J) and cancer type k (k=1, 2,...,
K).
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4.4 Three-way standardisation technique

The index of cancer survival defined in equation 4.1 is based on a three-way standard-
isation technique. This approach is an extension to three factors of the classical age-
standardisation technique, commonly used when comparing survival between populations
[42, 145]. Such survival comparisons can be made within the same population at differ-
ent time points, or between different populations. Standardisation is needed because for
most cancers, the cancer-specific hazard is age-dependent so that when comparing survival
between two or more populations, with differential age distributions, the comparisons are
misled by the confounding effect of age. Unlike survival estimates that are based on data
pooled for all ages, age-standardisation will ensure that any differences in the age distribu-
tions between populations, or shifts over time within the same population, will not distort
the magnitude of the true differences in survival. In practice, this is achieved by applying
a common age distribution, through the use of standard age-weights to all the popula-
tions being compared. The most commonly used age-standardisation technique for cancer
survival outcomes is the direct method, defined as a weighted average of the age-specific

survival, as

n
AS(t) = w; x Si(t) (4.3)

i=1
where AS(t) is the age-standardised cancer survival at time t after diagnosis, S;(t) is the
cancer survival at time t for patients diagnosed in the it" age group, i=1,....,n, and w; is

the set of age-specific weights from a chosen standard cancer patient population.

The sets of age-specific weights used to standardise cancer survival, correspond to the pro-
portion of patients in each of the defined age groups from a selected standard cancer pa-
tient population. This differs from age-standardising incidence rates, which instead use the
proportion of individuals from general (not cancer-specific) populations [146, 147]. Several
sets of weights have been proposed in the literature for cancer survival age-standardisation,
ranging from weights derived from English cancer patient populations [42] to sets derived
from cancer cohorts used in international studies of survival [145, 148, 149]. The choice of

weights can be seen as arbitrary since the main purpose of standardisation is to access the
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differences in survival between populations and not to quantify the actual level of survival
in each population being compared. However, it is crucial that the same weights are ap-
plied to all the populations being compared to ensure valid comparisons. For all the sets of
weights, the sum of weights across all the age groups must add to one (unity) to maintain
the numerical consistency of the age-standardised survival estimates. This implies that an

estimate of survival is required for every age group for which the set of weights are defined.

The same standardisation principle was applied to implement the index of cancer sur-
vival. To make figures from the past comparable with those for today and in the future,
and between populations, it is necessary to adjust the survival index for changes over time
in the distribution of cancer patients by age, sex, and type of cancer within each popula-
tion. This is because survival varies widely with all three factors. Overall, cancer survival in a
given population can change simply because the distribution of its cancer patients changes,
even if survival at each cancer, age and sex combination has not changed. Standardisation

for all three factors minimises bias and improves the interpretability of the index.

An alternative approach is briefly discussed at the end of this Chapter.

4.5 Standard weights for the estimation of the index

Similarly to age-standardisation, all the values of the index, past and future, and between
populations, need to be adjusted using the same set of weights. In doing so, the cancer
survival index will not be affected by changes over time in the proportion of cancers of
different lethality in either sex - for example, a reduction in lung cancer or an increase in
breast cancer. The index will also be unaffected by a change in the age distribution of newly
diagnosed cancer patients, or a shift in the proportion of a given type of cancer between

men and women.

Since no adequate sets of weights were available in the literature, we have created two
sets of ‘sex-age-cancer’-specific weights to construct the survival index at different levels
of geographical aggregation. The first set was created to estimate the survival index for
England (i.e. at national level) and the second set to estimate the index for CCGs (i.e. at

local level). Both sets of weights were calculated using the same cohort of all adults (aged
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15-99 years) diagnosed with cancer in England and Wales during 1996-99 (using data for all
years combined). For this cohort of cancer patients, multiple cancers occurring in different
anatomical sites or in the same site were excluded to avoid that two or more cancer records

for the same patient were counted more than once.

The ‘sex-age-cancer’-specific weights were calculated as the proportion of patients in each
combination of sex, age group and cancer type. The first set contains 185 combinations

of sex (two groups), age (five groups) and cancer type (22 groups) defined as:

Sex
e Male

e Female

Age group
e 15-44 years
e 45-54 years
e 55-64 years
e 065-74 years
75-99 years

Cancer type e Myeloma
e Bladder e Non-hodgkin lymphoma (NHL)

e Brain e Oesophagus

e Breast (female only) e Ovary (female only)

e Cervix (female only) e Pancreas
e Colon

‘ e Prostate (male only)
e Hodgkin lymphoma

e Kidney e Rectum

e Larynx (male only) e Stomach

e | eukaemia e Testis (male only)

e Lung e Uterus (female only)

e Malignant melanoma e Other (all other cancers combined)

The five age groups chosen correspond to the age groups recommended by the International
Cancer Survival Standard to age-standardise population-based cancer survival [145]. Al-

though different groupings or more detailed age stratification could have been chosen,
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such as 5-year age groups, this would have inevitably increased the number of combina-
tions of sex, age and cancer type due with small number of cases and events, with a

potential impact on the estimation of cancer survival in each stratum.

The 22 cancer groups chosen, match the cancer types for which Official Statistics on
cancer survival are published in England [150]. These correspond to the 21 most com-
mon cancer types (approximately 90% of all the incident cancer cases), plus an additional
group combining all the remaining cancer types (mostly rare cancers) into one single group

denoted by "Other".

The ‘sex-age-cancer’-specific weights for the first set can be found in table 4.1.

Table 4.1: First set of ‘sex-age-cancer’-specific weights

Male Bladder 15-44 0.0006956
Male Bladder 45-54 0.0023960
Male Bladder 55-64 0.0066648
Male Bladder 65-74 0.0135838
Male Bladder 75-99 0.0157871
Female | Bladder 15-44 0.0002836
Female | Bladder 45-54 0.0007625
Female | Bladder 55-64 0.0019973
Female | Bladder 65-74 0.0044026
Female | Bladder 75-99 0.0077310
Male Brain 15-44 0.0017485
Male Brain 45-54 0.0016976
Male Brain 55-64 0.0021752
Male Brain 65-74 0.0023839
Male Brain 75-99 0.0012910
Female | Brain 15-44 0.0012816
Female | Brain 45-54 0.0009552
Female | Brain 55-64 0.0014087
Female | Brain 65-74 0.0018033
Female | Brain 75-99 0.0012548
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Sex Cancer type Age group | Weight

Female | Breast 15-44 0.0203422
Female | Breast 45-54 0.0394991
Female | Breast 55-64 0.0371995
Female | Breast 65-74 0.0322765
Female | Breast 75-99 0.0379968
Female | Cervix 15-44 0.0059946
Female | Cervix 45-54 0.0023144
Female | Cervix 55-64 0.0017418
Female | Cervix 65-74 0.0017016
Female | Cervix 75-99 0.0020829
Male Colon 15-44 0.0011023
Male Colon 45-54 0.0030582
Male Colon 55-64 0.0079584
Male Colon 65-74 0.0148707
Male Colon 75-99 0.0157817
Female | Colon 15-44 0.0010475
Female | Colon 45-54 0.0027906
Female | Colon 55-64 0.0060026
Female | Colon 65-74 0.0121523
Female | Colon 75-99 0.0211395
Male Hodgkin lymphoma 15-44 0.0019679
Male Hodgkin lymphoma 45-54 0.0004227
Male Hodgkin lymphoma 55-64 0.0003866
Male Hodgkin lymphoma 65-74 0.0003304
Male Hodgkin lymphoma 75-99 0.0001793
Female | Hodgkin lymphoma 15-44 0.0015639
Female | Hodgkin lymphoma 45-54 0.0002515
Female | Hodgkin lymphoma 55-64 0.0002354
Female | Hodgkin lymphoma 65-74 0.0002408
Female | Hodgkin lymphoma 75-99 0.0002167
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Sex Cancer type Age group | Weight

Male Kidney 15-44 0.0007264
Male Kidney 45-54 0.0019063
Male Kidney 55-64 0.0032883
Male Kidney 65-74 0.0045458
Male Kidney 75-99 0.0034327
Female | Kidney 15-44 0.0004669
Female | Kidney 45-54 0.0009405
Female | Kidney 55-64 0.0016267
Female | Kidney 65-74 0.0025043
Female | Kidney 75-99 0.0027411
Male Larynx 15-44 0.0002114
Male Larynx 45-54 0.0010836
Male Larynx 55-64 0.0020374
Male Larynx 65-74 0.0025284
Male Larynx 75-99 0.0017190
Male Leukaemia 15-44 0.0015304
Male Leukaemia 45-54 0.0012843
Male Leukaemia 55-64 0.0024093
Male Leukaemia 65-74 0.0038448
Male Leukaemia 75-99 0.0042622
Female | Leukaemia 15-44 0.0010970
Female | Leukaemia 45-54 0.0009766
Female | Leukaemia 55-64 0.0014194
Female | Leukaemia 65-74 0.0024040
Female | Leukaemia 75-99 0.0044227
Male Lung 15-44 0.0010448
Male Lung 45-54 0.0060160
Male Lung 55-64 0.0173830
Male Lung 65-74 0.0349266
Male Lung 75-99 0.0314002
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Sex Cancer type Age group | Weight

Female | Lung 15-44 0.0009351
Female | Lung 45-54 0.0041043
Female | Lung 55-64 0.0089912
Female | Lung 65-74 0.0197014
Female | Lung 75-99 0.0190432
Male Malignant melanoma 15-44 0.0023505
Male Malignant melanoma 45-54 0.0019893
Male Malignant melanoma 55-64 0.0022127
Male Malignant melanoma 65-74 0.0022715
Male Malignant melanoma 75-99 0.0018528
Female | Malignant melanoma 15-44 0.0038836
Female | Malignant melanoma 45-54 0.0027304
Female | Malignant melanoma 55-64 0.0024013
Female | Malignant melanoma 65-74 0.0025364
Female | Malignant melanoma 75-99 0.0029337
Male Myeloma 15-44 0.0002314
Male Myeloma 45-54 0.0006689
Male Myeloma 55-64 0.0013993
Male Myeloma 65-74 0.0023786
Male Myeloma 75-99 0.0024107
Female | Myeloma 15-44 0.0001405
Female | Myeloma 45-54 0.0004441
Female | Myeloma 55-64 0.0010475
Female | Myeloma 65-74 0.0018501
Female | Myeloma 75-99 0.0028776
Male NHL 15-44 0.0024802
Male NHL 45-54 0.0027224
Male NHL 55-64 0.0039170
Male NHL 65-74 0.0050621
Male NHL 75-99 0.0044815
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Sex Cancer type Age group | Weight

Female | NHL 15-44 0.0015277
Female | NHL 45-54 0.0020508
Female | NHL 55-64 0.0030327
Female | NHL 65-74 0.0042247
Female | NHL 75-99 0.0055906
Male Oesophagus 15-44 0.0004013
Male Oesophagus 45-54 0.0017659
Male Oesophagus 55-64 0.0035438
Male Oesophagus 65-74 0.0056775
Male Oesophagus 75-99 0.0057444
Female | Oesophagus 15-44 0.0001204
Female | Oesophagus 45-54 0.0005271
Female | Oesophagus 55-64 0.0012856
Female | Oesophagus 65-74 0.0030501
Female | Oesophagus 75-99 0.0060093
Female | Ovary 15-44 0.0029873
Female | Ovary 45-54 0.0046528
Female | Ovary 55-64 0.0061618
Female | Ovary 65-74 0.0068173
Female | Ovary 75-99 0.0063705
Male Pancreas 15-44 0.0003064
Male Pancreas 45-54 0.0010930
Male Pancreas 55-64 0.0024816
Male Pancreas 65-74 0.0038889
Male Pancreas 75-99 0.0040508
Female | Pancreas 15-44 0.000210
Female | Pancreas 45-54 0.0007104
Female | Pancreas 55-64 0.0016963
Female | Pancreas 65-74 0.0034541
Female | Pancreas 75-99 0.0060788
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Sex Cancer type Age group | Weight

Male Prostate 15-44 0.0000896
Male Prostate 45-54 0.0019598
Male Prostate 55-64 0.013870
Male Prostate 65-74 0.0372035
Male Prostate 75-99 0.0457439
Male Rectum 15-44 0.0007826
Male Rectum 45-54 0.0030434
Male Rectum 55-64 0.0073698
Male Rectum 65-74 0.0116212
Male Rectum 75-99 0.0102246
Female | Rectum 15-44 0.0007746
Female | Rectum 45-54 0.0020655
Female | Rectum 55-64 0.0036615
Female | Rectum 65-74 0.0064534
Female | Rectum 75-99 0.0101390
Male Stomach 15-44 0.0005579
Male Stomach 45-54 0.0017244
Male Stomach 55-64 0.0044347
Male Stomach 65-74 0.0092949
Male Stomach 75-99 0.0101457
Female | Stomach 15-44 0.0003585
Female | Stomach 45-54 0.0006020
Female | Stomach 55-64 0.0015518
Female | Stomach 65-74 0.0037993
Female | Stomach 75-99 0.0078929
Male Testis 15-44 0.0066206
Male Testis 45-54 0.0010448
Male Testis 55-64 0.0003371
Male Testis 65-74 0.0001391
Male Testis 75-99 0.0000883




Chapter 4. An Index of Cancer Survival: a tool for national and local monitoring 40

Sex Cancer type Age group | Weight

Female | Uterus 15-44 0.0006756
Female | Uterus 45-54 0.0030809
Female | Uterus 55-64 0.0063250
Female | Uterus 65-74 0.0064253
Female | Uterus 75-99 0.0056307
Male Other 15-44 0.0042260
Male Other 45-54 0.0061765
Male Other 55-64 0.0094527
Male Other 65-74 0.0123022
Male Other 75-99 0.0112467
Female | Other 15-44 0.0046073
Female | Other 45-54 0.0042314
Female | Other 55-64 0.0057712
Female | Other 65-74 0.0089484
Female | Other 75-99 0.0144118
all all all Sum=1

Similarly to age-standardisation, the sum of weights across all the specified combinations

must add to one (unity).

The second set of ‘sex-age-cancer’-specific weights contains a total of 35 combinations. The
groupings for sex and age at diagnosis are the same as defined in the first set, but the

groupings for cancer type are now only defined for:
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Cancer-type

e Lung

The ‘sex-age-cancer’-specific weights for the second set can be found in table 4.2.

Table 4.2: Second set of ‘sex-age-cancer’-specific weights

Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Male
Male
Male
Male
Male
Female
Female
Female
Female
Female
Male
Male
Male
Male

Breast (female only)

Other (all other cancers combined)

Breast
Breast
Breast
Breast
Breast
Colorectum
Colorectum
Colorectum
Colorectum
Colorectum
Colorectum
Colorectum
Colorectum
Colorectum
Colorectum
Lung

Lung

Lung

Lung

Lung

Lung

Lung

Lung

Lung

Colorectum (colon and rectum combined)

15-44
45-54
55-64
65-74
75-99
15-44
45-54
55-64
65-74
75-99
15-44
45-54
55-64
65-74
75-99
15-44
45-54
55-64
65-74
75-99
15-44
45-54
55-64
65-74

0.0203422
0.0394991
0.0371995
0.0322765
0.0379968
0.0018220
0.0048561
0.0096641
0.0186058
0.0312785
0.0018849
0.0061016
0.0153282
0.0264920
0.0260063
0.0009351
0.0041043
0.0089912
0.0197014
0.0190432
0.0010448
0.0060160
0.0173830
0.0349266
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Sex Cancer type | Age group | Weight

Male Lung 75-99 0.0314002
Female | Other 15-44 0.0251983
Female | Other 45-54 0.0252304
Female | Other 55-64 0.0377025
Female | Other 65-74 0.0541625
Female | Other 75-99 0.0762451
Male Other 15-44 0.0241442
Male Other 45-54 0.0279354
Male Other 55-64 0.0586106
Male Other 65-74 0.1054354
Male Other 75-99 0.1124360

all

all

all

Sum=1
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4.6 Application: Index of cancer survival for England and CCGs

For England, an index of cancer survival was estimated for all adult patients (aged 15-99
years) diagnosed between 1971 and 2011 and followed up to the end of 2012. The index
was estimated at one-, five-, and ten-years after diagnosis for six selected periods: 1971-72,

1980-81, 1990-91, 2000-01, 2005-2006 and 2010-11.

For CCGs, an index of cancer survival was estimated for each of the 211 CCGs, including all
adult patients (aged 15-99 years) diagnosed between 1996-2011. The index was estimated

at one-year after diagnosis for every calendar year between 1996 and 2011.

For both indexes, multiple cancers occurring in different anatomical sites or in the same site
were excluded to avoid that two or more cancer records for the same patient contributed

to the survival analysis.

4.6.1 Estimation of the individual index components

Constructing the indexes of cancer survival requires the estimation of several individual
components. These are the estimates of cancer survival for each combination of sex, age
group at diagnosis and cancer type. The total number of combinations and thus survival
estimates needed for each index, depends on the groupings chosen for the three factors. To
estimate the index for England the groupings defined for the first set of weights were
used (Table 4.1). These correspond to a total of 185 ‘sex-age-cancer’ combinations and
use as cancer-type groupings the 21 most common cancer types as published by official
statistics on cancer outcomes indicators [141]. For this set of weights all the other remaining
cancers types are combined into one group called ‘other cancers’. To estimate the index
for each CCG, the groupings that define the second set of weights were chosen (Table
4.2). These groupings add up to a total of 35 ‘sex-age-cancer’ combinations, less than
the 185 combinations used in the first set of weights. This reduction in the number of
combinations, tries to minimise the potential number of missing ‘sex-age-cancer’ survival
estimates, that can arise due to the smaller number of cases and events occurring in each

of the 211 CCGs compared to the whole of England.
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4.6.2 Developing a modelling strategy for the estimation of net survival

Flexible parametric excess hazard regression models (as defined in equation 2.19) were
used to estimate the required net survival components to construct the two indexes using

the user-written command stpm2 [100] in Stata software [103].

For both indexes, models were fitted separately for men and women, and for each cancer
type (some of which are gender-specific as shown in tables 4.1 and 4.2). This added to a
total of 37 regression models that needed to be fitted for the England index and to 1,477

models for the CCG index (modelling 7 gender-specific cancer groups for 211 CCGs).

This large number of models (1,514 in total for the two indexes) made model fitting
a cumbersome task to be undertaken. Making it in particular challenging to use classical
model selection approaches to fit each model ‘manually’ with stepwise selection procedures
[151]. After some consideration, we have decided that the best approach to overcome this
challenge was to develop a ‘semi-automated’ modelling strategy. For this purpose, we
wrote a Stata algorithm that fits up to eight candidate flexible parametric survival models
using stpm2 [100]. All the models include age and year of diagnosis as main effects to
enable the estimation of net survival by age group and year (or period) of diagnosis. For
each fitted model, the algorithm tests non-linear and non-proportional effects, and inter-
action terms and chooses the best fitting model based on the Akaike Information Criterion
(AIC) [152]. After the best fitting model is chosen, the algorithm proceeds to the post-

estimation prediction of net survival for all the components of the indexes.

Complete details regarding the development and implementation of this algorithm, including
model set-up, choice of splines, model selection and post-estimation of net survival are

described in the next few sections.

4.6.3 Model set-up

Age and year of diagnosis were included in all the models as main effects. The inclusion of
age at diagnosis in the models allowed for the non-informative censoring process to be taken

into account in the estimation of net survival as mentioned in Chapter 2. Restricted cubic
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splines were used to model any potential non-linear effects of age and year of diagnosis, and
of the interaction between age and year. The baseline log-cumulative excess hazard was
also modelled using restricted cubic splines. To account for potential non-proportionality
of the excess hazards over time, interactions were considered between follow-up time and

age, year, and the interaction between age and year.

Background mortality rates were obtained from English life tables stratified by single year
of age, sex, region of residence and deprivation category, for every calendar year. For the
England index, national or regional life-tables were used for the 2.8% of patients who could
not be assigned to a specific deprivation category or region; almost all of these patients

were diagnosed in the 1970s (85%) or 1980s (14%).

Seven candidate models were specified a priori on the log-cumulative excess hazard scale
for both indexes. An additional and simpler model was defined for the CCG index. These
candidate models were defined based on our previous experience in modelling cancer sur-

vival. The models can be formally written as:

Model 1 (M1) Non-linear and non-proportional effects of age and year of diagnosis, and

a non-linear and non-proportional interaction between age and year of diagnosis

In(Hpet(t|age, year)) = so(In(t)|kno) + f(age) + s(In(t)lknage).f(age) + g(year)
+ s(In(t)|knyear).g(year) + I(age.year)

+ s(In(t)|knage.year).l(age.year)
(4.4)

Model 2 (M2) Non-linear and non-proportional effects of age and year of diagnosis, and

a non-linear interaction between age and year of diagnosis

In(Hnet(tlage, year)) = so(In(t)[kno) + f(age) + s(In(t)[knage).f(age) + g(year)

+ s(In(t)|knyear).g(vear) + I(age.year)
(4.5)
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Model 3 (M3) Non-linear and non-proportional effects of age and year of diagnosis

In(Hnet(tlage, year)) = so(In(t)|kno) + f(age) + s(In(t)|knage).f(age) + g(year)

+ s(In(t)|knyear).g(year)
(4.6)

Model 4 (M4) Non-linear and non-proportional effects of age and non-linear year of di-

agnosis

In(Hnet(tlage, year)) = so(In(t)[kno) + f(age) + s(In(t)[knage).f(age) + g(year)
(4.7)

Model 5 (M5) Non-linear and non-proportional effect of age and a linear and proportional

year of diagnosis

In(Hpet(tlage, year)) = so(In(t)|kno) + f(age) + s(In(t)|knage).f(age) + year
(4.8)

Model 6 (M6) Linear effect of age and year of diagnosis and non-proportional effect of

age

In(Hpet(tlage, year)) = so(In(t)|kno) 4+ age + s(In(t)|knage).age + year
(4.9)

Model 7 (M7) Non-linear effects of age and year of diagnosis, and a non-proportional
effect of year of diagnosis and a non-proportional interaction between age and year

of diagnosis

In(Hnet(tlage, year)) = so(In(t)|kno) + f(age) + g(year) + s(In(t)|knyear).g(year)

+ s(In(t)|knage.year).(age.year)
(4.10)

And the additional model for the CCG index,

Model 8 (M8) Non-linear effects of age and year of diagnosis, and a linear and non-

proportional effect of the interaction between age and year of diagnosis
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In(Hpet(tlage, year)) = so(In(t)|kno) + f(age) + g(year) + age.year+ (411)
4.11

+ s(In(t)|knage.year).(age.year)
where,
e In(Hpet(t|age, year)) is the log-cumulative excess hazard to be modelled.

e so(/n(t)|kng) is the non-linear effect of the baseline log-cumulative excess hazard,
In(t) is the logarithm of time after diagnosis and kng is the number of knots for the

spline.
e f(age) is the non-linear effect of age at diagnosis.

o s(In(t)|knage).f(age) is the non-proportional (and non-linear) effect of age at diag-

nosis.
e g(year) is the non-linear effect of year of diagnosis.

e s(In(t)|knyear).g(year) is the non-proportional (and non-linear) effect of year of di-

agnosis.

e /(age.year) is the non-linear effect of the interaction between age and year of diag-

nosis.

o s(In(t)|knageyear).1(age.year) is the non-proportional (and non-linear) effect of the

interaction between age and year of diagnosis.
e age is the linear effect of age at diagnosis.
e year is the linear effect of year of diagnosis.
e age.year is the linear effect of the interaction between age and year at diagnosis.

e s(/n(t)|knage).age is the non-proportional (and linear) effect of age at diagnosis,

knage 1s the number of knots for the splines on age at diagnosis.

o s(In(t)|knageyear)-(age.year) is the non-proportional (and linear) effect of the in-
teraction between age and year of diagnosis, knage year is the number of knots for

the splines on the interaction.
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4.6.4 Selecting the number and location of spline knots

The Stata command rcsgen [153] was used to create restricted cubic splines to model the
non-linear effects of age and year of diagnosis, of the interaction between age and year, and
of the baseline log-cumulative excess hazard function. These types of splines are restricted
by construct to be linear before the first knot and after the last knot. The knots that can
be specified are called ‘internal knots’ and are equal to the number of degrees of freedom
minus 1. They can be defined in two ways: either by setting the number of knots so that
the exact knot location will be at the corresponding percentiles of the distribution, or by

choosing the exact knot location at given values of the distribution [97].

For both the national and local indexes, three knots (with four degrees of freedom) were
chosen to model the baseline log-cumulative excess hazard. The knots were defined at the
25th 50th and 75t percentiles of the distribution. For both the non-linear effect of year
of diagnosis and the interaction term between age and year, two knots (with three degrees

of freedom) were defined at the 33" and 66!" percentiles of the distribution.

The knot locations for the splines modelling the non-linear effect of age at diagnosis were
chosen separately for each cancer type. This is because the effect of age on the excess
hazard is different according to the type of cancer and therefore different shapes for the
splines modelling those effects are needed. Exact knot locations were chosen based on the
histograms of the age distribution of each cancer and on previous knowledge about the

general effect of age on the cancer-specific excess hazards.
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The knot locations chosen for the England index are,

Cancer type Knot location (age at diagnosis)
testis 15 35 99

leukeamia 15 45 75 99

hodgkin lymphoma 15 25 65 99

cervix, melanoma 15 35 65 99

brain, ovary 15 40 65 99

breast, colon, uterus, NHL 15 50 70 99

(bladder, kidney, larynx, myeloma, oesophagus 15 65 99

prostate, rectum, stomach, other cancers)

lung, pancreas 15 40 65 75 99

Table 4.3: Location of knots for the spline on age at diagnosis for the England index

The knot locations chosen for the CCG index are,

Cancer type Knot location (age at diagnosis)
breast, colorectum 1550 70 99
lung, other cancers 15 65 99

Table 4.4: Location of knots for the spline on age at diagnosis for the CCG index

4.6.5 Model selection using the Akaike Information Criterion

The model set-up specified in section 4.6.3 was implemented in Stata for both indexes. For
the England index, seven models were run for each of the 37 combinations of sex and
cancer grouping, adding to a total of 259 models. For the CCG index, eight models were
run for each of the 1,477 combinations of CCG, sex and cancer grouping, adding to a
total of 11,816 fitted models. The best-fitting model was chosen as the one with the
smallest value of AIC for each of the relevant combinations of ‘England-sex-cancer-type’

or ‘CCG-sex-cancer-type'.
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4.6.6 Post-estimation of net survival

After the best fitting models were selected, the Stata post-estimation command predictnl,
with the option meansurv, was used to calculate net survival for every component of the
index. This command is compatible with the stpm2 [100] post-estimation in Stata and it

implements the following steps:

Step 1 A cumulative survival function is derived for each observation in the dataset us-
ing the Maximum Likelihood (ML) parameter estimates and the expression for the

survivor function defined in equation (2.2).

Step 2 The individual survival functions are averaged to derive net survival for each com-
bination of sex, age group and cancer-type and for each year (or period) of diag-
nosis. The averaging includes all the patients that fall within each of the relevant

combinations.

Step 3 Standard errors and 95% confidence intervals are obtained for each estimated net

survival function using the Delta method [154].

Stata code for the implementation of the national and the local indexes is provided in

Appendix A.

4.6.7 Dealing with model non-convergence

For every cancer-sex combination for which none of the candidate models converged, mod-
els were refitted individually, adjusting the number and location of spline knots for each
of the effects being modelled. If models still did not converge, for a particular cancer-sex
combination in a given CCG, the missing estimate was replaced by the equivalent estimate
for England for the same cancer-sex combination. For models that did converge, but for
which the post-estimation did not provide an estimate of net survival for a specific combi-
nation of sex, age group and cancer, the post-estimation was re-run using a merged age
group that was then used to replace the missing age group estimate. For example, if an

estimate was missing for the 15-44 age group, the post-estimation was re-run using a new
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age group ‘'15-54" (merging the ‘15-44" age group with the adjacent '45-54" age group)

and the re-estimated survival was used for the missing age group.

4.6.8 Combining the individual components of the index

The index of cancer survival is calculated by combining the individual net survival compo-
nents through the weighted average formula defined in equation (4.1). The indexes can be
calculated for several years (or periods) of diagnosis and for specific times after diagnosis,
such as one-, five- or ten- years after diagnosis. Standard errors can be calculated for each

of the estimated indexes using equation (4.2).

4.6.9 Results 1: Index of cancer survival for England [1]

The results of the index for England have been peer-reviewed and published in the The
Lancet [1]. This is the first research publication of this PhD. The original article is inserted
at the end of this section. The article also presents trends in age-sex adjusted survival for
each cancer and analysed the absolute change (%) in the age gap in survival since 1971. For
comparative purposes, equivalent cancer patients data from the Welsh Cancer Intelligence
& Surveillance Unit, was also used to construct an index of cancer survival for Wales. A

summary of model convergence and of the main index estimates is presented below.

Table 4.5 presents an overview of the patterns of model convergence for the 7 models that
were fitted for each cancer-sex combination for the England index. The models that con-
verged for each combination are indicated by the symbol ‘x" and the last column indicates

the best fitting model selected based on the smallest value of the AIC.
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Table 4.5: Models run for each cancer-sex combination (M1-M7, in the same order as

specified in section 4.6.3); converged models marked wit ‘x’; and best model selected

Cancer type Sex M1 M2 M3 M4 M5 M6 M7 Model selected
hodgkin lymphoma male X X X X X X M2
hodgkin lymphoma female X X X X X X X M1
non-hodgkin lymphoma  male X X X X X M2
non-hodgkin lymphoma  female X X X X X X M2
bladder male X X X X X M2
bladder female X X X X M4
brain male X X X X X X X M1
brain female X X X X X X X M1
breast female X X X X X X X M1
cervix female X X X X X X M2
colon male X X X X X X M2
colon female X X X X X X X M1
kidney male X X X X X X X M1
kidney female X X X X X X X M1
larynx male X X M6
leukaemia male X X X X M2
leukaemia female X X X X X X X M1
lung male X M7
lung female X X X X X M2
melanoma male X X X X X X X M1
melanoma female X X X X X X M2
myeloma male X X X X X X X M1
myeloma female X X X M1
oesophagus male X X X X M2
oesophagus female X X X X X X X M1
others male X X X X X X X M1
others female X X X X X X X M1
ovary female X X X X X X M2
pancreas male X X M7
pancreas female X X X X X X X M1
prostate male X X X X X M2
rectum male X M6
rectum female X X M6
stomach male X X X X X X M2
stomach female X X X X X X M2
testis male X M6
uterus female X X X X X X X M1
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Table 4.6 provides a summary of the number of times each of the 7 candidate models were
selected for all the cancer-sex combinations as shown in Table 4.5. Model 1 and Model 2,
the two most complex candidate models, were selected as best fitting models for 81% of
cancer-sex combinations, whilst Model 6, the simplest model, was the third most selected
for 11% of the combinations. This mostly occurred when Model 6 was the only, or one of

the few models, to converge for that particular cancer-sex combination.

Candidate model No. of times selected %

Model 1 16 43.2
Model 2 14 37.8
Model 3 0 0.0
Model 4 1 2.7
Model 5 0 0.0
Model 6 4 10.8
Model 7 2 5.4

Table 4.6: England index: summary of best fitting models
for all the cancer-sex combinations

For every cancer-sex combination, there was at least one model (out of the seven candidate
models) that converged and that could be used in the post-estimation procedure. No miss-

ing estimates occurred during the estimation of net survival for each of the components.

The index of cancer survival for England increased substantially at one-, five- and ten-years
after diagnosis between 1971 and 2011 (Figure 4.2). The index was estimated at 50% at
one year after diagnosis for patients diagnosed in 1971-72. For patients diagnosed during
2005-2006, the index was 50% at five years after diagnosis, and for patients diagnosed
during 2010-2011, we predicted that the index would reach 50% at ten years after diag-
nosis. Estimates are shown as percentages (0-100) since this is the most common scale
cancer survival estimates are presented but they refer to survival probabilities taking values

between 0 and 1.
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Figure 4.2: Trends in the index of net survival for all cancers combined in England

Figure 4.3 presents scatter plots of 1-year, 5-year and 10-year net survival adjusted for

age and sex for each cancer in 2010-11, and the absolute change since 1971 for all adult

patients (aged 15-99) diagnosed in England. The absolute change was calculated as the

simple arithmetic difference between net survival in 2010-11 and the survival in 1971.
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absolute change since 1971, England: 1, 5, and 10 years after diagnosis
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Survival for both sexes combined varied widely for different cancers, with the most re-
cent predicted 10-year net survival adjusted for age and sex ranging from only 1,1% for

pancreatic cancer to 98,2% for testicular cancer.

We were able to group visually the 21 most common cancers into three broad clusters on the
basis of their survival level. These clusters were identifiable as early as 1 year after diagnosis
and they were consistent at 5 and 10 years after diagnosis. The first cluster includes cancers
with a good prognosis: survival is very high in 2010-11 after a large increase in survival
since 1971-72 at 1, 5, and 10 years. It includes cancers of the breast, prostate, testis,
and uterus, and melanoma and Hodgkin's disease. 1-year survival seems to have reached
a ceiling for most of these cancers, but 5- and 10-year survival is still much lower than 1
year for cancers of the breast, uterus and Hodgkin's disease. The second cluster includes
cancers with a moderate level of survival (64-84%) in 2010-11. This cluster includes a
mix of cancers for which survival either has remained moderate since the 1970s (larynx,
cervix, bladder and ovary), or moderate levels of survival in 2011 that are the result of large
improvements during the past 40 years (rectum, colon, kidney, non-Hodgkin lymphoma,
multiple myeloma, and leukaemia). The third cluster includes cancers with very low survival
in 2010-11, for which little or no improvement has occurred in the past 40 years: this group

consists of cancers of the brain, stomach, lung, oesophagus, and pancreas.

These findings support substantial increases in both short-term and long-term net survival
from all cancers combined in England. They also highlight individual cancer types for which
prognosis remains very poor, at 5- and 10-years after diagnosis particularly. The index of
net survival provides one convenient number that summarises the overall patterns of cancer
survival in any one population, in each calendar period, for young and old men and women
and for a wide range of cancers with very disparate survival. It was designed as a public
health measure to help assess progress in the overall effectiveness of the health system
in diagnosis and management of patients with cancer. The index should nevertheless be
interpreted in conjunction with other information available in the population for which the
index has been prepared. It should be seen as a guide to raise questions about the potential

for improvement.
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Summary

Background Assessment of progress in cancer control at the population level is increasingly important.
Population-based survival trends provide a key insight into the overall effectiveness of the health system, alongside
trends in incidence and mortality. For this purpose, we aimed to provide a unique measure of cancer survival.

Methods In this observational study, we analysed trends in survival with population-based data for 7 -2 million adults
diagnosed with a first, primary, invasive malignancy in England and Wales during 1971-2011 and followed up to the
end of 2012. We constructed a survival index for all cancers combined using data from the National Cancer Registry
and the Welsh Cancer Intelligence and Surveillance Unit. The index is designed to be independent of changes in the
age distribution of patients with cancer and of changes in the proportion of lethal cancers in each sex. We analysed
trends in the cancer survival index at 1, 5, and 10 years after diagnosis for the selected periods 1971-72, 1980-81,
1990-91, 2000-01, 2005-06, and 2010-11. We also estimated trends in age-sex-adjusted survival for each cancer. We
define the difference in net survival between the oldest (75-99 years) and youngest (15-44 years) patients as the age
gap in survival. We evaluated the absolute change (%) in the age gap since 1971.

Findings The overall index of net survival increased substantially during the 40-year period 1971-2011, both in England
and in Wales. For patients diagnosed in 1971-72, the index of net survival was 50% at 1 year after diagnosis. 40 years
later, the same value of 50% was predicted at 10 years after diagnosis. The average 10% survival advantage for women
persisted throughout this period. Predicted 10-year net survival adjusted for age and sex for patients diagnosed
between 2010 and 2011 ranged from 1-1% for pancreatic cancer to 98-2% for testicular cancer. Net survival for the
oldest patients (75-99 years) was persistently lower than for the youngest (15-44 years), even after adjustment for the
much higher mortality from causes other than cancer in elderly people.

Interpretation These findings support substantial increases in both short-term and long-term net survival from all
cancers combined in both England and Wales. The net survival index provides a convenient, single number that
summarises the overall patterns of cancer survival in any one population, in each calendar period, for young and old
men and women and for a wide range of cancers with very disparate survival. The persistent sex difference is partly
due to a more favourable cancer distribution in women than men. The very wide differences in survival for different
cancers, and the persistent age gap in survival, suggest the need for renewed efforts to improve cancer outcomes.
Future monitoring of the cancer survival index will not be possible unless the current crisis of public concern about
sharing of individual data for public health research can be resolved.

Funding Cancer Research UK.
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Introduction

Cancer is an increasing public health concern, shown by
substantial investments in human and financial
resources for cancer management since the late 1990s.
Health policy measures have focused on improvement of
the organisation and delivery of services for prevention,
diagnosis, and treatment. Research has provided the
evidence base for these policies and is increasingly used
to assess their effect.”” The assessment of progress in
cancer control has become crucial. Population-based
cancer survival trends provide a key insight into the
overall effectiveness of the health system, alongside
incidence and mortality.®

In this population-based survival study, we analysed
cancer survival trends during the past four decades in
England and Wales using two metrics: an index of
survival for all cancers combined, and survival for each
cancer, adjusted for age and sex. The all-cancers survival
index was designed to provide one summary measure
of cancer survival that can be monitored over time to
show the overall progress in the effectiveness of the
health-care system. It was also designed to support
assessment of the effect of earlier diagnosis, which is a
key component of the National Awareness and Early
Diagnosis Initiative.”™ Trends in survival for individual
cancers will underline those cancer types for which
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there has been progress and those for which prognosis
has remained poor.

Methods

Study design

Survival varies very widely with the age and sex of a
patient with cancer and with the type of cancer. The
frequency of different cancers is also changing over time:
some cancers with poor prognosis, such as stomach and
lung cancer, have become less common, whereas breast
cancer in women, for which survival has been improving,
has become more common. These trends can differ
between the sexes: lung cancer has become much less
common in men, but more common in women. The age
profile of patients with cancer also changes over time,
and these trends can differ between cancers. To enable
valid assessment of survival trends for all cancers
combined, the survival index must therefore take account
of changes over time in the distribution of age, sex, and
cancer type in all patients with cancer, especially over
periods as long as 40 years. Similarly, trends in survival
for each cancer must be adjusted for changes over time
in the age (and sex) profile of patients with cancer.

Data sources

We examined survival trends in 7176795 adults (aged
15-99 years) diagnosed with a first, primary, invasive
malignancy in England and Wales during 1971-2011, and
followed up to Dec 31, 2012 (table 1). Data for England
were obtained from the National Cancer Registry at the
Office for National Statistics” and for Wales from the
Welsh Cancer Intelligence and Surveillance Unit. Patients
diagnosed with a malignancy of the skin other than
melanoma were excluded. Since 1971, the National Health
Service Central Register has routinely updated these
individual cancer records with information about each
patient’s vital status (alive, emigrated, dead, or not traced).
The vital status at Dec 31, 2012, was known for 98-4% of
these patients. During the 41-year period, 4-3% of all
cancer registrations were for the patient’s second-order or
higher-order tumour: in the analyses for all cancers
combined, the higher-order cancers were not included.

Statistical analysis

The all-cancers survival index was constructed as a
weighted average of the survival estimates for every
combination of age group at diagnosis (1544, 45-54,

ICD-10 code*  England Wales
Women Men Women Men
Number % Number % Number % Number %
Oesophagus C15 67474 2:0% 106793 31% 4953 23% 6857 31%
Stomach 16 115294 3:4% 194333 57% 8627 4-0% 14299 6-5%
Colon 18 292352 87% 271220 8:0% 17711 83% 17736 81%
Rectum C19-C21 143610 4-3% 204363 6-0% 9731 4-5% 14358 6-6%
Pancreas 25 92631 2-8% 93450 2:7% 5868 27% 6014 27%
Larynx (men) 32 52618 1.5% . - 3529 1.6%
Lung 33,034 349711 10-5% 751958 22:1% 21027 9-8% 45601 20-8%
Melanoma 3 97627 2.9% 72743 21% 5429 2:5% 4372 2:0%
Breast (women) C50 1039609 311% 65370 30-6%
Cervix (53 117404 3:5% 8272 3:9%
Uterus (54, C55 160539 4-8% 10836 51%
Ovary (56, C57.0-7 172400 52% - 11051 52%
Prostate 61 638111 18-8% 41559 19-0%
Testis 62 48031 1-4% - - 2743 13%
Kidney C64-C66,C68 53197 1-6% 89986 2:6% 3431 1.6% 5804 2:6%
Bladder 67 90204 27% 239621 7:0% 5897 2:8% 15962 7:3%
Brain 71 41952 13% 59192 1.7% 2832 1-3% 3786 1.7%
Hodgkin’s disease 81 19114 0-6% 26714 0-8% 1145 0-5% 1675 0-8%
Non-Hodgkin lymphoma ~ C82-C85 99752 3-0% 114269 34% 5630 2:6% 6320 2-9%
Myeloma €90 43446 13% 48136 1-4% 2805 13% 3041 1-4%
Leukaemia (C91-C95 70760 2:1% 92917 2:7% 4686 22% 6112 2-8%
Other cancerst 275408 82% 296794 87% 18624 87% 19369 8-8%
Total - 3342484 100-0% 3401249 100-0% 213925 100-0% 219137 100-0%
*Tenth revision of the International Classification of Diseases (ICD): malignancies were initially coded according to the ICD revision in use during the year of diagnosis—ie, ICD
8 (1971-78), 9 (1979-95), or 10 (1996-). tOther cancers: all other malignant tumours are combined; they also include laryngeal cancer in women and breast cancer in men.
Table 1: Number of patients (aged 15-99 years) included in analyses in England and Wales diagnosed from 1971 to 2011 and followed up to 2012, by
sex and type of malignancy
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55-64, 65-74, and 75-99 years), sex (male and female), and
type of cancer (the 21 most common malignancies are
shown in table 1 and all other malignant tumours are
combined). The weights used were the proportion of
patients with cancer diagnosed in England and Wales
during 1996-99 in each of the 185 combinations of age
group, sex, and type of cancer. We also constructed the all-
cancers survival index separately for males and females
and estimated survival adjusted for age and sex by cancer.

Net survival index (%)

Net survival index (%)

Net survival index (%)

100

Alladults, England
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Figure 1: Trends in the index of net survival for all cancers combined, for England and for Wales: all adults
(15-99 years), men, and women, selected periods during 1971-2011
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Net survival was used as the cancer survival measure
for each component of the indexes. Net survival
quantifies the survival after taking account of death from
other causes (background mortality). All patients were
allocated a deprivation category defined according to
their Lower Super Output Area (mean population about
1500) of residence at the time of cancer diagnosis. Life-
tables were used to take account of the wide variation in
background mortality by age, sex, deprivation, region,
and over time. For this study, separate life-tables were
created for England and Wales by single year of age, sex,
deprivation category, and (in England) region of
residence, for every calendar year between 1971 and
2012." National or regional life-tables were used for the
2-8% of patients diagnosed in England (2-6% in Wales)
who could not be assigned to a specific deprivation
category or (in England) region; almost all of these
patients were diagnosed in the 1970s (85% in England,
55% in Wales) or 1980s (14% England, 44% Wales).

We used flexible multivariable parametric excess
hazard models** to estimate net survival up to 10 years
after diagnosis for each nation, and for each stratum
defined by cancer, sex, age group, and calendar period.
The models included age and year of diagnosis as main
effects, modelled on a continuous scale with restricted
cubic splines, to account for potential non-linear excess
(cancer-related) hazards. Interactions between age and
year of diagnosis, year of diagnosis and follow-up time,
and age and follow-up time were assessed to deal with
potential variation of the excess hazard with time since
diagnosis. The best-fitting models were chosen as those
with the smallest Akaike Information Criterion." Net
survival curves were estimated for each individual from
these models according to their age and year of diagnosis.
We obtained net survival estimates for each cancer and
sex by averaging of individual net survival curves, over all
ages and years of diagnosis within each age group and
calendar period. In view of the fact that the models
included the year of diagnosis as a continuous variable,
we were able to predict survival up to 10 years after
diagnosis, even for the patients diagnosed most recently
(ie, 2010-11). All models were fitted with the STATA
command stpm2 using STATA 13.1.7*

We included all patients diagnosed during the
40 years from 1971 to 2011 in the models to estimate
survival trends, but we report estimates for each cancer
survival index at 1, 5, and 10 years after diagnosis only
for six selected periods of diagnosis: 1971-72, 1980-81,
1990-91, 2000-01, 2005-06, and 2010-11. We define the
difference in net survival between the oldest
(75-99 years) and youngest (15-44 years) groups as the
age gap in survival. We provide a simple summary of
changes in survival by age as the absolute change (%) in
the age gap since 1971. A negative value for this change
means that the age gap has become wider. For Wales,
reliable estimates of net survival could not be obtained
for 11-5% of the age-sex-cancer combinations because

www.thelancet.com Vol 385 March 28, 2015



Articles

1971-72 1980-81 1990-91 2000-01 2005-06 2010-11 (prediction)

lyear  Syears 10years 1lyear  5Syears 10years 1year 5Syears 10years 1lyear  Gyears 10years 1year GSyears 10years 1lyear  Syears 10years
All cancers combined
Allpatients  501%  29:8%  24:0% 55-8% 353% 288%  606% 41.0%  344% 64.9%  47-4%  41.6% 67:6% 509% 458% 705%  54:3%  49-8%
Men 44:7%  252%  19:9% 506% 296% 233% 557%  348% 280% 607%  42:0% 36:0% 637%  458% 41.0% 667% 492% 457%
Women 555%  343%  279% 61.0% 409% 341% 653%  472%  407% 69-0% 527%  47-0% 715%  56-0% 50-5% 742% 592% 53-8%
Oesophagus
All patients ~ 15:0% 43% 35% 191% 53% 43%  242% 6-5% 51% 311% 8-8% 7:0% 364%  115%  93% 420% 153% 12:4%
Men 14-7% 4-0% 33% 18:5% 4-8% 3-8% 241% 61% 4-8% 32:5% 91% 73% 383% 12:0% 9-4% 443% 156% 12:0%
Women 15-6% 4-8% 39% 20-0% 6-2% 5-0% 243% 71% 56% 28-8% 82% 6-5% 334%  10-8% 91% 386% 147% 131%
Stomach
All patients ~ 15-4% 52% 4-0% 20-6% 82% 67%  268% 109% 8:9% 339%  141% 113% 378% 163% 131% 417% 188%  150%
Men 153% 52%  40%  207%  81% 67%  270% 106%  86%  347% 139% 11.0%  393% 165% 13-0% 43-8% 195% 153%
Women 15:5% 53% 4-0% 20:5% 84% 6-8% 265%  115% 9-4% 324% 145% 11-8% 352%  161% 131% 379% 177% 144%
Colon
Allpatients  415%  246%  22-8% 54:0% 342% 31.8%  621%  41.6% 386% 667%  475%  445% 703%  526% 50-3% 739% 582% 56:9%
Men 426% 253% 230%  552% 346% 315%  635% 41.9% 381%  681% 47-6% 436%  719% 529  494% 761% 592% 56:5%
Women 40-4%  23-8%  22:6% 527%  338% 321% 607%  413%  39-0% 654%  475%  454% 68-6%  523% 511% 717%  573% 57-4%
Rectum
Allpatients  533%  242%  20-1% 60-6% 325% 282% 678%  42:0%  377% 740%  512%  47-1% 767% 555% 51.7% 792% 597% 561%
Men 541%  236% 191% 61.4% 32:0% 271%  687% 417% 367% 74-8%  51.0%  464% 775%  554% 51.0% 799% 59:6%  555%
Women 522%  250% 21-6% 595% 332% 29-6% 66-6% 424%  39-0% 728% 514% 482% 756%  557% 527% 781% 59-8% 57-0%
Pancreas
All patients ~ 10-6% 2:3% 12% 121% 2:8% 1.5% 13:0% 2:8% 15% 14-7% 27% 12% 17-4% 3-:0% 12% 20-9% 33% 11%
Men 102% 24%  13% 124%  31% 17%  135%  32% 1.7% 153%  30%  14%  181% 32%  12% 217%  36%  11%
Women 11.0% 22% 11% 11.9% 2:4% 12% 12.5% 2:4% 13% 14-0% 2:4% 11% 167% 27% 12% 20-2% 31% 11%
Larynx
Men 807% 602%  50-4% 817%  621%  52:6% 82:8% 641%  549% 837% 66:0% 57-0% 842%  670% 582% 847% 679% 592%
Lung
All patients  16:0% 46% 31% 183% 55% 37% 20-5% 6-0% 3-8% 24-4% 6-9% 4-0% 28:0% 8-0% 4-4% 322% 9-6% 5-0%
Men 163% 4-8% 32% 18:6% 5:8% 39% 20-4% 61% 39% 23-9% 6-6% 37% 27-0% 7-4% 3-8% 30:5% 84% 4-0%
Women 154% 43% 2:9% 17-8% 5-0% 32% 20-7% 5-9% 37% 252% 7-4% 4-5% 29:7% 91% 5-4% 351%  11-6% 6-6%
Melanoma of skin
Allpatients  81-6%  523%  46-4% 887% 664% 60-4% 931%  772%  719% 955% 838% 797% 96-4%  870% 84-4% 97-4%  90-4% 89-8%
Men 745%  405%  34-9% 845% 564% 49-8% 90-8% 698%  634% 94-0%  784%  733% 952%  82:6% 793% 96-6% 87-8% 86-8%
Women 867%  611%  54-9% 91.8%  737%  683% 94.9%  82:6%  782% 96-6% 87-8% 845% 973%  902% 883% 979% 92:4% 921%
Breast
Women 819% 527% 401% 859% 612%  484% 895%  711%  60-0% 927% 802%  71-6% 945%  839% 756% 96-0% 867% 785%
Cervix
Women 740%  513%  46:0% 78-6% 583%  52:4% 816% 62:6% 572% 82:8% 654% 607% 826% 663% 61.9% 829% 675% 631%
Uterus
Women 756%  59-0%  555% 795%  651%  615% 833% 695%  656% 86-9% 731% 697% 88-7% 759% 733% 903% 788% 77-4%
Ovary
Women 437%  205%  17-9% 502%  249%  215% 57-0% 30-8%  264% 647% 384% 317% 68-8%  42:4% 33:5% 727%  46-4%  34-8%
Prostate
Men 661% 36:9% 251% 715%  382%  24-4% 796% 49-6% 341% 895% 738% 624% 924%  814% 751% 94-0% 84-8% 83-6%
Testis
Men 833% 705% 692% 912%  840% 833% 958% 923%  91.9% 98:0% 963% 962% 987% 975%  97-4% 99-1% 983% 982%
Kidney
Allpatients  449%  285%  23-0% 513% 341% 27-6% 571%  39-4%  323% 62:8% 448% 37-9% 672%  49-8% 43-0% 725% 563% 49-6%
Men 454%  289%  23-0% 526% 353% 285% 587%  40-8%  33-4% 639% 452% 37-8% 68-:0%  50-0% 42:9% 732% 567%  50-0%
Women 439% 280% 231% 491%  322%  26:1% 54-4%  371%  30-5% 60-9% 440% 380% 659%  494% 432% 713%  556% 489%

(Table 2 continues on next page)
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1971-72 1980-81 1990-91 2000-01 2005-06 2010-11 (prediction)
1year Gyears 10years 1lyear GSyears 10years 1lyear Gyears 10years 1year Gyears 10years 1year 5Syears 10years 1lyear  Syears 10years
(Continued from previous page)
Bladder
Allpatients  602%  393%  32:4% 734% 56:0%  480% 772%  60-8%  52:8% 747%  56-4%  49:5% 735%  54:8% 492% 72:4%  534% 49-5%
Men 628% 409% 337% 760% 579% 493% 801% 630% 542% 785% 592%  52:0% 776%  57-8% 52:4% 766% 56:5%  53:5%
Women 534%  352%  29:0% 66-6% 50-8% 447% 69-6% 549%  49-0% 647% 491%  43:0% 630%  470% 40-9% 614% 453% 391%
Brain
All patients ~ 17-7% 72% 54% 233% 9-8% 72%  277%  11-8% 8-4% 304% 127% 8-8% 347%  150% 10-6% 401% 185% 13-5%
Men 17-6% 6-6% 5-0% 23:3% 92% 67% 279%  112% 7:9% 309% 121% 83% 353% 14-2% 9:9% 411%  178% 12:8%
Women 17-9% 7:9% 6-0% 233%  10-6% 7-8% 274%  12-7% 92% 29-8%  137% 9-5% 339% 161% 115% 388% 195% 145%
Hodgkin’s disease
Allpatients ~ 756%  565%  477%  827% 668% 588%  876% 751% 692%  900% 803% 758%  90-8% 82.9% 783% 914% 850% 80-0%
Men 739%  542%  452% 822% 651% 565% 875%  746% 687% 897% 804% 758% 903%  825% 772% 90-8% 841% 777%
Women 77-8% 594%  51.0% 833% 692% 618% 877%  758% 69:9% 903% 802%  758% 91:4%  834% 797% 923% 863% 831%
Non-Hodgkin lymphoma
Allpatients  495%  299%  220%  588% 375% 281%  658% 449% 352%  701% 523% 439%  743% 597% 526%  796% 688% 631%
Men 49-4%  293%  217% 586% 368% 276% 657%  442%  345% 700%  51.6%  43-4% 74:4%  59-1%  51.9% 79-8% 681% 62:2%
Women 496% 30-6% 223% 590% 384% 288% 66-0% 458%  359% 702%  532% 44-6% 743%  605% 533% 794% 695% 641%
Multiple myeloma
Allpatients  374%  11.8%  62%  484% 172%  86%  574% 220% 108%  645% 277% 143%  706% 360% 214%  767% 470% 32:6%
Men 368% 121% 6-8% 47-8%  172% 9:0% 57-4%  22:2% 111% 657% 288% 151% 71-8%  379% 235% 780% 50-0% 36-8%
Women 38:0% 11-4% 55% 490%  171% 81% 573% 218%  103% 632% 264% 13-4% 693%  340% 192% 753% 438% 27-9%
Leukaemia
Allpatients  342%  131%  69%  473% 236% 149%  578% 340% 240%  638% 416% 323%  663% 464% 387% 68:6% 51.5% 461%
Men 354%  131% 6-6% 486% 237%  14:4% 594% 344%  23-6% 656% 42:4% 323% 683%  477% 39-4% 707%  533%  47-6%
Women 32:5% 13-0% 72% 456%  235%  156% 55-8% 336% 246% 614% 405%  322% 637%  446% 37-8% 659% 491% 442%
Other cancers*
Allpatients  553%  384% 34-8%  547% 365%  320%  545% 352% 302%  566% 371% 325%  597%  406% 36:6% 635% 452%  41.9%
Men 573%  404%  36-9% 543%  352%  307% 52:6% 319% 26:9% 55:0% 337% 292% 587% 37-8% 339% 631% 433% 401%
Women 53-0% 362% 325% 552%  379% 334% 566% 39-0% 33-9% 584% 410% 363% 60-9%  439% 397% 639% 475% 440%
*Other cancers: all other malignant tumours are combined; they also include laryngeal cancer in women and breast cancer in men.
Table 2: 40-year trends in the index of net survival for all cancers combined at 1, 5, and 10 years after diagnosis in adults (15-99 years) in England from 1971 to 2011 and trends in the
age-adjusted net survival for 21 selected cancers in England from 1971 to 2011 by sex

1210

of the small number of patients, and broader age
groups were constructed to re-estimate survival for
those combinations.

Role of the funding source

The funder had no role in study design, quality control,
analysis, interpretation of the results, drafting, or the
decision to submit for publication. The corresponding
author had full access to all data and was responsible for
the decision to publish.

Results

The index of net survival for all cancers combined at 1, 5,
and 10 years since diagnosis increased substantially
between 1971 and 2011 in England and Wales (figure 1,
tables 2 and 3). The all-cancers survival index was 50% at
1 year after diagnosis for patients diagnosed in 1971-72.
For patients diagnosed during 2005-06, the index was
50% at 5 years after diagnosis, and for patients diagnosed

during 2010-11, we predict that the all-cancers survival
index will reach 50% at 10 years after diagnosis.

For patients diagnosed during 2010-11, the survival
index for all cancers combined had reached 69-70% at
1year and a predicted value of 54% at 5 years for both sexes
combined. The 5-year survival index rose by 24% (from
30% to 54%) and the 10-year survival index by 26% (from
24% to 50%) between the periods 1971-72 and 2010-11.
Most of the increase occurred between 1990 and 2011.

The survival index for all cancers combined is
on average 10% higher for women than for men at each
time interval since diagnosis. The pattern of increase in
the index was fairly similar for both men and women
during the whole period, although the increase was
linear for women but it became steeper for men after
1990-91. For patients diagnosed during 2010-11, the all-
cancers survival index for women in England was 74% at
1 year, 59% at 5 years, and 54% at 10 years, whereas the
figures for men were 67% at 1 year, 49% at 5 years, and
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1971-72 1980-81 1990-91 2000-01 2005-06 2010-11 (prediction)

lyear  Gyears 10years 1year  Syears 10years 1lyear Gyears 10years 1lyear Syears 10years 1lyear GSyears 10years 1year 5Syears 10years
All cancers combined
Allpatients  481% 28:9%  23-4% 536% 347% 289% 584% 404% 34-6% 632% 46:9% 416% 663% 50-6% 46-:0% 69-4% 542%  502%
Men 42:9% 24-8% 20-4% 482% 288% 237% 532% 339% 281% 591% 415% 359% 627%  457%  41-0% 659% 492%  455%
Women 532% 329% 263% 58:9% 405%  341% 634% 46:8% 411% 672%  522%  472% 69-9% 555%  51.0% 728% 59:0%  54-8%
Oesophagus
All patients ~ 16-9% 52% 41% 187% 6-0% 52% 22-8% 6-9% 58% 307% 8-8% 67% 355%  10-6% 7-9% 397% 12:9% 9:5%
Men 17:9% 51% 3-8% 191% 5-8% 4-9% 232% 7-0% 6-0% 32:8% 93% 71% 377%  10-9% 7-8% 423%  127% 87%
Women 15-2% 54% 4-8% 181% 6-4% 5:6% 22:1% 6-8% 55% 27-4% 79% 61% 321%  10-3% 8:0% 358% 133%  10-8%
Stomach
All patients  152% 57% 46% 213% 101% 8:9% 247%  10-8% 92% 309% 12:6% 9-9% 36:5% 155%  12:0% 431% 195% 14-9%
Men 153% 5:6% 4-5% 21:0% 97% 8-6% 250% 10-6% 91% 323%  12:6% 9-9% 382% 155% 11.7% 450% 194%  14-4%
Women 15:0% 6-0% 4-9% 21:9%  10-8% 94% 241%  112% 93% 285% 127%  101% 335% 156% 12:4% 396% 196% 16:0%
Colon
Allpatients  427%  250% 22-8% 51-8% 333% 309% 584% 39-8% 372% 632%  452%  424% 67-8% 50-9% 483% 730%  577%  554%
Men 431%  265%  245% 519% 333% 309% 60-0% 403% 37-4% 658% 46:6% 433% 702%  51-8% 485% 749%  57:9%  54-9%
Women 422%  234%  212% 51-8% 333% 31-:0% 56-9% 392%  37-0% 60-5%  437%  41-6% 654% 499% 480% 711%  575%  55-8%
Rectum
Allpatients  50-8% 22:.9% 197% 585%  312% 27-7% 657% 406% 371% 72:4% 500% 467% 752% 544% 513% 777%  585%  556%
Men 50-6% 214% 17:9% 587% 299% 261% 66:5% 39-8% 359% 732% 495%  458% 761% 541% 50-6% 786% 584%  551%
Women 51.:0% 252% 221% 581% 331%  300% 64-6% 417% 38:9% 71-4% 50-8% 480% 740% 54:8%  523% 764% 586%  56-4%
Pancreas
All patients ~ 12:2% 3-8% 2:4% 12-8% 4-6% 34% 12:.9% 42% 2:8% 14-0% 3-0% 1.5% 16-3% 3-0% 13% 19-0% 33% 12%
Men 11.5% 4-0% 27% 13:0% 56% 46% 13.5% 5-0% 37% 14-8% 34% 1.8% 167% 34% 15% 19-4% 37% 1-4%
Women 12:9% 37% 21% 12:5% 37% 23% 12:4% 33% 2-0% 13:3% 2:6% 13% 15-8% 2:7% 12% 18-6% 2:9% 11%
Larynx
Men 777% 563%  459% 825% 648%  556% 821% 639% 545% 802% 60-4% 50-4% 814% 633% 537% 84-0% 681% 595%
Lung
All patients  15-6% 51% 36% 187% 72% 55% 197% 6-8% 47% 21.5% 59% 33% 255% 6-9% 36% 311% 8-6% 42%
Men 14-6%  42%  28% 186%  72% 56%  195% 67%  46% 211% 5.5% 2:9% 24:4%  63% 31% 28.8% 77% 37%
Women 17-4% 6-6% 51% 18-8% 7-0% 53% 201% 6-9% 4-9% 22:2% 6-6% 4-0% 27-4% 8:0% 43% 352% 103% 51%
Melanoma of skin
Allpatients  799%  511%  44-0% 823% 631% 572% 856% 714% 663% 913% 775%  72-9% 94-4%  82:4%  77-6% 96-8% 890% 82:1%
Men 73-8% 389% 333% 766% 510%  44-6% 81.8% 625% 559% 89-4% 710% 658% 931% 764% 689% 958% 837% 683%
Women 84-4% 601% 52:0% 86:5% 72:0% 66-6% 883% 78:0% 73-9% 927%  822% 781% 953% 867% 841% 976%  92:9%  922%
Breast
Women 749%  47-9%  34-8% 81.8% 603% 485% 874% 717% 623% 91-4% 80-4%  73-4% 93.0% 838% 77:9% 943% 867%  81-8%
Cervix
Women 73-9% 528% 474% 80-0% 632% 57-8% 78:6% 599% 550% 785% 599%  552% 797% 62:4% 575% 817%  656% 603%
Uterus
Women 727% 559%  534% 762% 617% 56-8%  80-6% 670% 62:2% 853% 724% 696%  881% 768% 739%  905% 812%  77-8%
Ovary
Women 482% 222% 180% 52:0% 262% 21-8% 56:9% 314% 26:6% 611% 366% 31.8% 631% 392% 344% 651%  41.9%  371%
Prostate
Men 627% 36:6% 27-8% 659% 359% 256% = 729% 446% 32:9% 850% 688% 591% 901%  79-8%  749% 937%  871%  871%
Testis
Men 829% 695% 662% 89-9% 811%  80-0% 94-4% 897% 891% 971%  950% 941% 97-4% 96:0%  94-4% 97-4% 966%  939%
Kidney
Allpatients  437%  29-0%  24-4% 469% 31.0%  251% 530% 36:5% 297% 616% 462% 395% 66:6% 512% 44-0% 70-8%  552%  473%
Men 44-8% 30:6% 253% 485%  32:0%  256% 546% 372% 30-0% 623% 46:9% 39-9% 676% 514% 435% 722%  539% 442%
Women 419% 264% 22:9% 44-2%  295%  24-4% 503% 354% 292% 60-5% 451% 387% 64-8% 50-8% 44-8% 685%  573%  52:4%

(Table 3 continues on next page)
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1971-72 1980-81 1990-91 2000-01 2005-06 2010-11 (prediction)
1year Gyears 10years 1lyear Gyears 10years 1year Syears 10years 1year Gyears 10years 1year Syears 10years 1lyear  Syears 10years
(Continued from previous page)
Bladder
Allpatients  53-8% 37-4% 339%  663% 491% 425%  771% 615% 535%  81.4% 676% 616%  780% 637% 606%  705% 555% 56-8%
Men 561% 38:0% 341% 69-5% 515%  44-6% 803% 646% 563% 850% 71.0% 64-8% 818% 667% 637% 745%  57-9%  59-9%
Women 479% 358% 334% 580% 431% 37-3% 68-9% 537% 462% 722% 589% 53-6% 683% 56:0% 52:8% 601%  491% 488%
Brain
Allpatients  24-4%  107% 7-9% 267%  11.8% 8-9% 29-0% 12:8% 9-6% 331% 148% 10-6% 368% 165%  114% 401%  180%  12:0%
Men 24-5%  10-3% 77% 266%  11.5% 87% 283%  11:9% 8-8% 327%  13-5% 91% 369% 156% 103% 40-8%  175% 11-2%
Women 24-4%  111% 82% 267%  123% 91% 299% 142% 10-8% 337% 166% 127% 366% 177%  13-0% 392% 186%  131%
Hodgkin’s disease
Allpatients  721%  521% 431%  782% 62:0% 540%  844% 720% 654%  876% 785% 732%  897% 815% 768%  923% 857% 818%
Men 745% 548% 445% 791% 629%  537% 851% 730% 656% 874% 783% 722% 89-6% 81.6% 762% 923% 856% 81.0%
Women 689% 486% 412% 77-0% 609%  54-4% 835% 707% 652% 879% 787%  746% 89-8% 814% 777% 924%  858% 82:8%
Non-Hodgkin lymphoma
Allpatients  502%  311%  23-8% 547% 338% 254%  610% 398% 30-8% 686% 507% 419% 737% 583% 503% 793% 667%  597%
Men 51-8% 30-8% 22:1% 542%  334%  242% 60-0% 397% 30-0% 689% 509% 413% 740% 57-9% 487% 790% 651%  56-8%
Women 483% 315% 259% 553% 342%  267% 622% 400% 317% 684% 504% 427% 734% 588% 52:0% 796% 685%  631%
Multiple myeloma
Allpatients  341% 126%  80%  491% 199% 11.9%  57.8% 241% 135%  627% 26:9% 140%  67.6% 336% 190%  738% 445% 287%
Men 332% 140% 10-7% 486% 200%  12:7% 583% 243% 13-8% 64-8% 288% 159% 700% 358% 20:9% 762%  467%  302%
Women 352% 111% 51% 497%  19-8% 11.0% 572%  23-9% 131% 60-4% 247%  11.9% 649% 312% 16:8% 71.0%  42:0%  27-0%
Leukaemia
Allpatients ~ 302%  11.0% 6-1% 435%  212%  141% 554% 33:0% 245% 64-9% 436% 341% 69-1% 495% 40-5% 72:9%  556%  477%
Men 27-7% 87 39% 435%  202% 12-8% 57-0% 331% 24-0% 66:5% 433% 325% 704% 494% 39-4% 743%  562%  47-9%
Women 334%  14-0% 8:9% 435% 22:4%  156% 534% 327% 251% 62:9% 440% 362% 675% 497%  42:0% 71.0%  547%  47-4%
Other cancers*
Allpatients ~ 53-9% 37:6% 337% 557% 393%  349% 558% 389% 341% 559% 383% 334% 589% 411% 361% 629%  452%  403%
Men 564% 402% 363% 564% 398%  351% 552% 375% 32:6% 546% 355% 307% 585% 389% 33-8% 641%  443% 38:6%
Women 511%  347% 307% 54-8% 387%  346% 565% 405% 359% 57-4%  414% 36-4% 593% 436% 38:9% 615%  464%  422%
*Other cancers: all other malignant tumours are combined; they also include laryngeal cancer in women and breast cancer in men
Table 3: 40-year trends in the index of net survival for all cancers combined at 1, 5, and 10 years after diagnosis in adults (15-99 years) in Wales from 1971 to 2011 and trends in the
age-adjusted net survival for 21 selected cancers in Wales from 1971 to 2011 by sex
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46% at 10 years. Both the levels and the trends in the all-
cancers survival index were similar in England and
Wales. The average absolute difference between the two
countries was less than 1% (figure 1, tables 2 and 3).

Survival for both sexes combined varied widely for
different cancers, with the most recent predicted 10-year
net survival adjusted for age and sex ranging from only
1-1% for pancreatic cancer to 98- 2% for testicular cancer.
A scatter-plot of the 1-year, 5-year, and 10-year survival
estimates for adults diagnosed in 2010-11 against the
absolute change since 1971 enables three broad clusters
of cancers to be identified (figure 2). The first cluster
consists of cancers with high survival in 2010-11 for
which the absolute increase in survival since 1971-72 is
progressively larger for survival at 1, 5, and 10 years. It
includes cancers of the breast, prostate, testis, and
uterus, and melanoma and Hodgkin’s disease.

The second cluster is of cancers with a moderate level of
survival (64-84%) in 2010-11 and, generally, smaller

increases since 1971-72. This cluster consists of cancers of
the larynx, cervix, rectum, colon, bladder, ovary, and
kidney, with non-Hodgkin lymphoma, multiple myeloma,
and leukaemia. For multiple myeloma and leukaemia,
age-adjusted 10-year survival rose by more than 22%
between the periods 1990-91 and 2010-11, from around
10-8% to a predicted 32-6% for multiple myeloma and
from 24-0% to 46 -1% for leukaemia (table 2).

The third cluster is of cancers for which survival for
patients diagnosed during 2010-11 is still low, and for
which little or no improvement has occurred in the past
40 years: this group consists of malignancies of the brain,
stomach, lung, oesophagus, and pancreas.

This clustering can be seen as early as 1 year after
diagnosis, and each cancer is in the same cluster,
irrespective of the time since diagnosis (and the nation).
We observed the largest absolute change in the age-
adjusted survival for multiple myeloma, leukaemia, and
prostate cancer.
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l-year survival from lung cancer has improved
substantially, from 16% in 1971-72 to 32% in 2010-11.
However, estimated long-term survival for patients
diagnosed in 2010-11 is very poor for both sexes: as low
as 10% at 5 years and 4% and 7% in men and women,
respectively, at 10 years. This overall pattern of no
improvement in long-term survival is common in the
cluster of poor-prognosis cancers (oesophagus, stomach,
pancreas, and brain), for men and women and for both
England and Wales.

Survival for breast cancer has seen a rapid and
substantial improvement during the past 40 years. 5-year
survival increased from 53% in 1971-72 to a predicted
value of 87% in 2010-11. After 10 years, survival rose from
40% in 1971-72 to a predicted 78% for patients diagnosed
during 2010-11. Differences between 5-year and 10-year
survival estimates remained broadly constant since 1971,
showing that most of the improvements in long-term
survival arose in the first 5 years after diagnosis. Breast
cancer accounted for nearly a third of all cancers in
women, which partly explains the higher all-cancers
survival index in women than in men.

Although survival from cancers of the colon and
rectum is much lower than survival from breast cancer
(around 20% lower in 2010-11), the trends in I-year,
S-year, and 10-year survival for these two cancers have
followed an almost identical pattern to that of breast
cancer during the past 40 years.

For men diagnosed with prostate cancer during
2010-11, the predicted values for 5-year and 10-year
estimates are almost identical at 85% and 84%,
respectively, which are huge increases from the values of
37% and 25% for men diagnosed 40 years ago. The trends
are quite distinct for short-term, medium-term, and
long-term survival. In both England and Wales, 1-year
survival has been increasing since 1971-72, whereas
acceleration in 5-year survival started for men diagnosed
in the 1980s; 10-year survival only began increasing for
men diagnosed in the 1990s.

For women diagnosed with cancer of the ovary during
2010-11, the age-adjusted survival was predicted as 46%
at 5 years and 35% at 10 years compared with 20% and
18%, respectively, for women diagnosed during 1971-72.
These results suggest that the underlying increase in
survival of up to 5 years is likely to continue.

Net survival is generally lower for the oldest patients
(75-99 years) than the youngest (15-44 years), even
though net survival accounts for a higher mortality from
causes other than cancer in elderly patients. This finding
is shown by a scatter-plot of the age gap in net survival at
1, 5, and 10 years after diagnosis for adults diagnosed in

Figure 2: Net survival adjusted for age and sex for each cancer in 2010-11,
and absolute change* since 1971, all adults (15-99 years), England and
Wales: 1, 5, and 10 years after diagnosis

*The absolute change is the simple arithmetic difference between net survival in
2010-11 and the survival in 1971-72. NHL=non-Hodgkin lymphoma.
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Age gap in 5-year net survival (%), 2011 Age gap in 1-year net survival (%), 2011

Age gap in 10-year net survival (%), 2011
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2010-11 against the absolute change since 1971-72: it
shows a negative gap in survival for most cancers (y-axis
of figures 3 and 4).

The largest age gaps in survival in men were observed
for cancers for which high-dose chemotherapy is the key
treatment (lymphoma, multiple myeloma, and leukaemia),
but we could not identify any overall temporal patterns.
For women, the largest age gaps were noted for brain
tumours, and cancers of the ovary and cervix, and multiple
myeloma, but the clustering was less obvious than in men.
The age gap tended to narrow for melanoma and cancer of
the uterus in women but widened for long-term survival of
ovarian cancer.

Discussion

The index of net survival for all cancers combined has
increased substantially: for patients diagnosed in 1971-72,
the index was 50% at 1 year after diagnosis. Our
prediction is that, for patients diagnosed during 2010-11,
the all-cancers survival index will reach 50% at 10 years
after diagnosis. Very similar patterns of change and
levels of survival were noted in both England and Wales.

Survival has increased steadily during the 40 years
since 1971, with a slight acceleration in the past
10-15 years, particularly for 5-year and 10-year survival, in
both England and Wales. After implementation of the
NHS cancer plan for England,” we reported a slight
acceleration in the l-year cancer survival trends during
2004-06, by contrast with Wales,? where a national cancer
plan was only introduced in 2006. The pattern was not so
clear for survival at 3 years after diagnosis. The findings
reported here suggest a continuing acceleration of these
trends for longer-term survival between 2005-06 and
2010-11 in England, but also in Wales (panel).

The completeness and quality of cancer registration
and follow-up data in both England and Wales have been
systematically assessed and are thought to be very high
throughout the period 1971-2011, despite undeniable
improvement during the 1970s-80s.”* This improvement
cannot explain long-term trends in cancer survival.**
Furthermore, with the exception of bladder cancer, overall
changes in disease definitions are limited, even for
haemopoietic malignancies. To affect the survival index,
such a change in disease definition would need to affect a
substantial proportion of all cancers, for which prognosis
would also need to be very different from that for other
cancers. These conditions are not met.

In some strata defined by age, sex, cancer, and calendar
period of diagnosis, especially in Wales, few deaths

Figure 3: Age gap™ in net survival by cancer, men (15-99 years) diagnosed
during 2010-11 versus absolute changet in the age gap since 1971, England
and Wales: 1, 5, and 10 years after diagnosis

*The age gap represents the absolute difference (%) between net survival in the
oldest (75-99 years) and youngest (15-45 years) groups of patients; a negative
value means that survival is lower in the oldest group than the youngest group.
TThe absolute change is the simple arithmetic difference between the age gap in
2010-11 and the age gap in 1971-72. NHL=non-Hodgkin lymphoma.

www.thelancet.com Vol 385 March 28, 2015



Articles

occurred. To obtain more stable net survival estimates, we
therefore estimated net survival using a modelling
approach rather than the non-parametric Pohar-Perme
approach.”

The index of net survival for all cancers combined
provides one convenient number that summarises the
overall patterns of cancer survival in any one population
or country, in each calendar period for young and old men
and women and for a wide range of cancers with very
disparate survival. The index is unaffected by changes in
the proportion of cancers of different lethality in either
sex, such as the reduction of lung cancer or the increase in
prostate cancer in men. Similarly, the index is unaffected
by ageing of the population of patients with cancer or
shifts in the proportion of any cancer between men and
women. The value of the index changes only when survival
for one or more cancers changes, for one or more age
groups. The index therefore shows overall progress in
cancer management, whether from earlier diagnosis, or
earlier stage of disease, or improved treatment and care.

However, the all-cancers survival index needs careful
interpretation: for example, the predicted value of 50% for
the 10-year all-cancers survival index for 2010-11 does not
mean that half of all patients will be cured or “beat cancer”,
as has been portrayed in the media.* The index is designed
as a public health measure that summarises cancer
survival trends in an entire population, to help to assess
progress in the overall effectiveness of the health system in
diagnosis and management of patients with cancer. The
index does not reflect the prospects of survival for any
individual patients with cancer. The index is based on net
survival, which is an unbiased measure of population-
based survival from cancer after adjustment for other
causes of death. Net survival is the most valid available
metric for comparison of survival between populations
and for assessment of progress in cancer survival over
time. The all-cancers net survival index should nevertheless
be interpreted in conjunction with other information
available in the population or country for which the index
has been prepared. It should be seen as a guide to raise
questions about the potential for improvement.

The average 10% difference in the survival index
between men and women has been a consistent feature
for 40 years. It arises because, for several individual
cancers, survival is slightly higher for women, but mostly
because the cancers that are most common in women,
such as breast cancer (weight of 0-31 in the survival index
for women), generally have higher survival than the
cancers that are most common in men, such as lung

Figure 4: Age gap* in net survival by cancer, women (15-99 years) diagnosed
during 2010-11 versus absolute changet (%) in the age gap since 1971,
England and Wales: 1, 5, and 10 years after diagnosis

*The age gap represents the absolute difference (%) between net survival in the
oldest (75-99 years) and youngest (15-45 years) groups of patients; a negative
value means that survival is lower in the oldest group than the youngest group.
tThe absolute change is the simple arithmetic difference between the age gap in
2010-11 and the age gap in 1971-72. NHL=non-Hodgkin lymphoma.
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See Online for appendix

Panel: Research in context

Systematic review

Health policy measures to improve the organisation and
delivery of services for the prevention, diagnosis, and
treatment of cancer should be based on sound evidence.
Population-based survival trends have proved to be a key
metric for the overall effectiveness of health systems. An
unbiased estimator of net survival was introduced in 2012.°
We have not undertaken a literature review, but so far, only a
few countries have published population-based cancer
survival using this estimator, including in England by our
research group.” No other country has constructed a single,
summary index of net survival for all cancers combined.

A simple, robust, one-number index of net survival for all
cancers combined can contribute to the evidence base for
rational health policy.

Interpretation

Changes in the net survival index reflect changes in survival
for one or more cancers, not simply changes in the
distribution of cancer patients by age, cancer site, or sex. The
net survival index increased substantially between 1971 and
2011, representing a substantial gain in overall survival from
all cancers combined. Net survival varied widely for different
cancers, and was generally lower for older patients than
younger patients, even after adjustment for the higher
mortality from other causes in older patients. Three clusters
of cancers, with high, moderate, and low survival, can be
distinguished as early as 1 year after diagnosis. Overall, the
survival trends are encouraging in both England and Wales,
but they also suggest strongly the need for renewed efforts to
achieve better outcomes.

cancer (weight of 0-22 in the index for men). The slight
narrowing in the sex gap observed in the most recent
periods might be explained by the rapid increase in
survival for prostate cancer (weight of 0-19 in the index for
men), particularly at 5 and 10 years after diagnosis. This
rapid increase in survival for prostate cancer has been
largely attributed to the widespread use of prostate-specific
antigen (PSA) testing, resulting in the diagnosis of many
less advanced tumours with a shift of the stage distribution
to less advanced and less aggressive disease. However,
importantly, survival had already started to increase, albeit
more slowly, much before PSA testing was widely used.”
The more recent increase in long-term survival suggests
that this improvement is not simply because of a shift in
the stage distribution after increasingly wide use of the
PSA test. The increase in short-term survival, which began
as early as the 1970s, and the increase in 5-year survival in
the 1980s and then in the 10-year survival in the following
decade cannot simply be attributed to PSA.

We were able to group the 21 most common cancers
into three clusters on the basis of their survival. Despite
some large gains in survival, these clusters are, with few
exceptions, the same in 2011 as in 1971 (data not shown).

The clusters are identifiable as early as 1 year after
diagnosis, and they are consistent at 5 and 10 years after
diagnosis, both in England and Wales.

Cluster 1 includes cancers with a good prognosis:
survival is now very high, after a large increase since
1971, particularly at 5 and 10 years after diagnosis. 1-year
survival seems to have reached a ceiling for most of these
cancers, but survival at 5 and 10 years is still much lower
than at 1 year for breast cancer and Hodgkin’s disease.
The absence of any plateau in survival, even 10 years after
diagnosis, shows that cure at the population level has still
not been reached for these cancers, leaving room for
substantial further improvement in long-term survival.

For most cancers in the other two clusters, survival at 5
and 10 years after diagnosis is still much lower than
1-year survival. The second cluster consists of a further
mix of cancers for which either survival has remained
moderate since the early 1970s, or moderate levels of
survival in 2011 are the result of large improvements
during the past 40 years. The second situation is well
illustrated by the steep increase in survival from multiple
myeloma since 2000-01, probably explained by the
introduction of higher-dose treatment regimens around
2000. For the cancers in this cluster that have shown no
evidence of improvement, efforts should be made to
achieve earlier diagnosis, and to focus on stricter
guidelines for improved treatment, such as increased use
of surgery, radiotherapy with curative intent, neoadjuvant
therapies, or a combination of the three.

The effect of mass-screening on survival varies with the
cancer. For cervical cancer, an efficient screening
programme does not necessarily lead to an improvement
in survival because screening prevents the occurrence of
invasive tumours, thereby reducing incidence, and the
remaining patients are, on average, diagnosed with more
advanced disease.” A quasi-plateau in 1-year survival has
been observed since 2000-01 (appendix 1 and 2).

By contrast, breast cancer screening aims to diagnose
the disease at an early stage, rather than to prevent it. Its
real effect on survival has been questioned mainly because
of possible overdiagnosis and lead time. However,
overdiagnosis does not exceed a few percent” and the
advantage in survival remains important for screen-
detected breast cancer after accounting for lead time.*
Improvement in breast cancer survival has been large
because of both early diagnosis and improved treatment,
although net survival continues to decrease even 10 years
after diagnosis, showing late recurrences. The age gap in
survival has also decreased, supporting more rapid
improvement in survival for older women (and for the
screened age group) than in younger women.*

Screening for colorectal cancer, which started in 2006,
aims to prevent invasive malignant tumours (by
removing polyps with adenomatous change) and to
diagnose cancer at an early stage. Therefore, although it
is too recent to have any effect on these results, lessons
from both cervical and breast cancer screening
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programmes will also help us to monitor the effect of
screening on the prognosis of colorectal cancer.

A wide age gap in survival was still present for most
cancers in 2010-11. Some of these differences are related
to screening or early diagnostic practices (breast, cervix,
prostate). Also, the disease, and its prognosis, might
radically differ by age, such as leukaemia: the treatment
of acute disease in young patients improved
substantially, by contrast with chronic leukaemia in
elderly patients, but separation of both diseases is not
possible over the entire period 1971-2011. However, in
other countries, the age gap in cancer survival is much
narrower than in England and Wales.”** The wide age-
related inequalities in cancer survival in England and
Wales are thus likely to be avoidable. They could be
substantially reduced.

1-year survival has improved substantially for cancers
with a particularly poor prognosis (cluster 3), but longer-
term survival (5 and 10 years after diagnosis) has hardly
changed during the past four decades. Among these
cancers, substantial improvements should be achievable
for lung cancer: in 2011, National Institute for Health and
Care Excellence (NICE) guidelines* underlined the need
for improved staging and increased widespread access to
surgery and radiotherapy with curative intent for non-
small-cell lung cancer. Adherence to these guidelines
and their effect on cancer outcomes has not yet been
exhaustively assessed.”

In summary, despite impressive overall improvements
in cancer survival during the past 40 years in both
England and Wales, the wide and persistent differences
in survival between cancers, together with the wide and
persistent age gap in survival for most cancers, suggest
the need for renewed efforts to achieve improved
outcomes, particularly in elderly patients. The findings
reported here offer clues for focused research to dissect
the underlying causes of these differences in cancer
survival. The results should prompt action to improve
public health in both England and Wales. This research
will need systematic linkage of clinical audit streams
and other detailed data streams to population-based
cancer registry data, but the recent crisis of public
concern about the sharing of individual health data for
confidential public health research will need to be
resolved first.*
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4.6.10 Results 2: Index of cancer survival for CCGs [2-5]

The results of the index of cancer survival for CCGs have not been published in a peer-
reviewed journal. Instead, these results have been incorporated in annual technical reports
published by the Office for National Statistics [2-5]. A summary of the main results is

presented below.

Table 4.7 provides a summary of the number of times each of the 8 candidate models was
selected for all the cancer-sex combinations. Model 6, the simplest candidate model, was
the most selected for 60.7% of the cancer-sex combinations. Model 5 was the second most
selected for 15.4% of the combinations, of which about half (119 models) were selected

when modelling the breast cancer dataset.

Candidate model No. of times selected %

Model 1 5 0.33
Model 2 75 5.08
Model 3 90 6.1
Model 4 57 3.86
Model 5 227 15.4
Model 6 896 60.7
Model 7 38 2.57
Model 8 89 6.03

Table 4.7: CCG index: summary of best fitting models for all the cancer-sex combinations

For the CCG index, an extra model (Model 8) was added to the set of candidate models,
compared to the set of 7 models used for the England index. This was because for a few of
the combinations of CCG-sex-cancer none of the first 7 models had converged. Adding an
extra model ensured that for each combination, there was at least one model that converged
and that could be used in the post-estimation procedure. Even so, post-estimation of net
survival produced missing estimates (mainly ‘zero’ estimates) for some of the components
needed for the construction of the index. This affected the estimation of net survival for
colorectum and lung cancer. For colorectum cancer, 5.8% of net survival estimates were

missing, corresponding to 1,974 combinations out of a total of 33,760 combinations of
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CCG, sex, cancer, age group and year of diagnosis. For lung cancer, 10.6% of net survival
estimates were missing, amounting to 3,569 combinations out the total of 33,760. For
both cancers, over 80% of these missing estimates occurred in the youngest age group
(15-44 years). The post-estimation procedure was re-run, to obtain an estimate for the
missing combinations, using merged age groups of the missing age group with an adjacent

(non-missing) age group.

Mid-year population estimates (thousands) for 2011, and number of cancer patients in-
cluded in survival analyses, by calendar year of diagnosis are presented in Tables 4.8
and 4.9. The average CCG mid-year population estimate was around 250,000 inhabitants
in 2011. A total of 2,847,166 patients were included in the analysis, ranging between 2,524
and 54,747 patients by CCGs. Tables 4.10 and 4.11 present the one-year net survival index
(%) and associated precisions (prec) for CCGs by calendar year of diagnosis. The box-plots
in Figure 4.4 summarise the range of estimates for CCGs by year of diagnosis between
1996-2011, showing that the median net survival index has increased steadily, from 58.7%
in 1996 to 67% in 2011 and the range of CCG estimates reduced over the years. However,
understanding the overall geographical patterns and the spread of individual CCGs from
such long tables of results is challenging. The next chapter will explore data visualisation

options to best present these results and improve their interpretation.
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4.7 Discussion

In this first research chapter we aimed to summarise and monitor survival for all cancers
combined in England at both national and local level. For this purpose, we designed a
summary survival indicator using a three-way standardisation technique that combines, in
a weighted average, individual cancer survival estimates for pre-specified combinations of
sex, age group and cancer type. The new indicator was named index of cancer survival and
was envisioned as a simple tool to aid health policy-makers monitor the effectiveness of

cancer care services at both national and local level.

For England, the survival index was estimated at one-, five- and ten-years after diagnosis
for selected periods over the 40 years analysed (1971-72, 1980-81, 1990-91, 2000-01,
2005-06 and 2010-11). The CCG index was estimated at one-year after diagnosis for each
of the 16 years of diagnosis between 1996-2011. Net survival was the measure chosen
to estimate the individual cancer survival components for the indexes. To estimate these
net survival components, the first choice of estimator considered was the non-parametric
Pohar-Perme estimator that is the current gold standard estimator of net survival. However,
the estimation of survival at both national and local level had similar challenges due to the
large number of components for which survival estimates were needed, some of them
having small number of cases and events leading to very unstable estimates with small
precisions and large variances. For the England index, 185 net survival estimates were
needed for each combination of period and times after diagnosis, adding to a total of
3,330 net survival estimates. For the CCG index, 35 net survival estimates were needed
for each year of diagnosis, adding to a total of 118,160 net survival estimates for all
CCGs. Given these challenges, we decided to develop a modelling strategy using excess
hazard regression models to improve the estimation of net survival for the components
of the indexes. The modelling strategy was developed by setting up a priori 8 candidate
models fitted sequentially and retaining those models with the lowest AIC as the best fitting
models. All models included age at diagnosis and year of diagnosis as main effects. Age
was included in its continuous form in all the models instead of using age-groups to borrow
strength across all the ages. During the post-estimation net survival was estimated for

each age-group by averaging the survival estimates for all observations with ages falling
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within each age-group. Including year of diagnosis in all the models allowed the estimation
of more stable trends and improved model fit compared to fitting separate models for each

year or period of diagnosis.

The results of the national and the CCG cancer survival indexes have attracted much
interest from policy makers and cancer researchers. The results of the England index [1]
supported CRUK's vision set out in their 2014 research strategy [155], and they have since
been fed into numerous CRUK's public funding campaigns and into online information
blogs [156]. The results of the CCG index have been incorporated into annual technical
reports published by the Office for National Statistics and Public Health England, which
are updated on a yearly basis for the most recent years of cancer diagnosis [2-5]. National
policy makers in particular have identified the index of cancer survival as a very useful tool
both for national surveillance and for local monitoring of cancer services. As a result, the
CCG index was included in the Delivery Dashboard of the NHS’ Assurance Framework that
sits at the top of NHS accountability tree [157—159] to ensure that local commissioners are
held accountable for improving cancer survival in their areas. Cancer researchers worldwide
have also been motivated to construct cancer survival indexes for their countries using the
three-way standardisation technique we propose. The United States constructed a North
American Cancer Survival Index to Measure Progress of Cancer Control Efforts [160] and

Japan started to develop a national index of cancer survival (work in progress).

Although the concept of the survival index is simple as it uses a well-known standardisation
technique easily understood by non-experts, the estimation of the individual components
of the index is long and complex. The modelling strategy we developed for the estimation
of the survival components was computationally very intensive, taking from hours up to
days for the estimation to be completed due to the large number of models that needed
to be fitted. Even so, devising such an approach greatly improved the estimation of net
survival, minimising the number of missing estimates for each component of the index and

reducing the variance of estimates.

Future research should aim to simplify and optimise the modelling strategy for the cancer
survival index. One possibility would be exploring the use of models based on penalised

tensor splines recently proposed by Fauvernier et al. [109] for the estimation of cancer
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survival. These models have the potential of reducing computational time whilst improving
the modelling selection strategy. Another possible alternative to make most of the flexibility
of the models used (the use of splines to model the effects of continuous variables) could
be based on the following steps: a) predict from the model survival of each combination
composed of individual year of age and calendar year, in addition to cancer and sex; b) use
the first set of weights, but divide the weights by the number of years included in each age
group; c) take the weighted mean of survival estimates to estimate the indexes. Such an
approach is derived from a matrix of cancer-year-age-sex combinations rather than directly
from the distribution of these combinations in the studied population. It would avoid the
issue of missing survival estimates in some categories with sparse data. This approach
would rely even more on the robustness of the models as part of the estimates will be out

of sample.

In summary, the research presented in this chapter proposes a new monitoring tool for
cancer survival at both national and local level. The survival index was designed as a pub-
lic health measure to assess progress in the overall effectiveness of the health system in
diagnosing and managing cancer patients. A novel modelling strategy was developed to
improve the estimation of the individual index components. This strategy was presented in
a detailed way to facilitate and guide other researchers interested in developing a cancer
survival index for their setting. However, as previously mentioned there were several prob-
lems regarding the estimation of survival which were not solved with the approach proposed
here. In Chapter 6 we aim to address these outstanding estimation challenges by exploring
alternative cancer survival models within the Bayesian framework to further improve the
estimation of cancer survival. In addition to these estimation challenges, we have also faced
difficulties in understanding spatial patterns and trends from the results of the CCG index
presented in Tables 4.10 and 4.11. Interpretation was very challenging, almost impossible,
due to the large number of estimates unfolding over very large tables. Using ‘standard’
data visualisation tools, such as ranked bar charts or thematic maps could provide mislead-
ing visual interpretations of results when dealing with such a large number of estimates, in
particular when mapping estimates for smaller areas. The next research chapter will explore
data visualisation techniques for survival outcomes focused on improving the visualisation

of both the national and CCG cancer survival indexes.



Chapter 5

Data visualisation techniques for
cancer survival relevant to health

policy

"... few people will appreciate the music if | just show them the notes. Most of us need
to listen to the music to understand how beautiful it is. But often that’s how we present

statistics; we just show the notes we don’t play the music." Prof. Hans Rosling

In this chapter we aimed to improve the visualisation of cancer survival for a more successful
dissemination to policy-makers (Research Aim 2). A joint smoothing and mapping technique
is adapted to produce smooth small-area cancer survival maps. Funnel plots are extended
to visualise the spread of individual cancer survival estimates around a pre-specified target
value by formulating the correct control limits for cancer survival. An application of these
two techniques is presented to visualise the results of the index of net survival for CCGs
(estimated in Aim 1), and to exemplify how the same set of results can be used for national

surveillance and local monitoring of cancer survival.
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5.1 Introduction

Successful cancer survival studies do not only depend on the statistical ability to produce
robust survival estimates, but also on how effectively these findings are communicated to
a vast range of audiences, including the research community, the media, the general public
and health policy-makers [161]. Effective dissemination of research evidence is important
in bridging the gap between research and policy [162]. Geographical variations in cancer
survival have commonly been presented using a conventional set of representations [35—

37, 163, 164], as for instance:

e Tables of results, listing point estimates of cancer survival with some associated mea-
sure of variability (95% confidence intervals, standard errors or precisions), stratified

by health geographies, years (or periods) of diagnosis or other factors.
e ‘Bar charts’, ranking survival estimates in ascending or descending order of survival.

e Thematic or chloropleth maps, showing spatial patterns by colouring each area ac-

cording a pre-specified colour scale of survival.

These ‘classical’ ways of presenting cancer survival outcomes have attracted much criti-
cism. Important cancer survival patterns are not easily identified from a long table present-
ing thousands of survival estimates, such as the results for the CCG cancer survival index
presented in Tables 4.10 and 4.11 (Chapter 4). Bar charts ranking survival based on the
value of the point estimates disregard any variability associated with those estimates. This
can lead to spurious ranking in particular when estimates are based on small number of
cases and events. Minor changes in the point estimates can result in big jumps in the
ranking due to greater instability of estimates [165]. Thematic maps displaying survival
estimates for small areas can be difficult to interpret due to excessive variation (or noise)

masking true survival patterns.
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5.2 Smoothing technique for small-area cancer survival maps

A small-area based smoothing technique for cancer risk mapping has been developed by col-
leagues at the Finnish cancer registry since the 1980s [166—168], together with a dedicated
software to produce the smoothed maps. This technique has been used to produce several
updates of the Cancer Incidence Atlas in Nordic countries [169] and other Cancer Incidence
Atlases [170]. As an example, Figure 5.1 illustrates the outcome of the smoothing tech-
nique applied to lung cancer incidence for women diagnosed in Finland (these maps were

produced by colleagues at the Finnish cancer registry with permission from Prof. Pukkala

to be used).
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Figure 5.1: Lung cancer incidence for women diagnosed in Finland (with permission to
use from Prof. Pukkala at the Finnish cancer registry)

The left panel maps the incidence rates estimated for each small-area separately without
filtering out the excessive variation. This makes it difficult to identify any spatial pattern
present in the data. The smoothed map on the right panel shows floating weighted averages
of incidence after applying the smoothing technique, making it much easier to interpret
the emerging spatial pattern. For instance, it allowed to uncover the hotspot of very high

incidence around the Finnish capital of Helsinki. The areas in the map are usually irregularly
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shaped polygons, defined by their centroids, but the final ‘smooth’ map will not show the

individual area boundaries.

To better visualise the urban-rural contrast in cancer incidence, the smoothing software
allows observations for cities with large populations not to be included in the smoothing. In-
stead, their rates are shown in circles superimposed on the smoothed background. The
diameter of each circle is relative to the population size of the city, and the colour of each
city circle indicates the lung cancer incidence. The choice of these cities is optional and

used-defined.

We have adapted the same joint smoothing and mapping technique to filter out excessive
variation from small-area cancer survival maps. This work was done in collaboration with
the developers of this technique at the Finnish cancer registry (Professor Eero Pukkala and
Mr. Toni Patama) [168]. The software was adapted by the programmer Mr. Tony Patama
during several work visits to the Cancer Survival Group at LSHTM. The adapted software

was installed for sole use by the Cancer Survival Group.

In order to create a smoothed map of cancer survival, the first step is to estimate a
priori a set of small-area specific cancer survival for each area separately using any of the
estimators described in chapter 2. These estimates are then supplied to the software to
create smoothed maps. The technique implemented in the software can be summarised as

follows:

A map covering the areas of interest is uploaded into the software using the respective
shape-files of the area boundaries to create a thematic map. This map is then layered
on a raster grid, i.e. a gridded array of small cells sized Ykm x Ykm (Figure 5.2). The
size of the grid cells is a smoothing parameter that needs to be defined in the software
to ensure that the final smoothed maps achieve the desired resolution. For instance, if a
smoothed map is intended to be displayed on an internet page, the suggested map resolution
should be between 300pixelsx300pixels and 700pixelsx 700pixels. Higher resolutions such
as 2048pixelsx2048pixels (or more) are advised when producing high resolution maps for
peer-review publications. Depending on the size of the area of interest, the size of the
grid cells will differ to achieve the desired map resolution. The end-user of the smoothing

software has the option of tuning these parameters by producing a few different smoothed



Chapter 5. Data visualisation techniques for cancer survival relevant to health policy 121

maps to find the best map resolution for the desired purpose. As guidance, the software
developers suggest that for a country of the size of Finland, a grid cell size of 2kmx2km is
adequate, but for the Netherlands, a much smaller country geographically, a grid cell size

of 500mx500m is advised as sufficient [171].
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Figure 5.2: Map of lung cancer incidence for women diagnosed in Finland with overlayed
raster grid

For each grid cell, a cancer survival value is calculated as a weighted average of all the
cancer survival estimates for the areas that fall within a circle of radius r from the middle
of each grid cell. Figure 5.3 shows the circular smoothing window centered at a grid point x

with a circle radius r and a distance between the grid cell center and an area centroid d,.

Figure 5.3: Circular window defining distance from center of grid point
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The weighted cancer survival average for each grid cell can be written as,

_ X WIS
Y= Wi

where CS; is the weighted cancer survival average for grid j (j = 1,2,3,...), CS; is the

Cs; (5.1)

cancer survival estimate for area / (i =1,2,3,...) and W; is the corresponding weight for

that area.

To calculate the smoothing weights W;, we start by calculating a weight w; for each distance
d; of area i. These weights are drawn from a bell-shaped weighting function (Figure 5.4)
known as the Butterworth's function [171] that defines the weights as inversely proportional
to distance (d;). The parameter dy is the distance at which the weights w; are halved

(w;=0.5). As an example, Figure 5.4 shows a decay function for do=15km.

w; =
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Figure 5.4: Smoothing decay function

As shown in Figure 5.4, the formula to calculate the weights w; for each distance d; of

area i (i=1,2,3,...) is written as,

1
1+ (%)

The final smoothing weights W, are adjusted using the population size P; of each area as,

W,' = W,'.P,‘ (5.3)
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Smoothing parameters
There are two additional smoothing parameters used in the interpolation for which optimal
values need to be calculated: 1) the radius r for the circular smoothing window and 2) the

distance parameter dy that defines the distance weights.

Based on intensive testing and tuning of the interpolation parameters, the software de-
velopers advise that the interpolation performs best when the value of the radius r is
approximately 10-fold compared to the distance parameter dy [171]. They also caution
that several iterations might be required to find the optimal value for parameter dy. If the
distance dp is set too short (in km), the cancer survival estimates for some smaller areas
can become visible on the map, whereas if dy is set too long some areas might lose all

variation with a risk of over-smoothing.

As a final step, when the interpolation is completed and a cancer survival value is calculated
for each grid cell, a colour will be allocated to each cell based on its cancer survival value
to produce the final smoothed map. Whilst the software developers advise that to map
cancer incidence (using a relative scale), a 19-colour scale is optimal to provide the map a
smoother visual colour transition, for cancer survival (using an absolute scale) a 15-colour

scale was sufficient to provide a smooth colour transition.

The next section will introduce the second data visualisation technique proposed in this
research chapter to better visualise cancer survival outcomes. Funnel plots are extended
to visualise the spread of individual cancer survival estimates around a target value and by
formulating the correct control limits for cancer survival outcomes. This work is presented
in the form of a tutorial paper. At the end of the chapter an application of these two
visualisation techniques (smoothed maps and funnel plots) will be presented using the

results of the CCG cancer survival index estimated in Chapter 4.
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5.3 Funnel plots for population-based cancer survival [6]

Funnel plots are simple graphical tools designed to detect excessive variation in performance
indicators by simple visual inspection of the data whilst avoiding spurious ranking of results
as seen with bar charts. They have been used extensively in meta-analysis studies to detect
publication bias [172, 173], but more recently they have been recommended as the most
appropriate way to display variation in performance indicators for a vast range of health-

related outcomes, such as risk-adjusted mortality rates [174, 175].

As illustrated in Figure 5.5 constructing a funnel plot involves plotting a series of estimates
on the y-axis (indicator or outcome) against a measure of the precision of these estimates
on the x-axis. A target (horizontal line) is then superimposed on the plot representing the
desired expectation for the outcome. A set of control limits is drawn around the target act-
ing as cut-off points, beyond which individual estimates are identified as having a divergent
behaviour from what is expected given the target. The control limits form a funnel shape
around the target, with wider limits for smaller precisions reflecting the larger variability

expected for these estimates.
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Figure 5.5: Funnel plot illustration
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5.3.1 Research publication 2

The second research publication was prepared as a tutorial article extending the use of
funnel plots to visualise several cancer survival outcomes. The article provides a step-by-
step guide to construct funnel plots and defines the correct formulation of the control
limits for cancer survival and excess hazards. It also presents three applications using the

different measures to familiarise the reader with the uses and interpretation of these plots.
Example R code to construct a funnel plot is provided in Appendix A.

The article was peer-reviewed and published in Statistics in Medicine. The final published

article is inserted from next page.
Copyright © 2013 John Wiley & Sons, Ltd. Green Open Access.
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Funnel plots for population-based cancer
survival: principles, methods
and applications

M. Quaresma,*” M. P. Coleman and B. Rachet

Funnel plots are graphical tools designed to detect excessive variation in performance indicators by simple visual
inspection of the data. Their main use in the biomedical domain so far has been to detect publication bias in meta-
analyses, but they have also been recommended as the most appropriate way to display performance indicators
for a vast range of health-related outcomes. Here, we extend the use of funnel plots to population-based cancer
survival and several related measures. We present three applications to familiarise the reader with their inter-
pretation. We propose funnel plots for various cancer survival measures, as well as age-standardised survival,
trends in survival and excess hazard ratios. We describe the components of a funnel plot and the formulae for
the construction of the control limits for each of these survival measures. We include three transformations to
construct the control limits for the survival function: complementary log-log, logit and logarithmic transforma-
tions. We present applications of funnel plots to explore the following: (i) small-area and temporal variation in
cancer survival; (ii) racial and geographical variation in cancer survival; and (iii) geographical variation in the
excess hazard of death. Funnel plots provide a simple and informative graphical tool to display geographical
variation and trend in a range of cancer survival measures. We recommend their use as a routine instrument
for cancer survival comparisons, to inform health policy makers in planning and assessing cancer policies. We
advocate the use of the complementary log-log or logit transformation to construct the control limits for the
survival function. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: population base; cancer survival; funnel plot; surveillance; geographical variation

1. Introduction

Funnel plots are designed to detect excessive variation in performance indicators by simple visual inspec-
tion of the data [1]. They borrow their underlying theory from statistical process control [2], which
comprises a range of statistical tools developed to monitor manufacturing processes and to ensure their
compliance to pre-defined standards with minimum variation. The most popular of these tools is the
‘Shewhart control chart’ [3], in which repeated measurements of an ongoing process are plotted against
time, and three horizontal lines are superimposed: the mean and its upper and lower control limits. The
control limits act as thresholds, beyond which a particular estimate is considered to be ‘out of control’,
and the reasons for its divergent behaviour should be investigated. This visual representation of data
makes it very easy to detect estimates that lie outside the control limits. Such outsiders indicate either
that the process might be subject to greater variability than would be expected from random variation
alone or that these estimates are outliers, that is, their true means are very different from the others.

The principle of funnel plots is similar to that of Shewhart control charts, except that the estimates
are generally made at a single point or period of time, and they are plotted against a function of their
statistical precision, instead of against time. The control limits thus take the shape of a funnel, instead of
two lines parallel to the x-axis. The wider control limits to the left give greater emphasis to the increased
variability expected from less precise estimates, while the narrower limits to the right emphasise the
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reduced variability from precise estimates. The main use of funnel plots in the healthcare sector has
so far been for meta-analyses, in particular to detect publication bias [4], but they have recently been
strongly recommended as the most appropriate way to display performance indicators for a wide range
of outcomes, such as comparisons of risk-adjusted rates between healthcare units or surgical outcomes
[1,5]. Funnel plots avoid spurious ranking of the individual estimates, which can arise with ranked bar
charts [6]. Because they can be easily extended to control for any measurable outcome [1], it makes them
particularly useful for population-based cancer survival, both to display geographical variation and as a
surveillance tool in local health authorities.

We have applied funnel plots to four different types of measure associated with population-based can-
cer survival: (i) relative survival [7]; (ii) age-standardised relative survival [6,8,9]; (iii) trends in relative
survival [7]; and (iv) risk-adjusted excess hazard ratios (EHRs) [10, 11]; but the formulation of the con-
trol limits for each of these measures has not been published. In this article, we present these different
measures, and we show that the same methodology can be applied for other estimators of cancer survival.

The components of funnel plots are defined in Section 2.1. In Section 2.2, the survival measures of
interest are briefly described. The mathematical expressions for the control limits for each indicator are
detailed in Section 2.3. Section 3 illustrates the application of these funnel plots using real data, and Sec-
tion 4 discusses some limitations of the funnel plots in this context and outlines future methodological

developments.

2. Methods

2.1. Components of the funnel plot

A funnel plot comprises four elements [1]: the outcome variable (or indicator), the target (or reference)
value for the outcome, a precision parameter, and a set of control limits (Figure 1).

Given a set of estimates of the outcome, as for example a set of 1-year relative survival estimates for
152 small areas, the funnel plot is constructed by plotting these estimates on the y-axis against their
associated precision on the x-axis, forming a scatter plot. The precision parameter is a natural choice to
represent the statistical accuracy of each estimate, and it can be taken as any function proportional to the
inverse of the variance. Other functions can also be used, such as the inverse of the standard error [12].

The target (solid horizontal line, Figure 1) is then superimposed: this is a constant value, considered
independent of the observations, and it specifies the expected value for the outcome. It may be taken
as either the average of the individual estimates or a single estimate obtained from the pooled data,
such as the national average, or any externally chosen value, against which each of the estimates is to

be compared.
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Figure 1. Illustration of the funnel plot components.
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The control limits are also independent from the individual estimates. They depend only on the tar-
get, and their correct formulation depends on the underlying theoretical distribution of the target value.
Control limits (dashed lines, Figure 1) for a given level of significance () are drawn around the target
across the entire observed range of precision of the individual estimates. The most common levels of
significance are o« = 5% and o = 0.2% so that the resulting 95% and 99.8% control limits represent
approximately two and three standard deviations, respectively, from the target value at each level of
precision. These thresholds act as alerts or alarms [13, 14]. An estimate that appears outside the control
limits is identified as diverging from the specified target and is an out-of-control estimate, or a probable
outlier that may need to be investigated further.

2.2. Cancer survival and related measures

2.2.1. Cancer survival. Population-based cancer survival studies aim primarily at estimating the net
survival, that is, the survival that the cancer patients would experience if the cancer of interest was the
only possible cause of death. Net survival is a theoretical quantity that can be estimated within two main
settings: the cause-specific setting and the relative-survival setting. Cause-specific survival requires the
cause of death to be known reliably for each cancer patient, which is rarely the case at population level.
For this reason, relative survival is usually preferable for population-based analyses because the cause
of death is not required; relative survival is conventionally defined as the ratio between the survival
observed amongst the cancer patients and the survival that would have been expected had these patients
only been subject to the all-cause mortality (by age, sex, calendar period, etc.) in the general population
from which they are drawn [15]. The expected (or ‘background’) mortality is obtained from popula-
tion life tables. Relative survival estimates produced by cancer registries around the world over the last
50 years have generally been based on one of three approaches to deriving the expected survival from the
life tables: Ederer-1 [16], Ederer-2 [17] and Hakulinen [18]. However, these approaches lead to biased
estimation of net survival if the informative censoring due to differential competing risks is not properly
accounted for [19]. A new non-parametric estimator of net survival has recently been proposed that takes
informative censoring into account, thus producing unbiased estimates of net survival [19].

Net survival can also be estimated via a modelling approach in which the observed hazard of death
is modelled as the sum of two components: the hazard due to the cancer (commonly designated as the
excess hazard of death) and the hazard due to all other causes (the background hazard) [20-23]. This
approach allows for the estimation of the excess hazard of death, whilst adjusting for the influence of
covariables, such as age and stage at diagnosis. Once the excess hazard has been estimated, an estimate
for net survival can be easily derived from the mathematical relationship between the hazard and sur-
vival functions, as long as the effects of the variables responsible for the informative censoring, such as
age, are correctly specified in the model. The most common models are based either on the framework
of generalised linear models [22] or on the full maximum likelihood approach [21]. Several extensions
have been proposed to enable modelling of the baseline hazard with flexible parametric functions, inclu-
sion of time-dependent covariables to allow for non-proportional effects and the use of flexible functions
to account for non-linear excess hazards from continuous covariables. Several packages are available in
STATA and R software to estimate net survival using these estimators [23-26].

Different survival quantities can be derived using the aforementioned net survival estimators. The most
commonly reported are as follows: estimates of the cumulative survival up to a specific time after diag-
nosis, say, 5 years after diagnosis; interval-specific survival (e.g. survival between the second and third
years after diagnosis); and conditional survival (e.g. survival up to 5 years after diagnosis, conditional
on 1-year survival). These survival quantities can, in turn, also be age standardised to take into account
differences in the age distribution of cancer patient populations. Age standardisation is crucial when the
purpose of the analysis is to compare survival estimates between regions or countries, or over calendar
time, so that the comparison is not masked by differences in the age profile of the cancer patients. The
most usual age-standardisation procedure is the direct method, a weighted average of the age-specific
survival estimates:

n
AS = Z w; X S;
i=1
where, for a given time since diagnosis, AS is the age-standardised survival and S; is the survival (for
any given survival function as defined earlier) for patients diagnosed in the i™ age group, i = 1,...,n.
A common age grouping used in standardisation of survival in adults (i = 5) is 15-44, 45-54, 55-64,

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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65-74 and 75-99 years. w; is the set of age-specific weights in the standard cancer patient population
[27].

Direct standardisation requires that the summation of weights across all age groups is unity. The stan-
dard error of the age-standardised survival (se(AS)) is a weighted average of the standard errors of the
age-specific estimates:

se(AS) = Z w? X se (Si)?

i=1

Funnel plots can be constructed for each of the survival quantities described earlier by using the
formulations for the control limits provided in this article.

2.2.2. Trends in cancer survival. The measures described so far represent survival information as a
snapshot in time or for a given calendar period. Funnel plots can also be constructed to display differ-
ential survival trends over time between regions, or between population sub-groups. For this purpose,
trends in survival can be quantified by fitting a variance-weighted least squares regression to, say, 5-year
survival estimates in successive calendar years (or periods). Depending on how the regression model
is specified, regression coefficients can be interpreted as the difference in survival trends between pop-
ulation sub-groups defined by socio-economic deprivation [28, 31] or by area of residence [7]. These
coefficients can be used to construct a funnel plot. The regression models to quantify trends in survival
can be fitted in most of the common statistical software packages, such as STATA or R.

2.2.3. Excess hazard ratio. Funnel plots can also be constructed to display variation between areas in
the EHR. Multivariable regression models can be used to estimate the EHR for each unit of analysis. The
EHRs derived from the regression models usually represent the ratio of the excess hazard of death for
each unit to that in a chosen reference unit. In a funnel plot, however, we want to avoid any individual
estimate being the reference to which all other estimates are compared. We suggest the modification of
the regression model to a deviation contrast, so that the estimates for each unit of analysis are compared
to the overall or ‘grand’ mean excess hazard. This is an unweighted average of the excess hazard in all
categories and is taken as the target. Funnel plots can then be constructed using either the EHRs or the
log-EHRs (the coefficients estimated by the model). If the EHR is used, a logarithmic transformation
should be applied. The log-EHRs can be assumed to follow an approximately Normal distribution, and
the formulae for the control limits are thus given by the usual expression for a Normal interval.

2.3. Formulation of the control limits

We will describe the formulation of the control limits for the three survival metrics (survival estimates,
survival trends and EHRs). An asymptotic Normal distribution can be applied to a suitable transforma-
tion of the metric to avoid that, at extreme values of event time, the approximate control limits include
impossible values outside the range [0, 1]. In general terms, considering g(t) as a function of the metric
7 so that

g(t) ~ Normal (g(6).1/pg())

where g(t) represents the transformed function of the metric 7; 6 represents the target for the metric t;
and g(0) is the transformed target value. For survival, the target will be the overall or average survival.
For survival trends, this will be the overall trend for all data units combined. For the EHR or its logarith-
mic transformation, the target will be the corresponding metric derived from the pooled data. pg () is the
precision of the transformed function of the metric t, and 1/p, ;) represents its approximate variance,
obtained via the Delta method (Appendix).

The control limits for the transformed function g(t) are given by

g0) £ L1—a/2 X 4/ 1/log(r)

where 12;_4/, represents the upper and lower percentile limits of the standard Normal distribution
(z = 1.96 for 95% control limits and 3.09 for 99.8% control limits).

The control limits for the measure 7 itself are then obtained by back-transforming the lower and upper
control limits estimated for the transformed function.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Table I. Formulae for the control limits using transformations of the survival metrics.

Transformation Lower control limit Upper control limit

Identity: g(v) =7 9—11_% X /1/pg(x) 6+z1_%><‘/1/pg(,)
ep(—z XX GT0a ) expl 212 X—gxioa

Complementary log-log: 0 b 1§ 7 0xToe®) 0 P\FI- 7 @)

g(7) = log(—log(7))
1 1

Logit: g(r) =log (%) — —
H‘(%)XGXP(Q—% x «gxui(er)) ) 1+(%)X3XP(_11—% x \gx(lé—((;)) )
Logarithmic: g(7) = log(t) 0 x exp (le_% X 7%%(1)) 0 x exp (21—% X @)

Table I provides general formulae for the lower and upper control limits for the measure 7 using
different transformations.

Survival trends (for example, the average annual change in survival or the slope coefficient) and the
log-EHR can be considered as Normally distributed, so the identity transformation is applied, which
is equivalent to no transformation. For the survival function, three main transformations have been
proposed in the literature: complementary log—log, logit and logarithmic [29, 32]. The complementary
log-log and the logit transformations remove the constrain for the limits of the survival function to be
within the range of values [0, 1] (see Appendix for more details). Because the logarithmic transformation
allows the upper limit to exceed 1 in some situations, we discourage the use of this transformation. In
our experience, both complementary log—log and logit transformations behave in a very similar manner
(data not shown). In this paper, we have applied the log—log transformation on the survival function.

3. Examples

3.1. Relative survival by a small area in England

One-year relative survival was estimated for all women diagnosed with breast cancer in England dur-
ing 1996-2006 and followed up to the end of 2007. The survival estimates for each of 152 small
areas (Primary Care Trusts (PCT)) covering the whole country were used to construct funnel plots for
patients diagnosed in 1996, 1999, 2002 and 2005 (Figure 2) [8]. Each data point represents the esti-
mate for one PCT. The target value is taken as the overall (pooled) national average for England in each
year of diagnosis. A funnel plot offers a simple, visual approach to understanding the survival trends
(Figure 2). The eight PCTs with survival below the control limits in 1996 (solid black circles) are con-
sidered as low ‘outliers’. They are highlighted in all the plots in order to trace whether survival improves
in those PCTs or remains consistently low over time. Similarly, the high outliers are identified with solid
grey circles.

Both the national average survival and the PCT-specific survival estimates generally increased between
1996 and 2005. In 1996, many PCTs fell outside the 95%, but this ‘over-dispersion’ was much less evi-
dent in later years, with a convergence of most estimates towards the target and a higher proportion of
PCTs falling inside the control limits, across a wide range of precision.

3.2. Racial and geographical variation in age-standardised relative survival

In the CONCORD study, a worldwide population-based study, racial and geographical variations
in cancer survival were displayed in funnel plots for 22 US cancer registries [6]. Figure 3 shows
5-year age-standardised relative survival for women diagnosed with colorectal cancer during
1990-1994 and followed up to the end of 1999. Survival estimates were stratified by race (Black and
White people) and by the two federal cancer registration systems: the Surveillance, Epidemiology and
End Results (SEER) Program and the National Program of Cancer Registries (NPCR). The target for
the funnel plot, at around 0.60, was taken as the pooled age-standardised 5-year relative survival for all
participating registries.

The funnel plot shows that colorectal cancer survival among Black people (solid symbols) was con-
sistently lower than among White people (open symbols): survival ranged from 0.45 to 0.57 in Black
people, and between 0.54 and 0.66 in White people. Survival for areas covered by SEER (circles) was

______________________________________________________________________________________________________________________________|
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Figure 2. Funnel plots of 1-year relative survival, women (15-99 years) diagnosed with breast cancer in 152
Primary Care Trusts in England: 1996, 1999, 2002 and 2005.
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Figure 3. Funnel plot of 5-year age-standardised relative survival, women (15-99 years) diagnosed with cancer

of the colon and rectum combined during 1990-1994 and followed up on 31 December 1999, 16 US states and

six metropolitan areas, by race and cancer registration system: National Program of Cancer Registries (NPCR)
and Surveillance Epidemiology and End Results (SEER).
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Figure 4. Funnel plots of the unadjusted, age-adjusted, and age-adjusted and stage-adjusted log-excess hazard
ratios for deaths within 5 years of diagnosis, by prefecture in Japan (Y, Yamagata; M, Miyagi; Ni, Niigata;
0, Osaka; F, Fukui; and Na, Nagasaki): lung cancer (women).

generally higher than in NPCR areas (triangles), for both White and Black people. Black people gener-
ally experienced lower survival than in the target value, and when living in NPCR areas, their survival
was often below the lower control limits. By contrast, survival among White people was more often
within the control limits. Survival for White people was outside the control limits for a few areas, either
above, for three SEER areas, or below, for two NPCR areas. This was observed for estimates of both low
and high precision.

3.3. Excess hazard ratio

Regional differences in the excess hazard of death from lung cancer in women in six Japanese pre-
fectures were estimated using multivariable Poisson regression models for relative survival [11]. The
funnel plots show the log-EHR at 5 years after diagnosis for each prefecture. The raw excess hazards
were successively adjusted for age, then for age and tumour stage (Figure 4).

The unadjusted and age-adjusted EHRs were below the lower 95% control limit (lower than the aver-
age hazard of death) for Niigata and Nagasaki, but after adjusting for stage at diagnosis, the EHRs were
all within the control limits. Similarly, after adjusting for age and stage, the EHR for the prefecture
of Osaka, initially an upper outlier with significantly high excess mortality, also fell within the control
limits. The unadjusted geographical disparities were thus mostly explained by differences in the stage
distribution, with cancer patients in Niigata and Nagasaki generally being diagnosed at an earlier stage
than elsewhere.

4. Discussion

This paper extends the use of funnel plots to population-based cancer survival and parameters derived
from it and provides the formulae for the control limits for each of these measures. Funnel plots are
a simple and informative approach for hospital-based comparisons [1]. We show here that funnel plots
can also be used to examine population-based data such as geographical variation in cancer survival
and that they represent a valuable tool to inform health policy makers in both planning and evaluat-
ing the effectiveness of cancer policy. Estimates that fall outside the upper or lower limits are easily
identified as having divergent behaviour. The readability and interpretability of the plots can be greatly
improved with the use of different symbols to distinguish between different groups (Figure 3) or by
tracing the performance of estimates that are initially outliers over time (Figure 2). Funnel plots do not
identify divergent estimates on the basis of their low or high ranking in league tables, which can lead
to unnecessary investigations. Funnel plots should not, however, be used as a formal statistical test for
multiple comparisons.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013




Statistics

M. QUARESMA, M. P. COLEMAN AND B. RACHET
I EEEEEE——

Indicators are often displayed in funnel plots without adjustment for case mix or other confounders,
but when the data are available, such adjustment is essential for the validity of a funnel plot in detecting
outlying performers [30]. Funnel plots of unadjusted estimates of a given parameter presented alongside
plots that are successively adjusted for key confounders can offer additional explanatory value (Figure 4)
[11]. Such adjustment is crucial to limit over-dispersion, when the majority of the data points fall outside
the funnel. Over-dispersion may be due to insufficient risk adjustment of the outcome measure, or it may
indicate that the indicator is not the most appropriate [13]. Over-dispersion may also occur when the
point estimates are derived from a multivariable model using a large amount of data. For example, in
order to obtain more robust survival estimates for a given small area, several years of data may be used
to reduce variability of individual estimates. Artificially inflating the variance around the target has also
been suggested [13] and has produced satisfactory results (data not shown).

A common limitation on wider use of funnel plots for cancer survival has been the lack of correct
specification of the control limits and their unavailability in standard statistical packages. We specify
here the control limits for a range of cancer survival estimates. We advocate the use of complementary
log—log or logit transformations for the survival function.

Sterne and Egger [12] have published guidelines on the choice of metric to plot on the x-axis for
detecting bias in meta-analysis. These authors argue that plotting the outcome (y) against the standard
errors (x), rather than the precision, would be desirable because the control limits become straight lines
in a form of a funnel instead of two curvy limits. They cite as disadvantages the fact that studies with
smaller sample sizes will be compressed at the bottom of the funnel in the presence of very large studies.
However, Spiegelhalter [1] suggested that for institutional comparisons, the best choice for funnel plots
is a function of the precision, which provides a more natural and direct interpretation of the x-axis. For
example, with outcomes that follow a binomial distribution, the number of cases can be plotted on the
x-axis as a function of the precision. The precision of the survival function does not have such a con-
venient interpretation; it is nevertheless far simpler to interpret the impact of precision on the parameter
estimates in a funnel plot than with the widely varying confidence intervals in a ranked bar chart.

In conclusion, funnel plots are a simple and powerful tool to display outcomes derived from
population-based cancer survival data, and we recommend them as a routine tool for cancer sur-
vival comparisons, to improve the planning and evaluation of cancer policies locally, nationally
and worldwide.

Appendix

Derivation of the control limits for the survival function

All the transformations discussed in the succeeding paragraphs are made on the original scale of the sur-
vival estimates, that is, within the range O-1. To display the funnel plots for survival on the percentage
scale, the multiplication by 100 should be made on the final values, after back-transformation.

Consider S(¢) as a survival function with 7" the survival time: the 100 (1 — ) % control limits for S(¢)
can be obtained by first applying a transformation to S(¢) that will remove the constraint of the values to
be in [0, 1] (for the complementary log—log and logit transformation) and transform them into the range
(—00, 00). The 100 (1 — o) % control limits are then obtained for the transformed values, which are then
back-transformed to the original scale in the range [0, 1].

The variance for the transformed survival function can be estimated using the Delta method. Generi-
cally, let X be a random variable and g(X) a function of X . The Delta method is applied by using the
first two terms of a Taylor series expansion around the mean of the variable to approximate the value of
the function as follows:

g(X) = g(n) + (X —p) x g'(n)

where g’ () = Bga(xx ) | x=u, so that the variance estimator of the function is then approximately given by

var(g(X)) = var(g(p) + (x —n) x g'(n)) = g'(1)* x var(x — p) = g'(n)* x 02

1. Complementary log—log transformation
Considering a complementary log—log transformation of S(¢) given by log(—log(S(¢))), with
log denoting the natural logarithm, we have
log(— log(S{1))) ~log(— oe(S1)) _, Normal(0, 1)
A/ var(log(—log(S(1))))

Ziog(~10(S())) =
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The 100 (1 — &) % control limits for log(—log(S(¢))) are given by

[lower limit, upper limit] = log(—log(S(z))) F Zi-g X /var(log(—log(S(1))))

The Delta method can be used to derive the variance estimator for log(—log(S(z))) as
var(log(—log(85(1)))) = [(log(=log(SM)))P* x var(S(1)) = [tz X [~ 10g(SO)'T> x

Var(S(t)) = m X var(S(t))
so that

[lower limit, upper limit] = log(—1og(S(1))) F z1-g x ,/ %

The 100(1 —a) % control limits for S(z) are then obtained from the limits for the
log(—1log(S(¢))) and using the inverse complementary log—log transformation:

y =log(—10g(S(1))) = S(r) = log(—log(S(1)))~" = exp(—exp(y))
so that

_ var(S
log(—log)™* | log(~1og(S (1)) F z1_g x W;(Eg?»]

A/ var(S(t))
=exp (— exp (log(— log(S(1))) F z1-¢ x S(t)Tg(St(t))

Simplifying the preceding expressions and re-writing the variance term as a function of the pre-
cision, that is, var(S(¢)) = 1/ps(), where p is the precision, the control limits for the survival

function can be written as
/l/pq(t) ) exp( Jl/ﬂs(;) )
1)

Lo L. CXP<—21—— S()x1og(S(1)) Zl—f S()x1og(S @)
[lower limit, upper limit] = | S(¢)

2. Logit transformation

Considering a logit transformation of S(¢) given by log( S(@)

1-S(z)

) so that
Ziow _ logit(S{t)—logit(S(1)) Normal(0, 1

logit(S (1)) Var(logit(S (1)) ©.1)

The 100 (1 — «) % control limits for logit(S(¢)) are given by

[lower limit, upper limit] = logit(S(¢)) F z1-g x /var(logit(S(7)))

Using the Delta method to derive the variance estimator for the logit(S(¢)), we obtain

var(logit(S(1))) = var(log(:2§05)) = [(log(Z5)) PP x var(S()) = smwasmn ¥
var(S(t))

so that

[lower limit, upper limit] = log(lsg(t)) Fai-g x ,/%

The 100 (1 — &) % control limits for S(¢) are then obtained from the limits for the logit(S(¢))
and using the inverse logit transformation:

y = logit(S(t)) = S(t) = logit(S(¢))~! = l++p(y)

so—1 . var(S(2))
so that logit [logu(S(t)) T 21-¢ X\ Goxt-30)2

- NN
1+eXP(—1°g(1 5<t))izl—ﬂXS(z);a{1 sm))

Simplifying these expressions and re-writing the variance in terms of the precision lead to the
following control limits for the survival function:

[lower limit, upper limit] = S@)

S(t)
V1/bsay | SO+ VoL
S Sm)ex”(zl‘m m(zl—%xﬁ)

1 1
1-S /rs ’ 1—S /os
1+( s<z(>l))xe"l’(zl—f S(;{X(l (s[()z») 1+( S(t()[))xeXp( g X s<?>/x<1 ‘s‘&»)
3. Logarithmic transformation
Considering a logarithmic transformation of S(¢) given by the natural log(S(¢)) so that

_ log(S(8)—log(S(®))
Ziog(s@) = ~ /= =GO Normal(0, 1)

The 100 (1 — &) % control limits for log(S(¢)) are given by
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[lower limit, upper limit] = log(S(¢)) F z1-g x Vvar(log(S(1)))
Using the Delta method to derive the variance estimator for log(S(¢)) as
var(log(8(1))) = [(log(S(1)))']* x var(S(¢)) = 5355 x var(S(t))

so that [lower limit, upper limit] = log(S(#)) F z;-g¢ x Va;(g )(é))

The 100 (1 — &) % control limits for S(¢) are then obtained from the limits for the log(S (7)) and
using the inverse log transformation:
y =log(S(1)) = S(1) =1log(S(1))™" = exp(y)

so that log™! [log(S(t)) Fzi-g % _V?cr((ts)(t))

var(S
= exp(log(S(1) F 21-g x L5 2)

Simplifying the expressions and re-writing the variance in terms of the precision give the
following control limits for the survival function:

[lower limit, upper limit] = S(i)/ma .S(t) x exp(zy-g x %)
s@

exp(ZI,%XW

V16 NI
= |:S(t) X exp (_Zl—g X %) ,S(1) x exp (Zl—g « S(l;)s(z))]
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5.4 Application: Smoothed maps and funnel plots to visualise

the index of cancer survival for CCGs

In this application we demonstrate the use of the two proposed visualisation techniques,
smoothed maps and funnel plots, to present the results of the one-year CCG cancer survival
index estimated in Chapter 4. The index estimates from Tables 4.10 and 4.11 were used
to exemplify how the same set of results can be used for national surveillance and local
monitoring of cancer survival. For the purpose of this illustration only results for four

selected years of diagnosis were used: 1996, 2001, 2006 and 2011.

5.4.1 Smoothed maps

The smoothing software [171] described in section 5.2 was used to create smoothed maps of
England for each year of diagnosis. After tuning the smoothing parameters in the mapping
software, the best grid cell size for the interpolation was chosen as 1km x 1km. The best

radius for the circular window was 150km and 15km for the distance parameter dy.

The CCG boundaries are not shown on the maps as a result of the smoothing process. The
open circles on the maps show the survival for CCGs with large populations for which sur-
vival estimates are statistically stable and were not included in the smoothing process. For
the purpose of this demonstration, we chose four CCGs that included the cities of Liver-
pool, Sheffield, Birmingham and Coventry. This is an option of the mapping software that
allows a selection of such areas to be user-specified as described in section 5.2. In addition,
the capital London is shown separately from the main England map for a better view of

the results because it is a small area but densely populated.

A 15-colour scale was chosen to provide the smoothest transition in the maps surface
appearances. The median of the grid-specific cancer survival was set as the middle point of
the scale, with blue shades representing areas with highest survival through to red shades

representing areas with lowest survival.
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Figure 5.6 presents smoothed maps of England for each year of diagnosis. The smoothed
maps show a substantial increase in net survival for England between 1996 and 2011 with
estimates ranging between 60-70%. A clear North-South survival gradient can be observed
for England and a North-East/South-West gradient for London, with a deficit in survival
in the North of England and North-East of London. Despite the overall improvements in

survival, the observed disparities are persistent over the years, although slightly reduced.
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Figure 5.6: Smoothed maps of England using the one-year net survival index for CCGs
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5.4.2 Funnel plots

Funnel plots were created using a custom R code we wrote to construct funnel plots for
survival outcomes. This R code implements the funnel plot formulation for the control
limits using the complementary log-log transformation as defined in research publication

2 [6]. An example code to create one funnel plot can be found in Appendix A.

Each data point in the funnel plots (Figure 5.7) is the estimated net survival index for each
of the 211 CCGs. The target was estimated as the mean of all CCG index estimates in
each year of diagnosis. The precision values for each CCG index were calculated as the
inverse of the variance (Chapter 4). Two sets of control limits were plotted at 95% and
99.8% around the target. CCGs falling below the lower control limit in the 1996 funnel
plot (i.e. lower ‘outliers’) are marked in red. These lower CCGs are traced using the same
red points in the subsequent funnel plots for 2001, 2006 and 2011. Individual CCGs can
be located in the funnel plots using as coordinates their index estimate and precision read

from Tables 4.10 and 4.11.

The funnel plots show the spread of the individual CCGs survival indexes around the target
value. Overall, one-year net survival increased from around 59% to 68% between 1996-
2011 (target value). Survival also increased for all the individual CCGs, with a narrowing
of the initial over-dispersion observed in 1996 (i.e. many CCG estimates falling outside of
the control limits). Several CCGs which were lower ‘outliers’ in 1996 (red points) improved
their survival level and converged within the limits in more recent years, whereas others

seem to have worsened (black points below lower limits after 1996).
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Figure 5.7: Funnel plots of the one-year net survival index for CCGs
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5.5 Discussion

In this second chapter we aimed to improve the visualisation of cancer survival for a more
successful dissemination to policy-makers. For this purpose we adapted two data visualisa-
tion techniques to cancer survival outcomes. First, we adapted a joint smoothing and map-
ping technique that produces smooth maps based on small-area survival estimates. Next, we
have extended funnel plots to visualise the spread of individual survival estimates around
a pre-specified target value by formulating the correct control limits for cancer survival

outcomes.

To illustrate these two techniques, we have used the results of the CCG cancer survival
index estimated in Chapter 4. Smoothed maps provided a 'bird’'s-eye’ view of the cancer
survival patterns across the country, after elimination of random local fluctuations present
in ‘classical’ thematic maps. The vivid 15-colour scale provided a smooth and colourful map
surface that is more likely to draw attention when presented to a non-expert audience. One
limitation of this type of ‘surface’ smoothing is that it does not take into account the
spatial correlation of the data, and thus does not produce standard errors in addition to

the estimated smoothed surfaces.

Funnel plots provided a simple yet powerful tool for visualising the spread of survival for
individual CCGs whilst avoiding spurious ranking as seen with ranked bar charts. The pres-
ence of a target value in the funnel plot (the index estimate for England) discourages direct
comparisons between individual CCGs, favouring the comparison of each area against the

average level of survival in England.

An additional improvement funnel plots offer over other representations is the easy visu-
alisation of the range of precisions associated with the individual outcome estimates. For
instance, in the two long tables of results presented in Chapter 4 (Tables 4.10 and 4.11),
identifying any pattern in the range of precisions associated with each CCG survival index

was challenging.

As shown by the CCG survival index results, funnel plots are designed to easily detect the
existence of over-dispersion in outcomes indicators, that is the presence of greater vari-

ability in outcomes than would be expected given the target. Several techniques have been
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suggested in the literature to handle over-dispersion in performance indicators [176]. Ad-
ditional work has been prepared, separate to the research objectives of this thesis, but
as an extension of the work presented here to provide a set of guidelines to handle over-
dispersion in cancer survival outcomes. The manuscript is currently in review: ‘Handling
over-dispersion and large precision range in funnel plots for [0, 1]-bounded health-measure
estimates’. Authors: Bannon F. (Queen's University Belfast School of Medicine Dentistry

and Biomedical Sciences) and Quaresma M. (LSHTM).

Since publication, smoothed maps and funnel plots have been used by national policy-
makers, stakeholders and local cancer managers as a routine monitoring tool [177]. Whilst
national policy-makers have used smoothed maps as a strategic planning tool to intro-
duce and update cancer control strategies, funnel plots have helped local cancer managers
identify areas with unexpected cancer survival levels, i.e. either much lower or higher than
expected compared to the national cancer survival level. Identifying such divergent areas will
allow researchers and stakeholders to work together to investigate the reasons associated

with such divergent outcomes.

In summary, the research presented in this chapter introduces two data visualisation tech-
niques for cancer survival outcomes. We have demonstrated that smoothed maps and
funnel plots are two convenient, effective and ‘fair’ ways to present cancer survival out-
comes both for national surveillance and for local monitoring of cancer survival. As shown,
the smoothing technique relies on a ‘two-step’ process were: first, small-area cancer survival
has to be estimated for each area separately, and second, these estimates are then used
in the interpolation to produce smoothed maps. However, when in the presence of sparse
data, the smoothing technique will not solve the problem of missing survival estimates as
we have observed with the CCG cancer survival index estimation. In the next Chapter,
we aim to address the outstanding estimation challenges by exploring alternative cancer
survival models within the Bayesian framework to further improve the estimation of cancer

survival.



Chapter 6

Bayesian approaches for the
estimation of cancer survival at

small area level

""Time present and time past.
Are both perhaps present in time future,
And time future contained in time past.
If all time is eternally present

All time is unredeemable...”

Four Quartets by T. S. Eliot

In this chapter we aimed to determine how Bayesian approaches can be used in the relative
survival setting to improve the estimation of cancer survival in the presence of sparse
data and when using more complex data structures (Research Aim 3). We started by
summarising the existing literature on small area estimation. We then propose a flexible
Bayesian excess hazard model formulated on the log-excess hazard scale, and demonstrate
how net survival can be estimated from such a model. We demonstrate the applicability
of this model by investigating variation in net survival for patients diagnosed with colon

cancer living and receiving care in London.

145
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6.1 Introduction

The combined research for Aims 1 and 2 (presented in chapter 4 and chapter 5, respec-
tively) proposed a two-step approach to investigate geographical patterns and time trends
in an index of cancer survival defined for small health geographies. An application of the
index was presented for the 211 CCGs in England using data for all patients diagnosed with

cancer between 1996 and 2011.

In the first step, a modelling strategy was implemented to estimate the individual compo-
nents needed to construct the index. Separate excess hazard regression models were set-up
for each CCQG, sex and cancer type, all including age and year of diagnosis. The results
showed wide variability in the estimates, with an average of 17% of precision estimates
close to zero over the whole period of diagnosis analysed. Between 5-10% of the estimates
needed for the construction of the index for each CCG could not be estimated, requiring
either model adjustment or replacement of those missing estimates with the estimate ob-
tained for a merged age group of the missing age group with an adjacent (non-missing)

age group.

In the second step, two data visualisation techniques were proposed in order to improve
interpretability when investigating patterns and trends in the index of cancer survival for
both national and local monitoring. Smoothed maps enabled a clearer visualisation of the
national patterns of survival in England by using a simultaneous smoothing and mapping
technique to filter out excessive variation from less precise estimates. Funnel plots provided
an accessible way of displaying the individual index estimates, essential for local monitoring,
taking into account the increased variability expected from less precise estimates by defining

control limits around a defined target.

The proposed two-step approach substantially improved the investigation of short-term ge-
ographical patterns and temporal trends in cancer survival, even when defined at a smaller
geographical level, such as CCGs. Despite these improvements, concerns remained regard-
ing the estimation of the 5-10% of ‘sex-age-cancer’ specific survival components that could
not be estimated for the CCG index. In addition, the index was only estimated at one-year

since diagnosis because the estimation at later follow-up times was not feasible, due to
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the many model non-convergence problems, resulting in very large proportions of missing

estimates, that can not be solved by applying the smoothing technique.

The ‘follow-up time' dimension present in survival analysis adds complexity to the estima-
tion process when compared to incidence or mortality outcomes. For smaller datasets or in
the presence of sparse data (mostly due to rare events), the set of patients at risk of dying
at any given time since diagnosis is continuously being depleted with the death or censor-
ing of patients. This can lead to unstable estimates with low precision and large variation,
even making the estimation of survival not feasible as was observed in our application to
CCGs. In addition, when analysing areas of unequal ‘size’, the overall assessment of the
geographical patterns can be compromised if the sparse data problem is not taken into ac-
count properly in the estimation process. This can result in the real underlying geographical
patterns being masked by the presence of too much variation contributed by those more

unstable estimates.

The research presented in this Chapter will focus on alternative methods to the regression
models used for the estimation of the cancer survival indexes in Chapter 4 to improve the
estimation of small-area cancer survival. To the best of our knowledge, the current literature
on statistical methods for small-area estimation is fairly limited for cancer survival. We start
by presenting an overview of the literature for small-area estimation methods, including

quantities other than cancer survival.
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6.2 Overview of small-area estimation methods

Small-area estimation (SAE) methodology has been extensively developed in the field of
sample surveys [178, 179]. The term ‘small-area’ commonly indicates an area for which the
outcome of interest is rare, and does not necessarily refer to the actual size of any given
area. For example, a highly densely populated area can be denoted as ‘small’, if the out-
come for a rare cancer is the main interest. In this setting, the aim is to obtain estimates
of adequate precision when the sample size is not large enough to provide an estimate
based solely on the data collected, i.e. a direct estimate. Many SAE estimators were devel-
oped to provide estimates for non-sampled areas, based on information available for areas
that have been sampled and on auxiliary covariates measured for those areas [180, 181],
i.e. indirect or model-based estimates. The most widely used model is the Fay-Herriot
model [182], which in its original formulation is defined as a general linear mixed model
with area-specific random effects; assumed to be independent, identically and Normally dis-
tributed random variables. This formulation makes use of the information available in all the
sampled areas, to improve the estimation of quantities for the non-sampled areas. It does
not discriminate or make use of information coming only from areas that share common
population characteristics with the non-sampled areas, such as might happen with areas
that are close to each other or share a common border. More recent developments of SAE
models include a spatial dependency structure, enabling the use of information only from
selected areas. The main idea behind the Fay-Herriot and other SAE models is to ‘borrow
strength’ from data available in sampled areas to help in the estimation of quantities for
the non-sampled areas. Most SAE models were developed based on a multilevel model
formulation [183, 184], which due to its flexibility allows for different types of effects to be

easily modelled; estimation is usually carried out under a frequentist or Bayesian framework.

In epidemiological research, the idea of ‘borrowing strength’ to improve estimation has
been at the basis of small area methodology. Commonly, each geography was analysed
separately, assuming that data observed for one area were independent from the data
observed for another area. Spatial models came to respond to the need of enlarging the set
of classic analytical methods, subject to the hypothesis of independence of the observations,

to the case of spatial data, where it became evident that the data closer in space have the
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tendency to be more similar than those farther away. This ability to incorporate the spatial
interdependency, or correlation, of observations makes these models special and able to be

applied in a vast range of real situations [185-188].

Spatial studies can be broadly categorised into three types:

1. Disease mapping, where the objective is to model and describe the overall spatial

distributions or patterns for the disease outcome of interest [189-194].

2. Spatial correlation or ecological studies, where the objective is to model the relation-
ship between the spatial distribution for the disease outcome of interest and a group
of covariates of interest, which might themselves also present a spatial distribution

[195-198].

3. Disease clustering, which is concerned with identifying or confirming the existence of
unusually high areas of disease in a map. In the case of cancer incidence, the interest
would be to identify spots of unusually high incidence, as for example, around a nuclear
power station. When looking at survival it would be of more interest to identify spots

which present lower survival [199-203].

Spatial data consists of recording the characteristic of interest together with the location
at which this characteristic occurred or was measured. For example, a variable might be
measured at fixed point locations, giving rise to what is known as geostatistical data. Spatial
data can also be measured at locations that are spatial areas, usually called lattice data. A
special case of lattice data, are point data, were the exact location at which the observations

occur are themselves the variable of interest.

When the exact location (e.g. latitude and longitude) of each observation is known, geosta-
tistical methods [204—207] can be used to estimate and predict, i.e. interpolate continuous
risk surfaces for the whole study area and produce isopleth maps. This type of ‘surface’
smoothing can also be done using distance weighting techniques such as moving weighted
averages or kernel smoothers [208—-210], but geostatistical models have the advantage of
taking into account the spatial correlation of the data, and therefore produce standard

errors in addition to the estimated risk surfaces. A few studies [211-213] explored the use
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of these models for disease mapping, based on small counts and suggest some advantages
over the models used for disease mapping (described in the following paragraphs), such
as better model flexibility in incorporating the spatial structure, fast computational per-
formance and smaller variance estimates, but applications with real data of geostatistical
models to small-area disease mapping, and in particular survival data, are still very scarce

[214, 215], and only apply if the aim is to produce a continuous map surface.

In epidemiological studies, lattice data are the most common type of data analysed, usually
consisting of counts of cases or sets of observations that occurred in an area of regular or
irregular shape. The lattices are referenced by a structure defining the neighbours of each
area. This can be done by creating an adjacency matrix, defined based on the Euclidean

distance between areas or on whether the areas share a common border.

Seminal work by Besag [216] on Markov Random Fields theory was determinant to the
development of many spatial models based on lattices. In his work, Besag has proposed
a sub-class of Spatial Markov Random Fields, also termed as auto-models or conditional
auto regressive models (CAR), in which the full conditional distributions [217, 218] for
the observations in each area can be specified based only on their dependency with their

neighbouring areas.

One of the first disease mapping models was proposed to address a specific problem for
crude standardised mortality rates (SMRs). As discussed by several authors [204, 219-
221], the small counts of cases observed in each of the small areas result in SMRs with
extra-Poisson variation, i.e. with variance higher than expected. In order to address this
issue, Clayton and Kaldor [219] used a CAR model to accommodate the spatial location
of the data in the formulation of an Empirical Bayes [222] model to spatially smooth the
relative risks. With this model, unstable estimates can be ‘shrunk’ towards a global or local
mean. Different spatial Empirical Bayes models were later proposed [192, 223]. Though
very popular, this approach does not consider the extra variance from the estimation of
the model parameters, since the estimation of the parameters for the prior distribution is

based on the likelihood of the data.

Besag, York and Mollié (BYM) [224] have proposed a full Hierarchical Bayesian model

based on a generalised linear mixed model (GLMM) [225], a class of models that resulted
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from including random effect terms in Generalised Linear Models (GLM). Such models
consist of a fixed effects part related to covariates and a random effect term that depends
on the parameters to estimate. The BYM model includes two mutually independent random
effect terms that are both spatially and non-spatially structured. The prior distribution for
the spatially structured random effect is based on a CAR model and prior distributions are
also specified for the parameters of the CAR prior, the so called ‘hyperparameters’, which

are the variance parameters specified at the third level of the hierarchy.

Bayesian models make use of the likelihood of the data and combine it with prior information
about the parameters of interest to draw inferences based on the posterior distribution
[226, 227]. The prior distribution relates to the distribution of relative risks across the
areas studied, so that the neighbour information about the relative risks can be conveniently
incorporated in the prior distribution of the parameters. In Bayesian inference, it is usually
not possible to obtain the posterior distributions in closed form and numerical integration
approaches, such as Laplace approximation and other simulation techniques such as Markov
Chain Monte Carlo methods (MCMC), need to be used. Inferences are mostly based on
MCMC and involve estimating the quantities of interest from the posterior distribution by
drawing samples from the posterior distribution without having to know its closed form

[228, 229].

Lawson et al. [230] performed an empirical evaluation based on simulations to analyse
the performance of several disease mapping models including non-parametric smoothing
methods, empirical Bayes methods and full Bayes methods. Smoothing functions, such as
the Nadaraya-Watson kernel smoother [209], were used to filter out the excessive random
noise of a map when the estimates for each area were obtained in an univariate way, i.e.
without taking into account the spatial dependency of the data. The authors concluded
that smoothing methods generally performed poorly whilst the BYM model presented the

most robust results.

In a comparison of Bayesian spatial models for disease mapping, Best et al. [231] provide
practical guidance on the choice of the prior distribution for the second level of the hierarchy
that defines the spatial dependency between the areas. The simulation results show that

the BYM model has in general one of the best performances and continues to be the most
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chosen model for prior specification. The authors also note that other models can, in some
situations, be a better choice to model spatial dependency and that these options should

always be explored when conducting a disease mapping study.

The models described until now are all based solely on the specification of the spatial
dependency of the data. It can also be useful to look at the evolution of these spatial
patterns over time using space-time models. Such models add a temporal effect and a
spatio-temporal interaction [232—238]. Other authors proposed joint modelling several dis-
eases sharing common risk or prognostic factors, so that information can be ‘borrowed’
not only in space, but also from other diseases [239-241]. The BYM model formulation

was later extended for the joint modelling of two [242] and six [243] diseases.

The approaches described so far relate to the geographical distribution of counts in small
areas and they are mainly used for incidence and mortality studies. The concept behind the
extension to spatial survival models is similar. Bayesian inferences for survival data have
been proposed by several authors, including the use of spatially structured random term
effects (frailties) in a hierarchical formulation of spatially correlated survival data, both for

geostatistical and lattice data [244—-247].

In the field of population-based cancer survival, most of the studies looking at geographi-
cal variation estimate survival for each area independently [47, 248, 249]. Very few studies
have explicitly included the spatial structure of the data in the model formulation. Excep-
tions include, Osnes and Aalen [250], who where the first to propose a full hierarchical
Bayesian model to smooth cancer survival estimates based on a neighbouring structure. Yu
et al. [251] use an Empirical Bayes model to shrink the relative survival estimates towards
the global mean but without taking into account the neighbouring structure of the re-
gions. Three other applications have adapted the disease mapping BYM model for the
estimation of relative survival [252—254], using the CAR model as a prior distribution. All
authors refer to general improvements in the estimation of cancer survival when taking
into account the spatial structure of the data compared to univariate models in which the

estimation is stratified by area.

Current inference practice for the excess hazard models mentioned above are mainly based

on the frequentist maximisation of the likelihood function [100] and very few options are
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available for inferences within the Bayesian framework: Fairley et al. [253] proposed a
model to examine spatial variation in prostate cancer survival using Bayesian relative sur-
vival smoothing within a Generalised Linear Model formulation. The number of events was
assumed to follow a Poisson distribution and two random effects were included in the
model: a spatially structured random effect for local smoothing and an unstructured ran-
dom effect global smoothing; Hennerfeind [255] proposed a Bayesian geoadditive relative
survival model using penalized P-splines to model the log-baseline effect as well as the
nonlinear and time-varying effects of covariates. Spatial and normal random effects were
also included in the model formulation; Cramb et al. [256] introduced a Bayesian flexible
parametric model which extends a frequentist flexible parametric model on the log cumu-
lative excess hazard scale using restricted cubic splines [114] by adding spatially structured

random effects.

In summary, small-area estimation is a common problem in many epidemiological studies
and there is a vast body of literature dedicated to address the challenges associated with
the instability of estimates. Although, several methods have been proposed, all authors
agree on two points: 1) sparse data can compromise the interpretation of important ge-
ographical patterns; 2) improved estimation procedures should be used to ‘filter’ out the
excessive variation. Most applications found in the literature are in the context of inci-
dence and mortality studies, with very few applications for cancer survival, reinforcing the
need to improve the estimation of cancer survival at the small-area level in order to better

understand the origins and mechanisms underlying the observed geographical disparities.
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6.3 Flexible Bayesian excess hazard models

The small-area estimation overview presented in the last section, highlighted the need
to expand the portfolio of estimation options for small-area population-based cancer sur-
vival. Whilst there is a vast amount of different estimation approaches available for in-
cidence and mortality outcomes, methods for overall survival are much less available in
general. Population-based cancer survival methodology in particular occupies a very small
niche within the survival methodology, and we found very few models addressing the prob-
lem of estimation in the presence of sparse or spatially arranged data. The ultimate aim of
the small-area estimation overview was to understand what estimation methods are avail-
able in the literature, and how the same ideas and principles could be adapted into the
relative survival setting. The idea of ‘borrowing’ strength by incorporating the spatial de-
pendency of observations in the model formulation was the main idea shared by the existing
modelling approaches. There was also a general consensus that the Bayesian framework
lends itself as the most natural choice to implement such models due to its flexibility in
incorporating complex data structures, as for instance, using a hierarchical data structure
with random effects at the second level of the hierarchy to define the spatial dependency

of the areas.

Population-based cancer survival research has seen an active acceleration in methodological
developments during the last decade. Several improvements have been proposed to excess
hazard regression models, with particular focus on modelling non-linear effects using flexible
functions, such as splines, and the correct estimation of net survival at the population
level (please refer to the methods overview in Chapter 2). The need for these improvements
in estimation methods was partially linked to the increased availability of more complex
datasets for population-based cancer research, including more detailed clinical information
and new sets of small-area health-geographies. Current inference practice in the cancer

survival research community is almost exclusively made within the frequentist framework.
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For the purpose of the research presented in this chapter, and considering the reasoning in
the last two paragraphs, our ultimate goal is to develop a versatile Bayesian excess hazard
model that can be used for small-area estimation by including an adequate dependency
structure of the observations and also retain the most recent advances in excess hazard

modelling, such as the use of flexible functions to model non-linear effects of covariates.

In order to achieve this ultimate goal, the first step (Aim 3, objective 2) aimed to translate
a flexible log-excess hazard model (see Chapter 2, section 2.4.2.2) into the Bayesian frame-
work, since no such model was currently available in the Bayesian literature. The purpose
was to first develop a Bayesian counterpart to the ‘basic’ excess hazard model that could
later be extended to accommodate ‘random effects’ and other more complex data struc-
tures, and to implement a Bayesian post-estimation procedure to derive population-based
net survival from such a model. We write ‘random effects’ in quotes because all effects

(parameters) are considered random within the Bayesian framework.

This work was prepared as a publication that was peer-reviewed and published [257] in Sta-
tistical Methods in Medical Research. The article starts by formulating the excess hazard
model on the log-scale and proposes the use of low-rank thin plate splines to model the
baseline log-excess hazard and the smooth effect of continuous variables. After some con-
sideration, we chose this special type of splines to add flexibility to the model, because the
log-likelihood function retains tractability so that numerical integration is not required. This
is an important aspect of the proposed model that simplifies the computational burden
without sacrificing model flexibility. Another important and innovative aspect this article
adds is a step-by-step algorithm to derive posterior distributions of net survival and excess
hazards. The model is illustrated with an application to data from patients diagnosed with
colon cancer during 2009 in London. We chose colon cancer for this application because we
understand well its behaviour from previous experience, including the expected shapes of
the excess hazard and the net survival functions for the English population. In addition, as
part of extensive checking during the implementation phase of the flexible Bayesian excess
hazard model, we have also compared the level of net survival and the excess hazard func-
tion with the estimates from the non-parametric Pohar-Perme estimator [91], obtaining

very similar results (results not shown).
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Complete details can be found in the author accepted manuscript inserted at the end of this
section (Research publication 3). In addition, we provide an example R code in Appendix A
to implement this model, including the set-up for the low-rank thin plate splines and the

post-estimation of net survival.

The next research objective (Aim 3, objective 3) aimed to demonstrate how the flexible
Bayesian excess hazard model proposed in the previous work (Aim 3, objective 2) can be
extended to model more complex data structures, as a step forward towards our ultimate
goal for a versatile excess hazard model accommodating different data structures, including

a spatial structure.

We started by demonstrating the practical applicability of extending the flexible Bayesian
excess hazard to investigate variation in net survival for patients diagnosed with colon can-
cer by incorporating a pair of random effects within a hierarchical data structure for patients
living within London CCGs and being treated within hospitals in London. A manuscript (Re-
search Publication 4) was prepared based on this work. The full manuscript is inserted from
next page and is ready to be submitted to The Lancet. The article starts by investigating
patterns of patient pathways between the area of residence and the hospital of cancer
care. For this purpose, flow maps of London were created to visualise the most frequent
pathways between CCGs and hospitals. The variability in cancer survival is then investigated
at both CCG and hospital level, after adjusting for some patient and tumour characteristics,
such as age at diagnosis, deprivation and stage at diagnosis. To accommodate the hierar-
chical structure of the data (i.e. that patients within a given CCG of residence or hospital
of cancer care are likely to share some characteristics), the flexible Bayesian excess hazard
model proposed in the previous section is extended to include a pair of random effects for
CCG and hospital. Several innovative graphical representations are used in this work. In
addition to the flow maps, windrose graphs arranged according to the approximate cardinal
directions of CCGs and hospitals are used to better visualise the proportion of patients by
deprivation category and stage at diagnosis. Funnel plots proposed in Chapter 5 are used

to display the variability in net survival by CCG and hospital of care.
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Abstract

Excess hazard models became the preferred modelling tool in population-based cancer survival
research. In this setting, the model is commonly formulated as the additive decomposition of the
overall hazard into two components: the excess hazard due to the cancer of interest and the
population hazard due to all other causes of death. We introduce a flexible Bayesian regression
model for the log-excess hazard where the baseline log-excess hazard and any non-linear effects
of covariates are modelled using Low Rank Thin Plate splines. Using this type of splines will ensure
that the log-likelihood function retains tractability not requiring numerical integration. We demonstrate
how to derive posterior distributions for the excess hazard and for net survival, a population-level
measure of cancer survival that can be derived from excess hazard models. We illustrate the
proposed model using survival data for patients diagnosed with colon cancer during 2009 in London,
England.

Keywords
Population-based, cancer, survival, excess hazard, Bayesian, flexible, low rank thin plate splines

Introduction

Regression models for the excess hazard became the preferred modelling tool for cancer survival research
using population-based data'=. In the absence of reliable recording of the cause of death for each cancer
patient, these models conveniently allow to filter out the hazard due to other causes of death, whilst
focusing inferences on the excess hazard only due to the cancer of interest. In this setting, the model
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is formulated as the additive decomposition of the total hazard into two components: the hazard due to
the cancer (the main quantity of interest, also designated as the excess hazard), and the hazard due to
all other causes of death, derived from population life tables (also known as background mortality or
expected hazard). This set-up allows inequalities in cancer survival to be investigated by looking at the
effect of multiple prognostic factors on the form of the excess hazard function or by deriving excess
hazard ratios for different sets of characteristics of the population. Model parameter estimates can also be
used to derive net survival, both at the individual-level and at the population-level, measuring the survival
that can be attributed only to the cancer of interest after accounting for all other causes of death*. Net
survival estimates can therefore be compared even if the expected hazard differs widely between sub-
populations of patients’. In their seminal paper, Estéve et al.! introduced the first regression model for
the excess hazard based on the full-likelihood specification using individual survival time data. In its
original formulation, the model was proposed on the log-excess hazard scale with the baseline log-excess
hazard modelled as a piecewise constant step function, and allowing proportional effects of covariates
and linear effects for continuous variables to be modelled. Proposed extensions to this model mainly
relaxed the non-proportionality and non-linearity assumptions for covariates and interaction terms, and
non-linearity for the baseline excess hazard, by modelling these terms with highly flexible functions
such as the commonly used B-splines or restricted cubic splines . The tradeoff for the increased model
flexibility obtained with the use of splines, is the added complexity to the likelihood function, that requires
advanced numerical integration techniques such as the Cavalieri-Simpson integration” or the Gaussian
quadrature® to evaluate the cumulative hazard integral, which will no longer be a tractable function with
a closed-form solution.

This applies regardless of the framework of inference, whether frequentist or Bayesian, although
inferences for excess hazard models have mainly been based on the frequentist maximisation of the
likelihood function. Very few options are available for inferences within the Bayesian framework ~'°, in
particular none describing the process of deriving a posterior distribution of net survival.

The purpose of this article is to introduce a flexible Bayesian regression model for the log-excess
hazard, based on individual-level data, with the following characteristics: a) the baseline log-excess
hazard is modelled using a flexible function; b) the log-likelihood function retains tractability so that
numerical integration is not required; ¢) the model can accommodate a variety of covariate effects: linear
and non-linear (also modelled using a flexible function), proportional and non-proportional; d) one can
derive a posterior distribution for the excess hazard, excess hazard ratios and net survival; e) the model
can be easily extended to include random effects and hierarchical data structures; f) inference can be done
within the Bayesian framework; g) and the model can be implemented using most Bayesian open-source
software.

Section 2 specifies the likelihood for the log-excess hazard model, introduces the formulation of the
flexible functions used in this article, and describes the Bayesian inference procedure, including the steps
to obtain a Bayesian posterior distribution for the excess hazard function, excess hazard ratios and net
survival. Section 3 provides an example of application of the proposed model based on the survival time
data of patients diagnosed with colon cancer during 2009 in London. Section 4 presents some concluding
remarks, discusses the limitations of our study, and proposes further extensions to this work.
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Methods
Likelihood formulation for the Excess Hazard Model (EHM)
Let (t;,%;,0;),i=1,..., n, t; > 0, denote a set of n time to event observations, measured from the date of

diagnosis of a cancer until the occurrence of death, with covariates x; and vital status indicator §; (§;=0
if censored, §;=1 if death occurred). The likelihood function of the full vector of parameters of interest
can be written in generic terms as

L(0) = [ 1(ti xi,0)% .S (t:, %:,0) (1)
i=1
where h(t;,x;, 0) is the hazard function and S(¢;, x;, #) is the survivor function. Delayed entry or left-
truncation of observations, can be accommodated in the likelihood by including an additional term,
S(tq,x;,0), representing the survivor function for a pre-specified truncation time ¢4 > 0, as

o . h(ti,xi,Q)‘Si.S(ti,xi,G)
L(6) = H S(ta,x;,0) @

i=1
If t; >0 then S(tg4,x;,0) # 1, and the likelihood in equation (2) allows delayed entry of
observations *?, enabling study designs such as period analysis to be incorporated into the framework >*.
If t; = 0 then S(t4,%;,6) = 1, and the likelihood assumes no delayed entry, simplifying to equation
(1). For the purpose of this article, the likelihood in equation (1) is used from here onwards, assuming
no delayed entry of observations, but the likelihood in equation (2) could be used equivalently in what
follows below.
Considering only the individual contribution of observation ¢;, the log-likelihood can be written as

logL(0) = §;.log(h(t;,x;,0)) + log(S(ti, x;,0)) 3)
Using the following relationship between the survival function and the cumulative hazard function
(H (t;,x;,0)'":
t;
log(S(ti,X,-,G)) = *H(ti,Xi,9> = / h(U,XZ’,Q)dU (4)
0

and replacing equation (4) into equation (3), the contribution of observation ¢; to the log-likelihood can
be rearranged as

t;
logL(6) = 6,.l0g(h(ts,xs,0)) — / h(u, X3, 0)du )
0

An excess hazard model assumes the additive decomposition of the overall hazard, h(t;,x;, ), into two
components:
h(ti,x;,0) = hp(ti, i, 0) + hp(a; +ti,2;) (0)

where, hg(t;,X;,0) is the excess hazard function due to the cancer of interest for an observation ¢; with
x; a vector of observed covariates and 6 a set of parameters. The second component, hp(a; + t;,2;), is
the general population hazard function for an observation ¢;, evaluated at the attained age at death (or age
at censoring): a; + t;, with a; the age at diagnosis and z; (z; € Xx;) a subvector of covariates for which the
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population hazard is defined. The population hazard, also known as background mortality, represents the
hazard due to all other causes of death than the cancer of interest. It is assumed to be a known quantity,
taken as the age-specific mortality rates from existing population life tables, stratified as finely as possible
according to a subset of covariates z;. This subset of covariates usually contains less covariates than the
complete set of covariates available for the cohort of cancer patients, possibly including, in addition
to age at death (or censoring), gender and calendar year, socio-economic status, ethnicity or region of
residence '%.

Replacing equation (6) into equation (5), the log-likelihood for an excess hazard model can be written

entirely as a function of the excess hazard and the population hazard:

t; a;+t;
logL(0) = d;.loglhg(ti,xi,0) + hp(a; + ti,2;)] — / hg(u,X;,0)du — / hp(u,z;)du  (7)
0 0

Given that the population hazard hp(a; + t;,z;) is a constant, the last integral in equation (7) does not
depend on any parameters and thus can be dropped from the log-likelihood, which can be rewritten (up
to this constant) as:

t;
logL(6)  8i.doglh(ts,xe, 0) + hp(as +t1,2:)] — / s, i, 8)du ®)
0

Modelling the Log-Excess Hazard function

Equation (8) specifies the log-likelihood for a generic excess hazard model. Inferences can be made by
specifying an appropriate model for the excess hazard function (hg(t, X)), which we here assume to have
a multiplicative effect of the covariates on the baseline excess hazard. It can be written as,

hg(t,x) = hg,(t).exp(B.x) )

where, h g, (t) is the baseline excess hazard; and X = (x1, x2, 73, . . .) a vector of observed covariates and
B = (B1, P2, B3, - . .) the vector of their corresponding parameters. In this article, we propose a model
for the logarithm of the excess hazard function, that can accommodate several types of covariate effects.
Taking the logarithm of equation (9), we can write, in generic terms, a model for the logarithm of the
excess hazard as

lOg(hE(t,X)) = lOg(hEO (t)) + Bl-xl + 91(552) + Qz(t).mg + ... (10)

where, log(hg,(t)) is now the baseline log-excess hazard function; 3; is a linear and proportional effect
on the log-excess hazard of covariate x1; g1 (z2) is a non-linear and proportional effect of a continuous
covariate z2; g2(t) is a non-proportional (i.e. time-dependent) effect of a covariate z3.

We choose different constructs of low-rank thin-plate (LRTP) splines to model the baseline log-excess
hazard any non-linear effects, and to accommodate time-dependent effects. These first-order polynomials
are a penalised type of radial basis splines '*, that have been discussed by several authors for their simple
yet flexible nature, providing a good alternative to other spline constructs, such as B-splines and truncated
basis splines. In particular, LRTP splines exhibit fast Markov Chain Monte Carlo (MCMC) convergence
properties and conveniently result in tractable likelihood functions '*'#. Murray et al. !> have introduced a
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unified framework for flexible, fully Bayesian analysis of overall survival using LRTP splines, providing
a detailed description of their formulation ('°: Appendix-A), and also making available user-friendly
code for easy practical implementation. We follow this spline implementation in the work presented
here, and for completeness, in the next three sections, we provide a brief enunciation of the LRTP splines
we use to model the different components of the excess hazard model, but do not go into detail about
their implementation.

Modelling the baseline log-excess hazard We start by specifying a partition of the follow-up time
rangeas 0 = o < t; < ... <t} = oo, and following the model formulation published in Murray et al. ',
we define the model for the baseline log-excess hazard as,

K
log(hg, (t;a®)) = af + ajt + > aj([t — th_1| — [fx-1]) (11)

k=2
where o* = (af, o, . . ., aﬁ()/ is the set of spline parameters. Under equation (11), the cumulative excess

hazard takes the expression,

~ !
e*(sk*tkfl)(uk,x-aﬂl))]

K b (s )1 -
HEOta ZEO ky & -

. (12)
=1 Up, k- (—1)

where sp=max(min(t, i), tx_1), ozz‘_l) = (af,... ,o/;()/, u;ch = (l;ﬁ, _1/}@/@)’ fork=1,..., K with
1, a k-dimensional vector of ones. Implementation of this spline involves a series of transformations
to the spline parameters o, as well as constructing a time design matrix and a penalty transformation
matrix, as detailed by Crainiceanu et al. '* and Murray et al. ', so that the baseline log-excess hazard can

be rewritten in terms of these transformed components.

Modelling a non-linear effect of a continuous covariate We model any non-linear effect of a
generic continuous covariate z, as a smooth effect using a cubic LRTP spline defined as,

J
9(@; %) = B (e —2) + Y _ B (e =T — [ = T51]%) (13)

j=2
where, 8* = (B7,05;,...,08%) is a set of spline parameters, T is the sample mean of covariate

x, and (1 < T2 < ... < Ty) is a partition of the covariate’s support range. Similarly to the model
specification for the baseline log-excess hazard, implementation will require one-to-one transformations
to reparametrise (13) in terms of 8* '°.

Incorporating a non-proportional (time-dependent) effect of a covariate To incorporate a time-
dependent effect of a generic covariate x, we use the same time partition as used for the baseline log-
excess hazard as in equation (11), and define,

K
log(hi(tlasa®)) = (g o + af o) + (afy + i)t + 3 (ap s + i k@) (1t — Troa] — [ )

k=2
(14)
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where o = (aglay) and of = (oo, ..., )’ for ¢ =0,1. Similarly to the model defined for the
baseline log-excess hazard, implementation involves a series of transformations to the splines parameters
a* to rewrite the time-dependent effect in terms of these transformed components .

Prior distributions
For the Bayesian estimation we choose the following prior distributions for the model parameters:
e For the baseline log-excess hazard as specified in equation (11):

o ~ N(0,10%), a; ~ N(0,10%)

(15)
aploa “ N(0,02), fork=2, ..., Kand o, ~ U(0.01, 100)
e For the parameters of a non-linear effect in equation (13):
Bo ~ N(0,10%)
iid 9 (16)
Brlog ~ N(0,03) , fork=2, ... ,Kand o5 ~ U(0.01,100)
e And, for the parameters of a time-dependent effect as in equation (14):
g0 ~ N(0,10%) , ag 1 ~ N(0,10%) for g=0, 1
(17)

A klTga ©NO,02,) fork=2, ..., Kand o . ~ U(0.01,100) for g=0, 1

Measures of interest: excess hazard and net survival

In addition to deriving excess hazard functions and excess hazard ratios for different sets of characteristics
of the population, another main quantity of interest that can be derived from an excess hazard model is
net survival. Net survival measures the survival in a cohort of cancer patients while considering that
the patients can only die from the cancer of interest. A common assumption made when estimating net
survival is that the censoring process is non-informative, i.e. the censoring process is independent from
the one that generates the events. The process becomes informative when a variable influences both
mortality hazards (the cancer-specific and the other-causes mortality hazard), leading to biased estimates
of net survival. For example, older patients are more likely to be censored, because of other causes of
death, than younger patients, making the censoring process informative. It has been shown that in order
to obtain an unbiased estimate of net survival from an excess hazard regression model, the variables
that define the population-life tables (from which the other-cause mortality is obtained), and that can
influence the censoring process, should be included in the excess hazard model formulation, even if
they are not the main focus of the analysis'®. In population-based cancer research, one of the main
variables known to influence the censoring process is age at diagnosis, and thus it is advisable to include
it in all the log-excess hazard model formulations. It is also advisable to include other variables in the
model formulation, such as socio-economic status or region of residence, if life-tables stratified by these
variables are available for the population being studied.
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Bayesian estimation

After setting up a model for the log-excess hazard, possibly using a combination of several covariate
effects modelled using LRTP splines, as specified in the previous sections, the resulting log-likelihood
function retains tractability, and thus numerical integration techniques are not needed during the
estimation process. Markov Chain Monte Carlo (MCMC) techniques are used to sample from the
posterior distributions of all the model parameters. After model convergence has been assessed by
inspecting trace and density plots for each parameter, the saved parameter samples are used in a post-
estimation procedure to derive posterior distributions of the quantities of interest that can be obtained
from excess hazard models. We present post-estimation set-ups to derive posterior distributions of: i)
excess hazards, ii) excess hazard ratios for different combinations of population characteristics and iii)
net survival for the whole population and for sub-groups of the population.
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i) Deriving posterior distributions of excess hazards

Figure 1 shows schematically the post-estimation set-up to derive posterior distributions of excess

hazards for different combinations of population characteristics.

Step 1: Save the Markov chains samples

Number of parameters

1 i H
Number of | 2| [T =~
sampled . .
'm’ values for . . repeat for 'm' ail sets

each set of
parameters m

-~

Step 4: Repeat steps 2-3 'm' times for
all the sampled sets of parameters to
obtain posterior distibutions of the
excess hazard for all the combinations
of the variables

use first set of parameters
_‘l\\ >
_\_—_‘—-—-_______. 2

Step 2: Create a matrix using
the follow-up time sequence
and a combination of
variable values (X1, X;)

X X
1| 1

Reconstruct LRTP
splines

012 .. t1t

Follow-up time sequence

A 4

Step 3: Calculate an excess
hazard function hy(t;ap) for

each row of the matrix using
each set of parameters in

turn
X %
1| 1 hy(t;ag)
2| 1 hy(t;a,)
1| 2 hualt;a,)
2| 2 hi(t;a,)

012 .. t1t
—

Follow-up time sequence

Figure 1. Step-by-step set-up to derive the posterior distributions of excess hazards.

The procedure can be summarised in the following steps:

Step 1 Create a matrix that saves for each parameter (say generically a;,7=1,...

,p) the number of

sampled Markov chain values (say *m’) from their corresponding posterior distributions.

Step 2 Create a follow-up time sequence within the observed range of follow-up time (0,...,max(t)), and
create a matrix containing this time sequence and a combination of values from the variables
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entered in the model, chosen within the observed range of values for each variable (e.g. variables
X1 and X2 in Figure 1); Re-construct the LRTP splines as defined in the model using the values
in the matrix, both for the baseline log-excess hazard and all the covariate effects modelled with
LRTP splines.

Step 3 Use the first set of the ‘m’ sampled parameters to estimate an excess hazard function for each
combination of variables in the matrix using the follow-up time sequence.

Step 4 Repeat steps 2-3 *m’ times for all the sets of sampled parameters (in turn) to obtain posterior
distributions of the excess hazard functions for all the combinations of variable characteristics.

Step 5 Summarise the posterior distributions of the excess hazards using the posterior means, 95%
credible intervals and other relevant quantiles.
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i) Deriving posterior distributions for excess hazard ratios

Figure 2 shows the post-estimation set-up for deriving posterior distributions of excess hazards ratios.

Step 1: Save the Markov chains samples

Number of parameters

——

Step 2: Create a matrix using the follow-
up time sequence and a combination of

variable values (X1, X3)

Step 4: Repeat steps 2-3 'm’ times for
all the sampled sets of parameters to
obtain posterior distibutions of the
excess hazard ratios

a; a a X1 X
: 2 P use first set of parameters 1

R R —*1

I
Number of | 2| ([T =~ 2
sampled . .
'm" values for repeat for'm’ all sets Reconstruct LRTP splines

each set of . 2
parameters —m 2

01 2 t1 t

\ ]

Y
Follow-up time sequence

v

Step 3: Calculate excess hazard ratios
EHR-,(t;c:p) for different combinations of

population characteristics using each set
of parameters in turn

Xl Xz
1| EHRa(t;ap)=hii{u;ap)/hi{u;ap)
1| EHRz{t;ap)=hz21(u;ap)/hi1(u;ap)
1| 2| EHRi-it;ap)=h1z2{u;ap)/hi1{u;ap)
2| 2] EHRi(t;ap)=hz2z(u;ap)/hi1{u;ap)

01 2 t-1 t

u

Follow-up time sequence

"l |

Figure 2. Step-by-step set-up to derive the posterior distributions of excess hazard ratios.

Similarly to the procedure defined in Figure 1 for the excess hazards, the procedure to derive posterior
distributions of excess hazard ratios can be summarised as:

Step 1 Same as Step 1 from the set-up in Figure 1.

Step 2 Same as Step 2 from the set-up in Figure 1.

Step 3 Use the first set of the ‘m’ sampled parameters to estimate excess hazard ratios for different
combinations of variables in the matrix using the follow-up time sequence.
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Step 4 Repeat steps 2-3 *m’ times for all the sets of sampled parameters (in turn) to obtain posterior
distributions of the excess hazard ratios for all the combinations of variables.

Step 5 Summarise the posterior distributions of the excess hazards ratios using the posterior means, 95%
credible intervals and other relevant quantiles.
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iii) Deriving posterior distributions of net survival

Figure 3 shows the post-estimation set-up for deriving posterior distributions of net survival for the whole

population.

Step 1: Save the Markov chains samples

Mumber of parameters

——

parameters m

Step 5: Repeat steps 2-4 'm’ times for
all the sampled sets of parameters to
obtain posterior distibutions of net
survival for the whole population

a; o ... a .
use firstset of parameters

1 i : :q\\ —>

I
Number of | 2| ([T =~ 2
sampled . . . .

'm" values for repeat for 'm' ail sets
each set of

Step 2: Create a matrix using the follow-
up time sequence and a combination of
variable values (X4, X3)

X1 X2
1

Reconstruct LRTP splines

r
NN

o 1 2 .. t1 t
A% Y J
Follow-up time sequence

Y

Step 3: Calculate a survival function
Si(t;ap) for each row of the matrix using
each set of parameters in turn

X1 Xa
1| 1 Sa(t;o)=exp(-J{h:(u;a )du})
2l 1 5y(tap)=exp(-f{hy(u;a;)du})
10 2] Sultog)=expl(-fiha(usag)dul)
2| 2 Si(t;ap)=exp(-thi(u;a)duj)

01 2 -1t

v

Follow-up time sequence

Y

Step 4: Calculate net survival NSq(t;ap)

by averaging the survival functions
Silt;ap) for all the rows of the matrix:
NSm(T;ﬁpFZ{Sw{T;&pD/i

Figure 3. Step-by-step set-up to derive the posterior distributions of net survival for the whole population.

The procedure to derive posterior distributions of net survival can be summarised as:

Step 1 Same as Step 1 from the set-up in Figure 1.

Step 2 Same as Step 2 from the set-up in Figure 1.
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Step 3 Use the first set of the “m’ sampled parameters to estimate a survival function for each entry of
the matrix using the follow-up time sequence.

Step 4 Calculate net survival for the whole population by averaging the survival functions for all the rows
of the matrix derived in step 3.

Step 5 Repeat steps 2-3-4 'm’ times for all the sets of sampled parameters (in turn) to obtain posterior
distributions of net survival for the whole population.

Step 6 Summarise the posterior distributions of net survival using the posterior means, 95% credible
intervals and other relevant quantiles.

The implementation above will provide posterior distributions of net survival for the whole population.
We can also derive posterior distributions of net survival by sub-groups of the population, continuing from

step 3 in Figure 3 and averaging the survival functions within each sub-group of the population (e.g. by
sub-groups of the variable X, as shown by step 4 in Figure 4).

Step 1: Save the Markov chains samples Step 2: Create a matrix using the follow-
up time sequence and a combination of
Number of parameters variable values (X;, X;)
a a; .. X X
B 2 P use firstset of parameters 1
: e >
I
Number of | 2| (I =~ 2
sampled . . .
'm" values for repeat for 'm’ ail seis Reconstruct LRTP splines
each set of

parameters m J ‘

p 01 2 .. 1t

Y
Follow-up time sequence

Step 3: Calculate a survival function Step 4: Calculate net survival by subgroups

of the population NSy, x(t;a,) (say, by levels
of X;) by averaging the individual survival
functions $;(t;a,) within each level

Si(t;ap) for each row of the matrix using

each set of parameters in turn
Step 5: Repeat steps 2-4 'm' times for

all the sampled sets of parameters to X3 X
obtain posterior distibutions of net
survival by sub-groups of the

[

1 S1(t;ap)=exp(-f{h,(u;a)du}) } Net survival for subgroup X,=1:

ot 1 Sa(t;ap)=exp(-[{h,(u;o,)du}) NS =1t atp =2 (Si(t;etp))fi, foriin X=1
population ‘
1| 2 Sia(t;ag)=exp(-f{h;4(u;a,)du}) } Net survival for subgroup .X,=2:. ]
2| 2 Si(tag)=exp(-f{hi(u;a,)du}) NSm xo=2(t;op)=2 (Si(t;etp))i, for i
01 2 .. t1 ¢t
) v
Follow-up time sequence

Figure 4. Set-up to derive the posterior distributions of net survival by sub-groups of the population.
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lllustration using population-based cancer data

We illustrate the use of the proposed model using data obtained from the National Cancer Registry at the
Office for National Statistics (ONS) for all adult men (aged 15-99 years) diagnosed with a first, primary,
invasive malignancy of the colon during 2009 in London, England. All patients were followed-up to
update their vital status up to six years after diagnosis, until the 31 December 2015. The data variables
available for this analysis were: full dates of diagnosis, last follow-up and death, vital-status indicator
(dead or censored as alive at the end of follow-up), age at diagnosis (recorded as a continuous variable)
and deprivation categories (1-least deprived to 5-most deprived) defined according to the quintiles of
the distribution of the Income Domain scores of the 2011 England Indices of Multiple Deprivation'’.
Background mortality rates were obtained for each cancer patient from population life tables for England
defined for each calendar year in 2009-2015, and stratified by single year of age, sex, deprivation category
and region of residence.

Descriptive statistics of the data were performed using the RStudio software (version 1.0.153)'¢.
Bayesian inferences were also performed in RStudio using the JAGS MCMC '’ program accessed via
the R package ‘R2JAGS’. R code exemplifying the implementation of the model presented in this
illustration is available on the webpage of the Cancer Survival Group: https://csg.lshtm.ac.
uk/tools—analysis/.

The data comprised 1,140 patients. Death was observed for 628 patients (55.1%) over the maximum
follow-up period of 5.99 years. Survival time was measured from the date of diagnosis until the date
of death or the date of last follow-up. The overall median follow-up time was 3.7 years with standard
deviation SD=2.29 years. For patients that died, the median survival time was 0.84 years and for censored
patients the median survival time was 5.4 years. The mean age at diagnosis was 70.6 years (SD=13.24
years), and the 25%, 50% and 75% quintiles of the age distribution were 63.2, 72.4 and 80.6 years,
respectively. Within deprivation categories, patients were distributed as: 174 (15%) patients in the least
deprived category, 207 (18%) patients in the 2nd deprivation category, 223 (20%) patients in the 3rd
category, 273 (24%) patients in the 4th category, and 263 (23%) patients in the most deprived category.

A model was set-up for the log-excess hazard including age at diagnosis (A) and deprivation quintile
(dep) as main effect covariates. Four partitions (K=4) of the observed follow-up time (¢) were chosen at
the 25%, 50% and 75% percentiles of the events (death) times at t~=(0, 0.18, 0.84, 2.26, 6) years. The
model can be written as:

log(hg(tla; B;7)) = (0,0 + 1,04) + (1 + 1,1 A)t
K

+ ) (ook + a1k A) (|t — k1| = |fe-a])  [part1]

h=2 (18)

J
+BI(A=A)+ > Bi(|A—A; 1P —[A—A;4*)  [part2]
j=2
+ v *dep [part 3]

where, [part 1] formulates the LRTP spline modelling the baseline log-excess hazard, incorporating the
time-dependent effect of age at diagnosis using the same follow-up time partition, with parameters o =
(aglay) and o = (00, - .., g i) for g=0,1. [part 2] represents the LRTP spline modelling the non-

linear (smooth) effect of age at diagnosis using 3 partitions (J=3) of the observed age range at ﬁ:(16,
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44,72, 99) years, with parameters 3;, j = 1,...,.J. A represents the mean age at diagnosis. For ease of
interpretation, age at diagnosis was centered at age 70. [part 3] formulates the linear and proportional
effect of deprivation, with parameter . This model has 10 parameters associated with the baseline log-
excess hazard formulation, including the time-dependent effect of age at diagnosis, and 4 parameters for
the regression parameters (3 for the smooth effect of age at diagnosis and 1 for the effect of deprivation).
Prior distributions were specified for these parameters using the priors defined in the Methods section,
including 3 hyperpriors for the variance parameters of these priors, adding up to a total of 17 model
parameters.

The model was fitted setting up 2 MCMC chains, each with 50,000 iterations, a burn-in period of
5,000 and a thinning of 3 to eliminate any existing autocorrelation among samples within the chains.
This resulted in a total of 30,000 sampled values from the posterior distributions of each of the 17
parameters. An examination of the trace and density plots of each parameter’s posterior distribution
did not indicate any convergence issues for these samples. The 30,000 sampled values from the posterior
distributions of each parameter, were saved and then used to implement the post-estimation procedure
described in Fig. 1 in order to derive posterior distributions for the excess hazard, excess hazard ratios
and net survival. Three ‘prediction’ sequences were created for follow-up time (monthly time points
up to five years of follow-up), age at diagnosis (individual integer ages within the observed age range
16-99 years) and deprivation category (1-5). A multi-dimensional matrix was then created to save the
results of the posterior distributions for each of the quantities derived, containing the combination of
values of all the ‘prediction’ sequences, and the number of sampled parameter values (30,000). Before
the post-estimation procedure was implemented, the splines modelling the baseline log-excess hazard and
the smooth effect of age at diagnosis, were reconstructed using the follow-up time and age ‘prediction’
sequences, maintaining the same spline specification as in the model.

The estimated posterior distributions were summarised by their respective means and other quantiles
of interest, such as the 95% credible intervals. For the purpose of this illustration, we present the results
in plots (Figures 5-7) showing the mean of each of the posterior distributions.

Interpretation summary: For this cohort of men diagnosed with colon cancer in 2009 in London,
England, the estimated mean posterior distributions suggest that: 1) the excess hazard peaks substantially
high, up to the first year after diagnosis, for men over 80 years when compared to patients aged 70 years.
Whilst for men aged 50 and 60 years their excess hazard is substantially lower, up to the first year after
diagnosis, when compared to men aged 70 years. 2); the excess hazard increases gradually for each unit
increase in the deprivation category; 3) The mean posterior net survival for the whole cohort shows a
moderate decay of the survival curve, reaching approximately 0.6 (60%) at 5 years after diagnosis.
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Figure 5. Mean posterior distribution of the excess hazard ratios, showing: (a) a 3-Dimensional representation
by age and follow-up time; (b) a slice of the 3-D plot in Fig. 3a) over follow-up time for three ages of diagnosis
(50, 60 and 80 years, with 70 years the reference group); (c) a slice of the 3-D plot in Fig. 3a) over age of
diagnosis for four follow-up times (3 months, 6 months, 1 year and 5 years after diagnosis).

Prepared using sagej.cls



Quaresma, Carpenter and Rachet 17

(a)

=y
o
|
=y
o
|

= = age 50 years Mon-Linear effect of age at:
= age 60 years —— 3 months after diagnosis

= age 70years += 6 months after diagnosis

== age 80years « 1year after diagnosis

— - Syears after diagnosis

o
(o]
1
o
(o]
1

o
o
1
o
o
1

o
Y
1
o
Y
1

o
r
1
o
r
1

Posterior Excess Hazard function (mean)
Posterior Excess Hazard function (mean)

o
o
L
o
o
L

Time since diagnosis (years) Age at diagnosis

(b) (c)

Figure 6. Mean posterior distribution of the excess hazard functions for deprivation category 1 (least deprived
patients), showing: (a) a 3-Dimensional representation by age and follow-up time; (b) a slice of the 3-D plot in
Fig. 4a) over follow-up time for four age groups (50, 60, 70 and 80 years); and (c) a slice of the 3-D plot in Fig.
4a) over age at diagnosis for four follow-up times (3 months, 6 months, 1 year and 5 years after diagnosis).
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Figure 7. Posterior distribution of net survival, showing: (a) the mean posterior and the 95% credible interval
for the whole cohort; and (b) the mean posterior by deprivation category.

Discussion

In this article we introduce a flexible Bayesian regression model for the log-excess hazard, that can be
used to investigate inequalities in cancer survival using a range of covariate effects and accommodate
different data structures.

Bayesian excess hazard models are very few and none meet our list of criteria set in the Introduction
section. Fairly et al.® proposed a model to examine spatial variation in prostate cancer survival using
Bayesian relative survival smoothing within a Generalised Linear Model formulation. The number of
events was assumed to follow a Poisson distribution, and two random effects were included in the
model: a spatially structured random effect for local smoothing and an unstructured random effect global
smoothing; Hennerfeind” proposed a Bayesian geoadditive relative survival model using penalized P-
splines to model the log-baseline effect as well as the nonlinear and time-varying effects of covariates.
Spatial and normal random effects were also included in the model formulation; Cramb et al. '” introduced
a Bayesian flexible parametric model which extends a frequentist flexible parametric model on the log
cumulative excess hazard scale using restricted cubic splines®” by adding spatially structured random
effects.

We choose here to use Low-Rank Thin Plate splines (LRTP splines) to model the various components
of the excess hazard model because they offer a reasonable compromise between model flexibility and
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likelihood tractability, with a fast MCMC convergence 4. Current inference practice for existing log-
excess hazard models are mainly done within the frequentist framework, by maximisation of the log-
likelihood, and numerical integration techniques are often needed to solve the integral defining the
cumulative hazard when flexible functions, such as restricted cubic splines or B-splines, are used to
model the different model components. Incorporating higher-dimensional splines would then require to
solve numerically extremely complex likelihood functions. Other existing excess hazard models, that
are defined on the log cumulative excess hazard scale, have the advantage of avoiding the use of such
numerical integration, because of the resulting tractable cumulative excess hazard, but the interpretation
of multiple time-dependent effects can be difficult at times when the excess hazard ratio for one variable
depends on the levels of the other variables, even without having defined interaction terms in the model*'.

An additional advantage of using LRTP splines, initially proposed by Murray et al. > to model overall
hazard, is that their construct is not sensitive to the choice of ‘knot’ location, as is the case with other
splines structures, such as restricted cubic splines or B-splines. Murray et al. advise on the selection
of a large number of equally spaced partitions of the follow-up time, so that the resulting model can
adequately capture the curvature of the hazard function.

In the analysis of the colon cancer data, we selected several partitions of the follow-up time (between
2 and 20), using a mixture of equally spaced and pre-defined intervals. Models were compared using the
Deviance Information Criterion (DIC)?*, and the model presented in the results section (using 4 partitions
of the follow-up time) corresponded to the model with the smallest DIC. We found that less partitions
(four in our analysis) did adequately capture the shape of the excess hazard function for the cancer
analysed, and that partitioning the event times at the percentiles captured well the largest shift in the
decay of the function in the first year after diagnosis. The shapes of the baseline excess hazard function
and of the age-related function defined in our final model were also very similar to those estimated by
the frequentist flexible excess hazard model using higher-dimensional splines®>. We also observed that
using less partitions substantially decreased computation time when fitting these models using MCMC
sampling (for example, time was reduced by a quarter when using 4 instead of 20 partitions), as there are
less parameters to be sampled. We note that fitting these models can be computationally very expensive,
varying from a few hours to a few days, depending on model complexity, the number of MCMC iterations
and the size of the matrices generated. Computation time can be reduced by the use of parallel computing,
the use of computers with Graphics Processing Units (GPU), or by exploring new advances in accelerated
computing such as GPU-accelerated packages .

Eliciting informative priors for the model parameters was not within the aim of this study, and we opted
to choose vague priors for all the model parameters. In such a scenario, the mean posterior distributions
for the parameters and quantities of interest, would be closer to the Maximum Likelihood estimates
obtained using a similar model set-up.

A novel component that this article offers, is the implementation of a post-estimation procedure (as
described in Fig. 1), to derive posterior distributions for the excess hazard ratios, excess hazard functions
and net survival, based on the saved MCMC samples for each parameter. This procedure, as described,
derives posterior distributions using a predefined matrix that contains a combination of values of the
covariates within the observed range in the data, and it does not use the data for the whole cohort. The
estimation of excess hazards and excess hazard ratios is usually made for different sets of characteristics
of the cohort, and thus it is easier to construct a matrix to derive these posterior distributions. For net
survival, the estimation is made by averaging the individual survival curves, which can be done using one
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of two options: 1) use the whole cohort of observed data, estimate a survival curve for each observation
(following the same procedure as outlined in Fig. 1), and then average over the whole cohort to obtain an
estimate of net survival, or 2) use the matrix, estimate a survival curve for each combination of values of
covariates, and then average over these curves to obtain an estimate of net survival. The main advantage of
using a matrix over the observed cohort is the reduced computation time, especially when large cohorts
are analysed. In addition, when using a fixed covariate structure within the matrix, the results will be
internally standardised for those covariates, and thus when comparing net survival by sub-groups of the
cohort, this has the advantage that comparability will already be taken into account. For example, if
we consider two variables, age at diagnosis and deprivation, and estimate net survival by deprivation
category, averaging the individual survival curves within each deprivation group using the whole cohort,
if the age distribution within deprivation category is very different, the results will not be comparable.
But if we use a matrix with a fixed age structure for all levels of deprivation, the estimated net survival
curves will be comparable between deprivation categories.

One of the criteria we set up a priori for the implementation of the proposed model, was that it could
be easily extended to include one or more random effects to accommodate clustered data, and incorporate
hierarchical data structures. The Bayesian framework lends itself very nicely to specify models with such
characteristics. We have extended the model specified in equation (18) to add two random effects: one
clustering patients by area of residence, and another clustering patients by treatment center. Although
the model implementation was a straight-forward step from the previous model implementation (without
random effects), we found some convergency problems when using the open-source MCMC sampler, and
a substantial increase in computation time, depending on the size and number of clusters used (results
not shown). We propose as further extension to this work, to develop a dedicated MCMC sampler that
improves sampling from the parameters’ posterior distributions when using these more complex model
structures.

In summary, we have shown how a flexible Bayesian model for the log-excess hazard can be used for
population-based research, to investigate socio-economic inequalities in cancer survival using a range
of covariate effects modelled using LRTP splines. In our experience, we found that using LRTP splines
provides a good compromise between the achieved model flexibility and the retained tractability that
reduces computational intensity. Although constructing these splines involves many matrix calculations
in order to compute the necessary transformations to implement the splines, the user-friendly and
modifiable code that has been made available '> makes the implementation uncomplicated. In particular,
we think that the new post-estimation process we propose to derive posterior distributions for net survival
and excess hazards will be a very useful tool for cancer researchers in the production of cancer survival
statistics with relevance to health policy.
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Abstract

Marked geographical variations in cancer survival have been consistently described for most
common adult cancers in England. Similar patterns have been observed within the capital
London, almost mimicking a microcosm of the country’s survival patterns. This evidence
has suggested that the place of residence might play an important role in the survival of
cancer patients. In this study, we analysed data for patients diagnosed with colon cancer,
who were living within a London Clinical Commissioning Group (CCG) at the time of their
diagnosis and received cancer care in a hospital located within a London CCG. We investi-
gated the patterns of patient pathways between the CCG of residence and the hospital of
cancer care, and estimated the variability in survival at both CCG and hospital level. The
most frequent pathway patients travelled was to the hospitals located closest to their area
of residence. After adjusting for age at diagnosis, socioeconomic status, stage at diagnosis
and hospital of care, no variability in survival was observed between CCGs. This result
contrasted with a much more pronounced variability between hospitals. This study demon-
strates the importance of performing more in-depth investigations into the disparities in
cancer survival using population cancer data enriched with other relevant electronic health
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Introduction

Population-based cancer survival statistics provide key insights into the overall effective-
ness of a healthcare system in managing and treating cancer. Quantifying disparities in
cancer survival in particular can directly identify areas of inequity amenable to change. For
instance, wide geographical and socioeconomic inequalities in cancer survival have been
consistently described, despite the existence of universal access to care within the National
Health Service (NHS), founded on the principles of equity and free access to all. A clear
and persistent North-South gradient, with lower survival in the North of England, exists
for most common adult cancer types, while similar patterns are observed within London,
almost mimicking a microcosm of the country’'s survival patterns. This evidence has sug-
gested that the place of residence might play an important role in the survival of a cancer
patient, giving rise to much political debate since the introduction of the first NHS cancer
plan and other national initiatives aimed at tackling cancer inequalities. Following the 2012
Health and Social Care Act and the subsequent restructuring of the NHS, two organi-
sations became central role players in the organisation and commissioning of care: NHS
England and the (now 211) Clinical Commissioning Groups (CCGs). NHS England became
responsible for commissioning the planning and buying of health care services, such as
primary care services, and setting the priorities and direction of the NHS. It also allocates
60% of the NHS budget to CCGs across England. CCGs are clinically led statutory NHS
bodies, responsible for the planning and commissioning of healthcare services for their local
area, including General Practitioner (GP) services, planned hospital, urgent and emergency
care. Cancer survival outcomes for CCGs have been published on a regular basis since their
creation, including an index of cancer survival for all cancers combined and cancer-specific
survival indexes for breast, colorectum and lung cancers. The CCG outcomes continue
to support previous evidence of wide variation in survival across England, including large
variation between CCGs within London. Understanding the mechanisms underlying such
wide disparities, requires addressing multiple research questions to disentangle the differ-
ent aspects of the multi-layered and multi-factorial ‘cancer inequalities puzzle', including

the integrated study of patient-, tumour- and health-system characteristics.
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In this article we analyse data for patients diagnosed with colon cancer, who were living
within the catchment area of a London CCG at the time of their diagnosis and received
cancer care in a hospital located within a London CCG. We start by investigating the
patterns of patient pathways between the area of residence and the hospital of cancer
care. We then investigate the variability in cancer survival at both CCG and hospital level,
after adjusting for some patient and tumour characteristics, such as age at diagnosis,

socioeconomic status and stage at diagnosis.

Material and Methods

Data

Data on individual cancer records were obtained from the National Cancer Registry at the
Office for National Statistics (ONS) for all adults (aged 15-99 years), diagnosed with a
first, primary, invasive malignancy of the colon during 2006-2013 in London, England. All
patients were followed-up to update their vital status until the 315¢ December 2014. The
data variables available for analysis from this data source were: gender, age at diagnosis,
full dates of diagnosis, last follow-up and death, vital status indicator (dead or censored
as alive at the end of follow-up), CCG of residence at diagnosis, deprivation category
(1-least deprived to 5-most deprived) and stage at diagnosis (1-localised cancer stage to
4-metastatic cancer stage). A CCG of residence was allocated to each patient based on
their postcode of residence. Since CCGs only came into existence in 2013, for coherence in
the analysis, we applied the CCG boundaries retrospectively to patient records diagnosed
prior to 2013 based on historical postcode files. Patients were also allocated to one of five
deprivation categories at the time of their diagnosis using the Income Domain from the
2011 England Indices of Multiple Deprivation defined at the Lower Super Output Area level
(LSOA). To complement the cancer registry dataset with information on stage at diagnosis
and hospital of cancer care, each individual cancer record was linked to two additional
sources of data, Hospital Episode Statistics (HES) records and the national bowel cancer
clinical audit data (NBOCA) using a data linkage algorithm by Shack et al. (1). After the

three data sources were linked, the stage at diagnosis variable was reconstructed using
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the algorithm by Benitez Majano et al. (2) that combines available information on tumour
(T), nodes (N) and metastases (M). The algorithm prioritises information captured in
the clinical audit data and if not available uses cancer registry stage data. Treatment
information was also derived from clinical audit data and HES records using an algorithm
by Fowler at al. (3) that categorises major surgical treatment received by each patient
within a time window of between 30 days prior and 90 days following cancer diagnosis,
and categorises other minor forms of treatment (including palliative care and diagnostic
procedures if no other treatment was recorded) into a minor treatment category. Based
on the previous definition of treatment categories, we allocated to each cancer patient a
hospital of cancer care, or of diagnosis if no major surgical treatment was received, using

a combination of different variables available in the data containing hospital codes.

Statistical methods and data visualisation

In addition to usual descriptive statistics, various data visualisation techniques were used. Win-
drose graphs were used to display the distribution of patients’ deprivation category and
stage at diagnosis by CCG of residence and hospital of cancer care. CCGs and hospitals
were arranged in the windroses according to their approximate cardinal directions of location
in London for ease of visualisation. Flow maps of London were created to visualise patterns
of patient pathways between the CCG of residence and the hospital of cancer care. The
maps show the areas of catchment and boundaries for each of the 32 London CCGs, all
identified with their names. The 36 London hospitals used in this study are marked on
the maps using the exact location based on their latitude and longitude coordinates. The
key to the hospital names is given in the map legend using the identifiers (H1, H2,...,
H36). Each pathway is shown on the map using lines connecting the centroid of each CCG
(black dot) to each hospital. The pathway line colours distinguish between the frequency
of each pathway, coloured from the most frequent up to the 5" most frequent, with the
proportion (%) of patients using each pathway indicated on the lines. Only pathways that
had more than 5% of patients were drawn and thus the sum of all the pathway frequencies
originating from each CCG will not add to 100%. Maps were created using the software

ArcGIS 10.5 (5).
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In order to investigate the variability in cancer survival at CCG and hospital levels, net
survival (survival from the cancer) and excess hazards of death (hazards due to the cancer)
were estimated using flexible Bayesian excess hazard models proposed by Quaresma et
al. (6). Separate models were fitted for men and women, adjusting for age at diagnosis,
deprivation category and stage at diagnosis. To accommodate the hierarchical structure
of the data (i.e. that patients within a given CCG of residence or hospital of cancer
care are likely to share some characteristics), the original model by Quaresma et al. was
extended with the inclusion of a pair of random effects for CCG and hospital. To isolate
the excess (cancer-related) hazards of death, the hazards of death from other causes were
obtained for each cancer patient from English life tables defined for each calendar year
in 2006-2014 and stratified by single year of age, sex, deprivation category and region of
residence (7,8). Five-year net survival for each CCG and hospital was estimated (based on
the mean of their posterior distributions) and their variability across CCGs and hospitals
was presented using funnel plots (9). Details on the complete model specification, including
a model extension to handle the missing information on stage at diagnosis are given in
Appendix A3. Conventional analyses were completed using Stata 15 (4) whereas Bayesian
inferences were performed in R software version 3.4.3 using the JAGS MCMC program

accessed via the R package ‘R2JAGS’ (10,11).

Results

Data were available on 16,326 patients diagnosed with colon cancer between 2006-2013 in
London, England (see flow chart in Figure 6.1). For 15,309 (94%) patients, a hospital of
cancer care was successfully allocated after the treatment capture algorithm was applied
to each cancer record. The 1,017 (6%) patients for which a hospital of cancer care or
diagnosis could not be allocated were not included in further analyses. For 10,869 (71%)
of the eligible 15,309 patients, the hospital allocated corresponded to the hospital where
the patient underwent a major surgery for colon cancer. For the remaining 4,440 (29%)
patients, the hospital allocated corresponded either to the hospital of diagnosis provision

or palliative care, if no major surgical treatment was recorded.
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Dataset

Exclusions

2006—2013

N =16, 326
N=1,017

N = 15,309

Hospital of major surgery Hospital of diagnosis or palliative care
N =10, 869 N = 4,440

Figure 6.1: Flow chart of data exclusions and hospital assignment after applying the
algorithm to allocate the hospital of care or diagnosis.

Individual characteristics of colon cancer patients by CCG and hospital

Tables 6.1 and 6.2 show the distribution of cases and deaths for men and women by CCG
of residence and hospital of cancer care, respectively. Of the 15,309 patients included in
the analysis, 7,841 (51%) were men and 7,468 (49%) were women. Death was observed
for 7,674 (50%) patients over the maximum follow-up period of 8.9 years. Deaths ranged
between 40-60% in both men and women for CCG of residence, and between 30-77%
in men and 38-75% in women for hospital of care. Survival time was measured from the
date of diagnosis until the date of death or the date of last follow-up. For patients that
died, the median survival time was 0.72 years and for censored patients the median survival
time was 4.1 years. The mean age at diagnosis was 72 years (SD=13.2) for men and 74
years (SD=14.4) for women. For both men and women, the overall distribution of patients
within deprivation categories was similar, ranging from 13% of patients in the least deprived
group to 27% in the most deprived group. Stage at diagnosis was missing for 23% of the
cases. Among the records with observed stage, the overall stage distribution was similar for
both men and women, with 13% of patients diagnosed with stage 1 disease, 34% with stage
2, 34% with stage 3 and 19% of patients diagnosed with stage 4. The windrose graphs
show that the highest proportion of patients from the most deprived group came from the

North East/East London CCGs and hospitals, reaching over 80% of patients in some areas
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compared to the South West/South London areas where patients from the least deprived
group are more predominant, although in much smaller proportions (Figures 6.2 a) and
6.2 b)). The distribution of stages 1, 2 and 3 (grouped into one category) ranged between
50-73% by CCG of residence and between 37-80% by hospital of care. The distribution of
patients with stage 4 was similar by CCG and hospital, ranging between 6-26% (Figures 6.2
c) and 6.2 d)). These patterns were similar both for men and women. Additional interactive
windroses charting the distribution of all deprivation categories and all stages at diagnosis
by CCG and hospitals, and equivalent graphs for the distribution of women can be accessed

via https://csg.lshtm.ac.uk/survival-variation-CCG-hospital-London/.

Pathways of colon cancer patients between their CCG of residence and hos-

pital of cancer care

The flow maps in Figures 6.3 and 6.4 display the pathways of patients between the CCG
of residence and the hospital of cancer care for men and women, respectively. Overall, the
most frequent pathway patients travelled was to the closest hospital located within the
catchment area of their CCG of residence. Similar pathway frequencies were observed for
both men and women. Three main patterns can be distinguished: a) For one third of CCGs,
namely Bromley, City and Hackney, Croydon, Greenwich, Havering, Hillingdon, Hounslow,
Kingston, Newham, Waltham Forest and Tower Hamlets, more than 70% of patients
travelled to one main hospital closest to their area of residence, and with lower frequency
to other hospitals. In particular, for patients living in Waltham Forest and Tower Hamlets
(and Kingston for women) more than 90% travelled to only one hospital. b) The second
pattern identified CCGs in which patients travelled with similar frequency to two main
hospitals close to their areas of residence, namely Barking and Dagenham, Bexley, Camden,
Islington. c) For the remaining 17 CCGs, patients travelled more frequently up to three or
four hospitals, travelling further to hospitals outside of their CCG of residence. Overall, the
patterns displayed in the flow maps clearly define areas in London were patients’ travels are
more self-contained to hospitals located in their neighbouring areas, such as for example,

in the North East, East and South East of London. In contrast, patients living in the North
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and South West of London tend to access more hospitals outside their area of residence,

most of them located in central London.

Variations in five-year colon cancer survival

Posterior distributions of five-year net survival were derived for each CCG of residence and
hospital of cancer care from the multivariable excess hazard model, which included in addi-
tion to CCG and hospital, age at diagnosis, deprivation and stage (full model). Complete
model specification and Bayesian inference details are presented in Appendixes A1-A4. From
these posterior distributions, funnel plots were created by CCG of residence and hospital of
care (Figures 6.5 and 6.6 for men and women, respectively). Each funnel plot charts 5-year
net survival (posterior mean) against their corresponding precisions. Superimposed on the
funnel plots are the 95% and 99.8% control limits. The target values (horizontal lines)
were taken as the mean net survival for London. Plots were presented stratified by stage
at diagnosis because the level of survival is very differential between early stages (stages 1,
2 and 3) and late stage (stage 4). No variability was observed between CCGs for both men
and women (Figures 6.5 a), 6.5 c), 6.6 a) and 6.6 c)), with all estimates almost exactly
at the same level as the target line. However, large variability was observed between hos-
pitals, although most of the estimates were contained within the 99.8% control limits in
the funnel plots. For stages at diagnosis 1, 2 and 3, hospital-specific five-year net survival
ranged between 61-77% for men (with target 69%) (Figure 6.5 b)) and between 67-76%
for women (with target 72%) (Figure 6.6 b)). For stage at diagnosis 4, the survival esti-
mates ranged between 10-28% for men (with target 18%) (Figure 6.5 d)) and between

19-32% for women (with target 26%) (Figure 6.6 d)).

For comparison of results with the full model, three additional excess hazard models were
fitted by adding covariates successively: Model 1, including age and CCG; Model 2, including
age, CCG and deprivation; Model 3, including age, CCG, deprivation and stage. Based on
each of these models, funnel plots were created by CCG of residence to visualise if any
survival variability by CCGs was observed before the fully adjusted model. For both men
and women, five-year net survival varied moderately between CCGs, even after adjusting

for age at diagnosis, deprivation and stage at diagnosis (Figures 6.7 a) b) c), Figures 6.8
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a) b) c), Figures 6.9 a) b) ¢) and Figures 6.10 a) b) c)). Such disparities disappeared once
adjusted for hospital of cancer care as shown by the funnel plots in Figures 6.7 d), 6.8 d),

6.9 d) and 6.10 d).

Men Women
CCG of residence Cases (N)  Deaths (%) Cases (N) Deaths (%)
C1: Barking and Dagenham 194 58.8 200 53.5
C2: Barnet 397 48.9 326 48.8
C3: Bexley 308 52.9 270 51.5
C4: Brent 263 44.9 240 49.2
C5: Bromley 414 54.1 428 53.3
C6: Camden 172 51.7 177 46.9
C7: Central London 156 54.5 109 41.3
C8: City and Hackney 187 49.7 176 51.1
C9: Croydon 401 46.9 369 50.7
C10: Ealing 308 50.0 303 47.2
C11: Enfield 308 51.3 323 49.8
C12: Greenwich 246 52.0 223 47.1
C13: Hammersmith and Fulham 154 48.7 160 46.2
C14: Haringey 212 50.9 204 52.9
C15: Harrow 234 42,7 221 448
C16: Havering 356 55.3 360 53.6
C17: Hillingdon 310 54.5 298 49.7
C18: Hounslow 215 41.9 206 50.0
C19: Islington 183 52.5 168 44.0
C20: Kingston 173 47.9 197 52.3
C21: Lambeth 240 44.2 245 47.3
C22: Lewisham 221 49.3 215 53.0
C23: Merton 218 48.6 217 50.2
C24: Newham 181 53.6 142 48.6
C25: Redbridge 268 50.4 275 50.9
C26: Richmond 252 43.6 225 46.7
C27: Southwark 218 50.9 214 54.2
C28: Sutton 254 45.7 253 49.0
C29: Tower Hamlets 139 59.7 142 54.9
C30: Waltham Forest 206 51.9 202 58.4
C31: Wandsworth 270 50.4 218 51.8
C32: West London 183 53.5 162 40.1
Total 7,841 50.3 7,468 50.0

Table 6.1: Number of cases (N) and proportion of deaths (%) within the follow-up
period by CCG of residence for men and women diagnosed with colon cancer in London,
2006-2013.
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Men Women
Hospital of cancer care Cases (N) Deaths (%) Cases (N) Deaths (%)
H1: Barnet hospital 234 47.9 195 50.8
H2: Central Middlesex hospital 48 68.7 48 75.0
H3: Charing Cross hospital 169 49.7 177 43.5
H4: Chase Farm hospital 182 59.3 193 49.2
H5: Chelsea and Westminster hospital 180 51.7 180 42.2
H6: Croydon University hospital 319 50.8 320 53.4
H7: Ealing hospital 181 52.5 153 52.9
H8: Epsom hospital 85 29.4 82 37.8
H9: Guy's hospital 88 37.5 90 42.2
H10: Hammersmith hospital 72 65.3 68 55.9
H11: Hillingdon hospital 245 57.9 247 51.4
H12: Homerton University hospital 166 50.0 153 51.6
H13: King George hospital 241 58.1 233 55.8
H14: King's College hospital 271 48.7 253 50.2
H15: Kingston hospital 354 48.0 355 50.7
H16: Mount Vernon hospital 30 76.7 18 61.1
H17: Newham General hospital 142 57.7 128 50.8
H18: North Middlesex hospital 187 55.6 176 57.4
H19: Northwick Park hospital 236 42.4 209 46.9
H20: Princess Royal University hospital 372 55.1 368 54.9
H21: Queen Elizabeth hospital 339 52.2 277 49.1
H22: Queen Mary's hospital 178 57.9 187 55.6
H23: Queen’s hospital 435 55.4 469 54.2
H24: Royal Free hospital 235 51.5 217 49.8
H25: St. George's hospital 377 38.2 320 40.0
H26: St. Helier hospital 234 58.9 244 59.8
H27: St. Mark’s hospital 229 37.1 237 38.8
H28: St. Mary's hospital 265 39.2 227 38.3
H29: St. Thomas' hospital 247 55.1 230 53.9
H30: The Royal London hospital 210 52.8 183 51.9
H31: The Royal Marsden hospital 99 40.4 99 455
H32: The Whittington hospital 181 56.3 199 47.2
H33: University College hospital 283 40.9 244 39.3
H34: University hospital Lewisham 181 47.5 180 49.4
H35: West Middlesex University hospital 237 44.7 213 54.4
H36: Whipps Cross hospital 309 50.8 296 53.4
Total 7,841 50.3 7,468 50.0

Table 6.2: Number of cases (N) and proportions of deaths (%) within the follow period
by hospital of cancer care for men and women diagnosed with colon cancer in London,

2006-2013.
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Figure 6.2: Windrose graphs showing the distribution (%) of male patients diagnosed
with colon cancer in London, 2006-2013: (a) least deprived versus most deprived
category by CCG of residence; (b) least deprived versus most deprived category by
hospital of cancer care; (c) stages at diagnosis 1, 2 and 3 versus stage 4 by CCG of
residence (d) stages at diagnosis 1, 2 and 3 versus stage 4 by hospital of cancer care.
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Figure 6.5: Funnel plots of 5-year net survival (mean posterior) for men diagnosed with
colon cancer in 2006-2013, London: (a) by CCG of residence for stages at diagnosis 1,
2 and 3; (b) by hospital of cancer care for stages at diagnosis 1, 2 and 3; (c) by CCG of
residence for stage at diagnosis 4; (d) by hospital of cancer care for stage at diagnosis 4.
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Figure 6.6: Funnel plots of 5-year net survival (mean posterior) for women diagnosed
with colon cancer in 2006-2013, London: (a) by CCG of residence for stages at
diagnosis 1, 2 and 3; (b) by hospital of cancer care for stages at diagnosis 1, 2 and 3;
(c) by CCG of residence for stage at diagnosis 4; (d) by hospital of cancer care for stage

at diagnosis 4.
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Discussion

Cancer survival studies in England have mostly focussed on describing geographical dis-
parities, with strong evidence suggesting that the place of residence plays an important
role in the survival of cancer patients. In this article we hypothesised whether the observed
disparities in cancer survival were more associated with the place of residence or with the
place (hospital) where cancer patients receive care: ‘What matters more, where you live
or where you receive care?’. We investigated variation in colon cancer survival for patients
living and receiving care in London between 2006-2013. Flow maps of patient pathways
between the area of residence and the hospital of cancer care revealed that patients trav-
elled more frequently to hospitals closest to their area of residence, mainly in the North
East, East and South East of London. Whereas patients living in the North and South
West of London also frequently accessed hospitals outside their area of residence. Wide
variation was observed in five-year net survival between CCGs, even after adjusting for age
at diagnosis, deprivation and stage at diagnosis. These disparities reduced once adjusted for
hospital of cancer care, while hospital variation remained even after adjusting for patient-
and tumour-level characteristics; However, there is a strong correlation between CCGs and
hospitals as patients tend to go to the nearest hospital and this pattern is particularly

strong in some of the most deprived London CCGs.

CCGs have the responsibility to allow patients to make choices and to promote their
involvement in decisions related to their care or treatment [258]. The differential frequencies
in patient pathways between area of residence and hospital of care raise questions regarding

the equal choice of patients for the best performing hospitals at point of referral.

To the best of our knowledge this is the first study to investigate variation in cancer survival
at both CCG and hospital level. We advocate caution when interpreting the hospital-specific
net survival estimates presented in this study. These levels of survival cannot be imputed
to any individual hospital included in this study since these hospitals treat more patients
than the selected cohort of cancer patients here analysed. The survival variations observed
relate solely to this cohort of patients and cannot be generalised to all the patients seen

in each hospital.
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Stage at diagnosis was not available for 23% of the cases. In order to include all the cases
in the analysis, we extended the excess hazard model by specifying an additional distribu-
tion for the stage variable (regardless if observed or not) that uses information from all the
covariates included in the main model specification. Additional analysis performed on com-
plete cases confirmed the practical importance and the impact on results of accommodating

the missing data structure in the analysis (see results in Appendix A6).

In summary, this study demonstrates the importance of performing more in-depth investi-
gations into the observed disparities in cancer survival using population-based data enriched
with other relevant health data sources. Future work should aim to investigate hospitals
with poorer performance to understand its causes, including resources and organisation
among other factors. And to examine more in depth (including qualitative studies) what
determines the choice (or absence of choice) of patients for a given of hospital in order to

suggest actions to correct such wide disparities.
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Appendix A. Flexible Bayesian hierarchical excess hazard models

Appendix A.1. Model specification

Excess hazard models were set-up for men and women, including age at diagnosis (AGE),
deprivation category (DEP), stage at diagnosis (STAGE), CCG of residence (CCG) and
hospital of care (HOSP). The models were defined on the log-excess hazard scale and
use low-rank thin plate (LRTP) splines to model the smooth effect of the baseline excess
hazard and the smooth effect of age at diagnosis (6). The observed follow-up time (t) was
divided into four partitions (K=4), chosen at the 25%, 50% and 75% percentiles of the
event (death) times. For men these were chosen at t=(0, 0.28, 1.08, 2.4, 8) years and for
women at t=(0, 0.27, 1, 2.3, 8) years. Both models, for men and women, were formulated

as

log(he(tla; B;v;v;t;€)) = (00 + a1 0AGE) + (01 + 1 1AGE)t

K

+ 3 (oo + a1 kAGE)(Jt — Bet| — [Fecal)  [part 1]
k=2

J
+B;(AGE — AGE) + > B/ (|AGE — AGE,_|?
j=2

— |AGE — AGE;_1]*)  [part 2]

5 (6.1)
+> (v * DER) [part 3]

1=2
+v*xSTAGE [part 4]

32
+ Z(LV x CCGy) [part 5]

v=1

36
+ ) (Chx HOSPy) [part 6]

h=1

where, [part 1] formulates the LRTP spline modelling the baseline log-excess hazard, in-
corporating the time-dependent effect of age at diagnosis using the same follow-up time
partition, with parameters a = (ap|a1) and ag = (ago.- .-, aq k) for g=0,1. [part 2]
represents the LRTP spline modelling the non-linear (smooth) effect of age at diagnosis

using 3 partitions (J=3) of the observed age range at Z@I/Ez(l5, 43, 71, 99) years, for
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both men and women, with parameters 5;, j = 1,..., J. AGE represents the mean age
at diagnosis. For ease of interpretation, age at diagnosis was centered at age 70. [part
3] formulates the effect of deprivation modelled as a categorical variable (DEP;: least
deprived to DEPs: most deprived), with parameters y;,, | = 2,..., 5. The least deprived
group (DEPy) was set as the baseline fixing y; = 0. [part 4] formulates the effect of stage
at diagnosis modelled as a binary variable (STAGE=0 for stages 1, 2 and 3 grouped and
STAGE=1 for stage 4), with parameter v. [part 5] defines the random effects for CCG
of residence, with parameters ¢,, v = 1,..., 32. [part 6] defines the random effects for

hospital of care, with parameters {,, h=1, ..., 36.

Appendix A.2. Prior distributions
Prior distributions for the model parameters were chosen as:

e For the baseline log-excess hazard, including the time dependent effect of age at

diagnosis ([partl]):

ago ~ N(0,10%) , ag1 ~ N(0,10*) for g=0, 1

Qg klTga “ NO,02,) for k=2, ... , K and g4 ~ U(0.01,100) for =0, 1
(6.2)
e For the non-linear effect of age at diagnosis ([part 2]):
Bo ~ N(0, 10%)
y (6.3)
Brlop N0, 03) , for k=2, ... , K and g5 ~ U(0.01, 100)
e For the effect of deprivation ([part 3]):
Yo =10
) (6.4)
vloy % N©0,02) , for 1=2, ..., 5 and o, ~ U(0.01, 100)

e For the effect of stage at diagnosis ([part 4]):

v ~ N(0,10%) (6.5)
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e For the random effects on CCG of residence ([part 5]):

Lylo, i N(0,02) , for v=1, ... , 32 and o, ~ U(0, 10) (6.6)

e For the random effects on hospital of cancer care ([part 6]):

Chloe % N(0,03) , for h=1, ... , 36 and o¢ ~ U(0, 10) (6.7)

Appendix A.3. Handling missing information on stage at diagnosis

Information on stage at diagnosis was missing for 22% of men and 24% of women in the
dataset analysed in this study. All other variables had no missing information. In order to
include all the cases in the analysis, we extended the model specified in 6.5 to define a

prior distribution for stage at diagnosis using a Bernoulli distribution with probability u as

STAGE ~ Bernoulli(w) (6.8)

and we defined as a prior distribution for u a logistic regression model including all the

covariates used in the main model to better impute the missing stage information as

5
logit(u) = Ay * AGEi + > (o * DER)
=2

32 36
+> (A3 *CCGy) + > _(Aap x HOSPy)
v=1 h=1

where, AGE| is now modelled as a linear effect of age at diagnosis, with parameter A\1. The
effects of deprivation with parameters X,;, of CCGs with parameters A3, and of hospitals
with parameters X4, are modelled in the same way as in the main model formulation

(6.5). Prior distributions for all the A parameters were defined as
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A1 ~ N(0,0.0001)

Ao % N(0,0.0001) , for 1=2, ... , 5

) (6.10)
A3y % N(0,0.0001) , for v=1, ... , 32
Aan % N(0,0.0001) , for h=1, ... , 36

Appendix A.4. Bayesian inference

Bayesian inferences were performed in R software version 3.4.3 using the JAGS MCMC
program accessed via the R package ‘R2JAGS’ (10,11). Models were fitted setting up 2
MCMC chains, each with 60,000 iterations, a burn-in period of 10,000 and a thinning of
2 to eliminate any potential autocorrelation among samples within the chains. A total of
50,000 sampled values were retained from the posterior distributions of each of the model
parameters. An examination of the trace and density plots of each parameter’s posterior
distribution did not indicate any convergence issues for these samples. The 50,000 sampled
values from the parameter posterior distributions were used to derive posterior distributions
of 5-year net survival for each CCG of residence and hospital of care. These were derived
using a ‘prediction matrix’ that included all the combinations of age at diagnosis (individual
integer ages within the observed age range 15-99 years), deprivation category (1-5), stage

at diagnosis (0-1), CCG (32) and hospital (36).
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Appendix A.5. Funnel plots for the additional models fitted
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Figure 6.7: Funnel plots of 5-year net survival by CCG of residence (mean posterior) for
men diagnosed with colon cancer in 2006-2013, London: (a) model including age at
diagnosis and CCG (b) model including age at diagnosis, CCG and deprivation; (c)
model including age at diagnosis, CCG, deprivation and stage at diagnosis (for stages at
diagnosis 1, 2 and 3); (d) model including age at diagnosis, CCG, deprivation, stage at
diagnosis and hospital of cancer care (for stages at diagnosis 1, 2 and 3).
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Figure 6.8: Funnel plots of 5-year net survival by CCG of residence (mean posterior) for
men diagnosed with colon cancer in 2006-2013, London: (a) model including age at
diagnosis and CCG (b) model including age at diagnosis, CCG and deprivation; (c)
model including age at diagnosis, CCG, deprivation and stage at diagnosis (for stage at
diagnosis 4); (d) model including age at diagnosis, CCG, deprivation, stage at diagnosis
and hospital of cancer care (for stage at diagnosis 4).
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Figure 6.9: Funnel plots of 5-year net survival by CCG of residence (mean posterior) for
women diagnosed with colon cancer in 2006-2013, London: (a) model including age at
diagnosis and CCG (b) model including age at diagnosis, CCG and deprivation; (c)
model including age at diagnosis, CCG, deprivation and stage at diagnosis (for stages at
diagnosis 1, 2 and 3); (d) model including age at diagnosis, CCG, deprivation, stage at
diagnosis and hospital of cancer care (for stages at diagnosis 1, 2 and 3).
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Figure 6.10: Funnel plots of 5-year net survival by CCG of residence (mean posterior)
for women diagnosed with colon cancer in 2006-2013, London: (a) model including age
at diagnosis and CCG (b) model including age at diagnosis, CCG and deprivation; (c)
model including age at diagnosis, CCG, deprivation and stage at diagnosis (for stage at
diagnosis 4); (d) model including age at diagnosis, CCG, deprivation, stage at diagnosis

and hospital of cancer care (for stage at diagnosis 4).
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Appendix A.6. Funnel plots for the complete case analysis versus modelling
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Figure 6.11: Funnel plots of the random effects by CCG of residence and hospital of
care for women using: complete case analysis after removing cases with missing stage at
diagnosis ((a) and (b)) and using all data by modelling the missing data structure ((c)

and (d)).
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6.6 Discussion

In this last research chapter we aimed to determine how Bayesian approaches could be used
in the relative survival setting to improve the estimation of cancer survival in the presence
of sparse data, and when using more complex data structures, including hierarchical and

spatially arranged data.

A summary of the existing literature on small area estimation methods revealed that very
few models are available in the relative survival setting. In the absence of suitable Bayesian
regression models defined on the log-excess hazard scale that could model complex data
structures, i.e. extending the Estéve et al. [81] model for Bayesian inference, we defined
a set of characteristics that a new model should satisfy. Based on these characteristics,
we proposed a flexible Bayesian excess hazard model on the log-excess hazard scale based
on the full-likelihood specification using individual-level data. We chose to use Low-Rank
Thin Plate splines (LRTP splines) to model the various components of the excess hazard
model because these splines offer a reasonable compromise between model flexibility and
likelihood tractability. As discussed in Research Publication 3, these splines are simple yet
flexible first-order polynomials that provide a good alternative to other spline constructs
commonly used in excess hazard models, as for instance restricted cubic splines mentioned
in Chapter 2. For models fitted on the log-excess hazard scale using those other commonly
used splines will very frequently add complexity to the likelihood specification, requiring
numerical integration techniques to evaluate it [99, 259]. Models fitted on the log cumu-
lative excess hazard scale have the advantage of avoiding the use of numerical integration
because of the resulting tractable cumulative excess hazard and excess hazard functions,
but the interpretation of multiple time-dependent effects is difficult because the excess
hazard ratio for one variable can depend on the levels of the other variables, even without

having defined interaction terms in the model [97].

Along with the new flexible model formulation we also implemented a post-estimation pro-
cedure to derive posterior distributions for the excess hazard ratios, excess hazard functions
and net survival based on the saved MCMC samples for each parameter. One downside
of fitting this model is that it can be computationally very intensive, varying from a few

hours to a few days to complete the computation, depending on the model complexity,
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the number of MCMC iterations and the size of the matrices generated. Although compu-
tation time can be reduced by the use of parallel computing, some further improvements
are needed to reduce computation time and improve sampling performance to model more

complex data structures.

The work presented in this last chapter lays out the foundation model for flexible excess
hazard modelling within the Bayesian framework. One of the characteristics that we set up
a priori for the implementation of the new excess hazard model was the easy extension to
accommodate hierarchical and spatial data structures. When reviewing the literature, most
incidence and survival studies were very focussed on the idea of defining a spatial structure
based on borrowing strength from neighbouring areas. We hypothesise that in the case of
cancer survival, it does not matter so much the area where patients live but the care facility
where they are treated. As a first extension of the flexible Bayesian model, we included a
pair of random effects to investigate variation in colon cancer survival in London at the
CCG and hospital of care level. The main results showed that after adjusting for age at
diagnosis, socioeconomic status, stage at diagnosis and hospital of care, no variability in
survival was observed between CCGs, contrasting with a much more pronounced variability
between hospitals. Taking into account these results, future work should focus on how
to define the most appropriate neighbouring structure for cancer survival analysis. This
structure will ideally not be based on a neighbouring area that shares a common border
or purely based on distance, but we would like to identify areas that share common traits,
such as common management or treatment protocols and translate that information into

a dependency structure to incorporate into the flexible Bayesian excess hazard model.



Chapter 7

Discussion and Conclusions

The research | present in my doctoral thesis is divided into three interconnected Research
Aims that arose as a natural research progression to further and complement each research
output. The initial research idea (Research Aim 1) originated from a request by national
policy-makers to provide ‘one single’ number that could summarise the patterns of survival
for all cancers combined in England. This ‘summary number’ was envisioned to act as a
simple and informative monitoring tool for cancer survival at both national and local level. At
national level, to act as a surveillance tool of strategic value and at local level, to act as a
monitoring tool for local health service managers. When faced with the request of providing
one summary survival number for all cancers combined, it was clear that this number could
not be a simple survival average of all cancer types pooled together. | created the concept
of the cancer survival index to ensure that differential distributions of cancer patients by
sex, age and cancer type, or any shifts in these distributions over time do not influence
comparisons between populations. It is the first index of this type to be introduced in
England designed specifically to aid health-policy makers and healthcare managers monitor
and assess the effectiveness of cancer survival outcomes. However, caution is required in
its interpretation. The index does not reflect the prospects of survival for any individual
cancer patient. It should not be interpreted as the only indicator of performance, but in
conjunction with other information available for that country or region. It should be seen

as a guide to raise questions about the potential for improvement.
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The two applications | present for the England and the CCG survival indexes, demonstrate
that the index can be used at any level of geographical aggregation. Although the concept of
the survival index is simple, the estimation process, in particular the modelling strategy are
complex. To overcome estimation challenges, | developed a ‘semi-automated’ modelling
strategy that made it feasible to estimate the many individual components needed for
the construction of the indexes. It has also provided a more robust estimation of those
individual components through the modelling of age and year of diagnosis. However, the
estimation of survival remained challenging in some situations, in particular for some of
the smallest CCGs, and the CCG index did not prove feasible to estimate beyond one-year
since diagnosis. Improvements to the modelling strategy can be made when estimating the
indexes for smaller geographies as discussed in Chapter 4, or through the use of other
modelling approaches such as the ones proposed as part of Research Aim 3, which | will

discuss below.

The approach | propose to construct the cancer survival index is timeless and can be applied
to other health geographies using the same set of sex-age-cancer specific weights. The novel
modelling strategy, developed to improve the estimation of the individual index components,
was presented in a detailed way to facilitate and guide other researchers interested in
developing a cancer survival index for their setting. This work has already motivated other
countries to construct their own cancer survival indexes using the same approach. The
United States constructed a North American Cancer Survival Index to Measure Progress
of Cancer Control Efforts [160] and Japan started to develop a national index of cancer

survival (work in progress).

Since publication, both the national and the local cancer survival indexes have attracted
much attention [1-5]. The results for the national cancer survival index supported CRUK's
vision set out in their 2014 research strategy [155]: ‘Cancer Research UK's vision is to bring
forward the day when all cancers are cured. Over the last 40 years, cancer survival rates in
the UK have doubled. In the 1970s just a quarter of people survived. Today that figure is
half. Our ambition is to accelerate progress and see three-quarters of patients surviving the
disease within the next 20 years.'. The same results have been fed into numerous CRUK's

public funding campaigns and into online information blogs [156].
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However, presenting the results of the cancer survival index to ‘lay’ or non-technical audi-
ences revealed a new challenge in particular when presenting the results for the CCG survival
index. Very long tables of results or ‘standard’ bar charts packed with many bars make it
very difficult to communicate any observed patterns in a meaningful way. After some re-
search, | came across two data visualisation techniques used in other areas (smoothed maps
for incidence outcomes and funnel plots for mortality outcomes), and | decided to adapt
these two techniques to cancer survival outcomes to improve the visualisation of cancer
survival for a more successful dissemination of these outcomes to policy-makers. This work

led to the development of Research Aim 2.

These visualisation tools were successfully used in diverse contexts. For example, the pub-
lication of the CCG cancer survival index gave me the opportunity to present the results at
the annual meeting of the All-Party Parliamentary Group on Cancer (APPGC), chaired by
John Baron MP. APPGCs are cross-party groups run by and for Members of the Commons
and Lords to discuss a range of relevant topics. Only 10 minutes were allocated to the
presentation and discussion of results. The presentation had to be quick and clear for the
main message to be successfully delivered. Only smoothed maps and funnel plots were used
to show the trends in the one-year cancer survival index by CCGs (the presentation slides
are provided in Appendix B). The outcome of the meeting was transformational. Soon af-
ter, APPGC advocated that one of their main aims was to ensure that local commissioners
were held accountable for improving one-year survival in their areas. APPGC worked to per-
suade the top tiers of the NHS to include cancer survival in the Delivery Dashboard. The
decision was announced by the Chief Executive of NHS England, Simon Stevens, when
addressing the ‘Britain Against Cancer’ conference in December 2015, that the CCG can-
cer survival index was to be included in the Delivery Dashboard of the NHS' Assurance

Framework, that this sits at the top of the NHS accountability tree [157-159].

Presenting the survival index using only these two data visualisation techniques was decisive
for the success of the APPGC meeting. Smoothed maps and funnel plots proved to be
two simple and intuitive data visualisation tools. These were in particular powerful in a
presentation mode showing animations of maps and funnel plots looping over several years

of diagnosis for easy visualisation of the time trends in the survival indexes.
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Since publication, smoothed maps and funnel plots have been used by the Department
of Health for overall strategy purpose and for local management [177]. Funnel plots have
also been used to display regional and race specific variation in population-based cancer
survival in the United States [261]. These two data visualisation techniques also led to
the development of a lecture | give on data visualisation techniques for cancer survival
outcomes for the short course ‘Cancer Survival: Principles, Methods and Applications’

held annually at LSHTM.

The last research aim of my thesis (Research Aim 3), addressed the estimation challenges
faced in Chapter 4 for the estimation of the individual components of the indexes. For
this purpose, | decided to explored how Bayesian approaches could be used in the relative
survival setting to improve the estimation of cancer survival in the presence of sparse data,
and when using more complex data structures, including spatially arranged and hierarchical
data. When summarising the literature for small-area estimation | only found a few models
for the estimation of excess hazards within the Bayesian framework, and none for the
estimation of net survival. As an initial step, | proposed a flexible Bayesian excess hazard
model on the log-scale based on the full-likelihood specification and provided a step-by-step
tutorial on the estimation of net survival from this model. The model uses low-rank thin
plate splines providing a compromise between model flexibility and likelihood tractability,
specially important within the Bayesian framework and then modelling more complex data
structures as it reduces the computational burden. The benefits of using this type of splines
was demonstrated in the subsequent application that extended the model to include two

random effects to investigate cancer survival variation in London.

The field of population-based cancer survival continues to be a very active area of method-
ological research. In light of the work presented in this thesis, | suggest as further lines
of research: a) To implement the alternative modelling strategy described in the Discus-
sion of Chapter 4 to further improve the estimation of the individual components of the
index. An additional avenue of research for the estimation of the index is to explore the
joint modelling of two or more cancers of similar survival patterns to improve prediction
of the individual index components. b) The research presented on funnel plots for cancer

survival has already led to the development of further research. Additional work has been
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done to provide a set of guidelines to handle over-dispersion in cancer survival outcomes
(manuscript in review). c) To extend the flexible Bayesian excess hazard model by incor-
porating the most adequate spatial dependency structure enabling excess hazard spatial
regression to be performed. To implement a dedicated MCMC sampler to improve compu-
tational speed and sampling performance when using the flexible Bayesian excess hazard

model with more complex data structures.

In conclusion, cancer survival is the metric of choice when assessing and monitoring the
effectiveness of healthcare systems in treating and caring for cancer patients. Persistent
inequalities in cancer survival have been reported for England over the last 5 decades, with
lower survival typically observed in the North of the country. Since the mid 1990’s, large
survival disparities have also been reported between England and countries considered to
be of equivalent wealth and similar healthcare systems, with lower survival observed in
England. These survival deficits have led to many health-policy related initiatives aimed
at tackling cancer inequalities and achieving world-class cancer survival outcomes for Eng-
land [68, 262]. Monitoring progress in cancer survival over time became essential to assure
that these objectives are met, with many survival outcome indicators being published on
a regular basis for different levels of geographical aggregation in England. However, the
constant changes to the configurations of these health geographies are reflected in in-
creased pressures and demands from health policy-makers and healthcare managers for
the timely availability of monitoring tools for the changing health structures. Investigating
cancer survival inequalities and disentangling the factors that might contribute to these
discrepancies is a complex task, and many avenues of research can be undertaken. The
research | present in this thesis focused on a few methodological aspects to improve the
estimation and dissemination of cancer survival to a vast range of audiences. As the re-
search questions become more complex, more robust methods and more detailed quality
cancer data are important, but it is also primordial that our results are useful and accessible
to policy makers. In the era of electronic health records and the existence of many rich
and complementary sources of data, it is imperative to guarantee that researchers con-
tinue to have timely access to all the sources of cancer data for the continued success of

population-based cancer research.



Appendix A

Stata and R code

A.1 Stata code to estimate the national and local indexes of

cancer survival

National index

Stata code (version 15) implementing the modelling strategy defined in section 4.6.1 for

the estimation of the index of cancer survival for England.

* ANALYSIS PROGRAM: Excess hazard modelling strategy

* Fit models for each cancer, for men and women separately

foreach cancer in "lung" "pancreas" "hodgkin" "NHL" "bladder" "brain"

"breast" "cervix" "colon" "kidney" "larynx" "leukaemia" "melanoma" "myeloma'
"oesophagus" "others" "ovary" "prostate" "rectum" "stomach" "testis" "uterus" {
use "\\‘cancer’.dta", clear

di "cancer=‘cancer’"

* Merge data a priori with life tables
gen age=int (ageout)
replace age=99 if ageout>99
sort age sex _year dep gor country
merge m:1 age sex _year dep gor country using "Life_table"
drop if _merge==2
assert _merge!=1

drop _merge
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* Set survival time data

stset finmdy, failure(dead) origin(time diagmdy) exit(time finmdy)

* Loop for amnalysis for men and women
qui sum sex
local sexmin=r(min)
local sexmax=r (max)
local i ‘sexmin’
if ‘sexmin’==‘sexmax’ {local s=‘sexmax’}

if ‘sexmin’<‘sexmax’ {local s=‘sexmax’+1}

while ‘i’<=‘s’ & ‘i’!= 3 {display "sex="‘i’
di ‘"Cancer is "‘cancer’" and sex ‘i’"’
preserve

keep if sex==°¢i’

count

* Generate splines by cancer type for the continous variable age at diagnosis
* year of diagnosis, and the interaction between these two variables
if ("‘cancer’" == "testis") {

rcsgen agediag, knots (15 35 99) gen(rcs_age) orthog}

if ("‘cancer’" == "leukaemia") {

rcsgen agediag, knots(15 45 75 99) gen(rcs_age) orthogl

if ("‘cancer’" == "hodgkin") {

rcsgen agediag, knots (15 25 65 99) gen(rcs_age) orthogl

if ("‘cancer’" == "cervix" | "‘cancer’" == "melanoma") {

rcsgen agediag, knots (15 35 65 99) gen(rcs_age) orthogl

if ("‘cancer’" == "brain" | "‘cancer’" == "ovary") {

rcsgen agediag, knots (15 40 65 99) gen(rcs_age) orthoglt

if ("‘cancer’" == "NHL" | "‘cancer’" == "breast" | "‘cancer’" == "colon" |
"‘cancer’" == "uterus") {

rcsgen agediag, knots(15 50 70 99) gen(rcs_age) orthogl

if ("‘cancer’" == "bladder" | "‘cancer’" == "kidney" | "‘cancer’" == "larynx" |
"‘cancer’" == "myeloma" |"‘cancer’" == "oesophagus" | "‘cancer’" == "others" |
"‘cancer’" == '"prostate" | "‘cancer’" == "rectum" | "‘cancer’" == "stomach") {

rcsgen agediag, knots (15 65 99) gen(rcs_age) orthog}
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if ("‘cancer’" == "lung" | "‘cancer’" == "pancreas") {

rcsgen agediag, knots (15 40 65 75 99) gen(rcs_age) orthogl

rcsgen ydiag, df (3) gen(rcs_ydiag) orthog
gen inter_age_ydiag=agediag*ydiag

rcsgen inter_age_ydiag, df(3) gen(rcs_intageydiag) orthog

if ("‘cancer’" == "pancreas") {local df="2"}
else if ("‘cancer’" == "lung") {local df="3" }
else { local df="4"}

di ‘df’

estimates drop _all

* Defining candidate models

* Model 1. with non-linear and non-proportional effects of age
* and year of diagnosis, and a non linear and non proportional

* interaction between age and year of diagnosis

cap stpm2 rcs_age* rcs_ydiagx rcs_intageydiag#*, scale(hazard)
bhazard(rate) df (¢df’) tvc(rcs_age* rcs_ydiag* rcs_intageydiag*)
dftvc (3) iterate (20)

local errorl=_rc

local ConvergedModell=e(converged)

if ‘ConvergedModell ’==1 & ‘errorl’==0{

local ModellAIC=e(AIC)

estimates store Modell _ENGLAND_ ‘cancer’_‘i’ }

else local ModellAIC=.

* Model 2. with non-linear and non-proportional effects of age
* and year of diagnosis, and a non linear interaction between

* age and year of diagnosis

cap stpm2 rcs_age* rcs_ydiagx rcs_intageydiag#*, scale(hazard)
bhazard(rate) df (‘df’) tvc(rcs_age* rcs_ydiag#) dftvc(3)
iterate (20)

local error2=_rc

local ConvergedModel2=e(converged)

if ‘ConvergedModel2’==1 & ‘error2’==0{

local Model2AIC=e(AIC)

estimates store Model2_ENGLAND_ ‘cancer’_¢i’}

else local Model2AIC=.
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*

*

*

*

Model 3. with non-linear and non-proportional effects of age

and year of diagnosis

cap stpm2 rcs_age* rcs_ydiagx, scale(hazard) bhazard(rate)
df (‘df’) tvc(rcs_age* rcs_ydiag*) dftvc(3) iterate (20)
local error3=_rc

local ConvergedModel3=e(converged)

if ‘ConvergedModel3’==1 & ‘error3’==0{

local Model3AIC=e(AIC)

estimates store Model3_ENGLAND_ ‘cancer’_¢i’}

else local Model3AIC=.

Model 4. with non-linear and non-proportional effects of age and

non linear year of diagnosis

cap stpm2 rcs_age* rcs_ydiagx, scale(hazard) bhazard(rate)
df (‘df’) tvc(rcs_agex) dftvc(3) iterate (20)

local erroré4=_rc

local ConvergedModel4=e(converged)

if ‘ConvergedModel4 ’==1 & ‘error4 ’==0{

local Model4AIC=e(AIC)

estimates store Model4 _ENGLAND_ ‘cancer’_‘i’}

else local Model4AIC=.

Model 5. with non-linear and non-proportional effect of age and

linear and proportional year of diagnosis

cap stpm2 rcs_age* ydiag, scale(hazard) bhazard(rate) df(¢df’)
tvc(rcs_age*) dftvc(3) iterate (20)

local errorb5=_rc

local ConvergedModelb5=e(converged)

if ‘ConvergedModelbs ’==1 & ‘errorb’==0{

local Model5AIC=e(AIC)

estimates store Model5_ENGLAND_ ‘cancer’_‘i’ }

else local ModelbAIC=.

Model 6. with linear effect of age and year of diagnosis and

non-proportional effect of age

cap stpm2 agediag ydiag, scale(hazard) tvc(agediag) bhazard(rate)
df (‘df’) dftvc(3) iterate (20)
local error6=_rc

local ConvergedModel6=e(converged)
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if ‘ConvergedModel6’==1 & ‘error6’==0{
local Model6AIC=e(AIC)
estimates store Model6_ENGLAND_ ‘cancer’_‘i’}

else local Model6AIC=.

* Model 7. with non-linear effect of age and year of diagnosis,
* and a non-proportional effect of year of diagnosis and a non-proportional

* interaction between age and year of diagnosis

cap stpm2 rcs_agex* rcs_ydiag*, scale(hazard)

bhazard(rate) df (¢df’) tvc(rcs_ydiag* inter_age_ydiag) dftvc(3) iterate (20)
local error7=_rc

local ConvergedModel7=e(converged)

if ‘ConvergedModel7 ’==1 & ‘error7’==0{

local Model7AIC=e(AIC)

estimates store Model7_ENGLAND_ ‘cancer’_¢i’ }

else local Model7AIC=.

* Selecting the simplest model from the models with the smallest AIC

if (‘ConvergedModell ’==1 & ‘errorl’==0) |
(‘ConvergedModel2 ’==1 & ‘error2’==0) |
(‘ConvergedModel3’==1 & ‘error3’==0) |
(‘ConvergedModeld >==1 & ‘errord’==0) |

(‘ConvergedModelb ’= & ‘errorb’==0) |

1]
—

(‘ConvergedModel6 >==1 & ‘error6’==0) |

(‘ConvergedModel7 >==1 & ‘error7’==0) {

estimates stats Modelx*

local minAIC=min(‘Modell1AIC’, ‘Model2AIC’, ‘Model3AIC’, ‘Model4AIC’,
‘Model5AIC’, ‘Model6AIC’, ‘Model7AIC?)

di "Minimum AIC: ‘minAIC?"

cap matrix drop AICmaxmin

forvalues k=1/7{

if ‘Model ‘k’AIC’<=‘minAIC’ & ‘error ‘k’’==0 & ‘ConvergedModel ‘k’’==1
{matrix AICmaxmin = (nullmat (AICmaxmin), ‘k’)

di "Candidate models"

matrix list AICmaxmin

local AIC=max (AICmaxmin[1,1],AICmaxmin[1,2],AICmaxmin[1,3],
AICmaxmin[1,4] ,AICmaxmin[1,5],AICmaxmin[1,6],AICmaxmin([1,7])

di "Chosen model: ‘AIC’>"}}

estimates restore Model ‘AIC’ _ENGLAND_ ‘cancer’_¢i’
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* Prediction of net survival by age group and period of diagnosis based

on the previously selected model

quietly {

fillin cancer agecat period sex

bys agecat period: gen tt=_n

replace tt=. if tt>10

tab tt

foreach h in 1 2 3 4 5 6 {

forvalues k = 0/4 {

cap predictnl ns_age ‘k’‘h’=predict(meansurv timevar (tt))
if agecat==‘k’ & period==‘h’, se(ns_se‘k’‘h’) ci
(ns_lci_age ‘k’‘h’ ns_uci_age ‘k’>‘h’)}}}

cap egen ns=rsum(ns_agex*)

cap egen ns_lci=rsum(ns_lci_age*)

cap egen ns_uci=rsum(ns_uci_age*)

cap egen ns_se=rmin(ns_sex)}

cap append using "\\E_index_stpm2_results ‘cancer’_NS.dta"
save "\\E_index_stpm2_results ‘cancer’_NS.dta", replace
clear all

restore

local i=‘i’+1}}

* Constructing the index by combining all components of the index
tab agecat,m nol
recode agecat (0=15) (1=45) (2=55) (3=65) (4=75), gen(agecatl)
sort cancer sex agecat
merge m:1 cancer sex agecat using "\cancer_age_sex_weights.dta"
assert _merge==

drop _merge

* Standardise by age, sex and cancer
gen weigthedNS=ns*stand_weights

bysort period time: egen NSstand=total (weigthedNS)

* Calculate the variance, standard error and precision for the index
gen varNSstand=(stand_weights~2)*(ns_se~2)
bysort period time: egen varASNS=total (varNSstand)
gen seASNS=(varASNS~(1/2))

gen prec=1/varASNS
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Local index

Stata code (version 15) implementing the modelling strategy defined in section 4.6.1 for

the estimation of the index of cancer survival for each CCG.

* ANALYSIS PROGRAM: Excess hazard modelling strategy

* Fit models for each cancer, for men and women, and CCG separately
foreach cancer in "breast" "colorectum" "lung" "others" {
use "\\‘cancer’exportccg.dta", clear

di "cancer=‘cancer’"

* Merge data a priori with life tables
gen age=int (ageout)
replace age=99 if ageout>99
sort age sex _year dep gor
merge m:1 age sex _year dep gor using "Life_table"
assert _merge!=1
drop if _merge==

drop _merge

* Set survival time data

stset finmdy, failure(dead) origin(time diagmdy2) exit(time censormdy)

* Loop for analysis for men and women
qui sum sex
local sexmin=r(min)
local sexmax=r (max)
local i ‘sexmin’
if ‘sexmin’==‘sexmax’ {local s=‘sexmax’}
if ‘sexmin’<‘sexmax’ {local s=‘sexmax’+1}

while ‘i’<=‘s’ & ‘i’!= 3 {display "sex="‘i’

* Loop for CCGs
foreach CCG in 001 002 003 004 005 006 007 008 009 010 011 012 013
014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047
048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064
065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081
082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098
099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
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150 151 152 153 154 155 156
167 168 169 170 171 172 173
184 185 186 187 188 189 190
201 202 203 204 205 206 207
di ‘"Cancer is "‘cancer’",
preserve
keep if sex==°¢i’
keep if CCG=="°‘CCG’"

count

* Generate splines by cancder type for the continous variable age at diagnosis

* year of diagnosis,

if ("‘cancer’"

rcsgen agediag,

if

("¢cancer "

rcsgen agediag,

rcsgen ydiag,

"breast"

157

174

191

208

CCG 1is

158

175

192

209

210

| "¢cancer’"

160 161 162 163
177 178 179 180
194 195 196 197

211 {

"CCCG’" and sex ‘i’"?

164 165 166

181 182 183

198 199 200

and the interaction between these two variables

== "colorectum") {

knots (15 50 70 99) gen(rcs_age) orthogl

" 1ungn

"‘cancer’"

"others") {

knots (15 65 99) gen(rcs_age) orthog }

gen inter_age_ydiag=agediag*ydiag

rcsgen inter_age_ydiag,

estimates drop

_all

df (2) gen(rcs_ydiag) orthog

df (3) gen(rcs_intageydiag) orthog

* Defining candidate models

* Model 1.

with non-linear and non-proportional effects of age

* and year of diagnosis,

* interaction between age and year of diagnosis

cap stpm2 rcs_age* rcs_ydiag* rcs_intageydiagx,

and a non linear and non proportional

scale (hazard)

bhazard(rate) df (4) tvc(rcs_age* rcs_ydiag* rcs_intageydiag*)

dftvc (3)

iterate (15)

local errorl=_rc

local ConvergedModell=e(converged)

if

‘ConvergedModell ’==1 &

local Modell1AIC=e(AIC)

‘errorl ’==0{

estimates store Modell_‘CCG’_‘cancer’_‘i’}

else local ModellAIC=.

* Model 2.

with non-linear and non-proportional effects of age

* and year of diagnosis,

and a non linear interaction between
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* age and year of diagnosis

cap stpm2 rcs_age* rcs_ydiag* rcs_intageydiag*, scale(hazard)
bhazard(rate) df (4) tvc(rcs_age* rcs_ydiagx) dftvc(3)

iterate (15)

local error2=_rc

local ConvergedModel2=e(converged)

if ‘ConvergedModel2’==1 & ‘error2’==0{

local Model2AIC=e(AIC)

estimates store Model2_ ‘CCG’_‘cancer’_‘i’}

else local Model2AIC=.

* Model 3. with non-linear and non-proportional effects of age

* and year of diagnosis

cap stpm2 rcs_age* rcs_ydiagx, scale(hazard) bhazard(rate)
df (4) tvc(rcs_agex* rcs_ydiag#*) dftvc(3) iterate(15)

local error3=_rc

local ConvergedModel3=e(converged)

if ‘ConvergedModel3’==1 & ‘error3’==0{

local Model3AIC=e(AIC)

estimates store Model3_ ‘CCG’_‘cancer’_‘i’}

else local Model3AIC=.

* Model 4. with non-linear and non-proportional effects of age and

* non linear year of diagnosis

cap stpm2 rcs_age* rcs_ydiagx, scale(hazard) bhazard(rate)
df (4) tvc(rcs_agex*) dftvc(3) iterate(15)

local erroré4=_rc

local ConvergedModel4=e(converged)

if ‘ConvergedModel4 ’==1 & ‘error4 ’==0{

local Model4AIC=e(AIC)

estimates store Model4_ ‘CCG’_‘cancer’_‘i’}

else local Model4AIC=.

* Model 5. with non-linear and non-proportional effect of age and

* linear and proportional year of diagnosis

cap stpm2 rcs_age* ydiag, scale(hazard) bhazard(rate) df (4)
tvc(rcs_age*) dftvc(3) iterate(15)
local errorb5=_rc

local ConvergedModelb5=e(converged)
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*

*

if ‘ConvergedModelb’==1 & ‘errorb5’==0{
local Modelb5AIC=e(AIC)
estimates store Model5_ ‘CCG’_‘cancer’_‘i’}

else local ModelbAIC=.

Model 6. with linear effect of age and year of diagnosis and

non-proportional effect of age

cap stpm2 agediag ydiag, scale(hazard) tvc(agediag) bhazard(rate)
df (4) dftvc(3) iterate (15)

local error6=_rc

local ConvergedModel6=e(converged)

if ‘ConvergedModel6’==1 & ‘error6’==0{

local Model6AIC=e(AIC)

estimates store Model6_ ‘CCG’_‘cancer’_‘i’}

else local Model6AIC=.

Model 7. with non-linear effect of age and year of diagnosis,
and a non-proportional effect of year of diagnosis and a non-proportional

interaction between age and year of diagnosis

cap stpm2 rcs_agex* rcs_ydiag*, scale(hazard)

bhazard(rate) df(¢df’) tvc(rcs_ydiag* inter_age_ydiag) dftvc(3) iterate (20)
local error7=_rc

local ConvergedModel7=e(converged)

if ‘ConvergedModel7 ’==1 & ‘error7’==0{
local Model7AIC=e(AIC)

estimates store Model7_‘CCG’_‘cancer’_‘i’ }

else local Model7AIC=.

Model 8. Model with non-linear effect of age and year of
diagnosis and a non-linear and non-proportional interaction

between age and year of diagnosis

cap stpm2 rcs_age* rcs_ydiag* inter_age_ydiag, scale(hazard)
bhazard(rate) df(¢df’) tvc(rcs_intageydiagx) dftvc(3) iterate (20)
local error8=_rc

local ConvergedModel8=e(converged)

if ‘ConvergedModel8’==1 & ‘error8’==0{

local Model8AIC=e(AIC)

estimates store Model8_ ‘CCG’_‘cancer’_‘i’ }

else local Model8AIC=.
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* Selecting the simplest model from the models with the smallest AIC

if (¢ConvergedModell ’==1 & ‘errorl’==0) |
(“ConvergedModel2’==1 & ‘error2’==0) |
(‘ConvergedModel3’==1 & ‘error3’==0) |
(‘ConvergedModeld >==1 & ‘errord’>==0) |

(‘ConvergedModels ’>==1 & ‘errorb5’==0) |

(‘ConvergedModel6 >==1 & ‘error6’==0) |
(¢“ConvergedModel7 ’==1 & ‘error7’==0) |
(‘ConvergedModel8 ’==1 & ‘error8’==0) {

estimates stats Modelx*

local minAIC=min(‘ModellAIC’, ‘Model2AIC’, ‘Model3AIC’, ‘Model4AIC’,
‘Model5AIC’, ‘ModelBAIC’, ‘Model7AIC’, ‘Model8AIC?)

di "Minimum AIC: ‘minAIC?"

cap matrix drop AICmaxmin

forvalues k=1/8{

if ‘Model ‘k’AIC’<=‘minAIC’ & ‘error ‘k’’==0 & ‘ConvergedModel ‘k’’==1{

matrix AICmaxmin = (nullmat (AICmaxmin), ‘k’)

di "Candidate models"

matrix list AICmaxmin

local AIC=max(AICmaxmin[1,1],AICmaxmin([1,2],AICmaxminl[1,3],
AICmaxmin [1,4] ,AICmaxmin[1,5],AICmaxmin[1,6],AICmaxmin[1,7],
AICmaxmin [1,8])

di "Chosen model: ‘AIC’"}}

estimates restore Model ‘AIC’_‘CCG’_‘cancer’_‘i’

* Prediction of net survival by age group and year of diagnosis based

on the previously selected model

quietly {

fillin cancer agecat ydiag sex CCG

bys agecat ydiag: gen tt=_n

replace tt=. if tt>5

tab tt

foreach h in 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
2007 2008 2009 2010 2011 {

forvalues k = 0/4 {

cap predictnl ns_age ‘k’‘h’=predict (meansurv timevar(tt)) if agecat==‘k’

& ydiag==‘h’, se(ns_se‘k’‘h’) ci (ns_lci_age ‘k’‘h’ ns_uci_age ‘k’‘h’)
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1

cap egen ns=rsum(ns_agex*)

cap egen ns_lci=rsum(ns_lci_agex*)

cap egen ns_uci=rsum(ns_uci_age*)

cap egen ns_se=rmin(ns_sex)

}

cap append using "\\CCG_stpm2_results ‘cancer’.dta"
save "\\CCG_stpm2_results ‘cancer’.dta", replace
clear all

restore

}

local i=¢i’+1 }}

* Constructing the index by combining all components of the index
tab agecat,m nol
recode agecat (0=15) (1=45) (2=55) (3=65) (4=75), gen(agecatl)

sort cancer sex agecat

merge m:1 cancer sex agecat using "\cancer_age_sex_weights.dta"
assert _merge==

drop _merge

* Standardise by age, sex and cancer
gen weigthedNSCCG=ns*stand_weights

bysort CCG ydiag: egen NSstandCCG=total (weigthedNSCCG)

* Calculate the variance, standard error and precision for the index
gen varNSstandCCG=(stand_weights~2)*(ns_se"~2)
bysort CCG ydiag: egen varASNSCCG=total (varNSstandCCG)
gen seASNSCCG=(varASNSCCG~(1/2))

gen prec=1/varASNSCCG
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A.2 R code to construct a funnel plot

R code example to construct a funnel plot using the estimates of the index of cancer

survival for CCGs.

* Load data file containing estimates for the index of cancer survival

*

setwd (".../funnel plots")
getwd ()
data_CCG_all_cancers_all_ages_temp<-read.table(".../Data_funnel_plots.txt",

header=TRUE, sep="\t")

data_CCG_all_cancers_all_ages<-data.frame(data_CCG_all_cancers_all_ages_temp)

Construct funnel plot

plot (data_CCG_all_cancers_all_ages$prec ,data_CCG_all_cancers_all_ages$ns,
frame = FALSE,font.lab=2,pch=21,bg="black",axes=FALSE,xlab="Precision",
ylab="0ne-year index of net survival(%)",

x1lim=c (0,20) ,ylim=c(50,80),cex.main=1.5)

axis (2, c(50,55,60,65,70,75,80),las=1,font.axis=2,tck=-0.03)

axis (1, ¢(0,5,10,15,20),las=1,font.axis=2,tck=-0.03)

Define and draw the target
NSE<-data_CCG_all_cancers_all_ages$nsE[1]
x<-seq(0,20,by=1)

baseline<-rep (NSE,21)

lines (x,baseline,lwd=2,col="black")
Define the control limits
denom<-function(x,y,z){
seq(x,y,by=2z)}

Lower 95% Control Limit

Precision

denom_1195_temp<-denom(0,20,0.1)

*

Variance

denom_1195<-(denom_1195_temp)~(-1)

*

SE

denom_1195SE<-sqrt ((denom_1195_temp)~(-1))
11limit_95<-exp(-exp(log(-1og(NSE/100))+1.96%sqrt ((((denom_1195SE/100)"°2))/
((NSE/100%1log (NSE/100))°2))))*100

lines (denom_1195_temp,1llimit_95,1ty=2, col="grey")
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*

Upper 95% Control Limit

* Precision
denom_ul95_temp<-denom(0,20,0.1)
* Variance
denom_ul95<-(denom_ul95_temp)~(-1)
* SE
denom_ul95SE<-sqrt ((denom_ul95_temp)~(-1))
ulimit_95<-exp (-exp(log(-log(NSE/100))-1.96*sqrt ((((denom_ul958E/100)"°2))/
((NSE/100%1log (NSE/100))~2))))*100

lines (denom_ul95_temp ,ulimit_95,1ty=2, col="grey")

* Lower 99,8% Control Limit

* Precision
denom_11998_temp<-denom(0,20,0.1)

* Variance
denom_11998<-(denom_11998_temp)~(-1)

* SE
denom_11998SE<-sqrt ((denom_11998_temp)~(-1))
11imit_998<-exp(-exp(log(-log(NSE/100))+3.09%sqrt ((((denom_11998SE/100)"~2))/
((NSE/100%1log (NSE/100))~2))))*100

lines (denom_11998_temp,1limit_998,1ty=3)

* Upper 99,8% Control Limit

* Precision
denom_ul998_temp<-denom(0,20,0.1)

* Variance
denom_ul998<-(denom_ul998_temp)~(-1)

* SE
denom_ul998SE<-sqrt ((denom_ul998_temp)~(-1))
ulimit_998<-exp(-exp(log(-log(NSE/100)) -3.09%sqrt ((((denom_ul998SE/100)"2))/
((NSE/100%1log (NSE/100))~2))))*100

lines (denom_ul998_temp ,ulimit_998,1ty=3)

* Control limits legend
legend (10, 54, "95% control limits", lty=2, cex=1.2 ,bty = "n")

legend (10, 52, "99.8% control limits", 1lty=3, cex=1.2 ,bty = "n"
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* Code to identify points below the lower 99,87 control limit

1limit_998detectoutliers<-exp(-exp(log(-log(NSE/100))+3.09%

sqrt ((1/(data_CCG_all_cancers_all_ages$prec*(100-2)))/

((NSE/100%1log (NSE/100))"2))))*100

flatllimitoutlier<-0

data_outliers<-data.frame(data_CCG_all_cancers_all_ages ,llimit_998detectoutliers,
flatllimitoutlier)

for (i in 1:nrow(data_outliers)){

if (data_outliers$ns[il<data_outliers$llimit_998detectoutliers[i])
{data_outliers$flatllimitoutlier[i]<-1
points(data_outliers$prec[i],data_outliers$ns[i],pch=21,bg="darkorange3",

cex = 1)}}
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A.3 R code to implement flexible Bayesian excess hazard mod-

els using low-rank thin plate splines

R code example to implement the flexible Bayesian excess hazard model proposed in re-

search publication 3 [257].

# Log-excess hazard model using low-rank thin plate splines

# Model specification
write ("model{ # Start model definition
for(i in 1:N) { # Open loop for individual observations
tlpl[i,1:(K+1)] <- alpha[l,] + alpha[2,]*xagediagi.cent[i]
etali] <- inprod(tlp[i,],T[i,]) + inprod(betal],X[i,]) + epsilon*depl[il]
# Loop over the k splittings of follow-up time to define the cumulative
excess hazard function
for(k in 1:XK){
Haz[i,k] <- exp(inprod(tlpl[i,],TT[i,k,]))*x(1-exp(-(TT[i,k,2]-tilde.t[k])*
inprod (tlp[i,],U[k,]1)))/inprod(tlp[i,],U[k,])
}
# Negative log-likelihood function
neg.LL[i] <- max(-deltalil*log(bratel[i] + max(exp(etal[il), 0.0001)) +
sum (Haz [1,])*exp(inprod(betal[] ,X[i,]))*exp(epsilon*dep[i]) + C, 0.0001)
zeros [i] ~ dpois(neg.LL[i]);
# Use Poisson distribution with zeros trick to specify non-standard likelihood

} # Close loop for individual observations

# Prior on baseline excess hazard parameters

# and hyperpriors on variance parameters

for(q in 1:2){

alphalq,1] ~ dnorm(0,0.0001)

alphalq,2] ~ dnorm(0,0.0001)

for(k in 2:K){alphalq,k+1] ~ dnorm(O,tau.alphalql)}
tau.alphalq]l <- 1/(sigma.alphalql*sigma.alphalql)
sigma.alphalq] ~ dunif (0.01,100)

3

# Prior on regression parameters

# and hyperpriors on variance parameters
betal[1] ~ dnorm(0,0.0001)

for(j in 2:J){ betal[j] ~ dnorm(0,tau.beta)}
epsilon ~ dnorm(0,0.0001)

tau.beta <- 1/(sigma.betax*sigma.beta)
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sigma.beta ~ dunif (0.01,100)

}","Model_London_colon_men.txt")

# Load data #

dataset = read.table("Colon_London_with_stage_2009_men.txt", sep="\t", header=T)

names (dataset)

# Define cut-points for follow-up time to use as spline partitions
min (t)

max (t)

K=4

tilde.t = c(0, 0.18, 0.84, 2.26, 6)
# Example to define equaly spaced partition
#K = 4 # Number of splits of follow-up time interval

#tilde.t = seq(min(t),max(t),length.out=5)

# Define spline for the baseline excess hazard #

# Time Transformation Matrix - does not depend on the actual observed times but

# it is computed from the time partition vector

OMEGA_alpha <- abs(outer(tilde.t[-c(1,K+1)],tilde.t[-c(1,K+1)],"-"))

svd.0OMEGA_alpha <- svd(OMEGA_alpha)
sqrt.0OMEGA_alpha <- t(svd.OMEGA_alpha$vx*%(t(svd.OMEGA_alpha$u)x*

sqrt (svd.OMEGA_alpha$d)))

inv.D <- solve(cbind(c(1l,rep(0,K)),c(0,1,rep(0,K-1)),rbind(rep(0,K-1),rep(0,K-1),

sqrt.0OMEGA_alpha)))

# Construct Time Design Matrices - for observed time
T_K <- cbind(1,t(sapply(t, function(x) abs(x - tilde.t[-c(K+1)]) -
abs(tilde.t[-c(K+1)1))))

T = T_K%*%inv.D

# Construct Time Design Matrices for the cumulative excess hazard

tk = t(sapply(t,function(z) pmax(pmin(z,tilde.t[-1]),tilde.t[-(K+1)]1)))

TT_K = TT = array(NA,c(N,K,K+1))

# TT_K is equivalent to T_K but for each time partition

# TT is equivalent to T but for each time partition

for(k in 1:K) TT_K[,k,] <- cbind(1,t(sapply(tk([,k], function(z)
abs(z - tilde.t[-c(K+1)]) - tilde.t[-c(K+1)1)))

for(i im 1:N) TTI[i,,] = TT_K[i,,l%*%inv.D
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U_K <- matrix(1, K, K)
U_K[upper.tri(U_K)] <- -1

U <- U_K%*}%inv.D[-1,]

# Define splines on covariates

# Covariate Range Partition for age at diagnosis centered and reduced

J=3

tilde.agediag = seq(min(dataset$agediag.cent.red) ,max(dataset$agediag.cent.red),

length.out=J+1)

# Transformation/Penalty Matrix
OMEGA_beta<-rbind(c(1l,rep(0,J-1)),cbind (0, abs(outer (tilde.agediagl-c(1,J+1)],
tilde.agediagl[-c(1,J+1)]1,"-"))"3))

svd_OMEGA_beta<-svd (OMEGA_beta)

inv.D_beta<-solve (t(svd_OMEGA_beta$v¥*%(t(svd_OMEGA_beta$u)*

sqrt (svd_OMEGA_beta$d))))

# Design Matrix
X = cbind(dataset$agediag.cent.red,t(sapply(dataset$agediag.cent.red,function(z)
abs(z - tilde.agediagl[-c(1,J+1)])"3-abs(tilde.agediagl-c(1,J+1)]1)"3)))%*%

inv.D_beta

# Define data (dta), initial values (ints) and parameters

# to monitor (pars) in Jags

dta <- list("N", "K", "J", "tilde.t", "T", "TT", "U", "delta", "X", "zeros",
"C", "brate", "agediagi.cent", "dep")

pars <- c("alpha", "tau.alpha", "sigma.alpha", "tau.beta", "beta",
"sigma.beta", "epsilon")

initsl <- list(sigma.alpha=runif(2,0.01,100), alpha=matrix(rnorm(2*(K+1)),2,K+1),
sigma.beta=runif (1,0.01,1), beta=c(0,0,0), epsilon=0)

inits2 <- list(sigma.alpha=runif (2,0.01,100), alpha=matrix(rnorm(2*(K+1)),2,K+1),
sigma.beta=runif (1,0.01,1), beta=c(0.01,0.01,0.01), epsilon=1)

ints <- list(initsl, inits2)

# Call JAGS using R2Jags

Sys.time () # Set time monitor

NetSurv.fit <- jags(data=dta,inits=ints,model.file="Model_London_colon_men.txt",
parameters=pars, n.chains=2,n.iter=50000,n.burnin=5000,n.thin=3)

Sys.time ()
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# print summary of posterior distribution for parameters and traceplots
print (NetSurv.fit)

traceplot (NetSurv.fit)

# Extract parameter chains for post-prediction:
NetSurv.fit.chains <- as.mcmc(NetSurv.fit)
summary (NetSurv.fit.chains [1])

summary (NetSurv.fit.chains [2])

# Create a matrix with the chains and appends the 2 chains
chains.matrixl <- as.matrix(NetSurv.fit.chains[1])
dim(chains.matrixl)

summary (chains .matrix1)

chains.matrix2 <- as.matrix(NetSurv.fit.chains[2])
dim(chains.matrix2)

summary (chains.matrix?2)

# Append results of the two chains
chains .matrix <- rbind(chains.matrixl, chains.matrix2)
dim(chains.matrix)

head (chains.matrix)

# reorder the columns of the matrix:

list <- c("alpha[1,1]", "alpha([1,2]", "alpha([1,3]", "alpha([1,4]", "alpha([1,5]",
"alpha[2,1]","alpha[2,2]","alpha[2,3]","alphal[2,4]","alphal[2,5]","betal[1]",
"beta[2]", "betal[3]", "epsilon", "sigma.alpha[1]", "sigma.alpha[2]",
"tau.alpha[1]", "tau.alpha[2]", "sigma.beta", "tau.beta", "deviance")

chains .matrix.reordered <- chains.matrix[,list]

head (chains.matrix.reordered)

# Saving the chains for future use:

write.table(chains.matrix.reordered, file="Chains_Netsurv.csv")

# Use saved chains

chains.matrix.reorderedl = read.csv("Chains_Netsurv.csv",header=TRUE, sep="")

head (chains.matrix.reorderedl)

chains .matrix.reordered <- as.matrix(chains.matrix.reorderedl)

is.matrix(chains.matrix.reordered)

dim(chains.matrix.reordered)

colnames (chains.matrix.reordered) <- c("alpha([1,1]","alpha[1,2]","alphal1,3]",
"alpha([1,4]","alpha(1,5]","alphal[2,1]","alpha[2,2]","alpha[2,3]","alphal[2,4]",
"alpha([2,5]","beta[1]","beta[2]","beta[3]","epsilon","sigma.alphal[1]",

"sigma.alpha[2]","tau.alpha[1]","tau.alpha[2]","sigma.beta","tau.beta","deviance")
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# Save chains for each parameter

chains.matrix.par.temp <- chains.matrix.reordered[,-c(K+K+J+2+2):-c(K+K+J+2+2+6)]
chains.matrix.par <- chains.matrix.par.temp

is.matrix(chains.matrix.par)

head (chains.matrix.par)

dim(chains.matrix.par)

# Alpha parameters

chains.matrix.par.alpha <- chains.matrix.par[,c(-(K+K+2+1):-(K+K+2+1+J+2))]
is.matrix(chains.matrix.par.alpha)

head (chains.matrix.par.alpha)

dim(chains.matrix.par.alpha)

chains.matrix.par.alpha_1 <- chains.matrix.par.alphal,c(-(K+2):-(K+6))]
dim(chains.matrix.par.alpha_1)

head (chains.matrix.par.alpha_1)

chains.matrix.par.alpha_2 <- chains.matrix.par.alphal,c(-(1):-(K+1))]
dim(chains.matrix.par.alpha_2)

head (chains.matrix.par.alpha_2)

# Beta parameters

chains.matrix.par.beta.temp <- chains.matrix.par[,c(-(1):-(K+K+1+1))]
chains.matrix.par.beta <- chains.matrix.par.beta.temp[,c(-(J+1):-(J+1))]
is.matrix (chains.matrix.par.beta)

head (chains.matrix.par.beta)

dim(chains.matrix.par.beta)

# Epsilon parameter

chains.matrix.par.epsilon <- as.matrix(chains.matrix.par[,c(-(1):-(K+K+2+J))])
is.matrix(chains.matrix.par.epsilon)

head (chains.matrix.par.epsilon)

dim(chains.matrix.par.epsilon)
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# Post-estimation function to estimate net survival

# Create prediction time

predtime <- seq(0.1,5.99,0.1)
L=length(predtime)

# Number of effective sampled values to be used

samples=30000

# Creates a sequence for the observed age range which for this dataset is 16-99
predage <- seq(16, 99, 1)

A=length(predage)

# Center and reduce the age prediction vector

predage.cent <- (predage - 70)/100

# Creates a matrix to expand the prediction age vector for each deprivation

category (dimension AD=A*5=420)

predep <- ¢(1,2,3,4,5)
predagedep <- expand.grid(age=predage.cent, dep=predep)
dim(predagedep)

AD=length (predagedep[,1])

# Creates empty matrix with dimension AD*(no. time points L) with NA’s:
pred_matrix <- matrix(data=NA, nrow=AD, ncol=L)

dim(pred_matrix)

# Fill in prediction matrix with the prediction times:

for(i in 1:L) pred_matrix[,i] <- rep(predtime[i],times=AD)

# Construct the time design matrix for the prediction
OMEGA_alpha <- abs(outer(tilde.t[-c(1,K+1)],tilde.t[-c(1,K+1)],"-"))
svd.0OMEGA_alpha <- svd(OMEGA_alpha)
sqrt.0OMEGA_alpha <- t(svd.OMEGA_alpha$v’%*%(t(svd.OMEGA_alpha$u)*
sqrt (svd.OMEGA_alpha$d)))
inv.D <- solve(cbind(c(1l,rep(0,K)),c(0,1,rep(0,K-1)),rbind(rep(0,K-1),

rep(0,K-1),sqrt.0OMEGA_alpha)))

# Create a 3 dimensional array to include the several time prediction points L

T_K_pred = array(NA, c(AD, K+1, L))

for(l in 1:L) T_K_pred[,,1] <- pred_matrix[,1]
for(l in 1:L) T_K_predl[,,1] = cbind(l,t(sapply(pred_matrix[,1],function(z)

abs(z - tilde.t[-c(K+1)]) - tilde.t[-c(K+1)1)))
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# T_K_pred had dimension (AD,k+1,L)
# inv.D has dimension (k+1,k+1)

# T_pred has dimension (AD, k+1, L)

T_pred = array(NA, c(AD, K+1, L))

for(l in 1:L) T_predl[,,1] = T_K_predl[,,11%*%inv.D

# Construct the time design matrices the cumulative hazard for the prediction

# tk_pred has dimension (AD,K,L)
# create a 3 dimensional array to include the several time prediction points L

tk_pred = array(NA, c(AD, K, L))

for(l in 1:L) tk_pred[,,1] <- pred_matrix[,1]
for(1l in 1:L) tk_pred[,,1] = t(sapply(pred_matrix[,1],function(z)

pmax (pmin(z,tilde.t[-1]),tilde.t[-(K+1)1)))

# creates a 4 dimensional array

TT_K_pred = TT_pred = array(NA,c(length(pred_matrix[,1]),K,K+1,L))

for(l in 1:L) TT_K_predl[,,,1l] <- pred_matrix[,1]

for(l in 1:L) TT_pred[,,,1] <- pred_matrix[,1]

for(l in 1:L){for(k in 1:K) TT_K_pred[,k,,1] = cbind(1,t(sapply(tk_pred[,k,1],

function(z) abs(z - tilde.t[-c(K+1)]) - tilde.t[-c(K+1)1)))}

# TT_K_pred has dimension (AD, k, k+1, L)
# inv.D has dimension (k+1,k+1)

# TT_pred has dimension (AD, K, k+1, L)

for(l in 1:L){for(i in 1:length(pred_matrix[,1])) TT_pred[i,,,l] =

TT_K_pred[i,,,1]%*%inv.D}

U_K = matrix(1,X,K)
U_K[upper.tri(U_K)] <- -1;

U <- U_K%x*%inv.D[-1,]

# Covariate Range Partition
J=3

tilde.agediag = seq(min(predage.cent) ,max(predage.cent),length.out=4)
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# Transformation/Penalty Matrix
OMEGA_beta<-rbind(c(1,rep(0,J-1)),cbind (0, abs(outer(tilde.agediagl-c(1,J+1)],
tilde.agediagl[-c(1,J+1)]1,"-"))"3))

svd_OMEGA_beta<-svd (OMEGA_beta)

inv.D_beta<-solve (t(svd_OMEGA_beta$v¥*%(t(svd_OMEGA_beta$u)*sqrt (svd_OMEGA_beta$d))))

# Design Matrix
X = cbind(predagedep[,1],t(sapply(predagedep[,1],function(z)

abs(z - tilde.agediagl[-c(1,J+1)])"3-abs(tilde.agediagl-c(1,J+1)]1)"3)))%*%inv.D_beta

# Deriving the survival function for each observation

# Transpose the result of applying the function over all the sampled values
# and applying the function over all the observations [length(pred_matrix[,1])]
# dim(chains.matrix.par.alpha): (no. sampled values, no. of estimated parameters)

# dim(chains.matrix.par.alpha)[1]: no. sampled values

# Dimension Surv_ind (no. sampled values, no.observations)

Surv_ind=array(NA, c(samples, length(pred_matrix[,1]), L))
for(l in 1:L) Surv_ind[,,1] <- pred_matrix[,1]

dim(Surv_ind)

Sys.time ()
for(l in 1:L){
Surv_ind[,,1] = t(sapply(l:dim(chains.matrix.par.alpha)[1],
function(r) sapply(l:length(pred_matrix[,1]),
function (i) exp(-exp(predagedep[i,2]%*’%chains.matrix.par.epsilon[r])x*
exp (X[i,]%*%chains . matrix.par.betalr,])x*
sum(exp (TT_pred[i,,,1] %*% (cbind(chains.matrix.par.alpha_1[r,]) +
cbind (chains.matrix.par.alpha_2[r,]) %x*% predagedep[i,1]))*
(1-exp(-(TT_pred[i,,2,1]-tilde.t[-(K+1)])*
(U%*%(cbind (chains .matrix.par.alpha_1[r,]) + cbind(chains.matrix.par.alpha_2[r,])
%*% predagedep[i,11))))/
(U%*%(cbind (chains .matrix.par.alpha_1[r,]) + cbind(chains.matrix.par.alpha_2[r,])
%*% predagedepl[i,11)) ) ) ) )
}

Sys.time ()
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# Average over observations for each sampled value from the chain to obtain
a net survival estimate for the whole cohort by applying a function to
calculate the mean for each L (time point), averaging over the observations

N (lines) in the Surv_ind matrix[samples, NJ]

Average_observations_by_samplevalue_netsurv=array(NA, c(samples, L))
for(l in 1:L) Average_observations_by_samplevalue_netsurv[,1] =

apply (Surv_ind[,,1], 1, function(x) mean(x))

# Calculate summary statistics for each of the L posterior distributions
of net survival by applying the mean and quantiles to the columns of

the matrix Average_observations_by_samplevalue_netsurv [samples * L]

Net_surv = array(NA, c(3, L))
dim(Net_surv)
for(l in 1:L) Net_surv = apply(Average_observations_by_samplevalue_netsurv,

2, function(x) c(mean(x), quantile(x, c¢(0.025,0.975)) ) )




Appendix B

Other relevant research activities

undertaken

B.1 Research degree student poster day

Poster submitted to the research degree student poster day and awarded the first prize for

the Department of Epidemiology and Population Health (March 2013).

243
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Small-area estimation of cancer survival

Manuela Quaresma , CRUK Cancer Survival Group, EPH, LSHTM )
Supervisor: Dr. Bernard Rachet ieisl

Background

Relative survival is the main measure of cancer survival reported by population-based cancer registries. It
quantifies the excess mortality in cancer patients after correction for other causes of death. Of special interest
is the estimation of cancer survival at a small area level to:

Aim A: help guide local policy for cancer care

Aim B: be used as a national tool for surveillance

Objectives

1. Estimate and identify patterns of geographical and temporal variation in cancer survival at small-area level
2. Develop the application of funnel plots to explore regional and temporal variations in relative survival
3. Develop mapping techniques to visualise regional variations in relative survival

Methods
= Flexible modelling of the cumulative excess hazard (splines)
= Funnel plots of the individual small-area estimates = Aim A

= Smoothed maps using floating weighted averages and weights defined as the inverse of distance> Aim B
Large cities not smoothed (colored circles)

Application
= 152 Primary Care Trusts (PCT) in England - sparse data

= Data: all adults diagnosed during 1997-2006 in England with a cancer and followed up until 2007
= One-year relative survival for all cancers combined

= Adjustment for differences in the distribution of age, sex and type of cancer

Preliminary results

2001

[ w0 ¢ 2005 * General improvement in
7| LRl survival during 1996-2006

Aim A 2 * Marked over-dispersion
in 1996, still patent in

2006, although reduced

One-year relative survival (%)

R
o 5 10 15 20 o 2 4 s 8 1

Pracision of the survival estimate
Precision of the survival estimate Precision of the survival estimate

2006 * General improvement in
survival during 1996-2006

Aim B >| =& o ol \vf%\f) * North-South gradient in
232 ® o) o) England persistent during
Y § the whole period

* Marked SWest-NEast
gradient in London

Primary Care Trust: Smoothed

Problem: small percentage of missing estimates in some PCT—> non-convergence
Further developments

* Small-area estimation techniques: Spatial autoregressive (SAR), conditional autoregressive (CAR) models,
Bayesian approaches

* Over-dispersion techniques for funnel plots and improved smoothing techniques for mapping
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B.2 Beautiful data competition

Entry submitted to the ‘Beautiful data’ competition organised at the London School of
Hygiene & Tropical Medicine and chosen as one of the two first prize winners. The prize

was a Guardian Masterclass day workshop on Data Visualisation (May 2013).



Data visualisation: funnel plots and mapping for small-area cancer survival

by Manuela Quaresma

Cancer Research UK Cancer Survival Group, Department of Non-Communicable Disease
Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
+44 (0)20 7927 2856; manuela.quaresma@lshtm.ac.uk

Dissemination of cancer survival research is mainly aimed at informing patients and the public,
raising awareness and influence policy, monitoring policy impacts and at prompting change.
Nevertheless, dissemination of cancer survival statistics has traditionally been done using mainly
tables containing listings of cancer survival statistics, typically stratified by geographical area and
year of diagnosis as is exemplified in the table below:
Year of diagnosis
Region 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
A 67 67 68 68 69 69 70 70 71 71 71 72 73 73
69 68 69 70 69 70 70 71 71 72 71 72 72 72
64 65 66 67 68 69 70 71 71 72 73 73 74 75
66 66 67 67 68 68 69 69 70 71 70 71 72 72
67 67 68 68 68 69 69 70 70 70 71 71 72 72
66 67 67 68 69 €69 69 70 71 71 71 72 72 73
67 67 68 69 69 70 71 71 72 73 73 73 74 74
65 67 68 69 70 71 71 72 73 74 74 74 75 75

I O M m OO W

In fact, the table shown above is a simplified version of how such tables of results look in reality:
most tables contain hundreds of survival estimates, and one single table can flip over many A4
pages! This form of presentation makes it very difficult (sometimes even impossible) for a non-
specialist audience to understand the message we are trying to convey!

| believe that good communication of research into action relies on us researchers understanding
who our audience is, what they need to know and finding the appropriate means of demonstrating
our results. | am motivated to improve the dissemination of cancer survival results by finding simple
and innovative ways to display such data. Below are two examples that | have implemented to
communicate the same cancer survival results as displayed in the table above. | seek inspiration to
continue developing new visualisation techniques for cancer survival statistics.

1996
0, o
o 1996 s All cancers
77.0 '
LB :
LBy <
| S
— E i
— 70.2 3 70— b
68.6 O 2 N
67.0 3
65.5 £ 65
64.0 5
62.5 2
61.1 Q’ London g 60—
59.7 &
58.4 5 ;
57.0 © 55
55.7 - y - 5% mits
= 54.4 O ’ 1 - - 99.8% limits
. 532 s0— |
52.0 [ I I | I I I I I 1
| 06 1 2 3 4 5 6 7 8 9

Precision of the survival index
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B.3 Oral presentations at conferences and meetings

B.3.1 North American Association of Central Cancer Registries

Selected for an oral presentation in the PhD student session at the North American Asso-

ciation of Central Cancer Registries (NAACCR) annual conference (June 2014).

B.3.2 All-party Parliamentary Group on Cancer annual meeting

Invited to present the results of the cancer survival index for CCGs at the annual meeting
of the All-Party Parliamentary Group on Cancer (APPGC) held in Westminster (October
2014).

B.3.3 Royal statistical Society annual conference

Invited speaker in the medical statistics session ‘Flexible hazard regression models for time-

to-event data’ at the annual conference of the Royal Statistical Society (September 2018).
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Appendix C

Ethical approvals

Ethical approvals were obtained from the Ethics Committee of the London School of
Hygiene & Tropical Medicine (LSHTM; number 5192) and the NHS South East Research
Ethics Committee (07/MREO01/52). Ethical approval to analyse the data in this PhD was
obtained from the ONS Medical Research Service (MR1101), from the statutory Patient
Information Advisory Group (PIAG; now the Ethics and Confidentiality Committee of the
National Information Governance Board) under Section 61 of the Health and Social Care
Act 2001 (PIAG 1-05(c)/2007) and from the Security and Confidentiality Advisory Group
(SCAG (HES) AG/65/5/b).
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