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Abstract

IMPORTANCE Local variation in the transmission of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) across the United States has not been well studied.

OBJECTIVE To examine the association of county-level factors with variation in the SARS-CoV-2
reproduction number over time.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included 211 counties, representing state
capitals and cities with at least 100 000 residents and including 178 892 208 US residents, in 46
states and the District of Columbia between February 25, 2020, and April 23, 2020.

EXPOSURES Social distancing, measured by percentage change in visits to nonessential businesses;
population density; and daily wet-bulb temperatures.

MAIN OUTCOMES AND MEASURES Instantaneous reproduction number (Rt), or cases generated
by each incident case at a given time, estimated from daily case incidence data.

RESULTS The 211 counties contained 178 892 208 of 326 289 971 US residents (54.8%). Median
(interquartile range) population density was 1022.7 (471.2-1846.0) people per square mile. The mean
(SD) peak reduction in visits to nonessential business between April 6 and April 19, as the country
was sheltering in place, was 68.7% (7.9%). Median (interquartile range) daily wet-bulb temperatures
were 7.5 (3.8-12.8) °C. Median (interquartile range) case incidence and fatality rates per 100 000
people were approximately 10 times higher for the top decile of densely populated counties (1185.2
[313.2-1891.2] cases; 43.7 [10.4-106.7] deaths) than for counties in the lowest density quartile (121.4
[87.8-175.4] cases; 4.2 [1.9-8.0] deaths). Mean (SD) Rt in the first 2 weeks was 5.7 (2.5) in the top
decile compared with 3.1 (1.2) in the lowest quartile. In multivariable analysis, a 50% decrease in visits
to nonessential businesses was associated with a 45% decrease in Rt (95% CI, 43%-49%). From a
relative Rt at 0 °C of 2.13 (95% CI, 1.89-2.40), relative Rt decreased to a minimum as temperatures
warmed to 11 °C, increased between 11 and 20 °C (1.61; 95% CI, 1.42-1.84) and then declined again at
temperatures greater than 20 °C. With a 70% reduction in visits to nonessential business, 202
counties (95.7%) were estimated to fall below a threshold Rt of 1.0, including 17 of 21 counties
(81.0%) in the top density decile and 52 of 53 counties (98.1%) in the lowest density quartile.2

CONCLUSIONS AND RELEVANCE In this cohort study, social distancing, lower population density,
and temperate weather were associated with a decreased Rt for SARS-CoV-2 in counties across the
United States. These associations could inform selective public policy planning in communities
during the coronavirus disease 2019 pandemic.
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Key Points
Question How is the instantaneous

reproduction number of severe acute

respiratory syndrome coronavirus 2

(SARS-CoV-2) associated with social

distancing, wet-bulb temperature, and

population density in counties across

the United States?

Findings In this cohort study of 211

counties in 46 states, social distancing,

temperate weather, and lower

population density were associated with

a decrease in the instantaneous

reproduction number of SARS-CoV-2. Of

these county-specific factors, social

distancing appeared to have the most

substantial association with a reduction

in SARS-CoV-2 transmission.

Meaning In this study, the

instantaneous reproduction number of

SARS-CoV-2 varied substantially among

counties; the associations between the

reproduction number and county-

specific factors could inform policies to

reduce SARS-CoV-2 transmission in

selective and heterogeneous

communities.

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2020;3(7):e2016099. doi:10.1001/jamanetworkopen.2020.16099 (Reprinted) July 23, 2020 1/12

Downloaded From: https://jamanetwork.com/ on 07/26/2020

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.16099&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.16099
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.16099&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.16099


Introduction

Coronavirus disease 2019 (COVID-19) is the result of the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). This virus has caused a pandemic resulting in more than 3.2 million cases
of COVID-19 by May 1, 2020, with more than 236 000 deaths worldwide. By the same date, there
were more than 1 million individuals with COVID-19 in the United States, resulting in more than
64 000 deaths. The rapid evolution of this pandemic led to the widespread implementation of social
distancing measures across most of the United States and the world.

The transmissibility of SARS-CoV-2, like other viral pathogens, is estimated by the reproduction
number (R). An infectious pathogen’s R value represents the number of people that will be infected
by an individual who has the infection. An R value that exceeds 1 will result in increasing numbers of
incident cases as each individual with the infection transmits it to more than 1 other individual. When
the R value is below 1, the transmission of that pathogen will eventually cease as each patient will
transmit infection to less than 1 person. Therefore, the R value is an important measure to estimate
when attempting to predict the evolution of an outbreak. It is often assumed that R is constant for
each pathogen; however, R most certainly varies by location and by time, which is referred to as the
instantaneous R (Rt).1-3 At the individual level, variation in Rt is likely dependent on being in
environments where exposure risk is high or of intense duration, such as among high-exposure
workers in health care or mass transit settings or for families in densely crowded living conditions. At
the community level, variation in Rt may also include population density (as a proxy for increased
likelihood of crowded conditions), temperature and/or humidity (given their effects on viral
propagation), policies such as social distancing, and the number of susceptible individuals.

Models that rely on fixed assumptions for Rt are unlikely to capture local heterogeneity in
transmission. Our objective was to examine how time-varying changes in social distancing and
weather within counties of different population densities might be associated with changing Rt

values across counties in the United States. Understanding how these time-varying factors might
influence the Rt of SARS-CoV-2 could allow policy makers to implement targeted interventions to
decrease Rt in heterogeneous communities.

Methods

Using publicly deidentified data, this study was determined to be exempt from institutional review
board review4 and informed consent. This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline for cohort studies.5

Setting and Participants
We selected 211 counties, representing 178 892 208 of 326 289 971 US residents (54.8%), based on
the following characteristics: had at least 1 case of COVID-19 as of February 25, 2020, and either
contained at least 1 city with population exceeding 100 000 residents or the state capital. For states
with no counties containing a city with 100 000 persons, the most populated county in that state
was selected. We excluded counties with average daily case rates of less than 5 and counties with
fewer than 3 days with daily case rates of more than 5 during the analysis period of February 25 to
April 23, 2020. We considered time-0 for each county to be the date on which they achieved the
minimum threshold of disease activity. A total of 211 counties, representing 46 states and the District
of Columbia, met these criteria.

Outcome
The outcome was the estimated Rt of SARS-CoV-2 in each county. Daily incident case counts of
COVID-19 aggregated at the county level were obtained from the New York Times.6
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Exposures
There were 3 a priori exposure variables: social distancing practice, population density, and daily
mean wet-bulb temperatures. Social distancing was measured using a data set of daily cellular
telephone movement, provided by Unacast, that allows comparison of the association of social
distancing policies with individuals’ movement within a county.7,8 Based on an a priori assumption
and confirmed by preliminary analyses that included cellular telephone measurement of overall
distance traveled, we used a social distancing variable that measured percentage change in visits to
nonessential businesses (eg, restaurants, hair salons) within each county compared with visits in a
4-week baseline period between February 10 and March 8, 2020. We used a rolling average of the
percentage of visits 3 to 14 days before time-0, based on the lag observed between change in social
distancing and mean Rt estimates across the counties (eFigure 1 in the Supplement) and on an
incubation period of at least 3 days.9

Population density of each county was obtained from US Census data and is expressed as
number of people per square mile. Log transformation was performed to achieve a normal
distribution because of substantial skewedness in density for the largest cities.

It has been demonstrated that humidity and temperature both play a role in the seasonality of
influenza; viral transmission is most efficient at lower humidity and temperature. It is proposed that
colder, drier air damages respiratory mucosa and thickens secretions, impairing the protective
capacity of mucociliary clearance, and that higher humidity physically limits the distance respiratory
droplets can travel.10,11 For this reason, the primary weather variable we used was wet-bulb
temperature, a metric that captures the complex thermodynamic relationship of temperature and
humidity, has been shown to predict human health events with more precision than temperature and
humidity separately, and avoids the associated problem of collinearity.12,13 Wet-bulb temperatures
were obtained from the National Oceanic and Atmospheric Administration Local Climatological Data.

Covariates
County-level covariates that may confound the association between the exposures of interest and Rt

were considered and included demographic factors (eg, age distribution, insurance status, and
socioeconomic status) and health-related factors associated with COVID-19 severity (eg, proportion
of individuals with hypertension, obesity, or diabetes and proportion of individuals who smoke).14

Demographic and health characteristics were abstracted from the US Census, American Community
Survey, Behavioral Risk Factor Surveillance System, Esri Business Analyst, and Multi-Resolution Land
Characteristics Consortium.15-18

From 70 covariates, we examined the correlation between each pair of factors and calculated
the variance inflation factor to quantify multicollinearity among variables (eFigure 2 in the
Supplement). Among highly correlated variables, we chose covariates based on their potential
association with viral transmission and/or the probability of an individual with infection becoming
symptomatic and obtaining a diagnostic test. The final covariates included proportion of residents
older than 65 years, with incomes less than 200% of the poverty level, and with diabetes. Variables
for obesity, smoking, and uninsured population were removed because of collinearity with other
variables.

Statistical Analysis
Our analysis followed a 2-step procedure. First, we calculated the Rt for SARS-CoV-2 using the
method of Cori et al1 with a moving average window of 3 days. This method has been applied in the
dynamic estimation of Rt from Wuhan, China.19 The generation time of SARS-CoV-2 was assumed to
follow a γ distribution, with mean (SD) of 7.5 (3.4) days according to a previous epidemiological
survey of the first 425 cases in Wuhan, China.9 In the early days of a county’s outbreak, when the
ratio of cases to tests was unstable, kernel smoothing with a box kernel and bandwidth of 7 days was
performed to account for the likelihood that cases from prior days would accumulate when testing
capacity increased.20,21 We stopped smoothing 1 day after the county’s ratio of daily cases to tests
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first fell in the interval of 5% to 90% or after March 20, 2020, whichever came first, to avoid
overprocessing the data.

Next, we fit a hierarchical linear mixed-effects model with random intercepts for each county
and metropolitan area to evaluate the association between exposures and Rt after a log
transformation, adjusting for covariates. Population density was standardized after log
transformation because of the highly skewed distribution. Temperature associations were estimated
using a distributed lag nonlinear model, which considers bidimensional exposure-lag response
associations between wet-bulb temperature and log(Rt).22-24 We considered a lag period of 4 days to
14 days before case identification to reflect the incubation period of SARS-CoV-2 and to reduce bias
introduced by daily weather affecting an individual’s decision to seek a test. The final cross-basis term
included natural cubic splines defined by 3 internal knots at the 10th, 75th, and 90th percentile of
temperature ranges observed during the period, corresponding to 1 °C, 13 °C, and 19 °C, and 2 knots
in the lag dimension at 7 and 11 days. The number and placement of spline knots were based on an a
priori assumption of a relatively simple association between temperature and SARS-CoV-2
transmission and on minimization of the Akaike information criterion. The temperature knots
permitted flexibility in the model nonlinearity at higher and lower temperatures, within the moderate
range used in this study.25 We included an interaction term between population density and
temperature, assuming that temperatures would influence transmissibility differently in densely
populated counties.26 The relative change in Rt was expressed as the cumulative exposure response
relative to 11 °C. Interactions between population density and social distancing were included in the
linear mixed-effects model, given the hypothesis that the association of social distancing with the Rt

might be greater in highly dense areas. We also controlled for potential time effect using a cubic
polynomial of days in outbreak. Statistical significance of the associations was determined using the
maximum likelihood ratio test at the nominal level of P < .05. All tests were 2-tailed.

We ran 3 sensitivity analyses. First, the model was re-estimated every 2 weeks (a total of 3
times) during a period of 1 month, checking for stability in estimates of associations for primary
covariates. Second, the model fit was evaluated by calculating in-sample R2 in a randomly selected
70% of counties over 100 replicates. Finally, to address concerns regarding potential bias owing to
the exclusion of counties with later outbreaks or with less overall population density, we relaxed our
inclusion criteria to permit counties with active outbreaks and a total population of at least 100 000
residents (as opposed to having cities with at least 100 000 residents), and we re-estimated the
associations of social distancing and wet-bulb temperatures with Rt during the study period. Given
concerns regarding limited representation of temperatures at the upper and lower ranges across
counties of different population density, we did not include interaction terms between population
density and temperature. Analyses were performed with R version 3.6.0 (R Project for Statistical
Computing) using the EpiEstim and dlnm packages.27

Results

Geographic locations and characteristics of the 211 counties are demonstrated in Figure 1 and Table 1.
The 211 counties contained 178 892 208 of 326 289 971 US residents (54.8%). County median
(interquartile range [IQR]) population density was 1022.7 (471.2-1846.0) people per square mile, with
skewing of the top decile of 21 counties to a median (IQR) of 8916.0 (5381.1-14 475.6) people per
square mile. The mean (SD) reduction in visits by people to nonessential business by mid-April was
68.7% (7.9%). Median (IQR) daily wet-bulb temperatures were 7.5 (3.8-12.8) °C. The 21 counties in
the top decile for population density had the highest median (IQR) incident case and fatality rate per
100 000 people (1185.2 [313.2-1891.2] cases; 43.7 [10.4-106.7]), nearly 10 times the estimates in the
lowest quartile (121.4 [87.8-175.4] cases; 4.2 (1.9-8.0) deaths). Mean (SD) R in the first 2 weeks was
5.7 (2.5) in the top decile compared with 3.1 (1.2) in the lowest quartile. The mean (SD) change in visits
to nonessential businesses from April 6 to April 19 was higher among counties in the top decile
(−77.9% [7.9%]) compared with those in the lowest quartile (−66.3% [7.8%]). The top decile of
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counties also experienced colder median (IQR) temperatures during the analysis period compared
with the counties in the lowest quartile (5.9 [3.4-8.4] °C vs 7.9 [3.1-12.7] °C).

We estimated Rt over a total of 6588 county-days for the 211 counties; 17 outlier county days
were removed because of an extremely low estimate of Rt at low case thresholds (ie, Rt < 0.05). The
estimated Rt by county varied greatly, but it tended to be highest earlier the epidemic, reaching a
peak Rt of 7.8 before declining later in the period (eFigure 1 in the Supplement). Adjusting for county-
level covariates, social distancing, population density, and temperature were associated with Rt

(Table 2). The estimated Rt in the context of a 50% decrease in visits to nonessential businesses was
54% (95% CI, 51%-57%; P < .001) of the Rt in the setting of normal visit intensity, corresponding to
a 46% decrease in the overall Rt. Compared with counties in the bottom quartile of population
density, the 21 counties in the top decile of density had a 15% increase (95% CI, 9%-22%; P < .001)
in relative Rt.

The nonlinear association of lagged temperature between 4 and 14 days is reported in Table 2
and Figure 2. Compared with the minimum estimated Rt at 11 °C, relative Rt increased across the
coldest temperatures to a relative Rt at 0 °C of 2.13 (95% CI, 1.89-2.40). A smaller peak of the relative

Figure 1. Location and Estimated Instantaneous Reproduction Number of Severe Acute Respiratory Syndrome Coronavirus 2 as of April 26, 2020,
in 211 Counties in the United States

United StatesA

Chicago and Detroit metro areaB New York metro areaC Boston metro areaD

Estimated reproduction number
0 2 4

>150
151-500
501-1000
>1000

Confirmed cases per
100k persons by county
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Rt to 1.61 (95% CI, 1.41-1.84) was estimated at 20 °C, before declining again at higher temperatures.
These findings were robust to the addition of 183 less densely populated counties with at least
100 000 residents (eTable and eFigure 3 in the Supplement).

The standardized association of social distancing, population density, and temperature on Rt,
appears in Figure 3. Assuming social distancing of 35% (ie, halfway between estimates during the US
shelter-in-place phase and normal activity), 2 counties (0.9%) were estimated to have a Rt less than
1.0 at 2 °C, and 114 counties (54.0%) were estimated to have a Rt of less than 1.0 at 11 °C. When visits
to nonessential businesses were reduced to the national mean of 70%, the number of counties
estimated to have Rt less than 1.0 increased to 63 (29.9%) and 202 (95.7%) at 2 °C and 11 °C,
respectively. At this 70% reduction in visits to nonessential businesses, 28 and 52 of 53 counties

Table 1. Population Characteristics in an Analysis of Instantaneous R for Severe Acute Respiratory Syndrome Coronavirus 2 by Population Density
for 211 Counties Across the United States

Characteristica

Population density
<25th Percentile
(n = 53)

25th-50th Percentile
(n = 53)

50th-75th Percentile
(n = 53)

75th-90th Percentile
(n = 31)

>90th Percentile
(n = 21)

All
(N = 211)

Population density,
median (IQR), people per
square mile

298.4
(164.2-376.1)

662.7
(539.1-826.8)

1368.7
(1211.4-1584.9)

2395.4
(2151.2-2860.6)

8916.0
(5381.8-14 475.6)

1022.7
(471.2-1846.0)

Hypertension, mean (SD),
% of population

29.4 (5.3) 31.6 (3.9) 31.2 (3.1) 31.5 (3.8) 29.3 (3.5) 30.7 (4.2)

Diabetes, mean (SD),
% of population

9.2 (2.3) 10.1 (1.8) 10.0 (1.3) 10.3 (1.5) 10.1 (1.5) 9.9 (1.8)

Regular smoking,
mean (SD),
% of populationb

16.5 (2.4) 16.9 (2.3) 16.3 (2.6) 16.6 (2.7) 15.9 (2.5) 16.5 (2.5)

BMI >30, mean (SD),
% of population

29.6 (4.5) 30.9 (3.5) 30.2 (3.5) 31.1 (3.8) 28.2 (4.1) 30.1 (3.9)

Age, median (IQR),
% of population

<18 y 23.9 (22.1-25.7) 23.4 (21.6-24.8) 22.3 (21.4-23.8) 23.1 (22.1-24.1) 20.9 (18.3-22.2) 22.7 (21.4-24.5)

18-34 y 24.5 (23.1-26.4) 23.7 (22.0-26.1) 23.3 (21.3-25.0) 24.4 (22.7-25.9) 28.3 (23.8-30.6) 24.1 (22.3-26.2)

35-64 y 37.1 (35.5-38.6) 38.1 (36.5-39.8) 39.5 (38.1-41.0) 38.9 (37.6-40.3) 38.8 (37.1-40.6) 38.4 (36.9-40.1)

≥65 y 13.8 (11.9-14.8) 13.5 (12.6-15.2) 14.7 (12.8-16.2) 13.5 (11.8-14.7) 13.2 (11.9-14.8) 13.8 (12.4-15.4)

Low income, mean (SD),
% of populationc

33.2 (9.8) 31.5 (8.6) 27.0 (8.8) 30.4 (8.5) 31.2 (10.2) 30.6 (9.3)

Uninsured, mean (SD),
% of population

9.6 (4.7) 9.5 (5.4) 8.2 (4.1) 9.4 (4.4) 8.5 (3.1) 9.1 (4.6)

Change in visits to
nonessential businesses,
mean (SD), %d

February 24 to March 8 –2.4 (7.0) –2.5 (6.1) –3.0 (5.7) –3.1 (6.1) –2.8 (6.3) –2.7 (6.3)

April 6 to April 19 –66.3 (7.8) –65.3 (7.3) –69.2 (6.8) –71.3 (5.8) –77.9 (5.2) –68.7 (7.9)

Daily wet-bulb
temperature,
median (IQR), °Ce

7.9 (3.1-12.7) 8.2 (4.1-14.8) 8.2 (4.2-14.5) 7.8 (3.9-13.7) 5.9 (3.4-8.4) 7.5 (3.8-12.8)

R in the first 2 weeks,
mean (SD)

3.1 (1.2) 3.1 (1.1) 3.6 (1.1) 4.0 (1.6) 5.7 (2.5) 3.6 (1.6)

Cases per 100 000
people on April 26,
median (IQR), No.

121.4 (87.8-175.4) 126.7 (79.3-180.3) 196.0 (73.1-530.4) 206.6 (110.5-483.2) 1185.2 (313.2-1891.2) 154.7 (87.9-350.6)

Deaths per 100 000
people on April 26,
median (IQR), No.

4.2 (1.9-8.0) 4.2 (2.3-7.5) 5.6 (2.3-28.6) 8.9 (4.1-21.9) 43.7 (10.4-106.7) 5.8 (2.5-16.3)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by
height in meters squared); IQR, interquartile range; R, reproduction number.
a All characteristics were obtained from the American Community Survey (2018) except

health data, which were obtained from the US Centers for Disease Control and
Prevention Behavioral Risk Factor Surveillance System (2017); social distancing, which
were obtained from Unacast (2020); and wet-bulb temperature, which were obtained
from the National Oceanic and Atmospheric Administration (2020).

b Regular smoking was defined as adult respondents who reported smoking at least 100
cigarettes in their life and currently smoking at least some days.

c Low income was defined as incomes of less than 200% of the poverty level.
d Visits to nonessential businesses obtained from Unacast, calculated as the change from

mean nonessential business visits during matching days of the week before March
9, 2020.

e Daily wet-bulb temperatures were calculated by averaging the hourly recordings from
weather stations that contribute to the National Oceanic and Atmospheric
Administration Local Climatological Data.
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(52.8% and 98.1%, respectively) in the lowest quartile of density achieved this threshold at 2 °C and
11 °C, respectively, compared with 0 and 17 of 21 counties (81.0%) in the top decile at the same
temperatures.

No significant interactions were observed for population density and social distancing. Model
estimates were stable over time. The overall R2 of the mixed-effects model was 0.53 based on the
covariate associations; the addition of random county and metropolitan area intercepts increased
the R2 to 0.64. Distribution of the in-sample R2 in a randomly selected 70% of counties over 100
replicates revealed good model fit (eFigure 4 in the Supplement).

Discussion

In this analysis of 211 US counties, change in social distancing, population density, and wet-bulb daily
temperature were associated with the rate of SARS-CoV-2 transmission within a county, as measured
by estimated Rt. Our analysis indicates that of these 3 factors, implementation of social distancing
has been the most significant in reducing transmission. In addition, the mitigating association of
increased social distancing and moderate increases in wet-bulb daily temperature were most

Table 2. Ratios of Rt for Social Distancing and Population Density in 211 United States Counties
Between February 25 and April 23, 2020

Variable Rt ratio estimates with 95% CIsa P value
Visits to nonessential businesses,
compared with no changeb

Reduce 25% Reduce 50% Reduce 75% NA

0.73 (0.71-0.75) 0.54 (0.51-0.57) 0.40 (0.36-0.43) <.001

Population density, compared with
25th percentilec

50th percentile 75th percentile 90th percentile NA

1.05 (1.03-1.07) 1.09 (1.05-1.14) 1.15 (1.09-1.22) <.001

Wet-bulb temperature 0 °C 5 °C 20 °C NA

2.13 (1.89-2.40) 1.38 (1.27- 1.50) 1.61 (1.41-1.84) <.001

Abbreviations: NA, not applicable; Rt, instantaneous reproduction number.
a Estimates and variation obtained through mixed-effects linear models using a log transformed Rt, log population density,

and distributed lag nonlinear models to estimate temperature effects. Postestimation was performed to convert
variables into meaningful units of change. Ratios of Rt are compared with the reference groups, adjusting for proportion
of residents older than 65 years, with incomes less than 200% of the poverty level, and with diabetes. Marginal R2 was
0.50; conditional R2 was 0.61.

b Visits to nonessential businesses obtained from Unacast. The referent value was the average visits to nonessential
business before March 9, 2020.

c Population density was categorized at the 25th, 50th, 75th, and 90th percentiles, which corresponded to 471, 1022,
1846, and 3951 people per square mile.

Figure 2. Cumulative Lagged Temperature Dependence of the Instantaneous Reproduction Number
of Severe Acute Respiratory Syndrome Coronavirus 2 in 211 US Counties
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dramatic in counties with higher population density, which had high Rt values, consistent with higher
R estimates from around the world.28

The underlying mechanism for the associations of social distancing and population density on
the estimated Rt for SARS-CoV-2 is likely associated with increased droplet transmission and
potentially airborne transmission when individuals are in closer proximity to each other.29,30

However, the association of population density with COVID-19 outcomes may not be limited to
transmission. The densest counties also had the highest number of deaths per 100 000 people. The
association of more severe disease in higher density areas is hypothesized to be associated with the
inoculum effect. The inoculum effect suggests that individuals exposed to a higher viral load at the
time of infection will have more severe illness; this is supported by epidemiologic studies for other
viruses,31,32 in particular for SARS-CoV-1.33-35 These data support the concept that during a
pandemic, people living in highly dense counties are more likely to transmit SARS-CoV-2 and to be
exposed to higher inoculums of SARS-CoV-2. This translates not only to more cases of COVID-19 but
also to a higher case fatality rate. Data assessing the inoculum effect for SARS-CoV-2 are needed to
confirm this hypothesis.

Our analysis, which used well-established methods developed to examine the association of
temperature with human health, is also among the first to consider the association of temperature
and humidity with SARS-CoV-2 transmission.22,25 We found that combined temperature and
humidity associations (proxied by wet-bulb temperatures) were nonlinear with the Rt and insufficient
alone to mitigate Rt values below 1 in the absence of considerable social distancing. The nonlinear
associations we observed were such that Rt ratios decreased, as hypothesized, when wet-bulb
temperatures increased to 11 °C. Beyond 11 °C, there was a modest increase in relative Rt ratios before
the ratios began declining again at higher temperatures.

The nonlinear associations we observed, particularly within the temperate range, are consistent
with the inverse relationship of temperature and transmission in animal models for influenza and
other coronaviruses.10,36 Those studies also found that higher humidity was associated with
increased viability and transmission of influenza through fomites, even as aerosol transmission was
mitigated with warming temperatures. If SARS-CoV-2 has similar properties to influenza at higher
humidity, it could explain our association of wet-bulb temperatures higher than 11 °C with a modest
increase in Rt.

Figure 3. The Association of Social Distancing, Population Density, and Temperature With the Instantaneous Reproduction Number
of Severe Acute Respiratory Syndrome Coronavirus 2 in 211 US Counties
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Beyond the direct association of temperature and humidity with virus stability, viability, and
propagation, it is also possible that changes in temperature and humidity alter human activity. For
example, at higher temperatures people may be more likely to congregate in public locations, such as
beaches and festivals. Therefore, an increase in Rt at higher temperatures could also be explained in
part by a decrease in social distancing not measured by our social distancing variable. Regardless of
the etiology, we remain cautious in interpreting the association of higher temperature and humidity
with Rt beyond the temperate range we observed in this analysis. The coming months will allow for
additional assessment of Rt during more prolonged periods of higher temperature and humidity.
These additional observations will help to confirm or refute the attenuated associations at higher
temperatures observed in this study.

To date, projections of COVID-19 outcomes have considered large areas, such as countries,
provinces, and US states. These models have provided useful information to set expectations for
deaths in the United States, to identify potential gaps in health services, such as intensive care unit
beds and ventilators, and to guide initial wide-ranging social distancing recommendations from
federal and state governments. Our county-level analysis has allowed us to better examine relevant
contributions of social distancing, population density, and seasonal weather changes on a given
county’s Rt. This approach gives valuable information on risk of transmission to inform area-specific
public policy decisions. It will be important to examine whether the introduction of these
associations to models can accurately estimate the likelihood of viral transmission in the future, given
that these factors will continue to change. To the degree that predictive modeling efforts are
successful, it may demonstrate some validity of using this approach, which incorporates random
effects for counties alongside seasonal changes to inform future epidemics.

Limitations
There are always limitations in observational studies. Generalizability remains a concern, particularly
given our focus on larger counties. The 45% of US residents not captured in our analysis were
residing in smaller, rural counties, and as such, our models are not applicable to these areas. It is
reassuring that the inclusion of an additional 183 more geographically dispersed and less densely
populated counties replicated our findings. Second, temperature associations we observed might
have been confounded by time period in the analysis, given that outbreaks occurred during spring in
parallel with changing weather. However, the addition of time to the model did not appreciably
change our results. Third, increases in testing capacity might have biased the models by inflating the
total cases reported within each county. It is possible that differences in diagnostic test availability
could contribute to the variation detected by the random effects across counties. However, our
estimate of Rt depended on the rate of change of cases, rather than on the absolute number of cases,
and during the period in which this analysis was conducted, test positivity rates, a proxy for testing
capacity, were flat.37 Furthermore, we smoothed early outbreak case incidences to account for early
limited access to diagnostic tests. We intentionally did not include testing capacity as a covariate, so
as not to overfit the model (eg, controlling for a factor that was also associated with rising viral
transmission itself). Fourth, as the random county and metropolitan area intercepts explained
additional variation, there are likely other unmeasured county factors that we did not capture. Our
proxy for social distancing used cellular telephone records and may not have captured all movement
and gathering within a county; it requires further validation as a proxy for the distancing associations
we were measuring. Other unmeasured factors might include commuter automobile traffic, public
transportation usage, and domestic and international flights, which had decreased during the study
period. It is clear that early local epidemics were seeded by international travel that contributed to
early transmission in some locations.38 Further investigation will be needed as communities reopen
to examine the association of these additional time-varying factors with risk of SARS-CoV-2
transmission.
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Conclusions

The results of this study suggest that social distancing, population density, and daily weather may
account for variation in the Rt for SARS-COv-2 across the United States. These results may guide
policy decisions for managing this pandemic more selectively at the local level throughout
the country.
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