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Abstract

Non-ignorable missing data poses key challenges for estimating treatment effects because the
substantive model may not be identifiable without imposing further assumptions. For example,
the Heckman selection model has been widely used for handling non-ignorable missing data but
requires the study to make correct assumptions, both about the joint distribution of the missing-
ness and outcome and that there is a valid exclusion restriction. Recent studies have revisited how
alternative selection model approaches, for example estimated by multiple imputation (MI) and
maximum likelihood, relate to Heckman-type approaches in addressing the first hurdle. However,
the extent to which these different selection models rely on the exclusion restriction assumption
with non-ignorable missing data is unclear.
Motivated by an interventional study (REFLUX) with non-ignorable missing outcome data in
half of the sample, this paper critically examines the role of the exclusion restriction in Heck-
man, MI and full-likelihood selection models when addressing non-ignorability. We explore the
implications of the different methodological choices concerning the exclusion restriction for rel-
ative bias and root-mean-squared error in estimating treatment effects. We find that the relative
performance of the methods differs in practically important ways according to the relevance and
strength of the exclusion restriction. The full-likelihood approach is less sensitive to alternative
assumptions about the exclusion restriction than Heckman-type models and appears an appropri-
ate method for handling non-ignorable missing data. We illustrate the implications of method
choice for inference in the REFLUX study, which evaluates the effect of laparoscopic surgery on
long-term quality of life for patients with gastro-oseophageal reflux disease.
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1 Introduction

Common approaches taken to handling missing data, such as inverse probability weighting and mul-

tiple imputation, assume that the reasons for the missing data are independent of unobserved values,

conditional on the observed data. Under this assumption, the missing data mechanism can be said to

be missing at random (MAR) or ignorable. Once we establish that the probability of observing the

data is independent of missing values, and assuming that the model for the observed data is correctly

specified, the functional form of the missing mechanism can be ‘ignored’ when making inferences

from the observed data. However, in many cases, the reasons for the missing data are likely to be

associated with unobserved values. In such cases, the missingness mechanism is said to be missing

not at random (MNAR) or non-ignorable and must be modelled together with the substantive model

for the observed data.

Non-ignorable missing data is of particular concern in the evaluation of treatment effects because

non-response is often associated with the underlying unobserved values of the outcome of interest

and tends to differ by treatment group1,2,3. This problem is illustrated in the REFLUX study, which

evaluated the average treatment effect of laparoscopic surgery (versus usual medical management) for

treating patients with gastro-oesophageal reflux disease that adversely affects their well-being. The

primary outcome of interest was the patient-reported health-related quality of life (HRQL), measured

using the EQ-5D-3L questionnaire, but this was missing for about half of the patients. MNAR was a

major concern in this study because the chances of completing the HRQL questionnaire were likely

to be related to patient’s (unobserved) health status and treatment assignment, after adjusting for the

observed data. For example, patients whose outcomes did not improve following medical manage-

ment (control group) were anticipated to be more likely to drop out of the study or fail to return the

health questionnaire. Failure to take into account the contextually plausible missing data mechanism

may have resulted in misleading inferences about the treatment effect.

One of the most commonly used approaches to handle non-ignorable missing data in health and

social sciences is the Heckman selection model4. As with other selection models, Heckman’s ap-

proach addresses MNAR data by jointly modelling the outcome and missingness models, and typi-

cally assuming these are drawn from a bivariate Normal distribution. To avoid some of the problems

of direct likelihood maximisation, Heckman proposed a 2-stage least-squares estimation procedure.

This involves combining a probit model for the probability of observing the outcome (1st stage) with
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a linear regression model for the outcome (2nd stage), which is a function of the estimates obtained in

the 1st stage. An alternative estimating approach to selection models is to use a single-step full max-

imum likelihood to jointly estimate the outcome and missing data models. For example, Diggle and

Kenward5 combined a marginal model for the outcome with a logistic regression for the missing data

mechanism, allowing the latter to be a function of the unobserved outcome. This approach requires

some form of integration over the unobserved outcomes. The study used the Nelder-Mead optimi-

sation algorithm, but in practice such selection models are often estimated by MCMC techniques in

a Bayesian framework 6. Alternatively, multiple imputation (MI) has been widely recommended for

addressing missing data, and it has been recently advocated for handling MNAR mechanisms7. Es-

sentially, MI imputes a set of plausible values for each missing observation, which are drawn from

the posterior distribution of the missing values given the observed data. To handle MNAR, the im-

puted values can be drawn from a selection model, such as the Heckman model, to recognise that the

missing data may be related to unobserved values.

Non-ignorable missing data poses key challenges for drawing statistical inferences, because the

model of interest is typically not identifiable without imposing further assumptions. For example,

while a model for the joint distribution of non-response and the partially-observed outcome is re-

quired, the ‘true’ form of the model is typically unknown. Alternative parametric, semi-parametric

and non-parametric methods for dealing with this challenge have been subject to extensive debate in

the last two decades8,9,10,11. Another important assumption that is general to the alternative selection

approaches, relates to the exclusion restriction. In this context, a valid exclusion restriction requires

the presence of variables that are both predictive of non-response and conditionally independent of the

partially-observed outcome. In our motivating example, this would require identifying variables that

helped explain questionnaire non-response but were unrelated to patient’s health status conditional

on their characteristics. The key concern is that these variables may be associated with unobserved

prognostic factors that predict both non-response and outcome, i.e the exclusion restriction is gen-

erally untestable1. With the Heckman approach it is generally recommended that at least one such

variable is included in the selection model to help identification13,14. However, it is unclear whether

the relative performance of this approach depends on the strength of association between these vari-

ables and non-response. More generally, the extent to which alternative selection approaches rely on

1Mohan and Pearl12 have shown that at least independence between Z and Y is testable if Z is fully observed and Y
has missing values, which is not the same as showing the exclusion restriction is testable, but at least intuitively it would
appear that the conditional independence assumption is testable but requires information for every strata of X .
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the exclusion restriction is not well understood, and has received little attention in the development of

methods for handling MNAR data15.

The aim of this paper is to investigate the role of the exclusion restriction in Heckman, MI and full-

likelihood selection models across a range of typical MNAR mechanisms. In doing so, the paper seeks

to clarify the implications of differences in the way this assumption is formulated across alternative

methods used to estimate treatment effectiveness. For the purposes of this study, we focused on the

MNAR problem in which a variable causes its own missingness; this is sometimes called self-masking

missingness. The plan for the remainder of the paper is as follows. In section 2 we describe our

motivating example. Section 3 describes each method for estimating selection models and clarifies

the underlying exclusion restriction. Section 4 presents the design and results of a simulation study

that evaluates the relative merits of the alternative methods across different MNAR settings. Section

5 reports the results from applying the methods to the case-study, and Section 7 discusses the findings

and provides directions for further research.

2 Motivating example

Gastro-Oseophageal Reflux Disease (GORD) develops when reflux of the stomach acid causes trou-

blesome symptoms or complications which adversely affect patients’ well-being. About 20-30% of

adult ‘Western’ populations experience heartburn or reflux intermittently, and these patients are often

treated with Proton Pump Inhibitors (PPIs) to suppress acid reflux. While PPIs are effective, there

is the concern that long-term acid suppression with PPIs may be associated with increased risk of

chronic hypergastrinaemia and gastric cancer. An alternative to long-term medication is to have la-

paroscopic surgery, which is a minimally invasive procedure but carries some risk of side effects.

Previous studies comparing these interventions suggested that laparoscopic surgery is associated with

better health-related quality of life (HRQL) compared to medical management16. However, in all

these studies HRQL responses were missing for a large proportion of the patients, and the key con-

cern was that the relative effectiveness of laparoscopic surgery compared to medical management

may be sensitive to alternative assumptions about the missing data.

Our study is motivated by the REFLUX study, which compares these interventions for treating

patients with GORD in the UK, and illustrates the challenges of drawing inferences from the analysis

of patient-reported outcome measures (PROMs) when data are liable to be MNAR2,17. The REFLUX
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study included two components (full details in16): a randomised controlled trial in which patients

were randomised to surgery and medical management, and a non-randomised study which contrasted

those patients who did not wish to be randomised, and were assigned to a policy either of surgery

or medical management according to their preferences. Our study focused on the non-randomised

comparison as the patients who did not want to be randomised are likely to be more typical of those

patients with GORD in routine clinical practice. For example, current NICE guidelines for the man-

agement of GORD recommend providing GORD treatment according to patient preferences. The

non-randomised study included 261 patients in the group with a preference for surgery and 192 in the

group with a preference for medical management. Self-reported HRQL was measured at baseline, 3

months and then annually up to 5 years, using the EQ-5D-3L questionnaire18. The HRQL endpoint

was then combined with survival to report quality-adjusted life-years (QALYs) at 5 years. The pa-

rameter of interest was the treatment effect of surgery on the QALY, which had a causal interpretation

under the ‘no unobserved confounding’ assumption.

A significant proportion of patients failed to complete the EQ-5D-3L questionnaire (Table 1).

This proportion increased over time, resulting in missing 5-year QALYs for 55% (106 out of 192) of

patients in the medical management group and 48% (125 out of 261) in the surgery group. Baseline

covariate information was mostly complete. Among the complete cases in the surgery group, average

EQ-5D-3L increased rapidly in the first 3 months after the operation (0.68 to 0.80) but then remained

very similar up to 5 years. For the medical management group, average EQ-5D-3L decreased slightly

up to 2 years and then increased in the last 3 years of follow-up. Five years after the intervention,

complete cases in the surgery group had, on average, slightly higher QALYs compared to that in the

medical management group (unadjusted differences). A key concern to the study investigators was

whether the increase in mean EQ-5D-3L in the latest part of the follow up for the control group was

driven by the fact that patients in worse health might have dropped out of the study.

Table 2 provides a description of the main baseline covariates and their association with the miss-

ingness indicator (R). One set of baseline variables (X) were imbalanced between the comparison

groups, and another set of variables (Z) were predictive of the missingness, but were assumed to be

conditionally independent of the outcome. That is, these variables (Z) were assumed to meet the

criteria for the exclusion restriction. The probability of whether or not a patient had missing outcome

was positively (and significantly) associated with both clinical (physical symptom score, previous

5



Table 1: Mean (SD) health-related quality of life (measured as EQ-5D-3L) over time and quality-adjusted life years
(QALYs) by intervention group.

Medical management Surgery
(N=192) (N=261)

Complete data, N (%) Mean (SD) Complete data, N (%) Mean (SD)
EQ-5D-3L

Baseline 186 (97%) 0.750 (0.22) 253 (97%) 0.682 (0.26)
3 months 181 (94%) 0.763 (0.23) 232 (89%) 0.806 (0.25)
Year 1 181 (94%) 0.740 (0.25) 232 (89%) 0.791 (0.26)
Year 2 156 (81%) 0.736 (0.24) 203 (78%) 0.796 (0.26)
Year 3 159 (83%) 0.763 (0.23) 196 (75%) 0.803 (0.25)
Year 4 142 (74%) 0.773 (0.21) 168 (64%) 0.806 (0.25)
Year 5 136 (71%) 0.794 (0.21) 176 (67%) 0.800 (0.25)

QALY (5-year) 106 (55%) 3.594 (0.83) 125 (48%) 3.777 (0.94)
Notes: The EQ-5D-3L is a health-related quality of life measure anchored on a scale that includes 0 (death) and
1 (perfect health)

gastro-oseophageal hernia) and socio-demographic (age, education) baseline characteristics.

The validity of the exclusion restriction cannot generally be tested from the data, but can be

supported or refuted by external evidence, for example from expert opinion. In the REFLUX study,

the clinical investigators suggested that the number of patients recruited (centre size), and the patient’s

general views about medicine might well be conditionally independent of the patient’s health status,

conditional on the observed data (e.g. patient characteristics). For example, hospitals with higher

recruitment rates were anticipated to be more actively engaged in data collection (e.g. by reminding

patients to return questionnaires). Each of the centres were experienced in providing both surgery and

medical management to patients with GORD, and so there was no obvious concern that the number

recruited would have a direct effect on health status. In addition, the outcome was not expected

to have a direct effect on the exclusion restriction variables (reverse causality). Hence, while the

‘conditional independence’ assumption could not be tested, expert opinion did support this criterion

for the exclusion restriction.

However, Table 2 also suggests that the association between these variables and non-response was

relatively low (not statistically significant at 5% level). This raises a pertinent question that we sought

to address in this study: whether the relative merits of alternative selection models differ according

to the strength of association between the exclusion restriction variables and non-response, that is the

extent to which the relevance assumption is met (see section 3.1 below). Using the REFLUX study,

we then illustrate whether inferences about the effectiveness of laparoscopic surgery versus medical

management are sensitive to the choice of selection model, and the extent to which it relies on the

6



exclusion restriction.

3 Methods

3.1 The exclusion restriction

Let Y1i be a continuous outcome for individual i, and Ri an indicator of whether Y1i is observed

(Ri = 1) or missing (Ri = 0). Let Y2i be a continuous latent variable representing the missingness

process, whereby Ri equals to 1 if Y2i > 0, and 0 otherwise. In addition, let X1i be the set of

prognostic variables, and X2i the set of variables that predict missingness (selection), as described

below

Y1i = β1X1i + e1i

Y2i = β2X2i + e2i

Ri =


1, if Y2i > 0.

0, if Y2i ≤ 0.

(1)

where β1 and β2 are the vector of regression coefficients in the outcome (Y1) and missingness (Y2)

models, respectively. Now assume thatX2i includes the prognostic variables (X1i) and other variables

Zi, such that X2i = (X1i, Zi). Then Zi is a valid exclusion restriction if it satisfies:

1. cov(Zi, Y1i|X1i) = 0 (conditional independence assumption). Zi does not either have a direct

effect on Y1i, or any effect through omitted variables. Any reverse effect of Y1i on Zi must also

be ruled out.

2. cov(Zi, Y2i|X1i) 6= 0 (relevance assumption). Zi must independently predict Y2i.

An invalid exclusion restriction may arise if either the conditional independence assumption or

the relevance assumption (or both) are not met. For the purposes of the simulation study, we assumed

that the conditional independence assumption was met. We assessed the relative performance of the

methods according to whether or not the relevance assumption was met, and according to alternative

strengths of the exclusion restriction. Within the REFLUX case study we critically assessed the

plausibility of both assumptions.

3.2 Heckman’s 2-step approach

The Heckman selection model4 allows for the non-ignorable missing data by jointly estimating Y1

and Y2, typically assuming that these follow a bivariate Normal distribution,
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Table 2: Descriptive statistics of the baseline prognostic factors, the exclusion restriction variables, and their correlation with
the missingness indicator (R).
Variable Medical Surgery Standardised Correlation

management difference with R†

(N=192) (N=261) (%)
Baseline prognostic factors

Male 111 (58%) 170 (65%) 15.1 0.06
Age 49.9 (11.8) 44.4 (12.0) 45.9 0.18***
BMI (kg/m2) 27.4 (4.1) 27.7 (3.9) 7.5 -0.05
REFLUX quality-of-life 76.1 (19.8) 55.9 (22.8) 94.7 0.06
Baseline EQ-5D-3L 0.75 (0.22) 0.68 (0.26) 27.5 0.06
Heart burn score 72.2 (20.9) 49.4 (24.2) 101 0.08
Gastro 1 symptom score 59.3 (22.2) 47.2 (21.1) 55.8 0.06
Gastro 2 symptom score 82.9 (17.5) 75.9 (21.7) 35.3 -0.01
Nausea symptom score 89.4 (13.5) 77.0 (19.7) 73.8 0.12
Activity symptom score 86.6 (12.8) 74.5 (15.9) 83.4 0.02**
Previous hiatus hernia 73 (38%) 76 (29%) 18.9 -0.09**
Smoker 39 (20%) 71 (27%) 16.2 0.1
Asthma 36 (19%) 30 (11%) 20.4 -0.04
Duration of REFLUX symptoms (days) 45.9 (53.7) 55.9 (67.3) 16.4 -0.03
Employment status 0.01

Full-time 101 (53%) 171 (66%) 26.5
Part-time 20 (10%) 35 (13%) 9.3

School leaving age 0.10**
16 year or younger 107 (56%) 154 (59%) 6.6
20 years or older 40 (21%) 44 (17%) 10.2

Exclusion restriction variables
Centre size‡ 27.1 (10.7) 27.7 (9.4) 6.2 0.09*
General views about medicine

Doctors use too many medicines 32 (17%) 61 (23%) 16.8 0.03
People should pause treatments 42 (22%) 76 (29%) 16.7 -0.01
Medicines are addictive 22 (11%) 39 (15%) 10.3 -0.07*
Natural remedies are safer 30 (16%) 38 (15%) 3 0.07
Medicines do more harm than good 4 (2%) 5 (2%) 1.1 -0.02
All medicines are poisons 13 (7%) 7 (3%) 19.3 -0.03
Doctors trust medicines too much 26 (14%) 51 (20%) 16.2 0.09*
Doctors should spend more time
with patients 69 (36%) 94 (36%) 0.2 0.06

Notes: Continuous covariates reported as Mean (SD) and binary covariates as N (%). Belief variables are dichotomised:
1 if patient agrees or strongly agrees with the statement, 0 otherwise.
‡ Number of patients recruited per centre within the non-randomised study. † Pearson correlation coefficient. Statistical
significance is based on the corresponding coefficients from the logistic model: *p<0.1, **p<0.05 ***p<0.001
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e1i

e2i

 ∼ N


0

0

 ,

σ2
1 ρσ1σ2

σ2
2


 (2)

To help model estimation, the variance of the latent variable (σ2
2) is set to 1. The correlation pa-

rameter (ρ) governs the strength of the MNAR mechanism. Under bivariate Normality, the conditional

mean for the observed Y1, given X1 and X2, can be expressed as:

E(Y1i|X1i, Y2i > 0) = β1X1i + ρσ1λi, λi =
φ(β2X2i)

Φ(β2X2i)
(3)

Where λ is denoted as the inverse Mills ratio, φ is the standard Normal density and Φ is the stan-

dard Normal cumulative distribution function. To estimate the parameters of interest (β), Heckman

proposed a two-step estimation approach4:

1. Regress Y2 on X2 by applying a probit model to the full sample to obtain estimates of β̂2 and

construct λ̂i.

2. Estimate parameters of interest (e.g. β̂1) by applying a linear regression model on the observed

sample:

Y1i = β1X1i + βλλ̂i + e1i.

The 2-step approach allows a direct test as to whether the data are MNAR (i.e. whether βλ 6= 0).

However, it should be noted that the validity of this test relies heavily on the parametric assumptions

underlying both the substantive and missing data models (e.g. linearity and Normality). We will

illustrate this in section 6. In addition, given that λ is estimated rather than known in step 2), e1i will

be heteroscedastic, and estimates of σ̂2
1 will not be valid. Heckman proposed the following consistent

variance estimator:

V ar(e1i|X1i, Y2i > 0) = σ2
1(1− ρ2(λ2

i + β2X2iλi)) (4)

In settings where all the variables in X2 are predictive of Y1 (i.e. X2 and X1 are the same), we

say that the ‘exclusion restriction’ is not met. In this case, equation (3) depends critically on the non-

linear form of the inverse Mills ratio (λ). As λi(β2X2) is approximately linear, this tends to cause

collinearity issues13. To provide stable, precise estimates, the 2-step estimator in practice requires

that X2 includes at least one variable, Z, that predicts Y2 but is conditionally independent of Y1 given

X1
14.
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3.3 Full maximum likelihood approach

An equivalent way of specifying the selection model is to directly include the outcome in the selection

equation (see full derivation in Appendix A of the Online Supplementary Material):

Pr(Y2i > 0|X1i, X2i, Y1i) = Φ(β2X2i + βyY1i) (5)

Given that Y1 is partially observed, we cannot directly estimate model (5) from the data by max-

imum likelihood. Full likelihood approaches will typically require this model to be jointly estimated

with the outcome model. At this point, we should note that instead of a probit function, one can

equally combine a logistic regression for the Y2 with a marginal regression model for Y1
5.

We now write the log likelihood function, which is a combination of the joint probability of Y1 and

Y2 > 0, with the marginal probability that Y2 ≤ 0 (further details are provided in Appendix B,

Supplementary Material):

log L (β1 , β2 , σ1 , ρ) =
∑
Y2≤0

log [1 − Φ (β2X2i)]+

∑
Y2>0

[
− log σ1 + log φ

(Y1i − β1X1i

σ1

)
+ log Φ

(
β2X2i + ρ

σ1
(Y1i − β1X1i)√

1− ρ2

)] (6)

where φ and Φ are defined above. Recommendations for maximum likelihood estimators suggest

that the joint model includes those variables that are associated with the outcome, even if these are not

independent predictors of the missing data14. However, the role that variables that are not predictive

of the outcome (such as Zi) play in the selection model in unclear19,14. We investigate this issue in

our simulation study.

3.4 Multiple imputation based on Heckman’s 2-step approach

While multiple imputation (MI) is a recommended approach for handling missing data in many set-

tings, it typically relies on the validity of the MAR assumption20. In this section, we introduce an

imputation model based on the Heckman’s selection model that allows for MNAR mechanisms that

are compatible with the Heckman model7. This approach uses predictions from Heckman’s first step

(probit model) to develop the imputation model. In other words, the imputed values are drawn from

the posterior conditional distribution of missing values given the observed data, and the unobserved
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determinants of missingness via the inverse Mills ratio:

Y miss
1i ∼ N

(
β1X1i + βλλ

′

i, σ
2
e

)
(7)

where λ′
i = −φ (β2X2i)

1−Φ (β2X2i)
is the inverse Mills ratio derived from the conditional expectation of

Y2i ≤ 0. The main steps of the imputation are as follows:

1. Fit a probit model to Y2i (Heckman’s approach, step 1) and compute λ̂′
i = −φ (β̂2X2i)

1−Φ (β̂2X2i)

2. Fit a OLS regression to the observed Y1i (Heckman’s approach, step 2) to estimate β̂1, β̂λ and

σ̂e

3. Compute Bayesian posterior draws for β∗1 , β∗λ and σ∗e , in the standard way for MI with this

particular linear outcome model20 (page 77-89).

4. Draw e1 from N ∼ (0, σ2∗
e ).

5. For each missing observation (Y miss
1i ), impute Y ∗1 using model (7): Y ∗1i = β∗1X1i + β∗λλ̂

′
i + e∗.

6. Repeat steps 1) to 5) M times to obtain M imputed datasets.

Then for each imputed dataset, we fit the outcome model of interest, and the resultant estimates

(β̂1, σ̂e) can be combined using Rubin’s formulae21.

With standard MI, if X2 includes more variables than X1, this will improve the precision of the

estimates provided that these variables are predictive of the outcome19,22. However, the extent to

which this Heckman-based MI approach relies on the exclusion restriction, and more specifically

the relevance assumption, is unclear. We hypothesise that the this imputation approach may be less

reliant on the exclusion restriction compared to the original 2-step Heckman23, while being more

robust to departures from bivariate normality compared to the full maximum likelihood approach. We

now investigate the implications of the alternative exclusion restriction assumptions, for the bias and

efficiency in the estimates of treatment effectiveness following the alternative selection approaches.

4 Simulation study

4.1 Data-generating process

The data generating process was informed by our motivating example and previous empirical studies

24,25 in order to reflect a wide range of non-ignorable missing data settings that could arise in prac-
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tice. For example, we considered scenarios that differ according to MNAR mechanism, proportion

of missing data, strength of the exclusion restriction and distribution of the outcome data. Overall,

we simulated the joint model2 for outcome and missing data as a product of the corresponding condi-

tional and marginal models26,27.

Let Y be a partially observed continuous outcome, X a continuous prognostic factor, and Z a exclu-

sion restriction variable. These variables were defined as follows:

Z ∼ N(0, 1)

X ∼ N(0.2 + αZ, 1)

Y ∼ N(0.1 + 0.1X, 1)

(8)

We assumed the same model parameters in (8) across all scenarios, except α (see scenarios A to

B below). For simplicity, we assumed linear additive outcome models relating X to Y and Z to X

throughout. Throughout we assumed that the CIA assumption was met for the exclusion restriction

variable, i.e. Z is independent of Y conditional onX . The parameter of interest was the true treatment

effect represented by the effect of X on Y (true value is 0.1). To further investigate the role of

exclusion restriction assumption in settings with departures from the bivariate Normal distribution,

we have considered scenarios with a skewed (Gamma-distributed) outcome: Y ∼ G(µy = 0.1 +

0.1X, η), where the mean (µ) and skewness (η) are simple functions of the usual shape and scale

parameters.

Next we describe the framework to simulate the missing data. Let P (R = 1) denote the probability

that the response is missing. We simulated MNAR mechanisms as

probitP (R = 1|X,Z, Y ) = θ0 + θ1X + θ2Z + θ3Y (9)

where the probability of missingness may be a function of the outcome as well as the prognostic factor

and exclusion restriction. We fixed the value of θ1 so that the correlation of R with X was about 0.3.

We varied θ0 across scenarios to allow for different proportions of missing data. We have considered

a range of values fro θ2 and θ3 to reflect alternative strengths of association between R and Z, and

between R and Y , respectively, where θ2 = σR
σZ

√
ϕ2

1−ϕ2 and θ3 = σR
σY

√
ρ2

1−ρ2 . In the scenarios with

2We have also considered an alternative data generating process whereby outcome and missing data were simulated
directly from a joint distribution (e.g. bivariate normal). We found that this data generating approach resulted in similar
findings.
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Gamma outcome, θ3 = σR
µY

√
k ρ2

1−ρ2 , where k =
µ2Y
σ2
Y

is the shape parameter. Through this simulation

framework, we are able to control for: 1) the strength of MNAR by varying ρ; 2) the presence/absence

and strength of the exclusion restriction using θ2; and 3) the distributional assumptions by modifying

the marginal model; while maintaining a distinct conditional model that incorporates the exclusion

restriction.

We considered four broad MNAR mechanisms, described in Figure 1, which represented alter-

native forms of the exclusion restriction. Our starting point is that any of the proposed selection

approaches obtains formal identification from the normality assumption. MNAR 1 and 2 considered

scenarios with an invalid exclusion restriction (relevance assumption is not met, i.e. Z does not have

an independent effect on R), whereas MNAR 3 and 4 included possible settings with a valid exclu-

sion restriction (relevance assumption is met). Within each of these mechanisms, we considered four

distinct scenarios of increasing complexity:

• Scenario A: % missing data is ‘low’ (20%); correlation between Y and R is 0.2 (‘weak’

MNAR); and correlation between Z and X was 0.7.

• Scenario B: % missing data is ‘low’ (20%); correlation between Y and R is 0.4 (‘strong’

MNAR); and correlation between Z and X was 0.7.

• Scenario C: % missing data is ‘high’ (40%); correlation between Y and R is 0.4 (‘strong’

MNAR); and correlation between Z and X was 0.7.

• Scenario D: % missing data is ‘high’ (40%); correlation between Y and R is 0.4 (‘strong’

MNAR); and correlation between Z and X was 0.3.

Further, within the scenario MNAR4-D with a valid exclusion restriction we considered two

sub-scenarios: i) different associations between the Z and R to represent alternative strengths of

the exclusion restriction: ‘weak’ (cor(Z,R) = 0.1), ‘moderate’ (cor(Z,R) = 0.3) and ‘strong’

(cor(Z,R) = 0.5); and ii) scenarios with skewed outcome data, considering gamma distributed out-

come with increasing levels of the skewness parameter: 0.5 (slightly skewed), 1, 1.5, and 2 (extremely

skewed).

4.2 Implementation

This simulation study compared the following six approaches:

13



Figure 1: Different missing not at random (MNAR) mechanisms considered in the simulation study. Y
is missing, X and Z are fully observed.

1. Full-data analysis (True values): analysis before any data deletion (‘benchmark’ for the other

methods).

2. Complete-case analysis (CCA): analysis based on the individuals with complete outcome data

3. Standard MI assuming MAR (MI-MAR)

4. Standard 2-step Heckman selection model (HECK)

5. Multiple imputation based on the Heckman model (MI-H)

6. Full maximum likelihood selection model (FML)

For each scenario, we applied the methods to 1000 simulated datasets, each with 1000 individuals,

and compared the bias, root mean squared error (rMSE), and confidence interval (CI) coverage for

estimating the treatment effect, β1 in the following linear outcome model:

Y1i = β1X1i + e1i (10)

Standard MI (under MAR) was estimated using the chained-equations approach22 with 10 impu-

tations and 10 iterations between each imputation, and was implemented in R using themice package.

The algorithm to implement the MI based on the Heckman model is described in section 3.4 (R code

14



available from the corresponding author). After imputation, we applied the analysis model (10) to

each imputed dataset using the glm package in R. The standard two-step Heckman approach was

implemented using the sampleSelection package in R28. This packages produces Heckman’s con-

sistent variance estimator as per equation (4). The full maximum likelihood selection model was

estimated using MCMC methods29. We considered 50,000 MCMC iterations, after which conver-

gence was good for both regression coefficients and variance/covariance parameters (Gelman-Rubin

scale reduction factor was smaller than 1.1), and assumed vague priors throughout. This approach

was implemented in JAGS, which can be used via interface with R rjags package30.

5 Results

Table 3 shows results for scenarios where the probability of missingness depends only on the outcome

Y (MNAR1 in Figure 1). Both CCA and MI under MAR provided biased estimates and coverage

below the nominal level (95%) across all scenarios. In these scenarios, MI under MAR (MI-MAR)

performs similarly to CCA because both X and Z are not predictive of R.

The 2-step Heckman approach led to biased estimates (9-13% bias) and CIs that were too wide

(CI coverage around 0.99) across all MNAR 1 scenarios. The MI approach based on the Heckman

model (MI-Heckman) provided similar CI coverage but lower percent bias and rMSE compared to

the 2-step Heckman approach across these scenarios. The full maximum likelihood selection model

provided the lowest bias and rMSE, and CI coverage close to nominal levels.

Figure 2 shows the distribution of the parameter estimates of interest (β̂1) across the 1000 simu-

lations in MNAR 2 and MNAR 4 settings (results for the MNAR 3 setting are very similar to those

of MNAR 4, and are available in Appendix C, Supplementary Material). In MNAR 2 settings where

missing data is related to X and Y but not Z, both the 2-step Heckman model and the MI-Heckman

led to biased results and highly variable estimates, particularly for scenarios C and D, which in-

cluded large proportions of missing data. The full-likelihood selection model provided unbiased,

precise estimates across all MNAR 2 scenarios. In MNAR 4 scenarios with a valid exclusion re-

striction, all selection models provided unbiased results, although the full likelihood selection model

provided estimates that were slightly more precise, and hence provided the lowest rMSE (see Figure

3). The relative superior performance of the full likelihood approach was observed across alterna-

tive strengths of the exclusion restriction (full results in Appendix D, Supplementary Material). In

15



Table 3: Percent bias, rMSE, and confidence interval coverage for the estimated treatment effect (true β1 is 0.1) across the
alternative methods when the probability of missingness depends only on the outcome Y (MNAR1).

Scenario % Missing cor(Y,R) cor(Z,X) Method β̂1 Bias (%) Coverage rMSE
MNAR1 A 20 0.2 0.7 TRUE 0.099 1% 0.947 0.023

CCA 0.095 5% 0.939 0.025
MI-MAR 0.095 5% 0.942 0.026
HECK 0.090 10% 0.998 0.155
MI-H 0.096 4% 0.998 0.089
FML 0.099 1% 0.945 0.026

MNAR1 B 20 0.4 0.7 TRUE 0.099 1% 0.947 0.023
CCA 0.087 13% 0.917 0.027
MI-MAR 0.087 13% 0.913 0.028
HECK 0.088 12% 0.991 0.151
MI-H 0.090 10% 0.993 0.107
FML 0.098 2% 0.945 0.026

MNAR1 C 40 0.4 0.7 TRUE 0.099 1% 0.947 0.023
CCA 0.084 16% 0.902 0.031
MI-MAR 0.084 16% 0.901 0.032
HECK 0.087 13% 0.994 0.253
MI-H 0.093 7% 0.991 0.118
FML 0.098 2% 0.945 0.029

MNAR1 D 40 0.4 0.3 TRUE 0.099 1% 0.947 0.023
CCA 0.083 17% 0.915 0.040
MI-MAR 0.084 16% 0.924 0.041
HECK 0.091 9% 0.990 0.359
MI-H 0.095 5% 0.997 0.129
FML 0.096 4% 0.934 0.040

Notes: TRUE: full-data analysis (True values), CCA: complete-case analysis, MI-MAR: multiple imputation assuming
MAR, HECK: 2-step Heckman model, MI-H: multiple imputation based on the Heckman model, FML: full maximum
likelihood selection model.

particular, when the correlation between the exclusion restriction variable and non-response was low

(corr(R,Z) = 0.1), the Heckman-based approaches provided higher bias and rMSE compared to the

full-likelihood approach. While all methods provided unbiased estimates when the strength of asso-

ciation was moderate (corr(R,Z) = 0.3) or strong (corr(R,Z) = 0.5), the full likelihood approach

provided the lowest rMSE.

Figure 4 reports rMSE for each of the selection models across different (MNAR 4) scenarios

with increasing levels of skewness and alternative strengths of the exclusion restriction. In scenarios

with a ‘weak’ (correlation between Z and R was about 0.1) exclusion restriction, the 2-step Heck-

man approach and the MI-Heckman led to substantially higher rMSE compared to the full likelihood

selection model. The high rMSE of the Heckman-based approaches was driven mostly by the large
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MI-H: multiple imputation based on the Heckman model, FML: full maximum likelihood selection
model

standard errors of the bias, whereas the rMSE of the full likelihood approach followed more closely

the absolute level of bias. When the strength of the exclusion restriction was moderate or strong, both

the 2-step Heckman model and the MI-Heckman approach provided more stable estimates, and hence

lower rMSE compared to the full likelihood approach.

6 Application to REFLUX data

To investigate the implications of method choice in practice, we now apply each of the methods to the

REFLUX case study, given the potential concerns about whether the possible exclusion restrictions

are valid in this study. Under the bivariate Normality assumption, there seems to be some evidence

that QALYs were MNAR. The coefficient (SE) of the inverse Mills ratio (βλ in equation 3) from

the two-step Heckman approach was −0.13(0.056), and the correlation between the residuals of the

outcome and missing data models was ρ = −0.20. This suggests that the probability of completing
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the questionnaire was relatively higher for patients in better health (higher HRQL). This is illustrated

in Figure 5, which reports the predicted outcomes against the inverse Mills ratio values, extracted from

the Heckman 2-step model estimates. This offers some support for the suggestion that those patients

who did not respond to medical management chose to leave the study early or not complete HRQL

questionnaires. Thus, a complete-case analysis may underestimate the average treatment effect.

The results from applying the various methods to the REFLUX data are reported in Table 4. We

followed the same regression adjustment used in the primary analysis of this study16. The outcome

linear model included key prognostic factors, such as age, gender, baseline HRQL (both REFLUX-

specific and generic) and body mass index. The missing data model for each method included all the

covariates used in the analysis model, and those variables anticipated to meet the criteria for a valid
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Figure 5: Predicted outcome values and estimated inverse Mills ratio by the two-step Heckman selec-
tion model. The straight line represents the linear association between these.

exclusion restriction. The parameter of interest was the average treatment effect (β̂1) of surgery versus

medical management on the QALY over five years. Any causal interpretation for the results relies on

the assumption that there are no unobserved confounders, and there is an inevitable concern that this

assumption is not met.

There was strong evidence that patients receiving laparoscopic surgery had a higher average

QALY over five years versus patients in the medical management group, after adjustment for baseline

imbalances between the comparison groups. The estimated average gain in QALYs was larger un-

der the MNAR approaches compared to both complete-case and MAR analyses. The three selection

models led to similar treatment effects, although the MI based on the Heckman model and the full-

likelihood approach yielded slightly lower standard errors. There was some evidence that the QALY

estimates were associated with potential confounders, such as gender, baseline REFLUX and EQ-5D

scores, and heart burn and symptoms scores. Regression coefficients for these parameters were very

similar across the MNAR approaches, but again MI based on Heckman model and full maximum

likelihood approaches had lower standard errors. The results from sensitivity analysis, including an

analysis with no exclusion restriction variables, are reported in Appendix E. These sensitivity analy-
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ses suggested that the conclusion that laparoscopic surgery leads to greater improvements in QALYs

versus medical management, was robust to alternative assumptions about the missing data. While the

estimates of the treatment effect were qualitatively the same across alternative specifications of the

exclusion restriction, Heckman’s estimates differed somewhat more across the models compared to

the corresponding estimates from the FML approach. These differences may reflect that : i) the CIA

is implausible for the variables reflecting patient’s views about medicine, ii) the exclusion restriction

variables are only weakly associated with missingness or due to random variation (see Table 2 and

Appendix E)..

7 Discussion

With missing data, inferences on treatment effects ultimately rest on untestable assumptions about the

missing data mechanism. Selection models can make plausible assumptions regarding the missing

data by allowing for departures from the standard MAR assumption. However, the use of selection

models requires that the analyst recognises the additional, untestable assumptions imposed by these

models. This paper clarifies the role of the exclusion restriction assumption across different selection

models. We focused on this assumption for several reasons. First, while Heckman selection models

are commonly used for handling MNAR data24,31,26,25, little attention is given to assessing the validity

and strength of the exclusion restriction. This is particularly concerning because, as our study shows,

the practical advantages of this approach rely on the plausibility of this assumption. Second, strong

exclusion restriction variables are rare in practice, and hence understanding the implications of a

invalid and/or weak exclusion restriction to different selection model approaches and its impact on

inferences is required. Third, other aspects of selection models such as model specification and

distributional assumptions have received wider attention in the last few years32,10,11,23.

The development of practical approaches for estimating treatment effects in the presence of non-

ignorable missing data is an active area of research29,1,27,3. This paper adds to this literature by bring-

ing together insights from econometrics and biostatistics to clarify the practical implications of the

exclusion restriction assumption in selection models. We believe this study makes three distinctive

contribution to this literature. Firstly, the paper considers a wide range of scenarios with both valid

and invalid exclusion restrictions (predictive or not predictive of the missing data), together with al-

ternative strengths of association of exclusion restriction. We find that under plausible distributional
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assumptions the FML provides unbiased, precise estimates of treatment effects across a wide range

of typical settings, and appears an appropriate method for handling MNAR data. Secondly, We have

extended on previous work33,34 by going beyond the bivariate normal distributed data, and consider-

ing skewed continuous outcomes. Our simulations suggest that the Heckman 2-step approach can be

more robust to departures from the bivariate normal assumption compared to FML, but it requires that

the strength of the exclusion restriction is moderate/strong. Thirdly. in light of the common percep-

tion that multiple imputation (MI) is only valid under the MAR assumption, we have described and

assessed a MI approach that addresses MNAR outcomes, and found that this approach performed no

worse than the Heckman 2-step approach, but underperformed the FML approach.

Our findings add to previous evidence on the performance of Heckman-based selection models

13,10,7 by showing that this approach requires not only a valid, but also a moderate or strong exclusion

restriction variable to work well in practice. Our simulations also corroborate previous studies13,23

that Heckman-based approaches may be less sensitive to departures from the assumed distributional

assumptions compared to full-likelihood approaches, provided the exclusion restriction is not weak.

In addition, a common criticism of multiple imputation is that MI is only valid (and hence useful)

under the MAR assumption. This study builds on a previous study proposing a MI approach that

allows for MNAR mechanisms compatible with the Heckman model7, and showed that this method

performed no worse than the 2-step Heckman approach. In particular, in settings without a valid

exclusion restriction, the Heckman-based MI led to substantially more precise (lower rMSE) estimates

compare to the original Heckman approach, partly because the estimation is based on the whole

sample. However, overall the Heckman-based MI underperforms the full-likelihood approach across

the scenarios considered.

This study sheds light on the role of exclusion restriction assumption in full-likelihood selec-

tion models. The findings from our simulation study suggested that the full-likelihood approach is

less sensitive to alternative assumptions about the exclusion restriction compared to Heckman-based

selection approaches. The former provided relatively low bias and rMSE consistently across all sce-

narios considered, where the assumptions about the joint distribution were plausible. In particular,

the full-likelihood approach provided minimal biases and rMSE close to the ‘true’ values even when

the exclusion restriction variable was invalid (scenarios MNAR1 and MNAR2). As the strength of the

association between the exclusion restriction variables and non-response increases, the inclusion of
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these variables in the full-likelihood model helps make a weaker assumption about the missing data

mechanism, and hence more precise estimates (see Appendix D). This is of practical relevance be-

cause existing methodological guidelines provide little insight on the role of the exclusion restriction

variables on full-likelihood selection models14,15.

Throughout the paper, we have assumed that the exclusion restriction variables were exogenous,

i.e. CIA was met. However, we have investigated some scenarios where the CIA is violated by

allowing alternative strengths of association between Z and Y (the results are reported in Appendix

F), and found that even small violations of the CIA (cor(Z, Y |X = 0.05) led to higher biases and

rMSE for the Heckman acompared to FML. This is in line with existing literature13 that suggests that,

by including Z as a predictor in the outcome model, the Heckman’s approach provides more unstable

estimates given the great overlap betweenX and Z. In the REFLUX study, we focused our discussion

with clinical experts on the plausibility of the exclusion restriction. There were some concerns that

the strength of association between patient’s views about medicine variables and non-response was

relatively weak, and that the CIA may not be tenable. For example, patients’ perceptions about

medicine may not be related to their chances of completing HRQL questionnaires. In addition, while

the CIA would seem more reasonable for the centre size variable, this also had a weak association with

non-response. In light of this, we were more confident about the full-likelihood approach to provide

less biased, more precise estimates of treatment effect, although that did not change the conclusion

that surgery improved patient’s QALYs. As shown in the simulation study, the Heckman approach

provides less precise estimates when the strength of the exclusion restriction is ‘low’.

There are some aspects of selection models not addressed in this paper, that present interesting av-

enues for further research. Throughout, all selection models assumed the partially observed outcome

and missingness followed a joint Normal distribution. However, the implications of the exclusion

restriction for the choice of method are likely to be similar across selection models that allow for non-

normal data32,11, as well as with discrete outcomes26. Bayesian approaches provide the flexibility to

accommodate joint models beyond the bivariate normal case, but the implementation of such models

is not straightforward, not least because identifying uninformative, conjugate priors is challenging

6. The development of flexible, user-friendly software tools for implementing selection models to

handle non-normal outcomes with non-ignorable missing data is warranted. For example, Gomes and

colleagues23 are exploring the flexibility of copula-based approaches in this context, which provides

24



an encouraging starting point.

Another area that warrants further consideration is longitudinal data. The longitudinal setting has

additional implications for the exclusion restriction assumption and choice of method. First, it is

harder to find plausible exclusion restrictions in this setting; i.e. variables that predict non-response

over time, but are unrelated to the longitudinal, partially-observed outcome. Second, longitudinal

selection models are increasingly challenging to implement, and often require additional assumptions

(e.g. about longitudinal correlation structure) and sophisticated estimation procedures27. In addition,

we did not consider scenarios with both outcome and covariates missing. In such settings, multiple

imputation approaches such as those advocated in this paper can accommodate the missingness both

in covariates (typically assuming MAR) and MNAR outcomes.

In conclusion, this paper explores the implications of the different methodological choices con-

cerning the exclusion restriction across alternative selection models, and finds that the relative per-

formance of the methods differs according to the relevance and strength of the exclusion restriction.

Under plausible distributional assumptions, the full-likelihood approach provides unbiased, precise

estimates of treatment effects across a wide range of settings that could arise in practice, and appears

an appropriate method for handling MNAR data. As illustrated in the REFLUX study, exclusion re-

striction variables are often weakly associated with non-response, and in these settings full-likelihood

approaches are less sensitive to alternative assumptions about the exclusion restriction than Heckman-

type selection models. This comes at the expense of an assumption about the joint distribution of the

outcome and missingness, and we should routinely investigate the robustness of the study’s con-

clusions to departures from the joint Normality35. Even in settings where the exclusion restriction

assumption is plausible, likelihood approaches are typically more efficient than Heckman-type mod-

els, and therefore the former approach followed by appropriate sensitivity analysis ought to be the

way forward.
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