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Abstract Invited Referees
Background: High-throughput whole genome sequencing facilitates 1 2
investigation of minority virus sub-populations from virus positive samples.

Minority variants are useful in understanding within and between host diversity, Previsen o o
population dynamics and can potentially assist in elucidating person-person , report report
transmission pathways. Several minority variant callers have been developed Ver_s'on 2

to describe low frequency sub-populations from whole genome sequence data. ‘1);[)5"222%18

These callers differ based on bioinformatics and statistical methods used to

discriminate sequencing errors from low-frequency variants. version 1 ? ?
Methods: We evaluated the diagnostic performance and concordance published report report
between published minority variant callers used in identifying minority variants 05 Mar 2018

from whole-genome sequence data from virus samples. We used the
ART-lllumina read simulation tool to generate three artificial short-read datasets
of varying coverage and error profiles from an RSV reference genome. The
datasets were spiked with nucleotide variants at predetermined positions and School of Health, USA
frequencies. Variants were called using FreeBayes, LoFreq, Vardict, and
VarScan2. The variant callers’ agreement in identifying known variants was
quantified using two measures; concordance accuracy and the inter-caller Institute, UK
concordance.
Results: The variant callers reported differences in identifying minority variants Discuss this article
from the datasets. Concordance accuracy and inter-caller concordance were
positively correlated with sample coverage. FreeBayes identified the majority of
variants although it was characterised by variable sensitivity and precision in
addition to a high false positive rate relative to the other minority variant callers
and which varied with sample coverage. LoFreq was the most conservative
caller.

Conclusions: We conducted a performance and concordance evaluation of
four minority variant calling tools used to identify and quantify low frequency
variants. Inconsistency in the quality of sequenced samples impacts on
sensitivity and accuracy of minority variant callers. Our study suggests that
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combining at least three tools when identifying minority variants is useful
in filtering errors when calling low frequency variants.
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E7579) Amendments from Version 1

This version of the manuscript has been revised to consider the
reviewers’ comments and suggestions based on the initial version
1 of the paper. We have modified the main text, the figures and
removed two tables that contained information or data that could
be described in the main text.

The main changes are:

e Removed table 1 and table 2 from the main text and
provided description of the same information in the main
text.

e Revised table 3 to reflect proposed corrections.
e Revised Figure 4 to reflect amended changes.

e Added a new figure, Figure 5 as per reviewers’
suggestion.

e Revised the initial R code to correct a bug that resulted in
miscalculation of TP and TN for FreeBayes estimates.

¢ Revised the supplementary materials to include explicit
methods used in the variant calling procedures.

These changes have been clarified further in responses to the
reviewers’ specific comments.

See referee reports

Introduction

RNA viruses have been described as a population of closely
related sequences that arise from rapid genomic evolution cou-
pled with a high replication and mutation rates (Domingo er al.,
2012; Eigen et al., 1988; Holland er al., 1992). Genetic changes
in RNA viruses result from genetic drift, erroneous replication
processes, mutagenic agents and upon which natural selection
acts (Moya et al., 2004). Rapid replication and mutations gener-
ate an ensemble of mutant genomes that are comprised of both
dominant and low frequency variants. This diversity has been
shown to affect virus fitness landscape, transmission, coloni-
zation and replication (Henn er al., 2012; Stack er al., 2013;
Vignuzzi et al., 2006).

Many recent studies (Henn er al., 2012; Poon et al., 2016;
Stack et al., 2013) have demonstrated the potential applica-
tion of virus diversity to inform person-to-person transmission
during virus outbreaks. A number of methods that incorporate
both genomic and epidemiologic data to infer pathogen trans-
mission have recently been developed (Worby et al., 2017).
These approaches rely partly on the accurate detection and
quantification of minority variant populations from genomic
samples.

Several tools have been developed to identify and quantify minor-
ity variants from short-read data (Koboldt er al., 2009; Koboldt
et al., 2012; Lai et al., 2016; Macalalad et al., 2012; Wilm
et al., 2012; Yang et al., 2013). Nonetheless, these tools do not
fully account for discrepancies that arise from sample collec-
tion, pre-processing and sequencing in addition to errors that
are introduced during downstream bioinformatic analysis. Rig-
orous quality control in sample processing and analysis is often
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suggested to distinguish true biological variants from artefactual
variants (Zhang & Flaherty, 2017). In some cases, sequencing
errors can be reduced by developing high-fidelity protocols
and laboratory quality control measures (Kinde er al., 2011;
McCrone & Lauring, 2016; Watson et al., 2013). Additionally,
the uncertainty resulting from random sequencing errors can
be countered by sequencing larger populations at higher cov-
erage (Zukurov et al., 2016). A number of studies have exten-
sively explored variants from somatic or tumour samples
(Hofmann et al., 2017; Koboldt er al., 2012; Krgigard et al.,
20165 Lai et al., 2016; Pabinger et al., 2014) and their applica-
tion in clinical genomics, but only a limited number of studies
have explored the nature of variants from patient-derived samples
that target viral populations (Henn er al, 2012; Macalalad
et al., 2012; Wilm et al., 2012; Yang et al., 2013; Zukurov
et al., 2016) and especially when calling variants from respiratory
viruses such as the respiratory syncytial virus (RSV).

In this study, we evaluated four published minority variant
detection tools using artificial short-read data with different
error profiles. We explored the tools’ ability to detect and
quantify minority variants and assessed their overall agreement
which we defined using two metrics, concordance accuracy,
which measures the combined accuracy of the variant callers,
and inter-caller concordance, which is the size of the largest
set of variant callers that agree at each position. We show that
concordance metrics are dependent on sample coverage and
are influenced by the quality of input data.

Methods

Overall, we considered ten published, open-source tools with
presumed ability to call minority variants from virus deep
sequence data. A number of callers were excluded from the
analysis for various reasons, for example, the GATK Haplo-
typeCaller primarily targets germline calling from human and
not variant calling from viral samples. We experienced technical
difficulties in setting up the Platypus caller and even after setup,
Platypus did not provide calls across all levels of coverage
in our datasets. SAMtools mpileup did not provide direct allele
frequencies while V-Phaser was superseded by V-Phaser 2
which has reported bugs and could not handle reads aligned
with  BWA-MEM. Therefore, the following four tools were
evaluated, FreeBayes version 1.1.0-3-g961e5f3, LoFreq version
2.1.2, VarDict version 30.3.17 and VarScan version 2.4.2. A
schematic diagram showing the overall approach is shown in
Figure 1.

Artificial datasets

Artificial datasets were generated based on an RSV reference
sequence (GenBank accession number KX510245.1) using
ART-Illumina version 2.5.8 (Huang er al., 2012). ART-Illumina
was took the reference RSV genome sequence as input and
generated artificial reads using data derived error models to
mimic sequence data. Each dataset comprised of eight samples
with varying depth of coverage (20, 50, 100, 500, 1000, 2000,
5000, 10000) and was generated using the methods described in
Supplementary File 1, section S1.1. The first dataset did not
incorporate an error profile. Error profile models (empirical error
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RSV Reference
sequence

ART lllumina

Datasetl

(no error profile)

Dataset2 Dataset3

(error profile 1) (error profile 2)

BAM files
Variant calling
(FreeBayes,Lofreq,Vardict,varscanZ)
Performance Concordance
analysis analysis

BamSurgeon

Figure 1. A schematic diagram showing the variant calling workflow. The artificial datasets (BAM files) were generated using ART-lllumina
based on an RSV reference genome. BAMSurgeon was used to spike the resulting BAM files by inserting known variants at known locations

across the artificial BAM file.

models based on the distribution of base quality scores) were
generated from uncompressed FastQC raw reads derived from
sequenced RSV whole genome samples, referred to as “good” and
a “bad” sample based on FastQC metrics (Supplementary File 2
and Supplementary File 3) and used to generate artificial reads
in dataset 2 and 3. ART-Illumina-generated artificial SAM
files were converted to the BAM format, sorted and indexed using
SAMtools version 1.3.1 for each dataset.

166 randomly and uniformly generated nucleotide mutations
at different frequencies (Supplementary Table 1) were inserted
into each of the artificial datasets using BamSurgeon (Ewing
et al., 2015), such that a base change was made amongst the
reads at each alignment position as described in Supplementary
File 1, section S1.2. This process was repeated with a separate
set of 155 positions that comprised a set of mutations with
frequencies below 0.5 (Supplementary Table 1).

Variant calling

The BAM files from each of the three datasets were used as
input to each of the four variant callers (FreeBayes, Lofreq,
VarDict and VarScan2). The default parameter options used
in each tool are explicitly provided in Supplementary File 4.
All output files were provided in the variant call format (VCF)

or as a tabular file for the case of VarDict. The output from the
VCF and tabular file was parsed and written as a comma
separated (CSV) file.

Performance measures

To evaluate the performance of the variant calling algorithms,
we compared the sequence generated by each variant caller
ve, denoted S =(S* €{A,C,T,G})_, y, to the gold stand-
ard “spiked” sequence, denoted S, at each of N=15205
nucleotide positions. The accuracy of each variant caller is
the normalized Hamming distance from the gold standard
sequence, %ZL,d(S,’"““,S,“), where d(x,y) is the standard discrete
metric giving 1 when x=y, and O otherwise. By distinguish-
ing between the sets of positions where variants did and did not
occur in the gold standard sequence we calculated sensitivity,
specificity, precision and accuracy (Table 1).

Concordance analysis

We defined two concordance metrics to present the level of
agreement between different callers in detecting the same vari-
ant positions in the sequence. The first concordance metric is
concordance accuracy, which measures the combined accu-
racy of the variant callers. At the true variant position i we
then Cm(i)=Eiﬂd(s{'““,s,."”), which can be either 0, 1, 2, 3, 4
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Table 1. A breakdown of performance metrics of variant callers evaluated from first dataset that did
not incorporate an error profile. The samples represent simulated datasets of varying depth of coverage.
True positive (TP), true negative (TN), false positive (FP) and false negatives (FN) were used to calculate
performance metrics of each caller. FPR — False positive rate.

Sample Caller TP TN FP FN Sensitivity Specificity Precision FPR Accuracy
1 (20X) freebayes 87 15018 21 79  0.5241 0.9986 0.8056 0.0014  0.9934
lofreq 29 156039 O 137 0.1747 1 1 0 0.991
vardict 72 15039 94  0.4337 1 1 0 0.9938
varscan 11 15039 155 0.0663 1 1 0 0.9898
2 (50X) freebayes 118 14901 138 47 0.7152 0.9908 0.4609 0.00918 0.9878
lofreq 67 15039 99 0.40361 1 1 0 0.9935
vardict 108 15039 58 0.6506 1 1 0 0.9962
varscan 22 15039 144 0.13253 1 1 0 0.9905
3(100X) freebayes 127 14454 585 38 0.7697 0.9611 0.1784 0.0389  0.959
lofreq 57 15039 O 109 0.3434 1 1 0 0.9928
vardict 104 15038 1 62 0.6265 0.9999 0.9905 6.65E-05 0.9959
varscan 40 15039 O 126 0.241 1 1 0 0.9917
4 (500X) freebayes 131 12559 2480 30 0.8137 0.8351 0.0502 0.1649  0.8349
lofreq 60 15039 O 106 0.3614 1 1 0 0.993
vardict 110 15029 10 56 0.6627 0.9993 0.9167 6.65E-04 0.9957
varscan 73 15039 O 93 0.4398 1 1 0 0.9939
5 (1000X) freebayes 146 14414 625 20 0.8795 0.9584 0.1894 0.0416  0.9576
lofreq 57 15039 109 0.3434 1 1 0 0.9928
vardict 109 15036 57 0.6567 0.9998 0.9732 1.99E-04 0.9961
varscan 79 15039 O 87 0.4759 1 1 0 0.9943
6 (2000X) freebayes 146 14923 116 20 0.8795 0.9923 0.5571 0.0077  0.9911
lofreq 70 15039 96 0.4217 1 1 0 0.9937
vardict 120 15039 46 0.7229 1 1 0 0.997
varscan 83 15039 83 0.5 1 1 0 0.9945
7 (5000X) freebayes 149 15020 19 17 0.8976 0.9987 0.8869 0.0013  0.9976
lofreq 67 15039 O 99 0.40366 1 1 0 0.9935
vardict 117 15036 49 0.7048 0.9998 0.975 1.99E-04 0.9966
varscan 78 15039 88 0.4699 1 1 0 0.9942
8(10000X) freebayes 145 15022 17 21 0.8735 0.9989 0.8951 0.0011 0.9975
lofreq 72 15039 O 94 0.4337 1 1 0 0.9938
vardict 118 15038 1 48 0.7108 0.9999 0.9916 6.65E-05 0.9968
varscan 97 15039 O 69 0.5843 1 1 0 0.9955
for each true variant position. The second concordance metric is Results

inter-caller concordance, which is the size of the largest set
of variant callers that agree at each position i, without refer-
ence to any gold standard sequence. We used both bar plots
and heat maps to visualize the effect of coverage on C .
Visualization of inter-caller concordance for variant sets was
achieved using a bar plot and expounded by UpSet plots (Lex
etal.,2014) in R version 3.4.2.

We used three artificial datasets of varying coverage and error
profile to assess the concordance accuracy and inter-caller
concordance for four minority variant callers. The first data-
set comprised of artificial reads based on an RSV genome,
the second dataset comprised of the similar simulated set of
reads whilst incorporating an error profile from the set of reads
used to assemble the reference genome, the third dataset was
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generated using an error profile from a poorly sequenced sam-
ple. Overall, concordance accuracy improved with increase in
sample coverage (Figure 2), and the proportion of positions
that could not be identified by any variant caller decreased with
increase in coverage (Supplementary Figure 1). For all the three
datasets, and at each coverage level, fully concordant variants
were below 50% of the total variants suggesting that consid-
ering only fully concordant positions eliminated a substantial
number of variant positions. There were marginal improve-
ments in the number of concordant variants in the second
dataset compared to the first and the third error profile. Across all
datasets, there was little improvement at detecting fully concord-
ant positions after a coverage of 2000 (Figure 2). We utilized
UpSetR plots to provide a visual summary of the combination
of variant callers that contributed to the observed concordance
accuracy (Supplementary Figure 4).

FreeBayes identified the majority of variants (Figure 3) across
all the datasets although it was characterised by a substantial
trade-oft between sensitivity and precision in artificial dataset 1
(Figure 4) in addition to a high false positive rate relative to
the other minority variant callers observed in datasets 1 and 3.
Regardless, Freebayes reported comparatively better sensitivity
relative to the rest of the tools. Lofreq was the most conserva-
tive of the evaluated callers and it missed majority of variants
across all the three datasets. In addition, Lofreq’s sensitivity
in coverages above 100 did not differ in a substantial way
(Figure 4). Vardict performance increased with read coverage but
not by a great magnitude compared to FreeBayes and Varscan.
Its performance across different datasets was more consistent
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relative to other tools. Overall, we observed lower reported
frequency in called minority variants compared with spiked
frequencies (Figure 5). This observation was consistent in
all the datasets from all the variant callers.

Discussion

Detecting and reporting minority variant calls is challenging,
given that low frequency calls occur at a frequency that is the
same as error generated from sequencing and PCR reactions.
Recent studies have linked the sharing of minority variants
with transmission patterns, and hence it is important to distin-
guish actual minor variants from spurious variant calls. Several
minority variants callers use different detection algorithms and
statistics, each of which attempt to optimize an aspect of the
variant calling process. Therefore, there could be disparities
between what is reported by a given minority variant caller,
given datasets of varying sequencing depths and error profiles.

This study aimed to identify the proportion of positions that
were recognized as variants by a set of tools using three
artificial datasets of varying coverage and error profiles. Con-
cordance accuracy and inter-caller concordance measures were
dependent on the sample coverage and error profile.

Sensitivity for the majority of the tools was positively corre-
lated with depth of coverage and similarly observed previously
(Spencer et al., 2014) in a study that investigated performance
in methods used to detect low-frequency variants. It is important
to note that the tools provide different performance metrics
depending on the variant’s threshold (Supplementary File 5).
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Figure 2. Proportion of fully concordant positions with respect to sample coverage. Each plot A-C represents the proportion (y-axis) of
fully concordant variants with respect to read coverage (x-axis) for the first, second and third dataset. Concordant positions were defined as

positions that were identified by all the four variant callers.
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Figure 3. Heat maps illustrating tool specific concordance for the first artificial dataset. The red tiles represent variants detected
by each caller from the list of 166 variant positions. The panels are arranged left to right A-H in the order of increasing sample coverage
(20,50,100,500,1000,2000,5000 and 10,000). The “not called” column in each panel represents the variants that were not identified by any

of the variant callers.

In the first artificial dataset, VarDict detected true positive variants
with comparably good performance (sensitivity 43.4% — 72.3%),
though it was marginally invariant to changes in average
coverage above 20. VarDict has in-built features that could
contribute to its efficient performance. It is able to activate

an “amplicon calling mode” that filters out amplicon biased
variants and mispaired primers as PCR artefacts. A similar
pattern was observed with LoFreq, where sensitivity was not
significantly affected by depth of coverage. VarScan2 was
more affected by coverage and maintained average sensitivity
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(6.6% — 58.4%). Applying filters in VarScan has been reported
to improve sensitivity by reducing number of false positives
(Hofmann et al., 2017; Koboldt er al., 2013). FreeBayes’ trade-
off between sensitivity and precision was also reported by other
studies (Hwang er al., 2015; Sandmann et al., 2017). The use of
caller-specified filters could have enhanced the sensitivity of
some callers, but the option to adopt default parameters allows
equivalent assessment of tool performance. Moreover, all possible
combinations of tuning parameters are challenging, time-
consuming and sometimes impractical.

Based on artificial reads from the second dataset, FreeBayes
performed comparatively better than the other tools with a very
low false positive rate and better sensitivity (46.4% — 94.6%).
This suggests that FreeBayes is potentially useful in identi-
fying minority variants when sample data comes from reads
with a low error profile. This implies the error rate results are
outcome of tool performance.

Specificity of a caller is its ability to correctly predict the absence
of a variant. The variant callers make use of a high specificity to
minimize the number of false positive calls thereby reducing
post-call filtering and consequently filter out true low-frequency
variants. Moreover, high accuracy measures demonstrate
the reliability of the variant caller in correctly identifying true
variants.

All the minority variant callers reported slightly lower frequen-
cies in called variants compared to the frequencies in the original
spiked variants (Figure 5). This could be explained by the fact
that many of the callers are tuned to report lower differences in
the calls owing to stringent pre-processing criteria. A thorough
investigation of this observation is therefore required.

In absence of an explicit error model from samples of heteroge-
neous sequencing quality, combining at least three tools when

Supplementary material

Wellcome Open Research 2018, 3:21 Last updated: 13 NOV 2018

identifying minority variants could potentially assist in filtering
out errors from low frequency variants. Given that there are
no definitive data and next generation sequencing pipeline stand-
ards for variant calling approaches that are specific for viruses,
there are opportunities to develop robust methods and tools
that strike a balance between detecting errors and true minority
variants from field virus samples that present with different
sequencing quality.
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Supplementary File 1: A description of data generation methods and command line tools used to create the artificial datasets.

Click here to access the data.

Supplementary File 2: FastQC metrics for sample used to generate simulated reads for the second dataset.

Click here to access the data.

Supplementary File 3: FastQC quality profile for sample used to generate simulated reads for the third dataset.

Click here to access the data.

Supplementary File 4: Tool-specific parameter settings for variant calling

Click here to access the data.

Supplementary File 5: Figures showing the performance of variant calling for minority variants that were inserted at different thresholds,

standard (>25%), moderate (5-25%) and low (<5%).

Click here to access the data.
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Supplementary Figure 1: Proportion of fully concordant positions with respect to sample coverage in datasetl. (A) Represents the
proportion (y-axis) of fully concordant variants with respect to read coverage (x-axis) and (B) shows the proportion of variants positions that
could not be identified by any minority caller at each level of sample coverage.

Click here to access the data.

Supplementary Figure 2: UpSetR plots showing the concordance between called variants and the respective variant callers using
the first artificial dataset. The intersection size illustrates the number of variants in each intersection set. The horizontal axis shows the
combination matrix identifying the intersections. A single filled circle represents a unique set of variants. Connected lines depict shared
variants (intersections) among the variant callers. Intersection size was positively correlated with average coverage at (a) 20X, (b) 50X, (c)
100X, (d) 500X, (e) 1000X, (f) 2000X, (g) 5000X and (h) 10,000X.

Click here to access the data.

Supplementary Tables 1-4.

Supplementary Table 1: 166 artificially generated nucleotide mutations with frequencies from 0-1.
Supplementary Table 2: 156 artificially generated nucleotide mutations with frequencies below 0.5.

Supplementary Table 3: A breakdown of performance metrics of variant callers evaluated using the second dataset incorporated
with an error profile derived from the set of reads used to assemble the reference genome. The samples represent simulated dataset of
varying average depth of coverage. True positive (TP), true negative (TN), false positive (FP) and false negatives (FN) were used to calculate
performance metrics of each caller. FPR — False positive rate.

Supplementary Table 4: A breakdown of performance metrics of variant callers evaluated using the third dataset generated with
an error profile from a poorly sequenced sample. The samples represent simulated dataset of varying average depth of coverage. True
positive (TP), true negative (TN), false positive (FP) and false negatives (FN) were used to calculate performance metrics of each caller.
FPR - False positive rate.

Click here to access the data.
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This is a comparative review of variant calling tools with focus on the detection of minority variant calls,
specifically with reference to virus data. The authors have provided data on four freely available tools that
can be tuned to call minority variants, or are specifically designed for this purpose. The data used here
was artificial reads generated with the ART-lllumina tool, which were spiked in with variants at known
locations. This was replicated eight times at levels of read coverage spanning four orders of magnitude.
The outcome of the experiment was a low level of concordance between tools. None of the tools were
able to identify all of the spiked-in variants.

The approach taken here is technically sound, as it is based on a strictly defined truth set, although | am
slightly uncomfortable with the lack of real data (but equally | am aware of the methodological problems
real data presents in this kind of scenario). The study is useful for the wider community as a) it reiterates
the point that using a single tool for a given bioinformatics task comes with the risk of missing information
and b) it provides concrete pointers as to which tools perform well in this scenario.

My main reservation is that there is no mention of the importance of parameter settings. Different
parameter values can affect variant calling outcomes dramatically, even when just comparing different
runs of the same tool. FreeBayes alone has over 70 command line parameters, many of these continuous
variables. This makes for an incredibly large parameter space, and using different sets of parameter
values can potentially have much more of an impact on the results than the choice of tool. This should at
least be mentioned in the Discussion section.

There also doesn’t seem to be any data on how the individual tools were parameterised in this study.
Were the defaults used in each case? Presumably not, given that we are looking for minority variants (and
tools like FreeBayes appear to be developed and parameterised with a human germline use case in
mind). This information is critical for reproducibility and must be included (even if it is just a statement
saying the defaults were used).
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Abstract
® Results section: change “FreeBayes identified majority” to “FreeBayes identified the majority”
® Conclusions section: change “impact” to “impacts”

Introduction
® para1line 7: is the “and” redundant?
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Methods
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® para 2 (“Artificial datasets”): The concept of the error profile has not been well explained. This
section needs to be expanded. | would like to see some description of what the error profile
consists of, how it has been derived from the FASTQC data, and how it has been applied to the
reads in practice.

® para 3 line 2:“at varying frequencies” — what were they? | presume we are talking about the
proportion of reads at a spiked-in variant site that carried the alternate allele at this site. This
information strikes me as absolutely critical for this paper — this is about minority variants after all.
Please provide this data.

® para 4 line 8: “written as a comma separated (CSV) files” should be “written as a comma separated
(CSV) file”

Results
® para 3 line 1: “FreeBayes identified majority” should be “FreeBayes identified the majority”
® para 3 line 7: “it missed majority” should be “it missed the majority”
®  General comment: Vardict should get a mention in this section, as it actually had better recall rates
than FreeBayes in 6 out of 8 samples.

Discussion
® para 1 line 5: change “ascertain” to “distinguish”
® para 3 line 1: “Sensitivity for majority” should be “Sensitivity for the majority”

Table 3
® Asfaras | can tell, the counts for FN + TP should always add up to 166. This is not the case for the
majority of the Freebayes runs (except for Freebayes with samples 1 and 3, which are ok).

Supplementary File S1
® To ensure reproducibility, please include the BAMSurgeon command line statement for spiking in
the variants.

Supplementary Figure 2
® |tis not apparent what the individual figures/pages in the PDF file represent. Please label these
appropriately.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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Yes
Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

George Githinji, KEMRI-Wellcome Trust Research Programme, Kenya

We are grateful for taking time to review this work and for providing useful comments that we have
considered in this new draft of the manuscript.
® We agree on the challenges of obtaining and using the appropriate actual data when
conducting these types of analysis. We have done our best to generate reliable artificial
datasets based on an actual RSV reference genome and error profiles from two sequenced
samples using the methods described in this manuscript.
® |nregard to the importance of parameter settings and lack of data on how individual tools
were parameterized, we have explicitly stated the parameter settings in the variant calling
section and in the Supplementary File 4. In the discussion section, we highlight the
challenge of exploring all possible parameter settings.
®  The concept of the error profile has is now well explained in paragraph 1 of the artificial
datasets section in the current manuscript.
® The actual frequencies used to spike the variants are now described and provided in
Supplementary file 5.
® There was a bug in the script used to calculate the FN and TP counts in FreeBayes runs.
This has been corrected and updated to reflect the true FN and TP counts. A revised table
and subsequent figures have been provided.

Competing Interests: No competing interests were disclosed.
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?

Brad A. Chapman
Department of Biostatistics, Harvard Public School of Health, Boston, MA, USA

The authors validate methods to call low frequency minority variants from viral samples. Detection of
minority species in viral population sequencing helps improve treatments by matching drugs to the full
spectrum of sub-species, and allows tracking of sub-species within outbreaks.

The paper uses synthetic datasets generated by the ART read simulator
(https://www.niehs.nih.gov/research/resources/software/biostatistics/art/) with randomly generated
variants. While this won't fully describe the complexity of a real viral mixture, it does provide a solid
baseline for assessing callers. The authors used mutation error profiles from good and bad sequencing
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samples to model different error rates, and evaluated the impact of differing coverage on sensitivity and
specificity.

My main suggestion is to stratify comparisons by variant frequency to assess how callers do with different
low frequency events, and | provide more specific comments below.

Methods suggestions

® The stratifications by coverage, error rates and callers are great for identifying the effect of different
callers on detection. The one missing component is the allele frequency of the generated variants.
The paper does not define the range of frequencies generated, and this will have a large impact on
the ability of detection across callers. Looking through the list of generated variants
(Githinji_2018_variant.list.tab) the range varies from high frequency (90%+) to very low frequency
(<1%). Since the focus is on low frequency detection, I'd suggest stratifying the results into bins:
standard (>25%), moderately low frequency (5-25%) and low frequency (<5%) and examine the
caller and depth detection within these bins. Pending the results of this, the authors may want to
generate additional low frequency variants to help differentiate caller methods.

® A confusing aspect of evaluating the depth metrics is that the number of possible true positives
differs between sample depths. In Table 3, the FreeBayes TP + FNs are 166, 165 and 166 for 20x,
50x and 100x. However they change to 61, 55 and 55 for 500x, 1000x and 200x. Other callers
seem to be consistent. Why does FreeBayes have different total variant numbers across depth?

Paper suggestions
® Table 1 should get compressed into a single paragraph saying that HaploptypeCaller, Platypus
and mpileup target germline calling and not low frequency detection. It doesn't need to be a
separate table.

® Table 2 should be replaced into a link to descriptions of true/false positives/negatives and does not
need to be a separate figure in the paper.

® The title should reflect that this paper describes viral calling (versus, say low frequency somatic
variant detection).

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

George Githinji, KEMRI-Wellcome Trust Research Programme, Kenya

We are very grateful for taking time to review this work and for providing useful comments which
we have considered in the new version of the manuscript:
® Allthe paper suggestions have been considered table 1 and table 2 were removed and
replaced with text descriptions.
®  We have added a new figure comparing the allele frequency of the spiked and called
variants. We highlight the observations in the result and discussion sections. In addition, we
provided a stratified result of the variants frequency and discuss how the callers perform for
different low frequency events. We also provided an addition set of spiked variants at
frequency below 50%.
® The results section in table 3 have been revised to reflect the correct number of TP and FN
for FreeBayes. Figure was also revised to reflect the new changes.

Competing Interests: No competing interests were disclosed.
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