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a b s t r a c t 

Heterogeneity plays an important role in the emergence, persistence and control of infectious diseases. 

Metapopulation models are often used to describe spatial heterogeneity, and the transition from random- 

to heterogeneous-mixing is made by incorporating the interaction, or coupling, within and between sub- 

populations. However, such couplings are difficult to measure explicitly; instead, their action through the 

correlations between subpopulations is often all that can be observed. We use moment-closure meth- 

ods to investigate how the coupling and resulting correlation are related, considering systems of multiple 

identical interacting populations on highly symmetric complex networks: the complete network, the k - 

regular tree network, and the star network. We show that the correlation between the prevalence of 

infection takes a relatively simple form and can be written in terms of the coupling, network parameters 

and epidemiological parameters only. These results provide insight into the effect of metapopulation net- 

work structure on endemic disease dynamics, and suggest that detailed case-reporting data alone may 

be sufficient to infer the strength of between population interaction and hence lead to more accurate 

mathematical descriptions of infectious disease behaviour. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Heterogeneity is an increasingly important feature of epidemio-

ogical models, with spatial structure ( Grenfell and Bolker, 1998;

ia et al., 2004; Viboud et al., 2006 ), risk structure ( Baguelin

t al., 2010; Datta et al., 2018; Rock et al., 2018 ) and age structure

 Schenzle, 1984; Keeling and Grenfell, 1997; Keeling and White,

010 ) widely considered. The incorporation of various forms of

eterogeneity is crucial to capture many important observed epi-

emiological dynamics, such as: clustering of cases, either spa-

ially or in high-risk demographics ( Schenzle, 1984 ); unexpected

ndemic behaviour, as heterogeneity breaks down the simple for-

ulation of the basic reproduction number ( Keeling and Ro-

ani, 2008 ); and persistence, where heterogeneity generally acts to

ncrease persistence ( Keeling, 20 0 0; Hagenaars et al., 20 04 ). Het-

rogeneity also has a marked influence on the control of infec-

ious diseases, as a result of increased persistence or driven by

argeted interventions ( Keeling and White, 2010; Christley et al.,

005; Wallinga et al., 2010 ). 
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One modelling framework that can capture multiple forms of

eterogeneity is the metapopulation-type model ( Gilpin and Han-

ki, 1991; Hanski, 1998; Hanski and Gaggiotti, 2004 ), whereby

he population is divided into multiple interacting, or ‘coupled’,

ubpopulations, and where within-population interactions typi- 

ally occur at a higher rate than between-population interactions.

etapopulation models usually describe spatially distributed com-

unities, but could also represent risk groups (e.g. high and low

isk) or age groups (e.g. adults and children). 

Quantifying between-population interactions is one of the

ey challenges of metapopulation infectious disease modelling

 Ball et al., 2014 ). The individual-level behaviour that determines

uch interactions is highly complex and is dependent on social,

ultural, environmental and economic factors ( Wesolowski et al.,

015 ). Even with access to good data on relevant interactions, it is

nclear how this should translate into a single phenomenological

ransmission parameter; current approaches to spatially structured

etapopulation models typically combine theoretical models of

uman mobility with highly detailed data. Models of human

obility characterise the distribution of contacts between popu-

ations based on the population sizes and the distances between

hem ( Hanski, 1998 ). The gravity model, originally formulated for

ransportation analysis ( Erlander and Stewart, 1990 ), and later
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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modified for infectious disease modelling, has been widely used

in combination with commuter mobility data ( Viboud et al., 2006;

Balcan et al., 2009 ), mobile phone data, used as a proxy for human

mobility ( Tizzoni et al., 2014; Wesolowski et al., 2015; Kraemer

et al., 2016 ), or spatiotemporal time series of disease incidence,

where coupling parameters are estimated so that simulated epi-

demics match observed case numbers ( Xia et al., 2004 ). However,

good data on relevant movements between populations are rare,

particularly in developing countries where epidemiological mod-

els are frequently applied. The parameter-free radiation model

( Simini et al., 2012 ) and variants thereof ( Yan et al., 2014; Kang

et al., 2015 ) offer alternative models for human mobility that only

requires the spatial distribution of the population to estimate

coupling. However, comparisons between both the gravity and ra-

diation models, and mobile call data records show that these mod-

els fail to fully describe human mobility outside of high-income

countries, such as in Sub-Saharan Africa ( Wesolowski et al., 2015 ). 

The interaction between subpopulations is often represented as

a matrix of transmission rates, where diagonal elements repre-

sent within-population rates and off-diagonal elements represent

between-population rates. When considering P populations, this

matrix has P 2 elements, which leads to unidentifiability problems

if attempting to estimate parameters from endemic equilibria. On

the other hand, in a stochastic system, the 1 
2 P (P − 1) pairwise cor-

relations between the levels of infection in pairs of populations

may help to mitigate this unidentifiability, particularly if the trans-

mission matrix is sparse or can be assumed to have some sort of

symmetry. Long-term data on disease incidence is more frequently

available ( Olsen and Schaffer, 1990; Grenf ell and Harwood, 1997 ),

from which we can estimate the correlation between epidemics

in distinct subpopulations; then, given an analytic relationship be-

tween the coupling and the correlation, we can infer interaction

parameters. 

Whilst computer simulations are commonly used and clearly

useful, analytic results allow us to develop intuition about the

infection dynamics; however, exact analysis of stochastic epi-

demiological models is often mathematically intractable, due

to the nonlinearity of the transmission process. In such cases,

approximation methods may be used to derive results about the

expected behaviour and variability of the infection process. One

such approximation method is a moment closure approximation,

whereby the stochastic system is approximated by a deterministic

system of differential equations for the moments (mean, vari-

ance, covariance, etc.). The most commonly used moment closure

approximation, and the one used throughout this paper, is the

multivariate normal approximation, which assumes that third-

order cumulants and higher are equal to zero or, equivalently, that

the distribution of states follows a multivariate normal (MVN)

distribution ( Whittle, 1957 ). 

In this paper we derive an approximation for the correlation

between the level of infection in two subpopulations as a function

of the coupling between them. Our results extend the analysis of

Meakin and Keeling (2018) for a simple two subpopulation system.

Using a multivariate normal approximation we derive results for

subpopulations arranged on the complete network, the k -regular

tree network and the star network. We also numerically validate

our model by comparing our analytic approximations to stochastic

simulations. These results also provide some insight into the effect

of metapopulation network structure on network correlations. 

2. Methods 

2.1. A stochastic endemic infection model for interacting populations 

on a general graph 

We begin by introducing a simple stochastic SIR model in

a population of size N , with births, deaths, transmission and
ecovery. At any time t ∈ [0, ∞ ), individuals are in one of three

tates: susceptible, infected or recovered. A given susceptible

ndividual meets other individuals at rate m > 0. We assume that

hese encounters are sufficiently close that if the other individual

s infected, then transmission of infection occurs with probability

and the susceptible individual immediately becomes infected

nd infectious to others. We therefore define the transmission rate

e β = mτ . Susceptible individuals can also succumb to infection

ndependent of contact with infected individuals in the modelled

opulations; this occurs at rate ε > 0, the external import rate. In-

ected individuals recover from infection at rate γ > 0, after which

hey become immune to further infection. Susceptible, infected

nd recovered individuals all die at rate μ> 0, independent of in-

ection status; we assume that a death is immediately followed by

he birth of a susceptible individual, and hence the total population

ize remains constant. The basic reproductive ratio, the expected

umber of secondary cases produced by a single infectious individ-

al in a susceptible population, for this process is R 0 = β/ (γ + μ) .

We extend the above model to P identical populations of size

 . The assumption that the population sizes are equal is for math-

matical tractability; a discussion of the effects of relaxing this as-

umption for P = 2 can be found in Meakin and Keeling (2018) .

ach population exhibits the same population dynamics as de-

cribed above, plus pairwise interaction between the populations:

e assume that in population i , a proportion σ ij ∈ [0, 1] of an indi-

idual’s contacts are with individuals in population j . We insist that
 

j σi j = 1 and so σii = 1 − ∑ 

j σi j . The matrix � = (σi j ) therefore

escribes the interaction or ‘coupling’ between all possible pairs

f populations, and the force of infection in each subpopulation

epends on the number of infected individuals in all other sub-

opulations. Changing � does not change the basic reproductive

atio, but instead determines the distribution of secondary cases

etween the P subpopulations. 

We let S i (t) , I i (t) , R i (t) ∈ { 0 , 1 , 2 , . . . } denote the number of sus-

eptible, infected and recovered individuals, respectively, in popu-

ation i = 1 , 2 , . . . , P at time t ≥ 0. As the population size N is con-

tant then S i (t) + I i (t) + R i (t) = N, ∀ t ≥ 0 , i = 1 , 2 , . . . , P . The tran-

ition rates for the resulting 2 P -dimensional Markov chain from

tate (s 1 , i 1 , s 2 , i 2 , . . . , s P , i P ) at time t are summarised in Table 1 . 

The metapopulation structure can be described by a weighted

etwork G = (V, E) with vertex set V = { 1 , 2 , . . . , P } and edge set

 , where edge e = i j has weight σ ij : the coupling matrix � there-

ore represents the weighted adjacency matrix for the graph G . For

athematical tractability we restrict our analysis to networks for

hich we can derive analytic results, namely graphs that are highly

ymmetric; a discussion of the effect of relaxing this assumption is

rovided in the Supplementary Information. In the following anal-

sis we consider the complete network, the k -regular tree network

nd the star network. In addition, we assume that σi j = σ, ∀ i j ∈ E.

e note that for k -regular tree network and the star network, the

eighted adjacency matrix � is sparse, that is, most of the ele-

ents are zero. 

.2. Moment closure approximations 

Even with constraints on the metapopulation network structure

nd the coupling matrix �, an exact analysis of the full stochas-

ic model is mathematically intractable. Instead we consider the

pproximate behaviour of the first- and second-order central mo-

ents of the process. The ODE for E [ X] can be calculated from first

rinciples using: 

dE [ X ] 

dt 
= E 

[ ∑ 

e v ents 

rate of event × change in X due to event 

]
. (1)

lternatively, these ODEs can be derived from the Kolmogorov for-

ard equation; details of this method can be found in existing
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Table 1 

A summary of the transition rates of the 2 P -dimensional Markov chain endemic infec- 

tion model { (S j (t) , I j (t)) P 
j=1 

: t ≥ 0 } from state (s 1 , i 1 , s 2 , i 2 , . . . , s P , i P ) with birth/death rate 

μ> 0, contact rate β > 0, external import rate ε > 0, recovery rate γ > 0 and coupling ma- 

trix �. 

Population Event Transition Rate 

j = 1 , 2 , . . . , P Infection s j → s j − 1 , i j → i j + 1 βs j 
∑ 

l σ jl i l /N + εs j 
Recovery i j → i j − 1 , r j → r j + 1 γ i j 
Death of infected s j → s j + 1 , i 1 → i j − 1 μi j 
Death of recovered s j → s j + 1 , r j → r j − 1 μ(N − s j − i j ) 
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iterature on moment closure approximations in infectious disease

odelling ( Keeling and Rohani, 2002; Lloyd, 2004 ). 

Due to the nonlinearity of the infection term in the model,

he ODE for an n th-order moment will depend on one or more

(n + 1) th order moments: to fully describe the stochastic process

ould therefore require an infinite set of ODEs. To circumvent this

roblem, we use a moment closure approximation, which trun-

ates the set of ODEs at some order. Throughout this paper, we

se a second-order moment closure approximation, which assumes

hat third- and higher-order cumulants are equal to zero. As a re-

ult, third- and higher-order moments can be written in terms of

he means, variances and covariances only. 

Throughout this paper we will use the following notation for

he first- and second-order central moments: 

S̄ j = E [ S j ] 

Ī j = E [ I j ] 

 S j S j = Cov (S j , S j ) = Var (S j ) 

C I j I j = Cov (I j , I j ) = Var (I j ) 

C S j I j = Cov (S j , I j ) 

ˆ 
 S j S k = Cov (S j , S k ) 

ˆ C I j I k = Cov (I j , I k ) 

ˆ C S j I k = Cov (S j , I k ) , 

nd use X 

∗ and C ∗
XY 

to denote the first- and second-order moments

t endemic equilibrium, respectively. 

For a metapopulation network on P populations, the set of ODEs

pproximating the stochastic process has at most 3 P 2 + 2 P equa-

ions: P for each of the two first order moments and P 2 for each of

he three covariances. However, for the networks that we consider

n this paper, symmetries in the structure of the network mean

hat the number of ODEs is considerably fewer. In some cases we

ill simplify the notation: we outline simplifications to the nota-

ion at the start of the results section for each network. 

.3. Deriving an equation for the correlation 

In each metapopulation network (the complete network, the k -

egular tree network and the star network), we derive an analytic

pproximation for the correlation between the number of infected

ndividuals in a pair of populations as a function of the coupling

. We define the correlation between the number of infected in-

ividuals in population i and the number of infected individuals in

opulation j at endemic equilibrium as: 

i j = 

Cov (I i , I j ) √ 

V ar(I i ) V ar(I j ) 
= 

ˆ C I i I j √ 

C I i I i C I j I j 
. 

We derive an approximate equation for the correlation ρ ij by

onsidering the ODE for the covariance ˆ C I i I j at endemic equilib-

ium. We then evaluate our approximation numerically, for which

e need to define a set of base parameters. We utilise parame-

ers for a highly-transmissible measles-like endemic disease in the
K ( Anderson and May, 1992 ), although we note that a full model

f measles requires both seasonality ( Earn et al., 20 0 0; Rohani

t al., 2002; Grenfell and Bolker, 1995 ) and age-structure ( Schenzle,

984; Keeling and Grenfell, 1997; Bolker, 1993 ). We use these re-

ults to consider the effect of both the coupling and network struc-

ure on the correlation. 

We also evaluate the accuracy of our approximation by compar-

ng our results to simulations. We simulate the stochastic process

ver a 200 year period using the Gillespie algorithm, with a burn-

n period of 50 years, and generate 10 0 0 realisations for each value

f σ ; the correlation is calculated as a time-weighted Pearson cor-

elation coefficient for 50 ≤ t ≤ 200. 

. Results 

.1. The complete network 

.1.1. Network definition and notation 

First we consider P identical populations on the complete net-

ork, where each population interacts with the other k = P − 1

opulations: a visual representation of the complete network for

 = 3 and P = 5 populations is given in Fig. 1 . The coupling matrix

= (σi j ) is defined as 

i j = 

{
1 − kσ, for i = j 
σ, for i 	 = j. 

In the complete network metapopulation all subpopulations are

pidemiologically and topologically identical: epidemiologically in 

he sense that all subpopulations are of equal size and have identi-

al epidemiological parameters, and topologically in the sense that

ll nodes are isomorphic within the network and the coupling is

he same between any pair of subpopulations. As a result, the ex-

ected behaviour is the same within all populations, and between

ny pair of populations. In our notation, we can therefore drop

ependency on the population and simplify it to the following:
¯
 = E [ X j ] , C XY = Cov (X j , Y j ) and 

ˆ C XY = Cov (X i , Y j ) , i 	 = j. 

Using the second-order moment closure approximation, and

ith these simplifications, the stochastic process on the complete

etwork can be approximated by a set of eight ODEs: five for the

ithin-population moments, and three for the between-population

oments. These can be found in the Supplementary Information.

e use these equations in both the analytic and the numerical re-

ults. 

.1.2. Analytic results 

For P populations on the complete network, we define the cor-

elation between any pair of populations as 

= 

ˆ C ∗II 
C ∗

II 

, 

nd show that this is equal to 

= 

σ

ξ + σ
− 	, (2) 
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Fig. 1. The complete network on (a) P = 3 and (b) P = 5 populations. The coupling between any pair of populations coupling is σ ∈ [0 , 1 / (P − 1)] and so the within- 

population coupling is 1 − (P − 1) σ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

a  

t  

p  

M  

s  

p  

o  

s  

i  

o  

o  

i  

b  

t  

n  

C  

P  

z

 

p  

t  

m  

o  

a  

p  

i  

n  

t  

p  

3

3

 

t  

a  

b  

a

σ  

 

k  
where 

ξ = 

N(γ + μ) − β S̄ ∗

β S̄ ∗
(3)

and 

	 = 

(β Ī ∗ + Nε) 
ˆ C ∗SI 

C ∗
II 

β(1 − σ ) ̄S ∗ − N(γ + μ) 
. (4)

We derive this result by taking the moment equation for ˆ C II at

equilibrium and dividing through by 2 C ∗II /N, following the same ap-

proach as Meakin and Keeling (2018) ; full details of this deriva-

tion can be found in the Supplementary Information. Moreover, if

	
 1 then we can further simplify the approximation for the cor-

relation to the following expression: 

ρ ≈ σ

ξ + σ
. (5)

We can also use an alternative approximate expression for ξ
that is independent of S̄ ∗, which eliminates the need to find the

equilibrium of the 8-dimensional ODE model. Meakin and Keel-

ing (2018) show that by ignoring the effects of imports and cor-

relations and taking the large population limit, then 

ξ ≈ ξ ′ = 

ε(γ + μ) 

μ(β − γ − μ) 
= 

ε

μ(R 0 − 1) 
. (6)

Given the simpler form of Eq. (6) compared to the original expres-

sion for ξ given by Eq. (3) , in remainder of the analysis we evaluate

σ/ (ξ ′ + σ ) as an approximation for the MVN correlation ρ . 

This approximation is independent of the number of popula-

tions P . In short, this is due to the balance between two compet-

ing influences: the addition of an extra external coupling would

normally weaken the correlation between two connected popula-

tions, but the fact that this additional population is itself correlated

with the original populations nullifies this effect. In the Supple-

mentary Information, we make this argument explicit by adding a

third population (with variable coupling) to an interacting pair of

populations. 

3.1.3. Numerical results 

We first explore the effect of the number of subpopulations P

and coupling σ on the equilibrium values of the first-order central

moments S̄ ∗ and Ī ∗ and the second-order central moments C ∗
II 

and

ˆ 
 

∗ ( Fig. 2 (a)). We consider P = 3 , 5 , 10 and σ ∈ [0 , 1 /k ] , k = P − 1 ,

II 
nd include P = 2 for comparison. These results are obtained by

he numerical integration of the system of ODEs given in the Sup-

lementary Information, and so only introduce an error due to the

VN moment closure approximation. For all values of P , all curves

how a sigmoidal pattern, with S̄ ∗ and C ∗
II 

decreasing with the cou-

ling, and Ī ∗ and 

ˆ C ∗
II 

increasing with the coupling. As the number

f populations P increases the magnitude of change in C ∗
II 

increases,

ince reducing the within-population coupling (either by increas-

ng the between-population coupling σ or increasing the number

f populations P ) reduces the variance C II . However, the magnitude

f change in 

ˆ C ∗II decreases, because as P increases, then the effect of

nteraction between a subpopulation and its neighbour is damped

y the other P − 2 neighbours. In the previous section we noted

hat our approximation for the correlation is independent of the

umber of populations P : we also calculate the MVN correlation
ˆ 
 

∗
II 
/C ∗

II 
( Fig. 2 (b)) and note that this also appears independent of

 . The correlation follows a sigmoidal relationship, increasing from

ero for very low coupling. 

Next we compare the MVN correlation ρ ( Eq. (2) ) and our sim-

lified approximation σ/ (ξ ′ + σ ) , ξ ′ = 0 . 0625 ( Eq. (5) ) to stochas-

ic simulations for P = 3 , 5 subpopulations ( Fig. 3 ). The close agree-

ent between ρ and the simulation results suggests that our use

f the MVN moment closure approximation is justified. There is

lso little difference between the MVN correlation and our ap-

roximation (that is, 	 is small), so σ/ (ξ ′ + σ ) is a good approx-

mation for the correlation ρ . Therefore, we can relate the phe-

omenological coupling parameter σ to the correlation between

he number of infected individuals in any pair of populations for P

opulations arranged on the complete network by ρ ≈ σ/ (ξ ′ + σ ) .

.2. The tree network 

.2.1. Network definition and notation 

Next, we consider infinitely many populations on a k -regular

ree network, where each subpopulation has k neighbours: a visu-

lisation of the k -regular tree network for k = 2 and k = 4 neigh-

ours is given in Fig. 4 . The coupling matrix � = (σi j ) is defined

s 

i j = 

{ 

1 − kσ, for i = j 
σ, for i, j neighbours, i 	 = j 
0 , otherwise. 

(7)

As with the complete network, all subpopulations in the

 -regular tree network are epidemiologically and topologically
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Fig. 2. The effect of the coupling σ on (a) the key mean variables S̄ ∗, ̄I ∗, C ∗II and ˆ C ∗II and (b) the correlation ˆ C ∗II /C ∗II , for P populations arranged on the complete network. 

Parameter values represent a measles-like endemic disease in the UK ( N = 10 5 , μ = 5 . 5 × 10 −5 , R 0 = 17 , γ −1 = 13 and ε = 5 . 5 × 10 −5 ). These values are calculated from the 

system of ODEs given in the Supplementary Information. 

i  

p  

b  

d  

o  

w  

s  

p  

t

3  

W  

c  

s  

O  

t  

t  

t

 

t  

t  

t  

a  

i  

s

T

 

t  
dentical, so the expected behaviour is the same within all sub-

opulations. In addition, in a tree network, there is a unique path

etween any pair of subpopulations, and so we can define the

istance d i j ∈ N between subpopulations i and j to be the length

f the path between the subpopulations. For the notation for

ithin-population moments we can again drop dependency on the

ubpopulation: X̄ = E [ X j ] and C XY = Cov (X j , Y j ) . For the between-

opulation moments, we only need to denote the distance d be-

ween the subpopulations: ˆ C (d) 
XY 

= Cov (X i , Y j ) , i 	 = j, where d i j = d. 

.2.1.1. Finite subgraph approximation of the k -regular tree network.

e cannot perform stochastic simulations of the infection pro-

ess on infinitely many subpopulations. In addition, we can use a

econd-order moment closure approximation to derive a system of

DEs that approximate the stochastic process on the network, but
his system comprises infinitely many equations: five equations for

he within-population moments, and infinitely many equations for

he between-population moments (3 for each d ≥ 1). 

To overcome these problems, we consider a finite subgraph of

he k -regular tree network. We define the D -truncated k -regular

ree network to be the network of subpopulations distance less

han or equal to D from some arbitrarily chosen origin node; since

ll subpopulations are identical and the k -regular tree network is

nfinite, the choice of origin node is irrelevant. The total number of

ubpopulations in the D -truncated k -regular tree network is 

 = 1 + k 

D −1 ∑ 

i =0 

(k − 1) i . (8) 

We can also write down a finite set of ODEs that approximate

he stochastic process on the D -truncated k -regular tree network.
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Fig. 3. Comparing analytic and numerical correlation between any pair of populations from P = 3 , 5 populations arranged on the complete network. We compare the analytic 

correlation ρ and our approximation σ/ (ξ ′ + σ ) , ξ ′ = 0 . 0625 , to stochastic simulations for a measles-like endemic disease in the UK ( N = 10 5 , μ = 5 . 5 × 10 −5 , R 0 = 17 , γ −1 = 

13 and ε = 5 . 5 × 10 −5 ). Each population is coupled to the k = P − 1 other populations. The between-population coupling is fixed as σ ∈ [0, 1/ k ] and within-population coupling 

is therefore 1 − kσ . We generate 10 0 0 realisations of the process for each value of σ and calculate the correlation as a time-weighted Pearson correlation coefficient for 

50 ≤ t ≤ 200; error bars represent ± 2 standard deviations (capturing approximately 95% of all 10 0 0 simulations), confidence intervals in the mean values are too small to be 

plotted. 

Fig. 4. The k -regular tree network for (a) k = 2 and (b) k = 4 neighbours. The coupling between any pair of neighbouring populations is σ ∈ [0, 1/ k ] and so the within- 

population coupling is 1 − kσ . 
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Fig. 5. The effect of the number of neighbouring subpopulations k in the k -regular tree network on the correlation between the number of infected individuals in adjacent 

populations, ρ1 (left), and populations with a common neighbour, ρ2 (right). Parameter values represent a measles-like endemic disease in the UK ( N = 10 5 , μ = 5 . 5 ×
10 −5 , R 0 = 17 , ε = 5 . 5 × 10 −5 , γ = 1 / 13 ). The MVN correlation is calculated on the D -truncated k -regular tree network for D = 50 from the system of ODEs given in the 

Supplementary Information. 
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f D is sufficiently large, then we can make some further simpli-

ying assumptions. First, we can assume that ˆ C (d) 
XY 

= 0 , ∀ d > D . Sec-

ndly, we can assume that the expected behaviour of the first- and

econd-order central moments in the origin node, and between

he origin node and subpopulations at distance d 
 D will be the

ame as in the full k -regular tree network. In the full k -regular tree

etwork we had that ˆ C (d) 
XY 

is the same for any pair of subpopu-

ations distance d apart: we continue to make this simplification

n the truncated network. Given these assumptions, and making a

econd-order MVN moment closure approximation, the stochastic

rocess on the D -truncated k -regular tree network can be approx-

mated by a set of 5 + 3 D equations: five equations for the within-

opulation moments and 3 D equations for the between-population

oments. These can be found in the Supplementary Information. 

.2.2. Analytic results 

We can derive analytic results for the full k -regular tree net-

ork. We define the correlation between the number of infected

ndividuals in a pair of subpopulations distance d ≥ 1 apart as 

d = 

ˆ C (d) ∗
II 

C ∗
II 

, 

here ρ0 = 1 and lim 

d→∞ 

ρd = 0 . We can show that ρd is the solution

o 

d = 

σ

ξ + kσ
( ρd−1 + (k − 1) ρd+1 ) − 	(d) , (9) 

here 

= 

N(γ + μ) − β S̄ ∗

β S̄ ∗
(10) 

nd 

(d) 
k 

= 

(β Ī ∗ + Nε) 

β(1 − kσ ) ̄S ∗ − N(γ + μ) 

ˆ C (d) ∗
SI 

C ∗
II 

. (11) 

e derive this result from the moment equation for ˆ C (1) 
II 

at equi-

ibrium and dividing through by 2 C ∗
II 
/N; full details of this deriva-

ion can be found in the Supplementary Information. Moreover, if
( d ) 
 1, ∀ d then ρd is the solution to the recurrence relation 

(k − 1) ρd+1 = 

ξ + kσ
ρd − ρd−1 , (12) 
σ s
here ρ0 = 1 and lim d→∞ 

ρd = 0 . Since | ρd | ≤ 1 then the solution

s given by 

d = 

( 

kσ + ξ −
√ 

ξ 2 + 2 kξσ + (k − 2) 2 σ 2 

2(k − 1) σ

) d 

= 

( 

kσ + ξ −
√ 

σ 2 k 2 + (2 ξσ − 4 σ 2 ) k + 4 σ 2 + ξ 2 

2(k − 1) σ

) d 

. (13) 

We note two things: firstly, since ρ1 ≤ 1 then it is trivial that

d → 0 as d → ∞ . Secondly, ρd → 0 as k → ∞ . 

.2.3. Numerical results 

We note that the MVN correlation and stochastic simulations

ave to be performed on the D -truncated k -regular tree network,

s it is not possible to use the full k -regular tree network. If D

s sufficiently large, then these correlations will be approximately

he same as in the full k -regular tree network: we show that for

 sufficiently large then the correlation converges (Figure S2, Sup-

lementary Information). 

We first numerically evaluate the effect of the number of neigh-

ouring subpopulations k and the distance d on the correlation ρd 

 Fig. 5 ). As with the complete network, the correlation follows a

igmoidal shape, increasing from zero correlation from very low

oupling. For fixed coupling σ , as the number of neighbours k

ncreases then the correlation ρd decreases; similarly, for a fixed

umber of neighbours k , as the distance d increases then the cor-

elation ρd also decreases. This all agrees with expected behaviour

rom Eq. (13) . 

Next, we compare our approximations to the results of stochas-

ic simulations for k = 2 , 4 ( Fig. 6 ), where stochastic simulations

re performed on the D -truncated k -regular tree network and D =
 , 3 for k = 2 , 4 , respectively. For all combinations of k and d there

s close agreement between the MVN correlation and stochastic

imulations, which justifies our use of the MVN moment closure

pproximation; we can show that increasing D further does not

ignificantly change the correlations in the system (Supplementary

nformation, Figure S2). There is also little difference between the

VN correlation and our approximation (that is, 	(1) is small) and

o approximating the MVN correlation by Eq. (13) is reasonable. 
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Fig. 6. Comparing the MVN correlation ρd and our approximation to stochastic simulations for a measles-like endemic disease in the UK in T populations arranged on the 

D -truncated k -regular tree network ( N = 10 5 , μ = 5 . 5 × 10 −5 , β = 17 / 13 , ε = 5 . 5 × 10 −5 , γ = 1 / 13 ). The coupling between interacting populations is σ ∈ [0, 1/ k ]. The stochastic 

process is simulated on the D -truncated k -regular tree network, with D = 5 and D = 3 for k = 2 , 4 , respectively. The process is simulated over a 200 year period using the 

Gillespie algorithm, with a burn-in period of 50 years, and generate 100 realisations of the process for each value of σ . The correlation is calculated as a time-weighted 

Pearson correlation coefficient for 50 ≤ t ≤ 200; error bars represent ± 2 standard deviations. 

Fig. 7. The star network on (a) P = 3 and (b) P = 5 populations. The coupling between any pair of neighbouring populations is σ ∈ [0 , 1 / (P − 1)] and so the within-population 

coupling is 1 − (P − 1) σ for the hub population and 1 − σ for any leaf population. 

 

 

 

 

 

c

σ  

 

3.3. The star network 

3.3.1. Network definition and notation 

Finally, we consider the star network on P subpopulations,

where there is a central ‘hub’ subpopulation (labelled as subpop-

ulation 1) and k = P − 1 ‘leaf’ populations; there is no direct in-

teraction between the leaf populations. A visualisation of the star

network for P = 3 and P = 5 subpopulations is given in Fig. 7 . The
 t  
oupling matrix � = (σi j ) is defined as 

i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − kσ, for i = j = 1 

1 − σ, for i = j 	 = 1 

σ, for i = 1 , j 	 = 1 and i 	 = 1 , j = 1 

0 , otherwise. 

(14)

Unlike the complete network and the k -regular tree network,

he expected behaviour of the stochastic process is not the same



S.R. Meakin and M.J. Keeling / Journal of Theoretical Biology 483 (2019) 109991 9 

w  

s  

h  

fi  

p  

p  

t  

d  

p  

p

C

C

F  

w  

l  

C

C

 

s  

b  

w  

p  

f  

n

3

 

t  

h  

p

ρ

a  

t

ρ

W  

s

ρ

ρ

w

ξ

ξ

a

	

	

W  

C  

S  

f  

e

ρ

ρ

3

 

s  

w

a  

f  

n  

b  

o  

k

a

 

t  

a  

s  

s  

b

a

3

 

t  

t  

h  

P  

w  

i  

M  

k

 

s  

o  

c  

o  

d  

h  

t  

n

 

ithin and between all subpopulations. This is because the hub

ubpopulation has k neighbours, whereas each leaf subpopulation

as only one neighbour. However, we can still make some simpli-

cations to the notation: the expected behaviour of the infection

rocess is the same within any leaf subpopulation, or between any

air of leaf subpopulations, or between a leaf subpopulation and

he hub subpopulation. We can therefore simplify our notation to

istinguish between hub and leaf subpopulations. For the within-

opulation moments, the superscript indicates whether the sub-

opulation is a hub ( H ) or a leaf ( L ) subpopulation: 

X̄ H = E [ X 1 ] 

X̄ L = E [ X i ] , i = 2 , . . . , P 

 

H 
XY = cov (X 1 , Y 1 ) 

 

L 
XY = cov (X i , Y i ) , i = 2 , . . . , P. 

or the between-population moments, the superscript indicates

hether one of the subpopulation is a hub ( H ) or if they are both

eaf subpopulations ( L ); for ˆ C S i I j we distinguish between 

ˆ C S 1 I i and

ˆ 
 S i I 1 

: 

ˆ C H XX = cov (X 1 , X i ) , i = 2 , . . . , P 

ˆ C L XX = cov (X i , X j ) , i, j = 2 , . . . , P, i 	 = j 

ˆ 
 X H Y L = cov (X 1 , Y i ) , i = 2 , . . . , P. 

Using the second-order moment closure approximation, the

tochastic process on the star network for P subpopulations can

e approximated by a set of seventeen ODEs: ten equations for the

ithin-population moments, and seven equations for the between-

opulation moments. These can be found in the Supplementary In-

ormation. We use these equations in both the analytic and the

umerical results. 

.3.2. Analytic results 

For P identical subpopulations on the star network, we define

he correlation between the number of infected individuals in the

ub population and the number of infected individuals in a leaf

opulation as 

H = 

ˆ C H∗
II √ 

C H∗
II 

C L ∗
II 

, 

nd the correlation between the number of infected individuals in

wo leaf subpopulations as 

L = 

ˆ C L ∗II 

C L ∗
II 

. 

e can show that ρH and ρL are solution to the following pair of

imultaneous equations: 

H = 

√ 

C H∗
II 

C L ∗
II 

σ
S ∗

H 

S ∗
L 
(ξH + kσ ) + ξL + σ

+ 

√ 

C L ∗
II 

C H∗
II 

σ

ξH + kσ + 

S ∗
L 

S ∗
H 
(ξL + σ ) 

× (1 − (k − 1) ρL ) + 	H (15) 

L = 

√ 

C H∗
II 

C L ∗
II 

σ

ξL + σ
ρH + 	L , (16) 

here 

H = 

N(γ + μ) − β S̄ ∗H 
β S̄ ∗

H 

, (17) 

L = 

N(γ + μ) − β S̄ ∗L 
β S̄ ∗

(18) 

L a  
nd 

H = 

β(1 − kσ ) ̄I ∗H + kβσ Ī ∗L + Nε

2 N(γ + μ) − β(1 − kσ ) ̄S ∗
H 

− β(1 − σ ) ̄S ∗
L 

ˆ C S H I L √ 

C H∗
II 

C L ∗
II 

+ 

β(1 − σ ) ̄I ∗L + βσ Ī ∗H + Nε

2 N(γ + μ) − β(1 − kσ ) ̄S ∗
H 

− β(1 − σ ) ̄S ∗
L 

ˆ C S L I H √ 

C H∗
II 

C L ∗
II 

(19) 

L = 

β(1 − σ ) ̄I ∗L + βσ Ī ∗H + Nε

N(γ + μ) − β(1 − σ ) ̄S ∗
L 

ˆ C L SI 

C L 
II 

. (20) 

e derive this result by taking the moment equation for ˆ C H II and

ˆ 
 

L 
II 

at equilibrium; full details of this derivation can be found in the

upplementary Information. Moreover, if 	H , 	L 
 1 then we can

urther simplify this result to the following pair of simultaneous

quations: 

H ≈
√ 

C H∗
II 

C L ∗
II 

σ
S ∗

H 

S ∗
L 
(ξH + kσ ) + ξL + σ

+ 

√ 

C L ∗
II 

C H∗
II 

σ

ξH + kσ + 

S ∗
L 

S ∗
H 
(ξL + σ ) 

× (1 − (k − 1) ρL ) (21) 

L ≈
√ 

C H∗
II 

C L ∗
II 

σ

ξL + σ
ρH . (22) 

.3.3. Numerical results 

We first numerically evaluate the effect of the number of leaf

ubpopulations k on the correlations ρH and ρL ( Fig. 8 ). Firstly,

e note that, as with the complete and tree network, both ρH 

nd ρL exhibit a sigmoidal shape, increasing from zero correlation

rom very low coupling. Secondly, the correlation between two leaf

odes is lower than between the hub and a leaf node; this is to

e expected, as the leaf nodes are not directly connected to each

ther. Finally for a given coupling σ as the number of neighbours

 increases then the correlation decreases; this holds for both ρH 

nd ρL . 

Next, we compare the MVN correlation and our approximation

o the results of stochastic simulations ( Fig. 9 ). Firstly, we observe

 close agreement between the MVN correlation and the stochastic

imulations, which suggests that our use of the MVN moment clo-

ure approximation is justified. Secondly, there is little difference

etween the MVN correlation and our approximation (that is, 	H 

nd 	L are small), and so our approximation is reasonable. 

.4. Comparison of networks 

We now compare our approximations to the correlation be-

ween the number of infected individuals in adjacent subpopula-

ions for all three networks ( Fig. 10 ). All networks are chosen to

ave the same k external connections: the complete network with

 = k + 1 populations, the k -regular tree network, and the star net-

ork with P = k + 1 populations. We observe that the correlation

s highest in the complete network and lowest in the tree network.

oreover, the difference between the approximations increases as

 increases. 

We attribute this behaviour to the total number of neighbour

ubpopulations that the two focal subpopulations have, how many

f those neighbours are common neighbours, and whether these

ommon neighbours interact. As the total number of neighbours

f each member of the focal pair increases then the correlation

ecreases; for a given total number of neighbours the correlation is

igher when more of these neighbours are common between the

wo focal subpopulations, and is higher yet when these common

eighbours also interact with each other. 

For a given k , two focal subpopulations in the complete network

nd the star network both have a total of k − 1 subpopulations. In
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Fig. 8. The effect of the number of leaf subpopulations k in the star network on the correlation between the number of infected individuals in the hub and a leaf population, 

ρH (left), and two leaf populations, ρL (right). Parameter values represent a measles-like endemic disease in the UK ( N = 10 5 , μ = 5 . 5 × 10 −5 , R 0 = 17 , ε = 5 . 5 × 10 −5 , 

γ = 1 / 13 ). These values are calculated from the system of ODEs given in the Supplementary Information. 

Fig. 9. Comparing the analytic correlation, ρH and ρL , and our approximation to stochastic simulations for a measles-like endemic disease in the UK in P + 1 populations 

arranged on the star network ( N = 10 5 , μ = 5 . 5 × 10 −5 , β = 17 / 13 , ε = 5 . 5 × 10 −5 , γ = 1 / 13 ). The between-population coupling is fixed as σ ∈ [0, 1] and within-population 

coupling is therefore 1 − σ in the hub population and 1 − σ in any leaf population. The stochastic process is simulated over a 200 year period using the Gillespie algorithm, 

with a burn-in period of 50 years, and generate 10 0 0 realisations of the process for each value of σ . The correlation is calculated as a time-weighted Pearson correlation 

coefficient for 50 ≤ t ≤ 200; error bars represent ± 2 standard deviations. 

 

 

 

 

 

 

 

 

 

4

 

m  

e  

d  

d  

v  

w  

v  
the star network, none of these subpopulations are common neigh-

bours of the two focal subpopulations; however, in the complete

network, all these subpopulations are common neighbours and all

the common neighbours interact with each other, hence the corre-

lation in the star network is lower than in the complete network.

For the same k , two focal subpopulations in the k -regular tree net-

work have twice the total number of neighbours compared to the

star network and none of these neighbours are common neigh-

bours for either network. As a result, the correlation is lower in

the tree network than in the star network. 
. Discussion 

A limitation of metapopulation models in epidemiological

odelling is now to infer the coupling between subpopulations:

xisting models do not accurately describe human mobility in

eveloping countries, such as Sub-Saharan Africa, and sufficiently

etailed data on human mobility are often lacking. This work pro-

ides insight into the effect of coupling and metapopulation net-

ork structure on endemic disease dynamics, and continues to de-

elop a method for inferring the coupling between subpopulations
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Fig. 10. Comparison of our approximation to the correlation between a pair of adjacent populations in the complete network with P = k + 1 populations, the k -regular tree 

network and the star network with P = k + 1 populations. 
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n metapopulation models using disease prevalence data. We

erive an approximation for the correlation ρ between the num-

er of infected individuals in a given pair of subpopulations in

ertain network structures as a function of the coupling parameter

. This provides a one-to-one mapping between the observable

orrelation ρ and the unknown coupling σ . 

Our results extend the analysis of Meakin and Keel-

ng (2018) from a simple two-population system to multiple

opulations arranged on a complete network, a k -regular tree net-

ork and a star network. Although we consider highly symmetric

etapopulation networks, increased network complexity signif-

cantly reduces the analytic tractability of the model, compared

o the two-population system. An alternative analytic relationship

etween the coupling and correlation has previously been derived

or more general networks ( Rozhnova et al., 2012 ); however, we

elieve that our results provide greater intuition and analytical

raction. 

In addition, these results improve our understanding of how

etapopulation network structure affects endemic disease dy-

amics in the metapopulation as a whole, complementing exist-

ng research on epidemic diseases in metapopulation networks

 Barthélemy et al., 2010; Lahodny and Allen, 2013; Wang and Wu,

018; Yan et al., 2018 ). We find that network distance between

ubpopulations and network structure are key drivers of the cor-

elation, although, surprisingly, in the complete network the cor-

elation between any pair of subpopulations is independent of the

otal number of subpopulations. We hypothesise that the correla-

ion between two given subpopulations is driven by the number

f neighbour subpopulations they both have, how many of these

eighbours are shared between both subpopulations, and interac-

ions between the neighbours. 

We propose that disease prevalence data could be used to infer

he underlying coupling from observed correlations between sub-

opulations in a metapopulation model. Our results provide insight

nto the effect of metapopulation network structure on endemic

isease dynamics, but further work is required before it may be

mplemented in a real world setting. It would be useful to extend

he results presented here to more realistic models of infectious

isease dynamics, such as to include additional compartments or

 seasonal component. This analysis could then be used to under-

tand how the proposed method is affected by other mechanisms

hat contribute to temporally resolved correlation. The simple net-

ork structures we consider here do not fully capture the ob-

erved characteristics of real-world spatial networks, such as het-

rogeneous population size, degree or edge weight ( Guimerà et al.,

0 05; Colizza et al., 20 06 ). A natural extension of the our cur-

ent results is to allow heterogeneity in the epidemic parameters

r metapopulation network structure, although we have previously

howed that heterogeneous population sizes significantly impact

he tractability of the results ( Meakin and Keeling, 2018 ). In this

ase, a simulation-based study may be useful to determine how
 e
he correlation between two focal subpopulations is affected by

heir neighbours, their neighbours’ neighbours and possible inter-

ctions between neighbours. This will allow us to elucidate which

re the most important drivers of network correlations and overall

ndemic disease dynamics. There are additional practical questions

hat should be considered before it may be applied in a real world

etting, such as: how much disease incidence data must be ob-

erved before accurate estimates of the correlation, and hence cou-

ling, can be made; and whether the full metapopulation network

tructure needs to be known, as in reality this is typically not the

ase. These extensions will move the results outlined here further

owards a method for inferring coupling from correlations between

ubpopulations, thus addressing a key challenge of metapopulation

odelling. 

. Conclusion 

A limitation of metapopulation models in epidemiological mod-

lling is how to infer the coupling between subpopulations. In

his paper we relate the correlation between the number of in-

ected individuals in two populations as a function of the cou-

ling, considering systems of multiple identical interacting popula-

ions on highly-symmetric complex networks. Our results provide

nsight into the effect of metapopulation network structure on en-

emic disease dynamics and provides the next step in developing

 method for inferring coupling between subpopulations using dis-

ase prevalence data. 
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