Stresman, Gillian; Whittaker, Charlie; Slater, Hannah C; Bousema, Teun; Cook, Jackie; (2020) Quantifying Plasmodium falciparum infections clustering within households to inform household-based intervention strategies for malaria control programs: An observational study and meta-analysis from 41 malaria-endemic countries. PLoS Medicine, 17 (10). e1003370-. DOI: https://doi.org/10.1371/journal.pmed.1003370
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
Abstract
BACKGROUND: Reactive malaria strategies are predicated on the assumption that individuals infected with malaria are clustered within households or neighbourhoods. Despite the widespread programmatic implementation of reactive strategies, little empirical evidence exists as to whether such strategies are appropriate and, if so, how they should be most effectively implemented. METHODS AND FINDINGS: We collated 2 different datasets to assess clustering of malaria infections within households: (i) demographic health survey (DHS) data, integrating household information and patent malaria infection, recent fever, and recent treatment status in children; and (ii) data from cross-sectional and reactive detection studies containing information on the household and malaria infection status (patent and subpatent) of all-aged individuals. Both datasets were used to assess the odds of infections clustering within index households, where index households were defined based on whether they contained infections detectable through one of 3 programmatic strategies: (a) Reactive Case Detection (RACD) classifed by confirmed clinical cases, (b) Mass Screen and Treat (MSAT) classifed by febrile, symptomatic infections, and (c) Mass Test and Treat (MTAT) classifed by infections detectable using routine diagnostics. Data included 59,050 infections in 208,140 children under 7 years old (median age = 2 years, minimum = 2, maximum = 7) by microscopy/rapid diagnostic test (RDT) from 57 DHSs conducted between November 2006 and December 2018 from 23 African countries. Data representing 11,349 infections across all ages (median age = 22 years, minimum = 0.5, maximum = 100) detected by molecular tools in 132,590 individuals in 43 studies published between April 2006 and May 2019 in 20 African, American, Asian, and Middle Eastern countries were obtained from the published literature. Extensive clustering was observed-overall, there was a 20.40 greater (95% credible interval [CrI] 0.35-20.45; P < 0.001) odds of patent infections (according to the DHS data) and 5.13 greater odds (95% CI 3.85-6.84; P < 0.001) of molecularly detected infections (from the published literature) detected within households in which a programmatically detectable infection resides. The strongest degree of clustering identified by polymerase chain reaction (PCR)/ loop mediated isothermal amplification (LAMP) was observed using the MTAT strategy (odds ratio [OR] = 6.79, 95% CI 4.42-10.43) but was not significantly different when compared to MSAT (OR = 5.2, 95% CI 3.22-8.37; P-difference = 0.883) and RACD (OR = 4.08, 95% CI 2.55-6.53; P-difference = 0.29). Across both datasets, clustering became more prominent when transmission was low. However, limitations to our analysis include not accounting for any malaria control interventions in place, malaria seasonality, or the likely heterogeneity of transmission within study sites. Clustering may thus have been underestimated. CONCLUSIONS: In areas where malaria transmission is peri-domestic, there are programmatic options for identifying households where residual infections are likely to be found. Combining these detection strategies with presumptively treating residents of index households over a sustained time period could contribute to malaria elimination efforts.
Item Type | Article |
---|---|
Faculty and Department |
Faculty of Infectious and Tropical Diseases > Department of Infection Biology Faculty of Epidemiology and Population Health > Dept of Infectious Disease Epidemiology & International Health (2023-) |
Research Centre | Malaria Centre |
Funder Name | Wellcome Trust |
Grant number | 204693/Z/16/Z |
Download
Filename: journal.pmed.1003370.pdf
Licence: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0
Download