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Abstract 70 

The first case of COVID-19 was detected in Brazil on February 25, 2020. We report and 71 

contextualize epidemiological, demographic, and clinical findings for COVID-19 cases 72 

during the first three months of the epidemic. By May 31, 2020, 514,200 COVID-19 cases, 73 

including 29,314 deaths had been reported in 75.3% (4,196 of 5,570) of municipalities across 74 

all five administrative regions of Brazil. R0 for Brazil was estimated at 3.1 (95% BCI 2.4–75 

5.5), with a higher median but overlapping credible intervals compared to some other 76 

seriously affected countries. A positive association between higher per-capita income and 77 

COVID-19 diagnosis was identified. Further, the severe acute respiratory infection cases with 78 

unknown aetiology were associated with lower per capita income. Co-circulation of six 79 

respiratory viruses was detected but at very low levels. These findings provide a 80 

comprehensive description of the ongoing COVID-19 epidemic in Brazil and may help guide 81 

subsequent measures to control virus transmission. 82 

  83 
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Introduction 84 

Coronavirus disease 2019 (COVID-19) is a severe acute respiratory infection that emerged in 85 

early December 2019 in Wuhan, China1. The outbreak was declared a Public Health 86 

Emergency of International Concern (PHEIC) by the World Health Organization (WHO) on 87 

January 30, 2020. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 88 

2 (SARS-CoV-2), an enveloped, single-stranded positive-sense RNA virus that belongs to the 89 

Betacoronavirus genus, Coronaviridae family2. SARS-CoV-2 is closely related genetically to 90 

bat-derived SARS-like coronaviruses3. Human-to-human transmission occurs primarily via 91 

respiratory droplets and direct contact, similar to human influenza viruses, SARS-CoV and 92 

Middle East Respiratory Syndrome virus (MERS-CoV)4. The most commonly reported 93 

clinical symptoms are fever, dry cough, fatigue, dyspnoea, anosmia, ageusia, or some 94 

combination of these1,4,5. As of June 16, 2020, more than 7.9 million cases have been 95 

confirmed worlwide, resulting in 434,796 deaths6.  96 

Brazil declared COVID-19 as a national Public Health Emergency (PHE) on February 97 

3, 20207. After the development of a national emergency plan and the early establishment of 98 

molecular diagnostic facilities across Brazil’s network of public health laboratories, the 99 

country reported its first confirmed COVID-19 case on February 25, 2020, in a traveller 100 

returning to São Paulo from northern Italy8. São Paulo is the largest city in South America 101 

and no other Brazilian city receives a greater proportion of international flights9. Currently, 102 

Brazil has one of the fastest-growing COVID-19 epidemics in the world, now accounting for 103 

1,864,681 cases and 72,100 deaths, comprising over 55% of the total number of reported 104 

cases in Latin America and Caribbean (as of July 14, 2020)6. About 21% of Latin American 105 

and Caribbean populations are estimated to be at risk of severe COVID-19 illness10. The 106 

region has been experiencing large outbreaks, with growing epidemics in Brazil, Peru, 107 

Mexico, Chile, Colombia, Panama, and possibly Venezuela and Nicaragua, amidst growing 108 
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concerns on testing capacity for COVID-1911-14. Preparedness for laboratory surveillance of 109 

SARS-CoV-2 in Latin America is centred around a network of national reference influenza 110 

surveillance laboratories that is facing several challenges, including shortage of reagents and 111 

equipment15.  112 

Conscious of the challenges associated with surveillance since the beginning of the 113 

epidemic in Brazil, here we focus on two main objectives. First, we contextualize the 114 

Brazilian SARS-CoV-2 epidemic by comparing local transmission dynamics with those 115 

observed in selected other countries. Second, we use geospatial data related to confirmed 116 

COVID-19 cases and severe acute respiratory infection (SARI) cases with unknown 117 

aetiology to evaluate the relationship between socio-economic factors and COVID-19 118 

distribution.   119 
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Results 120 

Contextualizing COVID-19 data notification systems in Brazil 121 

On January 22, 2020, more than one month before the first case in Brazil, the Brazilian 122 

Ministry of Health implemented the REDCap platform to notify prospective suspected, 123 

probable, and confirmed COVID-19 cases (see Methods for case definitions), as part of early 124 

response to the pandemic16. By March 27, 2020, the REDCap system was discontinued (Fig. 125 

1). Since then, mild-COVID-19 cases started to be notified on e-SUS-VE (e-SUS Vigilância 126 

Epidemiológica), a new national COVID-19 notification system and hospitalised COVID-19 127 

cases started to be recorded on a pre-existing SIVEP-Gripe system. The SIVEP-Gripe system 128 

has been in use since 2009 (influenza H1N1 2009 pandemic) and has since centralized the 129 

notification of respiratory viruses and SARI for the Brazilian Ministry of Health (Fig. 1). 130 

Both the e-SUS-VE and SIVEP-Gripe include suspected and confirmed COVID-19 cases by 131 

public health and private services (primary and emergency care). These two notification 132 

systems (e-SUS-VE  and SIVEP-Gripe) are inter-related on the Portal do COVID-19 website 133 

(https://covid.saude.gov.br/), which summarises daily the aggregated counts from both 134 

platforms. 135 

 136 

SARS-CoV-2 notification in Brazil: international transmission to rapid internal dissemination  137 

We analysed a total of 514,200 SARS-CoV-2 cases from the Portal do COVID-19 website 138 

(SIVEP-Gripe, and e-SUS VE databases combined) that were confirmed by molecular 139 

diagnostic and clinical epidemiological criteria by May 31, 2020 (see Materials and 140 

Methods). Cases were reported in 75.3% (4,196 of 5,570) of municipalities across all five 141 

administrative regions of Brazil and included 206,555 (40.2%) recovered patients, and 29,314 142 

fatal (17.5%) COVID-19 cases (Fig. 2A). We further analysed a total of 1,468 confirmed 143 
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cases from the REDCap system, including 342 imported cases with associated travel history 144 

information. After excluding cases involving with that travelled to multiple countries before 145 

entering Brazil (n=56) and that had an unknown country of origin (n=16). The self-reported 146 

countries of infection for cases acquired abroad until March 19, 2020 were USA (28.6%, 147 

n=76), Italy (24.4%, n=65), and the United Kingdom (10.5%, n=28) and Spain (8.3%, n=22) 148 

(Extended Data Fig. 1). The first reported case (SPBR1) was reported on February 25, 2020 149 

in the municipality of São Paulo, the fourth most populous urban area worldwide. Following 150 

the first notifications of COVID-19 in Brazil’s largest population centres, we find that SARS-151 

CoV-2 subsequently spread to municipalities with smaller population sizes (Fig. 2B). Until 152 

May 31, 2020, most confirmed cases and deaths were reported in the states of São Paulo 153 

(109,698 cases and 7,615 deaths), Rio de Janeiro (53,388 cases and 5,344 deaths), Ceará 154 

(48,489 cases and 3,010 deaths) and Amazonas (41,378 cases and 2,052 deaths), which 155 

together account for 49.2% of all cases and 61.5% of deaths in Brazil (Fig. 2c).  156 

 157 

Basic reproduction number (R0) of SARS-CoV-2 in Brazil and comparison countries 158 

To estimate the basic reproduction number (R0) of SARS-CoV-2 in Brazil, daily confirmed 159 

cases in São Paulo, Rio de Janeiro, Ceará and Amazonas states were compiled from the 160 

Ministry of Health (for specification of the time-windows used in the analyses see Extended 161 

Data Fig. 2). For comparison, we compiled time series of confirmed cases in several 162 

European countries from the Johns Hopkins Coronavirus Resource Center 163 

(https://coronavirus.jhu.edu/, see also Extended Data Fig. 3). We found that São Paulo, Rio 164 

de Janeiro and Amazonas were characterized by similar R0 values of 2.9 (95% Bayesian 165 

credible interval, BCI, 2.2–5.1), 2.9 (95% BCI 2.2–4.9) and 2.6 (95% BCI 2.0–4.5). 166 

However, for Ceará, estimated R0 was considerably lower, 1.9 (95% BCI 1.5–3.0) (Fig. 3, 167 

Extended Data Fig. 1). This finding could be a result of the small window between the first 168 
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notified cases and the early implementation of non-pharmaceutical interventions (NPIs) in 169 

this state (Supplementary Table 1, Extended Data Fig. 2). On a national scale, the 170 

estimated R0 for Brazil was slightly higher than that of the Brazilian states considered in this 171 

study, with a median of 3.1 (95% BCI 2.4–5.5), and also slightly higher than R0 values 172 

estimated for other severely affected countries: Spain (2.6, 95% BCI 2.0–4.6), France (2.5, 173 

95% BCI 1.9–4.4), United Kingdom (2.6, 95% BCI 2.0–5.1) and Italy (2.5, 95% BCI 2.0–174 

4.4) (Fig. 3). While the incidence curves for European countries have consistently flattened 175 

and declined after the implementation of NPIs (suggesting R0 has fallen below one), Brazil’s 176 

daily incidence curve has continued to increase (Fig. 2A and Extended Data Fig. 4). 177 

 178 

Severe acute respiratory infections (SARI) mostly reflect COVID-19 cases 179 

In the early-phase of the COVID-19 epidemic in Brazil, we analysed the results for 180 

other respiratory pathogens tested in Brazil as part of the differential diagnosis by Central 181 

Public Health Laboratories and National Influenza Centres (Brazilian Ministry of Health) 182 

obtained from a REDcap platform17 designed for COVID-19. The respiratory viruses most 183 

frequently identified between January 2020 and March 27, 2020, in patients with suspected 184 

but negative diagnosis of COVID-19 were influenza A virus (347 [14.3%] of 2,429 tested 185 

cases), influenza B virus (251 [10.3%] of 2,429) and human rhinovirus (136 [5.6%] of 2,429). 186 

We found co-detection of SARS-CoV-2 with six other respiratory viruses, the most 187 

frequently were influenza A (11 [0.5%] of 2,429) and human rhinovirus (6 [0.2%] of 2,429) 188 

(Extended Fig. 7).  189 

The SIVEP-Gripe system started reporting hospitalised COVID-19 cases in early 190 

March 2020 (epidemiological week 10) (Fig. 4). In this system, the number of tested cases is 191 

unavailable. We found that the peak of influenza confirmed cases (n=447) occurred at 192 
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epidemiological week 12 (15-21 March 2020). During the same week 12, we detected an 8.5-193 

fold increase in total cases attributed to SARS-CoV-2 (n=3,789) and a 9.9-fold increase in 194 

total cases notified as SARI with unknown aetiology (n=4,424) (Fig. 4). From January to 195 

May 31, 2020, a total of 2,136 influenza cases and 272 cases caused by other respiratory 196 

pathogens including human respiratory syncytial virus, human rhinovirus, adenovirus, 197 

metapneumovirus were notified in the SIVEP-Gripe database. The low observed incidence of 198 

influenza and other respiratory viruses may be influenced by limited testing for these viruses 199 

during this period. Although NPIs may have an impact in reducing influenza virus 200 

transmission, this does not necessarily reflect a lower co-circulation of other respiratory 201 

viruses18.  202 

 203 

Socio-economic differences are associated with COVID-19 diagnosis 204 

Until 31 May 2020, a total of 73,648 COVID-19 confirmed cases and 168,001 SARI 205 

cases with unknown aetiology were notified in the SIVEP-Gripe system. We hypothesized 206 

that the 2.3-fold increase of SARI cases with unknown aetiology was associated with 207 

differential access to healthcare due to socio-economic factors.  208 

We focus on the Metropolitan Region of São Paulo (MRSP) that has a population of 209 

23 million inhabitants across 6 sub-regions (Central, West, North, East, Southeast and 210 

Southwest) and 39 municipalities (Fig. 5A). To test this hypothesis, we obtained per capita 211 

income at the census tract level (typically 150-300 households) in the MRSP, based on the 212 

residential address of each case. We then linked this information to each patient’s final 213 

diagnosis outcome: COVID-19 confirmed case or SARI with unknown aetiology. While the 214 

income distribution of SARI cases with unknown aetiology was similar to that of the MRSP 215 

over the whole period (Fig. 5B), we observed that the income distribution individuals 216 

conformed to be COVID-19-cases confirmed by laboratory and clinical criteria was initially 217 



 

11 

higher and decreased over time towards the distribution for the whole of the MRSP by 218 

epidemiological week 21 (Fig. 5B). Importantly, we found that the log odds of one or more 219 

confirmed COVID-19 case per census tract increased with per capita income in 220 

epidemiological weeks 12 and 22 (likelihood ratio test [LRT] P-value <0.001 (Fig. 5B and 221 

Supplementary Table 2). This provides statistical evidence of an association between 222 

confirmed COVID-19 diagnosis and per capita income, suggesting a socio-economic 223 

difference in access to COVID-19 diagnosis in the MRSP. For reference, we also provide a 224 

map of per capita income (Fig. 5A) and population density in each census tract (Extended 225 

Data Fig. 8). 226 

We conducted a geospatial analysis to understand the distribution of relative risk of 227 

observing a COVID-19 case or an SARI cases with unknown aetiology in the MRSP, using a 228 

Bayesian method and adjusted for spatial and non-spatial effects defined by Besag-York-229 

Mollié model19 (Fig. 5). Our estimates show an increase in the relative risk of COVID-19 230 

diagnosis in higher income census tracts between epidemiological weeks 12 to 21, especially 231 

in the central region of the MRSP (Figs. 5A and 5C). We observed a similar trend in the 232 

relative risk of SARI cases with unknown aetiology among residents of the central region. 233 

However, there is also increased probability of SARI cases with unknown aetiology in the 234 

southwest, west, north, and south sub-regions, where income per capita is typically lower. 235 

Overall, the relative risk of SARI cases with unknown aetiology is more spatially widespread 236 

in the MRSP than of confirmed COVID-19 cases (Fig. 5C).  237 

The relative risk of SARI cases with unknown aetiology compared to confirmed 238 

COVID-19 cases in the central region of the MRSP decreases through time likely as a 239 

response to several NPIs implemented throughout the state of São Paulo (see Supplementary 240 

Table 1). By week 16, one month after the start of the NPIs in São Paulo, we detected an 241 

increased risk particularly of SARI cases with unknown aetiology outside the central region 242 
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of the MRSP, especially in the southwest region. SARI cases with unknown aetiology risk 243 

was also high in the east region. By week 21, the risk remained high throughout the central 244 

region and SARI cases with unknown aetiology risk decreased in the east region, possibly as 245 

a result of interventions targeting the reduction of SARS-CoV-2 transmission.   246 

 247 

Demographics and characteristics of COVID-19 hospitalised and fatal cases in Brazil 248 

Analysis of the age-sex structure of 67,180 confirmed COVID-19 cases notified on 249 

the SIVEP-Gripe system revealed a high proportion (44,027 [65.5%] of 67,180) of confirmed 250 

COVID-19 infections in middle or older-age individuals (≥50 years of age) and a lower 251 

proportion (1,454 [2.2%] of 67,180) in younger age groups (≤ 20 years of age) (Fig. 6A). The 252 

median age was 59 years (IQR = 44–72). The majority (38,654 [57.5%] of 67,180) were 253 

male. Similarly, 59% (14,498 of 24,519) of COVID-19 deaths were in men, and 85% (20,916 254 

of 24,519) were in people aged ≥50 years. A total of 2.95% (1,983 of 67,180) cases were 255 

reported as nosocomial transmission, defined as a COVID-19 case acquired after 256 

hospitalization. Overall, 116 newborns (≤ one month old), 381 infants (≥1 to 12 month-old), 257 

518 children (≥1 to 12 years old), and 258 adolescents (≥12 to 17 years of age) were 258 

diagnosed with COVID-19. In addition, 740 patients were pregnant, 61 in the first trimester, 259 

172 in the second trimester, 447 in the third trimester, and 60 had missing gestational age. 260 

By 31 May 2020, 91% (67,042 of 73,649) of patients with COVID-19 notified in the 261 

SIVEP-Gripe system had been hospitalized. Of these, 30.3% (22,332 of 73,649) were 262 

admitted to an intensive care unit (ICU). The median length of ICU stay for COVID-19 263 

patients was five days (IQR, 2–10, range: 0-65 days), based on the ICU admission and 264 

discharge dates of 8,240 confirmed cases. Most symptoms reported by COVID-19 patients 265 

were cough (56,681 [85.2%] of 66,514 without missing data), fever (51,312 [79.6%] of 266 
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65,310) and dyspnoea (51,312 [76.6%] of 65,310) (Fig. 6B). These three symptoms compose 267 

part of the case definition of SARI in Brazil. In addition, 68% (40,806 of 60,400) of COVID-268 

19 cases were hypoxic (O2 saturation < 95%) reflecting the overall severity of cases notified 269 

on SIVEP-Gripe (as shown in Fig. 1). The most prevalent comorbidities were cardiovascular 270 

disease (23,085 [66.5%] of 34,693 without missing data) and diabetes (17,271 [54.5%] of 271 

31,672) (Fig. 6A). Among the COVID-19 patients, older age groups tended to have a higher 272 

proportion of comorbidities than younger age groups in different outcomes (Fig. 6C). The 273 

proportions of the general Brazilian population with cardiovascular disease and diabetes are 274 

4.2%, and 6.2%, respectively20. A total of 83.7% (17,921 of 21,414 with complete 275 

comorbidity information) confirmed COVID-19 cases had at least one comorbidity (see 276 

Supplementary Table 2 for information on data completeness).  277 

  278 
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Discussion 279 

While the COVID-19 epidemic in Brazil continues to grow, details of its transmission 280 

potential and clinical and epidemiological characteristics remains poorly understood. We 281 

estimate a higher median transmission potential, R0 of 3.1 (2.4–5.5), of SARS-CoV-2 in 282 

Brazil compared with Italy, UK, France, and Spain, which have point estimates of R0 varying 283 

from 2.5 to 2.6, however the credible intervals overlap substancially. We have also observed 284 

rapid spread of COVID-19 through the country, with more populated and better-connected 285 

municipalities being affected earlier and less populated municipalities being affected at a later 286 

stage of the epidemic. In the São Paulo metropolitan region, we found a higher risk of 287 

diagnosed COVID-19 cases in census tracts with higher per capita income during the early-288 

phase of COVID-19 epidemic but also as weeks progressed. This contrasts with the wider 289 

spread of SARI cases among sub-regions with lower per capita income. Our results provide 290 

new insights into the Brazilian COVID-19 epidemic and highlight the high transmission 291 

potential of SARS-CoV-2 in the country, the role of its large urban centres, and the lack of 292 

lockdown, the challenges in notification and non-equitable access to testing/diagnostic as 293 

factors potentially contributing to the rapid and sustained spread of the epidemic in Brazil. 294 

Recent estimates of R0 at the beginning of the COVID-19 epidemic in Brazil have 295 

suggested that an infected individual would infect on average three or four others21. The 296 

credible intervals of our estimates broadly overlap with these observations and are lower 297 

compared to previously published estimates for Brazil22. As a comparison, reproduction 298 

number in Peru have been estimated at around 2.3 (2.0–2.5)23. Since the start of the epidemic 299 

in Brazil, several types of NPI have been adopted with varied success by the country’s 27 300 

federal units and 5,596 municipalities. Virus transmission seems to have dropped 301 

substantially in most affected states21 and also in the city of São Paulo24. However, the 302 

estimated reproduction number remains above one21,24. Thus, only mitigation (and not 303 
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suppression) of the epidemic has been achieved so far, which has been linked to substantial 304 

excess deaths due to poorer health care available25,26. Closer surveillance of viral 305 

transmission at the local scales and an assessment of the impact of the different control 306 

measures on COVID-19 transmission will help to determine a “optimal” mitigation strategy 307 

to minimize infections and reduce healthcare demand in Brazil. Moreover, continued 308 

monitoring of the genetic diversity of the virus lineages circulating in Brazil24 will be 309 

important, as recent data suggests that virus diversity may play a role in virus 310 

transmissibility27,28.  311 

We find that 65.5% of notifications in the SIVEP-Gripe system, which includes most 312 

severe COVID-19 cases are from patients aged ≥50 years of age. This observation is 313 

remarkably similar to current estimates for Latin America10, where 65% of the individuals 314 

≥50 years of age have been estimated to be at high risk of severe COVID-19, defined as 315 

individuals with at least one condition who would require hospitalisation if infected. 316 

Moreover, we find that 57% and 59% of the severe COVID-19 cases and deaths 317 

(respectively) notified in SIVEP-Gripe were male, and that the most frequent comorbidities 318 

were cardiovascular disease and diabetes. Overall 84% of SIVEP-Gripe notifications had at 319 

least one underlying condition; of these, 21% (n=9,471/45,480) are included in the working 320 

age (16 to 65 years of age). Moreover, only 2.6% (n=1892/73,673) of the COVID-19 321 

confirmed cases notified in the SIVEP-Gripe system include occupation. Information on 322 

socio-economic determinants as well as occupation and race/ethnicity are critical29 as this 323 

allows to prioritisation of control efforts, for example towards healthcare workers and 324 

patients attending hospitals30 or work settings31.  325 

Our data uncovers a socio-economic bias in testing and diagnostics in current 326 

surveillance guidelines and suggests that the number of notified confirmed case counts may 327 
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substantially underestimate the number of cases in the general population, particularly in 328 

regions of lower socio-economic status. Socio-economic differences are associated with 329 

access to healthcare32 and should be taken into account when designing targeted 330 

interventions. We find that the proportion of SARI cases with unknown aetiology to 331 

confirmed COVID-19 cases has increased across the entire country (as of June 15, 2020, the 332 

number of notified SARI cases with unknown aetiology is nearly 2-fold greater than 333 

confirmed COVID-19 cases). Based on clinical and epidemiological grounds, it is likely that 334 

many SARI cases with unknown aetiology are caused by SARS-CoV-2. In order rigorously 335 

establish the contribution of non-SARS-CoV-2 infections to the SARI cases, we would need 336 

additional denominator data to understand the level of testing for these viruses, i.e., the 337 

negative test results. Our findings with regards to socio-economic bias are likely to apply to 338 

other states and regions of Brazil and highlight the importance of scaling up surveillance and 339 

laboratory capacity within Latin America. Indeed, the largest Brazilian serosurvey conducted 340 

to date suggests that undetedected cases may be seven times higher than reported cases33.  341 

We further show that SARI cases with unknown aetiology are associated with lower 342 

socio-economic status in the Metropolitan Region of São Paulo. The socio-economic 343 

disparities observed here were particularly evident at the beginning of the outbreak (Fig. 5B). 344 

This can be explained in part by (i) the high proportion of early cases in returning travellers 345 

with higher income and better access to private laboratories for diagnostics, and (ii) the more 346 

limited access to freely available diagnostic screening. For example, between February 25 347 

and March 18, 2020, two thirds (586 [66.9%] of 876) of diagnostic tests were performed in 348 

private medical laboratories where costs varied typically between 300-690 Brazilian Reais 349 

(BRL) (for context, current minimum monthly salary is 1,045 BRL). Thus, the true burden of 350 

the epidemic in lower income neighbourhoods is most likely underestimated. In New York 351 

City, for example, poorer neighbourhoods had higher disease burden, driven in part by the 352 
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movement of essential workers using public transport during the pandemic34. Data-driven 353 

analyses are urgently needed to help tackling health inequities during the ongoing epidemic 354 

in Brazil. Strategies to evaluate and control transmission should consider differential assess to 355 

COVID-19 diagnosis for lower income populations, changes in notification systems and 356 

delays in reporting which are key to accurately determine rates of epidemic growth35. 357 

Innovative infectious disease surveillance approaches such as those obtained from aggregated 358 

mobility data, when used properly, could help supporting public health actions across the 359 

COVIV-19 epidemic36-39. 360 

Epidemics of COVID-19 and influenza seem to have occurred simultaneously in 361 

Brazil (Fig.4 and Extended Data Figure 7) and symptoms overlap between the two 362 

infections. We detected co-circulation of eight other respiratory viruses, the most common 363 

respiratory infections were influenza A and B, and human rhinovirus. We also detected 364 

multiple co-detection of SARS-CoV-2 with other respiratory viruses, such as influenza A, B 365 

and human metapneumovirus, which have also been reported elsewhere40,41. Although, co-366 

infections with other respiratory viruses have been reported in other countries42-44, no 367 

difference in clinical disease severity between cases with and without viral co-infection has 368 

been observed thus far45. The co-circulation of other respiratory pathogens highlights the 369 

need of scaling up laboratory and molecular screening of SARS-CoV-2 and other respiratory 370 

viruses in public laboratories across Brazil15. Continued molecular and genomic surveillance 371 

will be important to determine patterns of virus transmission and guide public health 372 

measures in forthcoming phases of the epidemic24,46-48. 373 

There are several limitations to this study. First, detailed individual-level data were 374 

only available for REDcap and SIVEP-Gripe systems, in which many cases had incomplete 375 

documentation, particularly regarding comorbidities. Second, our socio-economic analysis 376 

was based partially on ecological inference, using the per capita income in the census tract of 377 
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residence (tather than the actual income of the patients), and assuming the same denominator 378 

for each census tract (~300 households). We emphasize that our spatial analysis is prone to 379 

metholodological constraints caused by ecological fallacy and the modifiable areal unit 380 

problem. These constraints are inherent to any spatial analysis of aggregated data. Despite the 381 

above-mentioned limitation, census tract corresponds to small areas of analysis, of no more 382 

than 300 households but often less than that. Social science literature on Brazil not only 383 

highlights the country’s socio-economic inequality but also how it is spatially pronounced, 384 

for that reason, census tract remains a useful tool to infer per capita income in the absence of 385 

individual-level data. In addition, our databases were predominantly composed of 386 

hospitalised COVID-19 patients, and we were unable to evaluate the rate of hospitalisation 387 

among the different socio-economic status. In the future, robust modelling of the 388 

relationships between socio-economic factors and disease severity will require a data 389 

collection system with detailed information on symptoms/signs and comorbidities both in 390 

severe and non-severe cases. Finally, our retrospective study has focused predominantly on 391 

symptomatic patients that presented or were referred to health services for testing. Therefore, 392 

we are unable and do not attempt to describe the full spectrum of disease, nor can we describe 393 

the full epidemiological picture of this epidemic.  394 

In conclusion, we have provided a comprehensive assessment of COVID-19 395 

notification and transmission in Brazil. Our findings provide important context for diagnostic 396 

screening and health-care planning, and for future precision studies focussing on the impact 397 

of non-pharmaceutical and pharmaceutical interventions, and the effect of social health 398 

determinats on COVID-19 transmission.   399 
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Methods 400 

Ethical approval and case definitions 401 

This retrospective national study was supported by the Brazilian Ministry of Health and 402 

ethical approval was provided by the national ethical review board (Comissão Nacional de 403 

Ética em Pesquisa, CONEP), protocol number CAAE 30127020.0.0000.0068. 404 

A patient presenting with an acute respiratory syndrome (fever and at least one 405 

sign/symptom of respiratory illness), and (i) history of travel to a location with community 406 

transmission of COVID-19, or, (ii) contact with a confirmed or probable COVID-19 case in 407 

the 14 days preceding symptom onset, or (iii) absence of an alternative diagnosis that 408 

completely explains the clinical presentation6 was considered as suspected COVID-19 case.  409 

Initially, a traveller was considered a suspected case only when arriving from China, 410 

although the definition of suspected cases associated with travel later included Japan, 411 

Singapore, South Korea, North Korea, Thailand, Vietnam and Cambodia (February 21, 412 

2020), Italy, Germany, Australia, United Arab Emirates, Philippines, France, Iran and 413 

Malaysia (February 25,  2020), the USA, Canada, Switzerland, United Kingdom and 4 414 

additional countries (March 3, 2020). From March 9, 2020 onwards, the Ministry of Health 415 

decided to start testing all hospitalised patients with severe respiratory symptoms, regardless 416 

of travel history.  417 

Contact with a confirmed or probable COVID-19 case was defined as face-to-face or 418 

direct contact with a COVID-19 case, or direct contact in a health-care setting. Moreover, 419 

patients reporting travel to an affected country in the preceding 14 days were considered 420 

imported cases. Cases not meeting this criterion were considered to be due to local 421 

transmission.  422 
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Suspected COVID-19 cases were confirmed by laboratory testing (i.e., molecular 423 

diagnostic with real-time quantitative PCR), or by clinical-epidemiological criteria. In the 424 

latter case, the classification is used when laboratory testing is inconclusive or unavailable, as 425 

recommended by Brazilian Ministry of Health guidelines, dated April 6, 202049, and by the 426 

World Health Organization interim guidance, dated March 25, 202050. 427 

 428 

Individual-level notification of COVID-19 and SARI cases with unknown aetiology from 429 

Brazil 430 

To investigate individual-level diagnostic, demographic, self-reported travel history, 431 

place of residence and likely place of infection, differential diagnosis for other respiratory 432 

pathogens, as well as clinical details, including comorbidities, we collected three 433 

epidemiological data sources: (i) n= 67,344 suspected and n=1,468 confirmed cases notified 434 

to the REDCap database from February 25 to March 25, 2020; (ii) n=73,637 confirmed 435 

SIVEP-Gripe  (Sistema de Informação de Vigilância Epidemiológica da Gripe) from March 1 436 

to May 31, 2020 (available at https://shiny.hmg.saude.gov.br/dataset); and (iii) n=514,200 437 

confirmed cases from aggregated data daily released at the Portal do COVID-19 (Brazilian 438 

Health Ministry) from February 25 to May 31, 2020 (available at www.covid.saude.gov.br/). 439 

SIVEP-Gripe system notifies severe acute respiratory infections (SARI), which can be 440 

defined as an acute respiratory infection with onset within the last 10 days of fever (≥ 38º C) 441 

and cough, and typically requires hospitalization (see also Fig. 1A). 442 

  443 

Basic reproduction number (R0) estimation 444 

We estimated the basic reproduction number (R0) for SARS-CoV-2 using time series 445 

of confirmed COVID-19 cases at the national and state level: São Paulo, Rio de Janeiro, 446 
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Ceará and Amazonas (Extended Data Fig. 1). To avoid the impact of non-pharmaceutical 447 

interventions (NPI) on R0 estimates, only data points up to 14 days after the implementation 448 

of the strictest interventions were used. As lockdown was not imposed in Brazil, the strictest 449 

measure was considered closure of non-essential commerce. For European countries, the date 450 

of lockdown was used as NPI date. NPI dates for Brazilian states were collected from state 451 

decrees. For Brazil as a whole the NPI date for São Paulo state was used, as by that point 452 

most states in Brazil had already closed non-essential commerce. For the European countries, 453 

lockdown dates were collected from https://www.covid19healthsystem.org/mainpage.aspx.  454 

To test the estimation routine and provide international context, this analysis was 455 

replicated on equivalent time series from Italy, Spain, France, and the United Kingdom. 456 

Aggregated USA and China epidemiological data were not included due to possible 457 

heterogeneity within each country. Daily counts of confirmed cases were modelled with a 458 

negative binomial distribution with a mean equal to a fixed portion, ρ, of the total daily 459 

number of cases in an exponential model of incidence. The functional form of the incidence 460 

model is ρR0γi0e(R0 - 1)γt, which comes from an exponential approximation of the early 461 

dynamics where individuals cease to be infectious at a rate γ. The factor of ρR0γ accounts for 462 

the partial observation of the incidence. In this analysis was not accounted for the delay 463 

between infection and reporting. 464 

Since ρ and i0 only appear together, they were unidentifiable, we combine them into a 465 

single parameter, ξ. This identifiability issue prevents us from estimating the prevalence 466 

without additional information to inform either i0 or ρ. The analysis was carried out in a 467 

Bayesian framework with an uninformative prior distribution on R0 and an informative prior 468 

on the removal rate, all other parameters had weakly-informative prior distributions (details 469 

in the Supplementary Information, pp. 2-3). The informative prior ensured an individual is 470 

infectious for an average of 5 to 14 days51 (Supplementary Information, Fig. 5-6). Standard 471 
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diagnostics were used to check whether the Markov Chain Monte Carlo (MCMC) samples 472 

were satisfactory. Full details of the model used, the estimation process and convergence of 473 

MCMC chains can be found in the Supplementary Information, pp. 2-3. 474 

 475 

Geospatial analysis of COVID-19 cases and socio-economic status 476 

The average household per capita income for the Metropolitan Region of São Paulo 477 

(MRSP) was retrieved at the census tract level from the 2010 census 478 

(https://censo2010.ibge.gov.br/). We geocoded 24,063 COVID-19 cases and 32,914 SARI 479 

cases with unknown aetiology from MRSP, which were notified until May 28, 2020. The 480 

geo-coding was based on self-reported residential address or postal codes using the Galileo 481 

algorithm52 and coordinates were confirmed using the Google API.  482 

To elucidate the distribution of COVID-19 cases and SARI cases with unknown 483 

aetiology cases, we mapped the mean relative risk of COVID-19 and SARI cases with 484 

unknown aetiology at the census tract level for MRSP for three epidemiological weeks (12, 485 

16, and 21). As the observation process was a confounding process and without additional 486 

assumptions (e.g. covariates), we cannot disentangle an increase in prevalence from an 487 

increase in case ascertainment. The cumulative number of cases in each tract is modelled as a 488 

Poisson random variable with a mean specified by the expected number of cases under a null 489 

model adjusted by tract specific risk due to spatial and non-spatial effects: the Besag-York-490 

Mollié model19. Estimates of the risk of COVID-19 diagnosis or SARI cases with unknown 491 

aetiology were obtained using approximate Bayesian methods (Integrated Nested Laplace 492 

Approximation). A complete specification of the model and the computational methodology 493 

can be found in the Supplementary Information, pp.1-2. 494 
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The association between final diagnostic category (COVID-19 or SARI cases with 495 

unknown aetiology) and socio-economic status in the subset of cases in the MRSP with 496 

geocoded residential information was evaluated using logistic regression models. We focused 497 

on the cases in epidemiological weeks 12, 16 and 22. Within each of those weeks, if a census 498 

tract reported any COVID-19 or SARI cases with unknown aetiology, we calculated the 499 

proportion of the number of COVID-19 cases. Since most census tracts reported only one 500 

case each week, the proportion of COVID-19 of each census tract were mostly either 0 or 1 in 501 

a given week. For this reason, we defined two categories: (i) the census tract only reported 502 

SARI of unknown etiology, i.e. no COVID-19 cases, (ii) the census tract reported at least one 503 

COVID-19 case in the week. We used these two categories as the binary response, and 504 

applied logistic regression models to investigate whether income per capita was associated 505 

with this response. The analyses were adjusted by the logarithm of the population sizes and 506 

the longitude and latitude coordinates of the census tracts. The analysis was performed 507 

individually for each of epidemiological weeks 12, 16 and 22. Further details of this analysis 508 

can be found in the Supplementary Information, pp. 1-2. 509 

  510 
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Data availability 511 

Datasets of clinical and laboratory data presented in the current study from SIVEP-Gripe and 512 

Portal do COVID-19 database are available at https://doi.org/10.5061/dryad.n8pk0p2sp. The 513 

REDCap database and geolocation information are available from the corresponding authors 514 

upon request and ethical approval. 515 
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Legend figures 713 

 714 

Fig. 1 | Timeline of national COVID-19 notification systems in Brazil. The REDCap 715 

system operated between late January until March 25, 2020. Aggregated numbers from e-716 

SUS-VE and SIVEP-Gripe data for mild and hospitalised COVID-19 cases, respectively, are 717 

updated on a daily basis at the Portal do COVID-19 website (https://covid.saude.gov.br/).  718 

 719 

Fig. 2 | COVID-19 epidemiology in Brazil. a. Number of COVID-19 cases (blue filled line) 720 

and deaths (blue dashed line) reported to the Ministry of Health (Portal do COVID-19 721 

website), and number of COVID-19 confirmed cases (salmon filled line) and number of 722 

SARI with unknown aetiology (salmon dashed line) reported to the SIVEP-Gripe database. b. 723 

First COVID-19 cases by date and Brazilian municipal population size based on the Ministry 724 

of Health, from March 28, 2020. Each circle represents the first confirmed COVID-19 case in 725 

the municipality (n= 4,196 Brazilian municipalities). c. Map coloured according to the 726 

number of confirmed COVID-19 cases per state reported to the Ministry of Health (Portal do 727 

COVID-19 website). Circle sizes are proportional to the number of reported COVID-19 728 

deaths in each federal unit. SPBR1 is the first detected SARS-CoV-2 infection in Brazil 8. 729 

The codes for the 27 federal units in Brazil were: Acre (AC), Alagoas (AL), Amapá (AP), 730 

Amazonas (AM), Bahia (BA), Ceará (CE), Distrito Federal (DF), Espírito Santo (ES), Goiás 731 

(GO), Maranhão (MA), Mato Grosso (MT), Mato Grosso do Sul (MS), Minas Gerais (MG), 732 

Pará (PA), Paraíba (PB), Paraná (PR), Pernambuco (PE), Rio de Janeiro (RJ), Rio Grande do 733 

Norte (RN), Rio Grande do Sul (RS), Rondônia (RO), Roraima (RR), Santa Catarina (SC), 734 

São Paulo (SP), Sergipe (SE) and Tocantins (TC). 735 

 736 
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Fig.3 | Estimated R0 values for four Brazilian states and selected countries. Left, R0 for 737 

the Amazonas, Ceará, Rio de Janeiro and São Paulo states. Right, R0 for Brazil, France, Italy, 738 

Spain and United Kingdom. Daily number of infections used in each analysis can be found in 739 

Extended Figs. 3-4. Daily number of infections and prior distributions can be found in 740 

Extended Figs. 5-6. 741 

 742 

Fig. 4 | COVID-19, SARI with unknown aetiology and influenza. Red and orange lines 743 

indicate cases notified in 2020, blue lines indicate cases notified in 2016 for influenza (filled 744 

blue line) and SARI cases with unknown aetiology (dashed blue line). Grey lines indicate 745 

influenza and SARI cases with unknown aetiology for 2017, 2018 and 2019. 746 

 747 

Fig. 5 | COVID-19 diagnosis and socio-economic factors in the Metropolitan Region of 748 

São Paulo. A. Spatial distribution of income per capita of MRSP based on census tract of 749 

residence. B. Distribution of household per capita income based on census tract of residence 750 

for COVID-19 cases and SARI cases with unknown aetiology. The distribution of average 751 

per capita income for MRSP as a whole, weighted by population size, is shown on the left. 752 

C. Posterior mean relative risk of COVID-19 confirmed diagnosis (upper panels) and SARI 753 

cases with unknown aetiology (lower panels) for epidemiological weeks 12 (pre-754 

implementation of NPI in São Paulo state, and weeks 16 and 21 (post-implementation of NPI 755 

in São Paulo state) (see Methods for details). 756 

 757 

Fig. 6 | Age-sex structure and clinical features of confirmed COVID-19 cases notified on 758 

the SIVEP-Gripe system. A. Age classes are shown on the left of the panel. On-going cases 759 

were those still active on the SIVEP-Gripe database and without a recorded clinical outcome 760 
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(death or recovered). B. Symptoms, signs and comorbidities of confirmed COVID-19 cases. 761 

C. Comorbidities among confirmed COVID-19 cases according to age groups and outcome. 762 

Confirmed COVID-19 cases with complete comorbidity and outcome (death or recovery) 763 

information (n = 15,720). Confirmed COVID-19 cases with complete information on 764 

comorbidities and ITU admission (n = 19,409). Horizontal axes show the proportion of 765 

patients in each age/outcome stratified with each of the comorbidities recorded. 766 

 767 
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Supplementary information   

Geospatial analysis  

We adopted a Bayesian hierarchical model to compute relative risk for each census tract, due 

to the following reasons: (i) there is a large number of census tracts (n=30,815), (ii) there is 

substantial heterogeneity in the size of census tracts, and (iii) small counts in each tract obscure the 

spatial distribution of observed cases.  The number of observed cases in census tract �  is modelled 

using a Poisson distribution �� � �������	
�� with mean 
� � ��  �� where �� is the expected number 

of cases under a null model in which cases are uniformly distributed among the population. For 

example, the total number of cases in the MRSP multiplied by the proportion of the population in the 

census tract ��� = 
∑ ���

∑ ���� �
�  ����. The factor of ��  describes tract specific risk and models the 

additional variation in the observation process1. A log-linear model is used to estimate the relative risk 

��. For example, the log relative risk is expressed as a sum of an intercept �, which represents the 

overall relative risk (in our case, the global relative risk is zero), and random effects (���:  

 

log 	��� � � � �� 

 

We used a Besag-York-Mollié model (BYM)2 to separate the random effects into a spatially 

structured ��, and independent random effects, ��, so (�� � �� � ��). In the BYM model, a conditional 

autoregressive (CAR) process is used to introduce correlation among the  �� for each tract. Given the 

�� of neighbouring tracts, the �� has a normal distribution with mean equal to the average of the 

neighbours’ ��, and variance   ��
� �  

#"	��#$
 where #%	�� is the number of tracts that share boundaries 

with tract � and &' is a precision parameter. The random effect, ��  follows a zero mean normal 

distribution with unknown precision, &(=
 

)*+
 (where ,(+ is the variance). Both random effects in the 

model capture extra-Poisson variability, and were expressed as the following:   

 

    ��| �./�~%�123452�, ��
�7,    ��  ~ %	0, ,9

�� 

2� �
∑ �..∈"	��

#%	��
  ,    ��

� �
,'

�

#%	��
�

1
#%	��&'

  

 

The log of the precision parameters, &'  and &( , follows a gamma distribution with shape 1 and rate 

0.0005. These are the default priors used by R-INLA and are minimally informative3. The prior 

default distributions in R-INLA were used for the precision parameters of both �� and ��. These are 

minimally informative and are the recommended settings 4.  

 

To quantify the uncertainty in the point estimates of the mean relative risk estimates, we 

mapped the posterior probability of elevated relative risk in each census tract (Extended Data Fig. 9). 

This is the posterior probability, which a tract has an elevated risk of observing cases, formally, this is  

Prob(�� > 1| data). For instance, a probability of 0.6 in a census tract indicates a 60% chance that this 

census tract is at greater risk of observing cases relative to the rest of the MRSP.  
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Analysis of the relationship between income per capita and final diagnostic category in the 

Metropolitan Region of Sao Paulo (MRSP) 

We evaluated the relationship between final diagnostic category (COVID-19 or SARI cases 

with unknown aetiology) and socioeconomic status in the subset of cases in the MRSP with geocoded 

residential information. We focused on the cases in epidemiological weeks 12, 16 and 22, where the 

census tracts that reported cases varied across weeks. In each of the three weeks, if a census tract 

reported any COVID-19 or SARI cases with unknown aetiology with unknown aetiology, we 

calculated the proportion of the number of COVID-19 cases. Since most census tracts reported only 

one case each week, the proportion of COVID-19 of each census tract were mostly either 0 or 1 in a 

given week. Based on this observation and let i index the census tracts, we subsequently defined the 

binary outcome Yi of census tract i, where (i) Yi  =  0 if census tract i only reported SARI cases with 

unknown aetiology with unknown aetiology, i.e. no COVID-19 cases, (ii) Yi  =  1 if census tract i 

reported at least one COVID-19 case in the week. Logistic regression models were applied to 

investigate the association between this binary outcome and the log(X+1) transformed income per 

capita.  The analyses were adjusted by the logarithm of the population sizes. In addition, the census 

tracts were grouped by their geographic locations using cluster analysis, and the groupings were used 

as the random effect in the logistic regressions to account for potential spatial autocorrelation. The 

number of clusters was chosen based on the AIC/BIC values of the logistic regression models.  The 

analysis was performed individually for each of epidemiological weeks 12, 16 and 22.  

A likelihood ratio test (LRT) is applied to each analysis to examine whether the log(X+1) 

transformed income per capita provides information in addition to the information from the log 

population size and the random effects. The regression coefficients and LRT P-values of income are 

presented in (Supplementary Table S3). 

 

Estimating basic reproduction number (R0) 

Since SARS-CoV-2 is a novel virus, and we are subsetting data to avoid the impact of either 

non-pharmaceutical interventions or depletion of the susceptible pool, we deemed it reasonable to 

model the incidence of infection with an exponential approximation to the early behaviour of an SIR 

model, i.e., the incidence grows exponentially 5. This model makes several strong assumptions about 

the dynamics of the epidemic: (i) the populations under consideration mix homogeneously, (ii) the 

proportion of the population that is susceptible stays close to 100%, (ii) the proportion of infections 

that are observed, and the basic reproduction number are constant throughout time, and (iv) the delay 

between infection, and notification is a constant. Although there are obvious violations of these 

assumptions, they provide a convenient starting point for estimating the basic reproduction number. 

Ignoring the delay between infection and observation will on average only translate the results in time 

by the incubation period and the delay from infection to diagnosis. 

Under the assumptions outlined above, the expected number of daily cases, �(�) on day � is 

given by the following equation: �(�) = <R0=�0>(R0−1)=.� where < is the probability of an infection 

being counted in the time series, R0, is the basic reproduction number, = is the rate at which 

individuals cease to be infectious and i0, is the proportion of the population that was infectious at the 

start of the observations. We assume that the observed number of cases on day n was drawn from a 

negative binomial observation where the mean is �(�) and the variance, , = � + �2/?, with fixed size 

parameter, ? (dispersion parameter). The product of < and �0 is denoted ξ. Since the probability of 

being observed and the initial condition only appear as the product ξ in the likelihood, there is an 

identifiability problem preventing the estimation of < and �0 individually, consequently we only 
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consider their product, ξ. Although in this model it is theoretically possible to estimate both R0 and =, 

in practice this is difficult so we will use an informative prior to constrain = to a priori plausible 

values. 

Regarding prior distributions, for R0 we used a uniform prior over values from 1 to 10. The 

removal rate, =, was given an informative prior distribution: a normal distribution with mean (1/5 + 

1/14) / 2 = 0.1357, leading to an average duration 7.4 days during which an individual is infectious. 

Moreover, the average duration of infectivity is constrained to be between the extremes of 5 and 14 

days. These values for the infective duration were found in the literature 6,7. The standard deviation of 

the prior distribution for = is (1/5 - 1/14) / 4 = 0.03124, this ensures that 95% of the prior probability 

lay within these bounds. For the parameter ξ, we used a log-normal prior with a log mean of 0.0 and a 

log standard deviation of 1.0. For the size parameter of the negative binomial, k, a log-normal 

distribution was used with a log-mean of 0.0 and log-standard deviation of 1.0 to enable this 

parameter to have a large range of values. 

Samples from the posterior distribution were obtained using MCMC running 4 chains from 

random initial conditions using the mcmc library available on CRAN2 and using coda for 

diagnostics8,9. Trace plots of the posterior samples suggested that the chain had converged and mixed, 

and there was an effective size of at least several hundred for each of the 4 parameters of this model. 

The prior and posterior distributions were checked to ensure that (beyond the removal rate) each 

parameter was being informed by the data. Each data set: Brazil and Europena countries (Italy, the 

United Kingdom, France, and Spain) or Brazilian states (São Paulo, Rio de Janeiro, Amazonas, and 

Ceará) were run as independent analyses, the model fit from the point estimate along with the 

corresponding trace plots and prior/posterior comparisons is shown in Extended Data Figs. 5 and 6. 
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