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Abstract

Radiation-attenuated sporozoites induce sterilising immunity and remain the “gold-standard” for malaria 

vaccine development. Despite practical challenges in translating these whole sporozoites vaccines to large-

scale intervention programmes, they have provided an excellent platform to dissect the immune responses 

to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms (EEF). 

Investigations in rodent models have generated fundamental knowledge on immunity to PE stages. These 

studies have also provided insights that led to the clinical translation of various vaccine candidates – 

including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in 

three African countries. With advances in immunology, transcriptomics and proteomics, and application of 

lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. 

This review underscores the progress in PE vaccine development, focusing on our understanding of host-

parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible 

gaps in our current knowledge of PE immunity that can impact future malaria vaccine development efforts.
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1. Background

Malaria remains an intractable global public health problem with an estimated 228 million cases and 

405,000 deaths in 2018 alone (1). A vast majority of these deaths occur in sub-Saharan Africa, where 

malaria is associated with a 24% prevalence and 94% of the malaria-associated deaths globally (1, 2). 

Recent advances in malaria control including improved diagnostic approaches, artemisinin-combination 

treatments (ACTs), intermittent preventive treatment (IPT) in pregnancy, and vector control saw a 48% 

decrease in mortality rates between 2000 and 2015 (1). Whilst these strategies have unquestionably 

contributed to reduction in incidence and mortality rates, an effective vaccine would provide the ultimate 

solution to malaria elimination and should be an urgent public health priority.

Malaria biology is complex. Our understanding of the pre-erythrocytic (PE) stage infections is based on 

model systems with Plasmodium berghei (Pb) and P. yoelii (Py), with limited information on P. falciparum 

(Pf). An infected female Anopheles mosquito inoculates a few (typically <100) infective sporozoites into 

the host skin (3, 4). Quantitative studies with Pb and Py indicate that a large proportion (~60%) lose 

motility and remain localised at the site of inoculation where they can develop into skin exoerythrocytic 

forms (EEF) or initiate an immune response (5-8). Some sporozoites “trickle out” of the skin into the blood 

(~25%) and the lymphatic drainage (~15%) (6, 9). Most of the sporozoites that enter the bloodstream reach 

and invade the liver, where they traverse through several hepatocytes in a transient vesicle. The sporozoite 

then invades a final hepatocyte and forms a parasitophorous vacuole (PV), where the liver EEF develops (6, 

10). The circumsporozoite protein (CSP), which is the major antigen in the sporozoite surface, and 

thrombospondin-related anonymous protein (TRAP), a micronemal protein, are thought to facilitate 

invasion into the hepatocytes (11, 12). In the liver, the parasites undergo asexual development for a number 

of days depending on the Plasmodium species (i.e. 7-10 days for human malaria vs 42-44 hours for P. 

berghei infection in mice), pre-existing immunity, and concomitant malaria prophylaxis (13). They 

differentiate into multinucleated schizonts that form thousands of merozoites via nuclear division. In the 

late stages of development, the PV membrane is lysed, and the merozoites become packaged together 

inside merosomes (14, 15). These merosomes egress out of the liver, circulate through the heart and reach 

the lung microvasculature where merozoites are released to invade erythrocytes (16). This initiates blood-

stage cycle of development amongst ring, trophozoite and schizont forms (Figure 1). Exponential 

expansion of the parasite during the blood-stage stage and concomitant immune responses result in malaria-

related symptoms (as reviewed elsewhere) (17).

The PE stages form a bottleneck for the malaria parasite and can be targeted in developing an effective 

malaria vaccine. Once thought to be immunologically quiescent, accumulating evidence shows that the PE 

stages provoke immune responses (8, 18-21). The sporozoites are exposed to antibodies in the bloodstream A
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and in the skin and hepatic extracellular fluids. It is only during the PE stages where Plasmodium parasites 

invade nucleated cells of humans and rodent models, which can present parasite antigens via major 

histocompatibility complex (MHC) I. This gives a wide array of immune effector mechanisms that can be 

explored in creating a malaria vaccine. Moreover, targeting the clinically “silent” PE stages will not only 

block symptomatic blood stage infections and associated complications, it would also halt further 

transmission of the parasite. Nonetheless, the host-parasite crosstalk during the PE stages is intricate and 

remains inadequately studied. In this review, we systematically explore the current knowledge on vaccine 

development and immune responses to malaria PE stages, and highlight some of the existing gaps.

2. Progress with malaria pre-erythrocytic stage vaccines

2.1. Whole sporozoite vaccines

Seminal studies in the late 1960s on mice immunised with radiation-attenuated sporozoites (RAS) 

demonstrated sterile immune protection to malaria reinfections (22, 23). The protection was later observed 

in non-human primates and challenge human malaria infection (CHMI) trials with protection levels >80% 

(24-27). RAS are currently in clinical trials across the world (Table 1). Due to the development of sterile 

immunity, RAS became the “gold standard” for a malaria vaccine development. Nonetheless, translation of 

RAS to a wide-scale applicable human vaccine remains challenging. Extremely large numbers of dissected 

parasites (up to 6.75x105 given at five doses or 9x105 given at three doses), which are delivered 

intravenously,  are required to induce sterile immunity (28, 29). Increasing the dose to 1.8x106 parasites 

greatly reduces vaccine efficacy. The sterile immunity induced by RAS is not long-lasting, but the 

durability of protection can be extended by boosting immunisations (26). 

During the past two decades, there has been a renaissance of approaches to develop whole sporozoite 

vaccines. Accumulating evidence suggests that invasion and development in the liver are required for 

sterile PE immunity (30, 31). RAS vaccines successfully invade the liver, but their development is arrested 

early in EEF development. Administration of sporozoites followed by antimalarial chemoprophylaxis with 

chloroquine or mefloquine (CPS vaccines), which acts on blood-stage but not liver stage parasites, yields 

comparable efficacy levels to RAS and confers protection against PE stages in both rodent models and 

humans (32-36).  CPS vaccines may provide more robust immunity as the sporozoites undergo complete 

liver stage development. Alternative CPS approaches involve using antibiotics, such as clindamycin and 

azithromycin, which allow full parasite development in the liver, but lead to delayed death in the resulting 

merozoites (37). In rodent models, CPS vaccines have been shown to induce robust, long-lived immunity 

that induce not only immunity to PE stages, but also to blood stages (38, 39). This apparent cross-stage 

immunity induced by CPS vaccines needs to be further explored. A
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Genetically attenuated parasite (GAP) vaccines rely on targeted gene deletion technology that arrests the 

development of sporozoites at either early or late stage EEFs. Studies initially targeted the attenuation of 

the upregulated in infective sporozoite (uis) genes, which attenuates sporozoite development in the early 

stages (40, 41). Pb parasite lines with uis3− and uis4− knockout genes arrest their development after 

completion of sporozoite development in the early EEF stages (42). Studies using Pb found a stage-specific 

durable sterile protection against reinfection after immunisation with three doses of uis3– sporozoites (41). 

GAP vaccines using other genes have produced varied results (as reviewed by Kreutzfeld et al. (43)). A 

clinical trial using PfGAP lacking two genes (p36− p52−) reported favourable anti-sporozoite immune 

responses (44). The triple gene knockout (PfGAP3KO: p36− p52− sap1−) PfGAP was reported to fully 

attenuate sporozoite development in the early liver stages in in-vitro and humanised mice studies (45, 46). 

PfGAP3KO was reported to be safe and immunogenic in human volunteers after 150-200 mosquito bites, 

but is yet to complete clinical trials (47). Other GAP vaccine efforts are targeting the late EEF stages, 

including gene deletion of fabb/f,  PlasMei2, and liver-specific protein 2 (LISP2) genes (31, 48). GAP 

vaccines targeting the late EEF stages may be efficacious at lower doses, induce a larger breadth of immune 

responses, and protect against blood-stage infections (49). PfSPZ-GA1 vaccine, a Pf identical double 

knockout (b9− slarp−), which attenuate early in EEF development, presented safety profile and elicited 

immune responses (50). The pre-clinical findings of PfSPZ-GA1 are promising, as they have shown 

optimal immunogenicity and some indication of protection. 

Sterile and cryopreserved sporozoite vaccines (PfSPZ), injected intravenously, conferred up to 100% sterile 

protection after CHMI with homologous strains, and ~80% protection to heterologous strains (51-54). A 

comparable outcome is obtained with CPS vaccines (using chloroquine as the antimalarial drug) where 

only modest protection was obtained with heterologous challenge (55). A challenge for whole sporozoite 

vaccines is to increase the diversity of strains represented in the vaccine. Of particular interest, the 

inoculation of PfSPZ intradermally, mimicking the natural route of sporozoite infection,   was not 

protective (54). Additionally, PfSPZ efficacy was greatly reduced in a setting of seasonal transmission, 

showing about 30% protection at 6 months in Mali adults (56). The low efficacy has been associated with 

hypo-responsiveness to PfSPZ in malaria-exposed adults. A study on adult males from Equatorial Guinea 

reported lower antibody responses to PfSPZ compared to US adults receiving a similar dosage regimen 

(57). Additional studies are required on dosage optimisation for participants in malaria-endemic areas (29), 

and particularly for children who are most affected by severe malaria disease in this region. The need for 

liquid nitrogen storage to maintain PfSPZ vaccines may be a logistical challenge in malaria endemic areas. 

Future efforts should focus on developing a thermal-stable PfSPZ vaccine, which can reduce delivery 

challenges to remote areas.A
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2.2. Sub-unit vaccines

Sporozoites are covered with a dense coat and a key protein is the CSP – a 40-66 kDa protein, with ~40 

NANP repeats in the central region of PfCSP (58). Inadvertently, many approaches have been explored to 

target and improve immune responses to CSP.  RTS,S/AS01 (MosquirixTM), the most advanced malaria 

vaccine to date, contains a section of the CSP central repeat region (18 NANP repeats with B cell epitopes) 

and C-terminal (with T cell epitopes). In a large phase III study involving 15,459 infants (6-12 week old) 

and young children (5-17 months old) at 11 sites, RTS,S showed moderate vaccine-induced protection at 18 

months (26% and 45% respectively) which waned on follow-up (59). In subjects receiving a booster at 20 

months, the vaccine efficacy was ~36% in  children (vs 28% in controls without the booster) and ~25% in 

infants (vs 18% in controls) at the end of a 48-month study period (60). Fractional dosing of the third dose 

may increase the vaccine efficacy up to ~86%,(61) but this remains to be seen in endemic areas where 

efficacy in adult declined with an increase in malaria transmission (62). After a positive review by the 

European Medicines Agency, RTS,S was recently rolled out for implementation in three African countries 

(Malawi, Kenya and Ghana) (63). Assuring earlier concerns that CSP diversity may impact vaccine 

efficiency , it is noteworthy that in the above large Phase III trials, less than 10% of the parasites 

corresponded the CSP alleles used in the RTS,S (64). 

Prime-boost viral vectored delivery platforms using chimpanzee adenoviruses (e.g. ChAd63) prime and a 

modified vaccinia strain Ankara (MVA) have been explored as alternative approaches to improve the 

efficacy of CSP-based vaccines. ChAd63-MVA CSP vaccine candidate induced high levels of antigen-

specific antibodies and T cell responses (65). Nevertheless, its efficacy in a CHMI trial was poor, 

protecting only 1/15 subjects (66). In-vitro and rodent studies have suggested that CSP is dispensable in 

achieving sterile immunity and low levels of anti-CSP antibodies may aid in sporozoite invasion (58, 67, 

68). Other studies reported that the CSP repeat region, but not the C-terminal domain, induced antibody-

dependent phagocytic activity that was protective against infection (69). Thus, the modest protection 

induced by CSP-based vaccines, as compared to the sterile immunity observed in RAS, calls for 

exploration of alternative antigens or CSP epitopes as vaccine targets. Alternatively, vaccine studies should 

identify targets within the CSP that induce better antibody activity. 

 

The proteome of Pf reference strain 3D7, contains ~5,400 known genes (70). Some of these genes encode 

for proteins that are essential for cell traversal (sporozoite microneme protein essential for cell traversal 

(SPECT), phospholipase (PL), cell traversal protein for ookinetes and sporozoites (CelTOS), gamete egress 

and sporozoite traversal protein (GEST), and perforin-like protein (PLP1 also known as SPECT2); liver 

invasion (TRAP and apical membrane antigen (AMA) 1) and hepatic development (liver surface antigens 

(LSA1, LSA2 and LSA3) and sporozoite threonine and asparagine rich protein (STRAP)). Most of these A
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proteins have the potential of becoming vaccine targets, but only a few are in current clinical trials (Table 

1). ChAd63-MVA ME-TRAP, which primarily targets TRAP but also contains multiple epitopes of CSP, 

LSA1, LSA3, STARP, EXP1, has been reported to have high immunogenicity and safety levels in human 

studies even when administered concurrently with the expanded program on immunisation (71-74). 

Combination vaccines of ME-TRAP and CSP have so far yielded varying results depending on vaccine 

regimen and routes of administration (75-77).

3. Immune responses to malaria pre-erythrocytic stages in the skin and the liver

3.1.  Innate host responses in the skin and the liver

The skin is the first defence layer against the malaria parasites. Apart from being a physical barrier, the skin 

harbours a diverse range of phenotypically and functionally distinct dendritic cells (DCs) and macrophages 

that interact with sporozoites, as described in mouse malarias (Figure 1) (5, 6). The contribution of these 

cells is challenging to study in humans considering the “silent” nature of malaria PE stages. Neutrophils 

and monocytes infiltrate the site of sporozoite inoculation, and mast cells have been reported to induce DCs  

and T cell recruitment (78, 79). Remarkably, a rodent study reported that neutrophils and monocytes may 

not be critical in the development of sterile immunity (78). Further work is needed to dissect the roles of 

neutrophils and monocytes in PE stage immunity. 

Whilst the liver is known to be an autonomous and competent priming site for naïve CD8+ T cells (80), the 

role of hepatocytes and other liver cells in antigen presentation during PE stages remain poorly understood. 

Liver cells including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, hepatic DCs, and hepatic 

stellate cells interact with the parasite during the liver invasion process (as reviewed by Hafalla et al.) (81). 

Rodent studies have shown that CD11c+ DCs found in the spleen, liver and liver-draining lymph nodes are 

required to present antigens to CD8+ T cells, and their depletion abrogates CD8+ T cell responses (5, 82-

84). It is thought that these DCs directly present sporozoite antigens to CD8+ T cells through antigen cross-

presentation (5, 8, 83). Blocking the ability of the DCs to cross-present antigens represses CD8+ T cell 

responses (85, 86). CD4+ T cells play a role in “licensing” these antigen-presenting DCs (83, 87). How 

antigens that are expressed exclusively during EEF development prime CD8+ T cell responses remains 

inadequately characterised. Recent studies have implicated a subset of liver-infiltrating monocyte-derived 

CD11c+ cells acquire rodent parasites after parasite invasion, but before merozoite release (82). Consistent 

with the presentation of sporozoite-derived antigens, these monocyte-derived CD11c+ cells were found to 

prime CD8+ T cell responses in the liver-draining lymph nodes.

Infected hepatocytes can become “stressed” (express heat shock proteins) and/or apoptotic (21). This 

induces inflammatory responses and recruitment of effector immune cells to the site of EEF infection. A
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Plasmodial dsRNA accessing hepatocytic cytosol induces release of type I interferons (IFN-α and IFN-β) 

that recruit natural killer (NK) and CD3+CD49b+ natural killer T (NKT) cells (88, 89). NK cells are a 

highly enriched effector cell population to respond to invading sporozoites as they account for up to 50% of 

liver-resident lymphocytes (90). NK and NKT cells are potent producers of IFN-γ (18, 20), which activates 

the nitric oxide pathway in macrophages (18, 91). In RTS,S CHMI studies, concentrations of serum IFN-γ 

and transcriptional signatures related to IFN-γ production were linked to protection from infection (92, 93). 

It is also conceivable that NK and NKT cells participate in IFN-γ-independent killing of infected 

hepatocytes. Recently, serological profiling studies suggested that NK cells may inhibit sporozoite invasion 

through antibody-mediated interactions (94). On the other hand, NKT cells have been shown to be 

dispensable in development of sterile immunity (95). 

Nutritional immunity may play a role in protection against Plasmodium infections. In endemic settings, 

children with iron deficiency are protected against malaria (96, 97). The hepatic hormone hepcidin has been 

reported to increase across the malaria season in these settings (98, 99). Hepcidin restricts iron availability 

in the liver hence denying Plasmodium parasites a vital nutrient, and may protect against secondary liver-

stage infections (100). Supplementing children with iron in a malaria-endemic setting was associated with 

increased malaria incidences and mortality (101). Accordingly, targeting the nutritional requirements of the 

parasite is an alternative innate response to malaria infections.

3.2. Antibody responses, including targeting the parasites whilst in the skin

Antibodies are correlates of protection for most approved vaccines in clinical use. Their effector pathways 

include neutralisation of pathogens, antibody-dependent cytotoxicity, antibody-dependent complement 

deposition, and antibody-dependent phagocytosis. Mechanistically, humoral responses begin when a naïve 

B cell encounters an antigen at the interface of the T and B regions of secondary lymphoid organs. 

Depending on the existing signals, these antigenically stimulated B cells may undergo 1) rapid proliferation 

in the extrafollicular foci to produce short-lived isotype-switched antibody-secreting plasmablasts (SLPCs), 

2) interact with CD4+ T follicular helper (TFH) cells in a germinal-centre (GC) – dependent or GC-

independent process to produce long-lived memory cells or 3) an anergic response. The B cells that interact 

with TFH-dependent differentiate into long-lived plasma cells (LLPC) or circulating memory B cells 

(MBCs) (as reviewed by Nutt et al. (102)). LLPCs migrate to the bone marrow and continuously secrete 

neutralising antibodies, while MBCs form a ready-to-respond antigen-specific B cell pool.

Early malaria vaccine studies reported increased production of anti-CSP antibodies in response to RAS, and 

these antibodies protected against reinfection (18, 22, 24, 103). In field and CHMI studies, antibody 

responses to other PE antigens such as LSA-1, TRAP and STARP. have also been reported (104-106) and A
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protected individuals may have higher antibody titres (105-107). Passive transfer of monoclonal anti-

sporozoite antibodies delayed patency of Pb infection in mice (108). The effector activity of these 

antibodies may include blocking sporozoite motility, dermal exit and subsequent invasion of hepatocytes 

(78, 109). Antibodies may remove the surface coat protein of sporozoites in the skin and expose the 

parasites to their own pore-forming proteins (110). Beyond inhibiting sporozoite mobility, antibodies also 

aid in sporozoite destruction through activation of the complement system, phagocytosis and Fc-mediated 

innate cell functions (94, 111-113). 

Various field studies have reported that high antibody levels against sporozoites are required for effective 

and long-term protection (105, 114, 115). RTS,S vaccines induce high anti-PfCSP antibodies titres with 

moderate CD4+ T cell responses (116-118), yet none of them have been recognised as an unequivocal 

correlate of protection. It remains poorly understood if protection against sporozoites is dependent on 

immunoglobulin sub-class, but high levels of antigen-specific IgG3 and IgG1 in participants receiving 

RTS,S have been observed (111, 119). Although individuals with higher antibodies against sporozoite 

antigens have better protection against infection (105-107), antibody titres have generally performed poorly 

as correlates of protection in malaria vaccine studies (94, 120). The modest efficacy of RTS,S in endemic 

regions suggests that the functionality and avidity of the antibodies, rather than the antibody titres, is a 

better correlate of immune protection to malaria (94, 113). In recent serological profiling studies, the 

functionality of antibodies was reported to be a better predictor of protection (94). These antibodies were 

reported to induce NK cell effector functions, including activation and phagocytosis. 

The hurdle with malaria infections is the inability to generate long-lasting protective immunity. This is 

compounded by the lack of appropriate surrogates of protection in field and CHMI studies. Malaria-specific 

MBCs are elicited at levels comparable to conventional licensed vaccines (121), and can persist in 

naturally-infected and travellers to endemic regions (122). Like antibodies, malaria MBCs appear to 

increase with age and exposure (123). Studies have demonstrated that Pf-specific MBCs target PE stage 

antigens, and existing antibodies to CSP, LSA-1 and TRAP may protect against clinical malaria in an 

endemic setting (105, 124). Current literature does not indicate the magnitude of humoral reaction to other 

malaria PE antigens or if PE-specific MBCs are linked to protective immunity. 

How antibody and MBC responses are regulated during malaria infections is poorly defined. TH1 responses 

have also been implicated in the regulation and function of MBCs after malaria infections in humans and 

mice (125-127). These studies reported that TH1-polarised PD-1+CXCR5+CXCR3+ TFH cells are 

preferentially elevated during malaria infections and may play a role in impaired GC responses. How these 

responses influence LLPC and MBC responses to PE stages remain poorly characterised. Recently, a group A
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of atypical MBCs (CD19+CD21−CD27−) expressing high levels of FcRL5 has been suggested to play a role 

in the incomplete anti-Plasmodium immunity (128, 129). Whether or not atypical MBCs are induced during 

PE stage natural and vaccine responses remains to be described. However, the dynamics behind the MBC 

development and the roles of atypical MBCs in de novo malaria infections remain an open question. 

3.3. CD4+ T cell effector mechanisms

CD4+ T cells have multiple effector functions ranging from regulation of immune responses and activation 

of CD 8+ T cells, B cells, innate immune cells, and other nonimmune cells (130). CD4+ T cells play a 

critical role in response to malaria PE stages and maintenance of immunity both independently and in 

conjunction with other cells (131-133). In models studies, CD4+ T cells were reported to confer protection 

against Pb and Py in β2-microglobulin knockout mice (CD8+ T cells depleted) immunised with RAS (131), 

probably through direct killing of infected hepatocytes (134). Field and CHMI studies have also reported 

high CD4+ T cell numbers after RTS,S or whole sporozoite infection (35, 116, 135), including high serum 

levels of CD4+ T cell associated cytokines (IFN‐γ, tumour necrosis factor (TNF), and IL‐2) (32, 136).  In 

modelling and CPS vaccine studies, T cells (133) and IFN‐γ (92, 93) have been reported as correlates of 

immune protection against malaria infection. Detailed investigations are required to determine the 

longevity of CD4+ T cells in response to PE stages and their ability to serve as surrogates of immune 

protection. 

The functional roles of CD4+ T cells are not limited to direct activity. As discussed before, CD4+ T cells 

may be involved in the licensing of the antigen-presenting DCs that prime effector CD8+ T cells. The 

cytokines produced by CD4+ T cells influence other immune cells involved in response to malaria and 

development of immunity. IL-4 producing CD4+ T cells sustain and expand the effector and memory Py-

specific CD8+ T cell pool (87, 137, 138). In the absence of CD4+ T cells, the sporozoite-specific memory 

CD8+ T cells fail to protect against challenge infections in mice (137). Some of the cytokines produced by 

CD4+ T cells, such as IFN-γ, IL-4, IL-5 and IL-10, enable B cells to undergo immunoglobulin class-

switching (102). A subset of CD4+ T cells, FOXP3+ regulatory T cells (TREGs), has been associated with 

poor development of CPS vaccine-induced immunity (139). A recent study implicated a subset of TFH CD4+ 

T cells in the poor response of participants receiving RTS,S and ME-TRAP combinations (77). 

Nonetheless, further studies are required to elucidate induction, regulation, maintenance and tissue 

requirements of CD4+ T cells in malaria PE stage immunity.

3.4. CD8+ T cell effector mechanisms, including liver-resident memory CD8+ T cells

CD8+ T cells are the primary effector cells against PE stages as seen in rodent, non-human primate, and 

human studies (140-144). As observed in Py, the responses by CD8+ T cells begin after they are primed by A
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mature CD11c+ DCs in the skin-draining lymph nodes (8). Naïve CD8+ T cells do not exert antiparasitic 

activity, unless previously primed by antigen presenting cells (145). The CD8+ T cells with cognate 

receptors to the antigens presented by the DCs will differentiate to short-lived effector cells (SLEC) or 

memory precursor effector cells (MPEC) depending on the local cytokine environment and transcriptional 

factor profile (146-148). Activated CD8+ T then undergo clonal expansion, which requires the presence of 

IL-2/IL-4 produced by CD4+ T cells (87). The numbers of CD8+ T cells have been shown to increase 

rapidly after sporozoite inoculation (86, 145, 149, 150). The activation and proliferation of naïve CD8+ T 

cells is dose-dependent, and a successful response requires viable sporozoites (5, 53, 151). The SLEC 

migrate to the liver to exert their effector properties while MPEC further differentiate to memory cells (152, 

153). 

CD8+ T cells confer sterile immunity against Pb independent of B cells or CD4+ T cells.(18) In rodent and 

non-human primate models, depletion of CD8+ T cells abrogates sterile immunity after RAS immunisation, 

while their restoration reinstates the protection (140, 143). However, the effector mechanisms of these 

malaria PE-specific CD8+ T cells are not well characterised. In vivo imaging studies report that CD8+ T 

cells recognise cognate epitopes on the infected hepatocyte MHC-I and cluster around these cells (154). 

Murine and vaccine studies have reported elevated CD8+ T cell effector mediators including cytokines 

(IFN-γ and TNF) and/or proteins involved in contact-mediated cytotoxicity (perforin, TRAIL, FAS ligand, 

and granzyme) (18, 35, 134, 151, 155). Surprisingly, CD8+ T cells lacking perforin, FAS ligand, and 

perforin can still eliminate Py and Pb infected hepatocytes (156, 157). 

Malaria memory T cells are involved in patrolling, surveillance and rapid recruitment to the site of 

infection (34, 155, 158). This enables a fast, effective, specific and durable protection against subsequent 

malaria infections. Pre-clinical and CHMI trials have shown induction and persistence of Pf-specific CD4+ 

(159, 160) and CD8+ T cells (144). In Pb and Py, CD8+ T memory cells have been described as 

CXCR3hiCXCR6hi CD62L–CD69+ liver-resident (TRM), CXCR3loCXCR6lo CD44+CD62L–CD122– 

circulating effector (TEM), and CD44+CD62L+CD122+ central memory (TCM) cells (157, 161, 162), and 

their effector immune responses is species-specific (157). Nonetheless, the epitope signatures and correlates 

of CD8+ T memory cell protection are yet to be characterised.

Majority of the circulating CD8+ T memory cells in mouse studies are TEM but a small proportion of TCM 

has also been observed (150, 162). A large population of TEM cells is required for effective and long-term 

protection (150, 163). Whilst TEM rapidly induce effector functions, TCM have been shown to respond to 

malaria challenge with delay and short-lived IFN-γ responses (145, 162).  TRM, on the other hand, are the 

non-circulating phenotype. TRM cells have reduced expression of sphingosine 1 phosphate (S1P) receptor A
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and CCR7, and have been associated with protection to sporozoite reinfection (161). In vitro studies 

suggest that the patrolling and effector activity of Plasmodium-specific TRM is dependent upon LFA1-

ICAM1 interactions (164). Consequently, TRM cells important in first line responses including being able to 

recruit other cells despite the reduced ability to recirculate. Current efforts are underway to harness these 

TRM for improved vaccines against PE stages.

3.5. Perspectives on immune responses to PE stages

Naturally acquired immunity in endemic areas is short-lived and non-sterilising, and wanes over time 

without repetitive exposures. This suggests a defect in development of immunological memory after natural 

malaria infections. The exact reason for this impaired immune memory has not been adequately described. 

Indeed, the induction, maintenance and regulation of effector and memory responses have emerged as 

crucial stumbling blocks in malaria PE stage vaccine development.  

It is widely appreciated that an effective and long-lasting malaria vaccine will need to induce robust 

antibody and T cell responses. This may require further investigations on the specificities and correlates of 

immune protection induced by vaccine and CHMI trials, as well how to maintain large frequencies of 

effector and memory responses. Emerging studies from animal models and humans reiterate the need for 

extremely high titres of functional antibodies and elevated frequencies of CD8+ T cells for sterile protective 

immunity (105, 114, 115, 150, 163). There is paucity of data on the quantity of CD4+ T cells required to 

induce sterile immunity. More work is also needed to understand how trained immunity of innate cells, 

which has recently been described (165, 166), may contribute to immune protection in PE stages. Various 

adjuvants including alum, ASO1 and viral vectors have been employed as immunostimulants and/or 

delivery systems for the existing vaccine candidates (167). Adjuvants have the potential to induce and 

maintain large numbers of effector and memory immune cells, and the appropriate choice or combination 

of adjuvants may be the key to unlocking a malaria vaccine that confers sterile and long-lasting protection.

Very little is known regarding the regulation of immune responses to PE stages – the possible roles for 

regulatory T cells, cytokines and TH1/TFH have been thoroughly explored in malaria blood stages (168). 

Additionally, malaria blood stage infections have been reported to downregulate PE stage immunity (169, 

170). Checkpoint blockade has been explored in cancer and malaria blood stage research (171), and it is 

possible that some answers to the regulation of frequencies of anti-PE stage immune responses lie here. The 

contribution of inhibitory and other regulatory proteins, and their tissue specific regulation, have not been 

widely studied in the context of malaria PE stages, but it is plausible that they are involved in a complex 

web of factors influencing protection against malaria. A
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Conclusion

Delivery of an efficient and long-lasting vaccine protection remains an ambitious goal that requires 

sustained efforts of all stakeholders. Gaps in the existing parasite-host immunological crosstalk in both the 

skin and the liver during malaria PE stages need to be addressed first. Quantification and characterisation of 

immune mechanisms have only started to emerge recently despite decades of research into an efficient 

malaria vaccine. Nonetheless, the identification of correlates of protection and protective malaria PE stage 

epitopes remain a work in progress. In the current review, we highlighted how protection to malaria 

sporozoites may rely on a fine, yet to be adequately described, balance between innate and adaptive 

immune responses. Utilising advances in other fields such as systems biology and bioinformatics can 

inform the study of more immunological processes, which have proven challenging to study in the setting 

of a natural infection. Alternative efforts should include targeting novel sporozoite proteins, a multi-stage 

and multi-antigen vaccine, or a “nutritional” vaccine that targets metabolic requirements of sporozoites.
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Table 1. The status of current malaria pre-erythrocytic stage vaccine candidates (adapted from the World Health Organization tables of malaria vaccine projects 

globally – “Rainbow Tables” ).(172)

Project Registration no. Sponsor Vaccine type Country Phase Start Date Ref

Whole Sporozoite

PfSPZ NCT02215707 Sanaria Inc. RAS USA I 2014 (51)

PfSPZ NCT02627456 Sanaria Inc. RAS Mali II 2016

PfSPZ NCT02613520 Sanaria Inc RAS Tanzania I 2015 (27, 

173)

PfRAS NCT01994525 USAMRDC RAS USA I 2013

PfSPZ-CVac NCT02115516 Sanaria Inc. CPS (SPZ-CQ) Germany I 2014 (54)

PfGAP3KO NCT03168854 NIAID GAP USA I 2017

PfSPZ NCT02663700 NIAID RAS Burkina Faso, USA I 2016

PfSPZ-CVac NCT02773979 NIAID CPS (SPZ-CQ) USA I 2016

Sub-unit 

RTS,S/AS01E NCT02374450 GSK CSP Kenya, Burkina Faso, Ghana IV 2015 (174)

RTS,S/AS01 fractional dose NCT01857869 GSK CSP Kenya, Gambia, Burkina Faso II 2013 (61)

R21/AS01B NCT02600975 University of Oxford CSP United Kingdom I 2015

R21/ Matrix – M1 NCT02925403 University of Oxford CSP Burkina Faso I 2016

R21/ME-TRAP NCT02905019 University of Oxford CSP/ TRAP United Kingdom II 2016 (175)

CS-Vac NCT01450280 University of Oxford CSP Ireland I 2011 (65)

PfCelTOS FMP012/AS01B NCT02174978 USAMRMC CelTOS USA I 2014
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ChAd63/MVA ME-TRAP NCT01635647 University of Oxford ME-TRAP Burkina Faso, Kenya, Gambia II 2012 (72-

74)

ChAd63/ MVA ME-TRAP 

+Matrix M™

NCT01663512 University of Oxford ME-TRAP United Kingdom I 2012 (176)

Adjuv R21 (RTS,S biosimilar) 

with TRAP combined

NCT02905019 University Oxford ME-TRAP + CSP United Kingdom, Germany II 2016

RAS denotes radiation-attenuated sporozoites; GAP, genetically attenuated parasites; Pf, Plasmodium falciparum; SPZ, sporozoites; CPS, chemoprophylaxis 

following sporozoite infection; CQ, chloroquine; CSP, circumsporozoite protein; CelTOS, cell-traversal protein for ookinetes and sporozoites; TRAP, 

thrombospondin-related anonymous protein; Adjuv, adjuvant; ChAd, chimpanzee adenovirus; MVA, modified vaccinia Ankara; KO, Knock-out; NIAID, National 

Institute of Allergy and Infectious Diseases; USAMRDC, United States Army Medical Research and Development Command; and GSK, GlaxoSmithKline.
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Figure Legend

Figure 1. The malaria life cycle. An infected mosquito deposits motile infective sporozoites into the 

dermis of a susceptible host. Some sporozoites migrate to the liver, where they invade hepatocytes, 

multiply asexually to produce thousands of merozoites which egress in merosomes and rupture inside 

microvasculature of lungs. The merozoites invade the red blood cells (RBC), and undergo multiple cycles 

of ring, trophozoite and schizont stages, to initiate the clinical phase of the disease. Some parasites 

differentiate into male and female gametocytes, which are taken up mosquitoes during their next blood 

meal. Different immune cells interact with the malaria sporozoites during its journey from the skin to the 

liver and may be exploited in the development of an effective and long-lasting vaccine. NK denotes natural 

killer cells.
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