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Globally, studies have shown that diurnal changes in weather conditions and extreme weather events have a profound effect on
mortality. Here, we assessed the effect of apparent temperature on all-cause mortality and the modifying effect of sex on the
apparent temperature-mortality relationship using mortality and weather data archived over an eleven-year period. An over-
dispersed Poisson regression and distributed lag nonlinear models were used for this analysis. With these models, we analysed the
relative risk of mortality at different temperature values over a 10-day lag period. By and large, we observed a nonlinear association
betweenmean daily apparent temperature and all-cause mortality. An assessment of different temperature values over a 10-day lag
period showed an increased risk of death at the lowest apparent temperature (18°C) from lag 2 to 4 with the highest relative risk of
mortality (RR� 1.61, 95% CI: 1.2, 2.15, p value� 0.001) occurring three days after exposure. +e relative risk of death also varied
between males (RR� 0.31, 95% CI: 0.10, 0.94) and females (RR� 4.88, 95% CI: 1.40, 16.99) by apparent temperature and lag. On
the whole, males are sensitive to both temperature extremes whilst females are more vulnerable to low temperature-related
mortality. Accordingly, our findings could inform efforts at reducing temperature-related mortality in this context and other
settings with similar environmental and demographic characteristics.

1. Introduction

+e effects of changing weather conditions and their ex-
tremes on human health have gained much currency in
environmental epidemiology. Vagaries of temperature, in
particular, have been reported to significantly affect mor-
tality [1, 2]. Till date, this phenomenon represents a lethal
threat to human survival especially in an era where global
ambient temperatures are fast increasing largely due to
anthropogenic activities [3].

Evidence suggests that the weather-mortality relation-
ship varies among geographic regions owing to differences
in climatic conditions, which influence the severity and
duration of exposure to weather events. Moreover, it has

been posited that, besides variations in regional climatic
conditions, spatial variations in the weather-mortality as-
sociation could result from differences in sociodemographic
and economic characteristics of populations and the level of
urbanity of communities which modify the severity of ex-
posure to cold or heat and adaptation mechanisms [4–6].
Population subgroups such as the aged, young children, and
persons with cardiovascular and respiratory conditions are
more vulnerable to temperature-related mortality due to
their poor physiological ability to adjust to cold or heat
exposures [1, 4, 6]. Furthermore, it is evident that urban
residents may be exposed to higher ambient temperatures
than their rural and suburban counterparts due to the
“urban heat island effect” [1]. Hence, the risk of heat-related
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mortality could be higher in urban environments with
persistently high day and night temperatures.

+e effect of variable weather on human health has been
greatly explored in developed countries [7, 8], providing
relevant information for the development of weather
warning systems to safeguard people against adverse con-
sequences of extremely hot or cold events including death.
More recent evidence points to a significant association
between hot and cold temperature extremes and preterm
births in the United States [9] whilst rises in daily mean
temperature beyond specific thresholds have been reported
to substantially increase the risk of all-cause mortality with
significant variations across space and among population
subgroups in the United Kingdom and Australia, [10].
Likewise, Borg and colleagues [11] have documented a
significant association between daily rises in temperature
and the incidence of renal diseases, whereas Huang et al. [12]
established an association between cold and hot temperature
thresholds and cardiovascular disease mortality in a sub-
tropical environment in China. Additionally, Ou et al. re-
ported a considerable influence of low relative humidity on
mortality attributable to cardiovascular and ischemic heart
diseases in a similar environment [13].

+ough the influence of weather on population health
has been underexplored in developing countries, particularly
in sub-Saharan Africa, findings from a few Health and
Demographic Surveillance sites in Africa largely parallel
those characterized in other regions. In Kenya, for example,
Egondi et al. found high temperatures to effectively influence
child mortality and deaths due to noncommunicable dis-
eases [14]. Besides, Mrema and colleagues described a strong
association between weather elements and under-five
mortality in Tanzania, whereas, in Burkina Faso and Ghana,
Diboulo et al. and Azongo and colleagues, respectively,
documented significant effects of climatic factors on mor-
tality with varied effect estimates among population sub-
groups [15–17].

Ghana experiences a tropical climate, characterized by
seasonal and spatial vagaries of weather episodes with ad-
verse implications for population health. Besides, the World
Health Organization (WHO) projects that heat-related
mortality among the Ghanaian elderly (aged 65 years and
above) could rise to about 70 deaths per 100,000 population
by the year 2080 owing to the endless upsurge in atmo-
spheric temperature [18]. Considering this caveat and the
spatial character of climatic conditions in the country, a
region-specific analysis of the weather–mortality relation-
ship is indispensable. Such an analysis promises to con-
tribute relevant information to the design of local- and
country-scale public health interventions targeted at miti-
gating weather-related mortality.

We aimed to explore the effect of apparent temperature
(AT)-(a composite measure of ambient temperature and
relative humidity) on all-cause mortality as well as the
modifying effect of sex on the apparent temperature-mor-
tality association in the Kintampo Health and Demographic
Surveillance area of Ghana’s middle belt. Given the joint
effect of ambient temperature and relative humidity on
human comfort, we used ATas our exposure variable since it

takes into consideration the influence of humidity, which
makes it a better indicator of human heat exposure than
ambient temperature alone [19]. Our aim was ultimately
achieved using time-series weather and mortality data col-
lected from 2005 to 2015.

2. Methods

2.1. Study Area. +e Kintampo Health and Demographic
Surveillance area is located in the Bono East region of
Ghana’s middle belt. It covers two contiguous districts, the
Kintampo North Municipality and South district, both of
which lie between longitudes 1°20′ and 2°10′ west and lat-
itudes 8°45′ and 7°45′ north. Westwards, it is bounded by the
Banda and Bole districts, whereas it is bounded to the east by
the Pru and East Gonja districts. It is also bounded to the
north by the Black Volta River and to the south by the
Wenchi Municipality, Techiman North, and Nkoranza
North districts. +e area comprises of 161 communities
covering a surface area of about 6,621 square kilometers. It is
largely characterized by a forest-savannah mix of vegetation
as it is the transitional zone between the southern forest and
northern savannah regions of the country [20]. +e area has
a tropical continental type of climate and experiences a
double maxima rainfall regime (major and minor rainy
seasons) with mean annual rainfall being between 1400 and
1800 millimeters. Surface air temperature and humidity also
assume a seasonal character with low mean monthly tem-
perature ranging between 24°C in August and 30°C in
March. Humidity is generally high ranging between 70% and
100% for the most part of the year, whereas relatively low
amounts (<50%) are recorded between December and
January. Much of the area is rural with peasant farming
being the mainstay of majority of the inhabitants.

+e study area has a population of 156,145 [21], which is
longitudinally tracked for updates on births, deaths, in- and
out-migrations, pregnancies, education, socioeconomic
status, prevalence of common illnesses, specific causes of
death, and information on other health and demographic
variables of public health significance. +e area is ethnically
diverse with the Mo and Bono people being the indigenous
ethnic groups. Moreover, it is settled by many immigrant
tribes of northern descent, Gas, Ewes, Dangbes, and other
Akan tribes [20]. +ere are several formal health facilities
from which people access health services in the study area.
Two of these are general hospitals, respectively, located in
the Kintampo and Jema townships with the rest of them
being six public health centres, thirty-one Community-
Based Health Planning and Services (CHPS) Compounds,
four private clinics, and two private maternity homes.
Figure 1 is a map of the study area.

2.2. Mortality Data. We used daily counts of all-cause
mortality recorded by the KHDSS between 2005 and 2015
for this analysis. +ese data were collected by trained
fieldworkers who routinely visited all households within the
study area in well-defined cycles for updates on vital health
and demographic events that occurred after the last visit by
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administering specially designed questionnaires to house-
hold heads or knowledgeable adult household members.
Community Key Informants (CKIs) complemented the
work of fieldworkers by recording and forwarding events in
their respective communities to the HDSS office through a
designated field supervisor in order to ensure a complete
record of events or minimalize missing data. Trained field
supervisors and research assistants conducted quality checks
in order to enhance the integrity of the data. Death heaping
on specific dates of the month was sorted using the method
described by Azongo and colleagues [17].

2.3. Weather Data. We obtained time-series weather data
(daily minimum and maximum temperatures and relative
humidity) spanning the analysis period (2005–2015) from
the Ghana Meteorological Agency and the United States’
National Oceanic and Atmospheric Administration’s
(NOAA) National Climate Data Centre. Missing data from
the data obtained from the Ghana Meteorological Agency
were imputed with data from NOAA’s National Climate
Data Centre. A composite measure (daily mean apparent
temperature) was computed from the daily minimum and
maximum temperature and relative humidity data. Ap-
parent temperature encompasses the combined effect of air
temperature and relative humidity. +is measure of

temperature has been used as an exposure index in several
previous studies [19, 22, 23]. Apparent temperature was
computed using the formula by Schoen, 2005 [24]:

Apparent temperature � T − 1.0799 × e0.03755×T 1 − e0.0801×(D− 14)
 ,

(1)

T is temperature in degree Celsius (°C) and D is dew point
temperature (°C) computed as follows:

D �
237.3 ×((17.27×T/237.3 + T) + ln(RH))

17.27 − ((17.27×T/237.3 + T) + ln(RH))
, (2)

where RHis the relative humidity.
+ough this indicator encompasses the effect of relative

humidity, prior analysis has shown that different measures
of temperature generally have a comparable effect on
mortality [25].

2.4. Statistical Analysis. An overdispersed Poisson regres-
sion model together with a distributed lag nonlinear model
(DLNM) [26, 27] was used to examine the short-term as-
sociation of daily mean apparent temperature (AT) with all-
cause mortality.+e overdispersed Poisson regressionmodel
has been used in many studies to assess the weath-
er–mortality association [28–31] and to account for Poisson
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Figure 1: Map of Ghana highlighting the Kintampo Health and Demographic Surveillance area.
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overdispersion [28]. With the DLNM, the nonlinear effects
of temperature, humidity, and lag were modeled simulta-
neously. DLNM is suitable for assessing the temperature-
mortality association which often shows a J-, W-, V-, or
U-shaped relationship [28, 29]. A natural cubic spline
DLNM was used for the nonlinear effect of both apparent
temperature and lag. A 10-day lag period was used to capture
the delayed effect of apparent temperature. +e apparent
temperature with overall minimum mortality (24.8°C) was
defined as the reference value for calculating the relative risk
of mortality. AIC for quasi-Poisson models (Q-AIC) was
used to select the degrees of freedom (df) for AT and lag
[28, 32]. +e final model employed a natural cubic spline of
apparent temperature with 4 df and a natural cubic spline
with 3 df for lag days. For controlling for trends and seasonal
patterns in mortality, a natural cubic spline with 7 df per year
was used [26, 29]. Also, we included a categorical variable for
day of the week as a control variable.

We derived estimates of the overall cumulative relative
risk, measuring the net effect across the whole lag period,
and also lag-specific contributions. +ese, we also sum-
marized graphically by reporting the overall cumulative
exposure-response curve and the lag-response curves at
various temperature values. +e relative risks of low, first
quartile, third quartile, and high apparent temperatures were
calculated by comparing with the reference value. Addi-
tionally, a stratified analysis by sex was performed.

For all statistical tests, relative risks and 95% confidence
intervals were reported. Data analysis was done using Stata
version 14.0 and R version 3.4.3. Stata was used for the data
preparation whilst R was used for the DLNM using the
“splines” and “dlnm” package [33].

3. Results

A total of 10,865 all-cause deaths were recorded in the
Kintampo Health and Demographic Surveillance area
during the study period (2005–2015) (Table 1). +ere was a
daily mean mortality of 2.7 (SD� 1.3, range 1–11) in the
population. Significantly more males than females died over
the analysis period (56.6% vs. 43.4%; p value < 0.001). +e
highest mortality count was observed among the 5–19-year
age group (35.7%) followed by persons 60 years and older.
+ere were slight annual variations in death counts despite
the absence of a clear-cut downward or upward trend over
the study period (Figure 2).

Seasonal fluctuations in temperature were also observed
with relatively low temperatures occurring at the start of the
dry season (between November and December). However,
temperatures were generally high between January and April
with moderately low temperatures prevailing at the begin-
ning and peak of the rainy season (betweenMay and August)
followed by a steady rise in September and October (Fig-
ure 2). Relative humidity also assumed a seasonal pattern
with lower amounts recorded in the early part of the dry
season between November and January when the northeast
trade winds were prevalent. On average, the area recorded a
daily mean relative humidity of 76.9% whereas the

proportions of minimum and maximum daily mean relative
humidity were 65.9% and 87.9% apiece (Table 2).

3.1. Relationship between Mean Daily Apparent Temperature
and Mortality. We examined the association between daily
mean apparent temperature and all-cause mortality risk in
the general population. As shown in Figure 3, there is a
nonlinear relationship between mean daily apparent tem-
perature and mortality. Furthermore, we assessed the effects
of specific apparent temperatures on mortality risk over a
10-day lag period at the lowest apparent temperature (18°C),
first quartile AT (23°C), third quartile AT (26°C), and the
highest AT (31°C) (Figure 4). Following this, an increased
risk of mortality was observed at the lowest AT from lag 2 to
4. At the lowest AT of 18°C, the highest relative risk of
mortality (RR� 1.61, 95% CI: 1.21, 2.15, p-value� 0.001) was
observed three days after exposure (Figure 4). +ere was no
significant relationship between the first quartile AT, third
quartile AT, the highest AT, and daily mortality (Figure 4).

Similarly, an exploration of lag-specific effects of AT on
mortality showed a higher relative risk at apparent tem-
peratures of 18°C (RR� 1.61, 95% CI: 1.21, 2.15, p-val-
ue� 0.001) and 19°C (RR� 1.32, 95% CI: 1.10, 1.57,
p-value� 0.003) three days after exposure. However, there
was no significant relationship between ATand mortality for
the other specific lags as shown in Figure 5.

3.2. Sex-SpecificAnalysis of theRelationship betweenApparent
Temperature and Mortality. Further analysis of the modi-
fying effect of sex on the temperature–mortality relationship
at different apparent temperatures and lags showed that the
relative risk of death was significantly lower (RR� 0.31, 95%
CI: 0.10, 0.94) for males after exposure to the lowest apparent
temperature (18°C) compared to the reference apparent
temperature at lag 0 to 1. However, at the same apparent
temperature of 18°C, the relative risk of mortality (RR� 4.88,
95% CI: 1.40, 16.99) was higher for females two to four days
after exposure compared to the reference temperature. Also,
a considerably higher relative risk of death (RR� 2.19, 95%
CI: 1.03, 4.65) was observed for males two to four days after
exposure to the highest apparent temperature (31°C).
However, there was no significant association between the
other specific apparent temperatures (first quartile, third
quartile, and the highest AT) and female mortality at the
specified lags (Table 3).

4. Discussion

+is study explored the influence of two climatic factors,
temperature and relative humidity (apparent temperature),
on all-cause/age mortality in a largely rural population in the
middle belt of Ghana over an eleven year period. In general,
our analysis revealed a statistically significant evidence of
higher risks of mortality at low daily mean AT in the studied
population. Precisely, the risk of death was highest at the
lowest AT of 18°C. Apparent temperature also showed
delayed effects on mortality after our lag strata analysis with
the highest risk of death observed at the lowest mean daily
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AT two to four days after exposure. +ough we have not
examined specific causes of death in the current analysis, we
suppose that the strong effect estimates for low ATobserved
could emanate from deaths attributable to cardiovascular
and respiratory conditions [4, 6], which are commonly
associated with low temperatures.

+ough previous studies have used a variety of indices in
addition to AT which makes direct comparisons complex,
we subscribe to the notion that all temperature measures
have a comparable effect on mortality [25]. Hence, our
finding of a considerable effect of low ATonmortality risk in
this study population is consistent with the results of several
prior studies on the weather–mortality relationship in other
jurisdictions [15, 34–36]. Generally, our finding of a strong
effect of low apparent temperature on all-cause mortality in
the general population parallels the effect estimates of cold

exposures on all-cause and female mortality documented by
Dang et al. [34] in Vietnam. Similarly, a population-based
study in Abhoynagar, rural Bangladesh, described a strong
association between low weekly mean temperature and
mortality [35]. +e congruence of these findings with our
results is probably due to the prevalence of tropical eco-
logical conditions in the respective study settings. However,
the lag effects of low apparent temperature observed in the
current study contradict the universal notion that cold
weather episodes have a gradual and enduring effect on
human health as the effect appears to be more immediate
(lag 0-1) at a low AT, particularly for the male population,
than the effect of high ATwhich sets in two to four days after
exposure.

On the contrary, Azongo and colleagues [17] found no
significant association between low temperature and

Table 1: Summary statistics of daily mortality in the Kintampo HDSS area from 2005 to 2015.

Classification Total mortality Daily mean (SD) Min-max Percentage
All-cause mortality 10,865 2.7 (1.3) 1–11 100
Sex
Male 6,146 1.5 (1.1) 0–10 56.6
Female 4,719 1.2 (1.0) 0–6 43.4
Age group
0–4 years 2,598 0.6 (0.8) 0–5 23.9
5–19 years 3,877 0.2 (0.5) 0–4 35.7
20–59 years 972 1.0 (0.9) 0–7 8.9
60+ 3,418 0.9 (0.9) 0–6 31.5
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Figure 2: Time series of daily mortality, mean temperature, and humidity in the Kintampo HDSS area from 2005 to 2015.
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mortality though they reported significant effects of heat in
Navrongo, Northern Ghana. One similarity between the
findings of our study and that of Navrongo is the observation
of a higher risk of male mortality at the highest AT (31°C)
which compares with the rise in male mortality at tem-
peratures above 30.06°C in Navrongo [17] though at

different lag periods (lag 0-1 for Navrongo and 2–4 for
Kintampo). Furthermore, the divergence between findings
of the current analysis and those of the Navrongo study is
anticipated. +is is because local environmental conditions
in northern Ghana differ from the conditions prevalent in
the middle belt of the country in which the present study was

Table 2: Summary statistics of daily temperature and humidity in the Kintampo HDSS area from 2005 to 2015.

Variable Mean (standard deviation) Range Interquartile range
Minimum temperature (°C) 23.4 (2.1) 14.0–32.0 22.0–24.6
Maximum temperature (°C) 31.0 (2.6) 22.0–39.0 29.0–33.0
Average temperature (°C) ǂ 27.2 (1.8) 20.0–34.0 26.0–28.5
AM relative humidity (%) 87.9 (14.6) 7.0–100.0 83.0–98.0
PM relative humidity (%) 65.9 (17.1) 6.0–100.0 55.0–76.0
Average relative humidity (%) ð 76.9 (14.5) 7.0–99.5 70.0–86.5
Apparent temperature (°C) 24.8 (1.6) 17.9–30.6 23.7–25.9
ǂ: average of minimum and maximum daily temperature; ð: average of maximum (AM) and minimum (PM) relative humidity.
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Figure 4: Relative risk of mortality by lag at specific apparent temperatures in the Kintampo HDSS area from 2005 to 2015.
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conducted. For instance, northern Ghana lies within the
Guinea savannah climatic zone with a single maximum
rainfall regime, usually followed by a long dry spell char-
acterized by cold night and hot day temperatures during the
harmattan period (November–March). Conversely, the
middle belt experiences a double maxima rainfall regime
with cold temperatures at the peak of each of the rainy
seasons and the harmattan period amidst significant vari-
ations in other ecological conditions.

Furthermore, the contrasts between our findings and
those of previous studies could stem from differences in
sociodemographic and economic characteristics of the
studied populations which are known to modify the
weather-mortality relationship [5, 6]. Kintampo, for

instance, is a predominantly rural agrarian society with most
of its inhabitants exposed to cold weather during the rainy
and harmattan seasons as they work on their farms. Hence,
farming activities and local housing characteristics probably
exacerbate people’s vulnerability to cold-related mortality as
most houses in rural communities are built with wattle,
daub, and thatch, which can hardly attract and retain heat
during the night. We further believe that the rurality of the
study area is a factor that predisposes inhabitants to high
mortality risks from cold weather since rural areas are
generally known to have low temperatures due to the lack of
an “urban heat island effect” [1]. On the contrary, the ob-
served significant effects of high AT (31°C) on all deaths and
male-specific mortality could be as a result of long term
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Figure 5: Relative risk of mortality by apparent temperature at specific lags in the Kintampo HDSS area from 2005 to 2015.

Table 3: Relative risk of mortality at different apparent temperatures stratified by sex at different lag periods.

Classification Lowest at (18°C)
RR (95% CI)

First quartile at (23°C)
RR (95% CI)

+ird quartile at (26°C)
RR (95% CI)

Highest at (31°C)
RR (95% CI)

All deaths
Lag 0 1 0.50 (0.24, 1.01) 1.03 (0.98, 1.09) 1.03 (0.99, 1.07) 0.94 (0.60, 1.47)
Lag 2–4 3.16 (1.58, 6.33) 0.93 (0.87, 0.99) 0.98 (0.93, 1.02) 1.71 (1.03, 2.83)
Lag 5–10 1.08 (0.36, 3.24) 1.01 (0.93, 1.10) 1.01 (0.95, 1.07) 0.87 (0.43, 1.79)

Male
Lag 0-1 0.31 (0.10, 0.94) 1.03 (0.94, 1.12) 1.05 (0.99, 1.12) 1.28 (0.66, 2.46)
Lag 2–4 2.21 (0.76, 6.44) 0.93 (0.85, 1.02) 0.97 (0.91, 1.04) 2.19 (1.03, 4.65)
Lag 5–10 1.14 (0.22, 5.80) 0.99 (0.87, 1.12) 1.00 (0.91, 1.09) 1.55 (0.54, 4.50)

Female
Lag 0-1 0.85 (0.25, 2.94) 1.04 (0.94, 1.15) 1.00 (0.93, 1.08) 0.61 (0.26, 1.42)
Lag 2–4 4.88 (1.40, 16.99) 0.93 (0.83, 1.04) 0.98 (0.90, 1.07) 1.23 (0.48, 3.15)
Lag 5–10 0.79 (0.10, 6.30) 1.05 (0.90, 1.23) 1.04 (0.93, 1.16) 0.39 (0.10, 1.50)

AT: apparent temperature; RR: relative risk; °C: degree Celsius; CI: confidence interval.
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exposure to heat during the hot season (January–April) and
people’s inability to afford cooling systems and protective
clothing. Besides, our finding that men are susceptible to
both low and high apparent temperatures whilst women are
more sensitive to low apparent temperature allows for
proper targeting of interventions for reducing temperature-
related mortality in the study area.

+e strength of this study lies in our use of population-
level mortality data which was continuously updated
throughout the analysis period. However, a major weakness
is our inability to stratify the analysis by age, largely due to
low mortality numbers for the respective population age
groups. An attempt at such stratified analysis produced
results with unreasonably wide confidence intervals, which
we deemed unreliable. Hence, we were unable to assess the
modifying effect of age on apparent temperature-related
mortality in the study area, which could have provided more
information on the strategic targeting of interventions to-
wards mitigating temperature-related mortality.

5. Conclusions

+is study revealed the influence of apparent temperature on
mortality in the rural middle belt of Ghana. +e core
findings demonstrate that the population of the Kintampo
area is vulnerable to both low and high apparent temper-
atures with the male population being susceptible to both
temperature extremes whilst females are more sensitive to
low apparent temperature. We have demonstrated that the
effect of low apparent temperature on male mortality is
faster than its effect on female deaths though both low and
high apparent temperatures appear to impact all deaths at
the same lag period. Consequently, our findings hold po-
tential to inform local and country-scale interventions aimed
at attenuating temperature-related mortality, especially in
this era of global warming with untold public health
ramifications.
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and J. Rocklöv, “Time-series analysis of weather and mortality
patterns in Nairobi’s informal settlements,” Global Health
Action, vol. 5, no. 1, p. 19065, 2012.

[15] S. Mrema, A. Shamte, M. Selemani, and H. Masanja, “+e
influence of weather on mortality in rural Tanzania: a time-
series analysis 1999-2010,” Global Health Action, vol. 5, no. 1,
p. 19068, 2012.
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