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Abstract

Background

The presence of Chlamydia trachomatis (Ct) DNA at non-ocular sites suggests that these

sites may represent plausible routes of Ct transmission in trachoma. However, qPCR cannot

discriminate between DNA from viable and non-viable bacteria. Here we use a propodium

monoazide based viability PCR to investigate how long Ct remains viable at non-ocular sites

under laboratory-controlled conditions.

Methods

Cultured Ct stocks (strain A2497) were diluted to final concentrations of 1000, 100, 10 and 1

omcB copies/μL and applied to plastic, woven mat, cotton cloth and pig skin. Swabs were

then systemically collected from each surface and tested for the presence Ct DNA using

qPCR. If Ct DNA was recovered, Ct viability was assessed over time by spiking multiple

areas of the same surface type with the same final concentrations. Swabs were collected

from each surface at 0, 2, 4, 6, 8 and 24 hours after spiking. Viability PCR was used to deter-

mine Ct viability at each timepoint.

Results

We were able to detect Ct DNA on all surfaces except the woven mat. Total Ct DNA

remained detectable and stable over 24 hours for all concentrations applied to plastic, pig

skin and cotton cloth. The amount of viable Ct decreased over time. For plastic and skin sur-

faces, only those where concentrations of 100 or 1000 omcB copies/μL were applied still

had viable loads detectable after 24 hours. Cotton cloth showed a more rapid decrease and

only those where concentrations of 1000 omcB copies/μL were applied still had viable DNA

detectable after 24 hours.
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Conclusion

Plastic, cotton cloth and skin may contribute to transmission of the Ct strains that cause tra-

choma, by acting as sites where reservoirs of bacteria are deposited and later collected and

transferred mechanically into previously uninfected eyes.

Author summary

Trachoma elimination efforts are hampered by limited understanding of Ct transmission

routes. We have recently demonstrated the presence of Ct DNA at non-ocular sites in

individuals living in households in Ethiopia where at least one resident had an ocular Ct
infection detectable by quantitative PCR (qPCR). Ct DNA was most frequently detected

on faces, hands and clothing, being found in such locations in 10–16% of samples tested.

However, qPCR cannot discriminate between DNA from viable and non-viable organ-

isms, and potentially misinform our understanding of Ct transmission routes. In this

study, we used a propidium monoazide based viability PCR to investigate how long Ct
remains viable on non-ocular sites by spiking different surfaces including pig skin, plastic

and cotton cloth. These surfaces mimic non-ocular sites previously found to be positive

for Ct DNA using standard qPCR. The results of our study show that viable Ct DNA

could be recovered from plastic, cotton cloth and skin surfaces for up to 24 hours suggest-

ing that these surfaces a role in ocular Ct transmission.

Introduction

Trachoma, a neglected tropical disease, remains the most common infectious cause of blind-

ness globally, affecting some of the world’s poorest people [1]. Trachoma is caused by repeated

ocular infection with ocular strains of the bacterium Chlamydia trachomatis (Ct). In tra-

choma-endemic populations, infection is most common in children and is associated with

clinical signs of inflammation in the conjunctiva. Chronic inflammation results in immuno-

logically mediated conjunctival scarring and may lead to in-turned eyelashes scratching the

eye. Eventually, in some individuals, sight is lost from irreversible corneal opacification [1].

Trachoma elimination efforts are hampered by limited understanding of Ct transmission

routes and their relative importance. Transmission of ocular Ct from infected to uninfected

individuals is hypothesised to occur directly through close contact or indirectly on eye-seeking

flies and fomites (e.g. face cloths, towels and items of clothing) [1–8]. Using quantitative PCR

(qPCR), we have recently tested ocular swabs from 1220 individuals in 247 households living

in Ethiopia and ocular Ct was detected in 2% of all ages (median omcB load 198.6 copies/μL

(inter quartile range 23.2–3189.1 copies/μL)) [9]. Moreover, we demonstrated the presence of

Ct DNA at non-ocular sites in individuals living in these households in Ethiopia where at least

one resident had an ocular Ct infection detectable qPCR. In these households, Ct DNA was

most frequently detected on faces, hands and clothing, being found in such locations in 10–

16% of samples tested [9]. The presence of Ct DNA at non-ocular sites suggests that these sites

may contribute to routes of transmission. However, qPCR cannot discriminate between DNA

from viable and non-viable organisms [10]. Nucleic acid amplification of non-viable Ct could

therefore potentially misinform our understanding of Ct transmission routes. The assessment

of Ct viability is essential to gain more insight into transmission processes.
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Traditionally, cell culture is the gold standard for the assessment of Ct viability, but the sen-

sitivity of culture compared to RNA- or DNA-based nucleic acid amplification tests is low,

varying in head-to-head comparisons from 20–83% [11–16]. One promising method to over-

come this problem with Ct diagnostics is viability PCR which uses propidium monoazide

(PMA) as a sample pre-treatment before performing PCR, as recently described by Janssen

et al [17, 18]. PMA irreversibly crosslinks with DNA from membrane-impaired (non-viable)

bacteria, and by occupying potential primer binding sites, makes it unavailable for amplifica-

tion and detection by PCR. It has no effect on DNA in bacteria in which the cell membrane is

intact, thus only allowing amplification of viable organisms. Viability PCR can therefore

improve our understanding of Ct transmission by differentiating between DNA from viable

and non-viable organisms at non-ocular sites.

Here we use viability PCR to investigate how long Ct remains viable on non-ocular sites by

spiking different surfaces. We used pig skin to mimic human skin since it is similar to human

skin in its histologic structure [19–21]. In addition, we used plastic and cloth that mimic other

non-ocular sites previously found to be positive for Ct DNA using standard qPCR. The experi-

ments presented in this paper therefore provide further insight into whether these sites con-

tribute to transmission routes in trachoma-endemic communities.

Methods

Chlamydia trachomatis culture

Human Epithelial type-2 (HEp-2) cells were cultured in 6-well plates (Corning) in standard

culture medium consisting of Minimum Essential Medium (MEM; Life Technologies) supple-

mented with 10% fetal bovine serum (Lonza Bio Science) and 4.5 g/L glucose (Lonza Bio Sci-

ence) at 37˚C in air containing 5% CO2. For subcultures, cells were detached with 0.05%

trypsin/EDTA (Life technologies).

For infection, ocular Ct serovar A strain (strain A2497 [22]) was added to a monolayer of

HEp-2 cells at a multiplicity of infection of 1 in the presence of medium supplemented with

10% fetal bovine serum, 4.5 g/L glucose, 2.5 μg/ml amphotericin B (Life technologies) and

20 μg/mL gentamicin (Gibco). Infection was completed by centrifugation at 1800 rpm for 1h

at 37˚C, and infected cells were incubated at 37˚C in air containing 5% CO2 for 2 hours. Fol-

lowing this, the medium was replaced with standard culture medium as described above and

cells were cultured for another 48–72 hours at 37˚C in air containing 5% CO2.

HEp-2 cells were then detached using 0.05% trypsin/EDTA-solution (Life technologies)

and lysed to release Ct elementary bodies (EBs) by sonicating the cells twice for 12 seconds at

80W. Cells were pelleted down at 3800RPM for 10 minutes and resuspended in 0.2M sucrose-

phosphate (2SP)-based transport medium containing 0.0125 g/L streptomycin (Generon),

0.0125 g/L vancomycin (Bertin pharma) and 0.625 μg/mL amphotericin B (Life Technologies).

A droplet digital PCR (ddPCR) assay was performed as described elsewhere [23, 24] to esti-

mate the number of Ct genome (omcB) and plasmid (pORF2) copies in each culture aliquot.

DNA extraction

DNA from Ct culture or collected swabs was extracted using the Biochain Blood and Serum

kit (AMS Biotechnology Europe Ltd). For Ct culture, DNA was extracted from an 80 μL ali-

quot of culture solution. Swabs were vortexed in 500μL 2SP at full speed for two minutes; after

expressing excess liquid on the side of the tube, the swab was removed and discarded. DNA

extraction of all samples was then completed following the manufacturer’s recommendations

and eluted in 80μL TE-buffer.
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Chlamydia trachomatis quantification and load estimation

Ct detection was performed using an in-house multiplex quantitative PCR (qPCR) assay tar-

geting the Ct chromosomal omcB gene and plasmid pORF2 gene, as previously described [23].

The assay was performed on a 7900HT Fast Real-Time PCR machine (Applied Biosystems) in

384-well format.

SDS 2.4 software (Life Technologies, Paisley, UK) was used for PCR data analysis. Samples

were tested in duplicate and classified as positive for Ct if amplification of the omcB target was

detected within 40 cycles (since Ct is known to have only one chromosome copy of omcB, but

variable numbers of plasmid pORF2, per bacterium) [25]. Ct load was estimated by extrapola-

tion from an eight-step, ten-fold dilution of standards of known concentration; these were

tested in duplicate on each plate.

Viability PCR

Viability PCR samples were split into two aliquots prior to DNA extraction. One of the ali-

quots was extracted using standard methods described above and the other was pre-treated

with PMA (Biotium). A vial of PMA (0.5 mg) was reconstituted in 782μl 20% DMSO to obtain

a stock concentration of 1250 μM and subsequently stored in the dark at 4˚C. Treatment con-

ditions were optimized, and PMA concentrations were in line with previous studies [17, 18,

26, 27]. PMA stock solution was added to each sample to a final concentration of 50 μM, with

resulting mixtures then incubated for 15 minutes in the dark on ice. All samples were subse-

quently exposed to blue light-emitting diodes (emission wavelength 465 nm; GenIUL Phast

Blue) for 15 min. Total DNA was extracted using the Biochain Blood and Serum kit (AMS Bio-

technology Europe Ltd) described above.

Technical validation of viability PCR

Ct culture was heat killed at 95˚C for 15 min at 300 rpm on an Eppendorf Thermomixer C

(Eppendorf) to demonstrate the efficacy of viability PCR to distinguish between DNA from

viable and non-viable Ct.

Preparation of spiked surfaces

Since we previously observed a median omcB load of 198.6 copies/μL (inter quartile range

23.2–3189.1 copies/μL) in infected individuals using the same Ct qPCR assay [9], a cultured Ct
aliquot was diluted in 2SP to obtain final load concentrations of 1000, 100, 10 and 1 omcB cop-

ies/μL to reflect a similar omcB load range. All dilutions were confirmed by testing 80 μL ali-

quots of each solution. Dacron swabs (Puritan, Medline Scientific) and pieces of plastic sheet,

woven mat, cotton cloth and pig skin of approximately 4x4 cm size were spiked by inoculating

80 μL of each dilution on to each swab or surface and allowing them to dry for 15 min at ambi-

ent room temperature (typically 22–25˚C).

Chlamydia trachomatis DNA recovery from spiked surfaces

First, we investigated total DNA recovery from each surface. Dacron swabs were pre-moist-

ened in 2SP and systematically rubbed with moderate and consistent pressure across each sur-

face, horizontally and vertically covering an area of 4x4 cm for ten seconds. A swab was

collected from each surface into 500μL 2SP directly after the surfaces were spiked with Ct cul-

ture solution. An 80 μL aliquot of each final concentration was taken and stored in 500 μL 2SP

to serve as a positive control. Swabs were immediately processed for DNA extraction and
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qPCR as described above. If Ct DNA was recovered from a surface, Ct viability PCR was

performed.

Time series of Ct viability on spiked surfaces from which Ct DNA was

recovered

Ct viability was investigated at 0, 2, 4, 6, 8 and 24 hours after spiking for each surface from

which Ct DNA was recovered. A separate surface was spiked for each time point and each

spiked surface sample was swabbed only once. For each time point, an 80 μL aliquot of each

final concentration was taken and stored in 500 μL 2SP to serve as a positive control. All sam-

ples were immediately split and separately tested using standard quantitative and viability

PCRs.

Statistical analysis

All data were analysed using R version 3.4.2 (R Foundation for Statistical Computing, 2017).

Ct load data were loge-transformed. Error bars in figures represent standard deviations from

two independent experiments. Mixed effects linear regression was used with omcB loge copies

as the outcome, and time as the exposure variable to estimate the decrease in viable omcB loge

copies per hour. Decline in viable omcB loge copies per hour was only estimated up to 8 hours

after spiking since the gap between the 8-hour and 24-hour timepoint provided too much

uncertainty for an accurate estimate. The estimated proportional reduction in omcB copies per

hour was obtained by taking the exponential of each estimated omcB loge copy reduction per

hour.

Results

Technical validation of viability PCR

Comparable loge omcB loads were observed for the heat-killed and non-heat-killed Ct culture

aliquots that were not exposed to PMA treatment (loge 9.39 vs 9.38 copies/μL, respectively)

(Fig 1). For the non-heat-killed Ct aliquots, PMA treatment resulted in a 0.47 loge unit (±0.20)

omcB load reduction. In contrast, PMA treatment of heat-killed Ct aliquots resulted in a 3.49

loge unit (±0.50) omcB load reduction relative to the heat-killed Ct aliquots without PMA treat-

ment, a 98% reduction. Attempts to culture heat-killed Ct aliquots were all negative, providing

further evidence that Ct were no longer viable after heat killing.

Immediate Chlamydia trachomatis DNA recovery from spiked surfaces

Ct DNA could be retrieved from all surfaces except the woven mat, although differences were

observed in the amount of Ct DNA recovery from each surface (Fig 2). The highest percentage

recovery was observed for plastic, however, this varied depending on concentrations of Ct cul-

ture solution used: Lower concentrations of Ct culture solution resulted in lower recovery per-

centages (Table 1).

Chlamydia trachomatis viability on spiked surfaces over time

Since DNA could not be detected from woven mat, we conducted further experiments to

examine recovery of viable DNA over time using only plastic, skin and cotton cloth. Surfaces

were spiked and viability PCR was conducted at 0, 2, 4, 6, 8 and 24 hours after spiking.

Total omcB (determined by standard qPCR) remained detectable and stable at each time-

point up to 24 hours for all control aliquots (Fig 3A), spiked plastic (Fig 3B), spiked skin (Fig

3C) and spiked cotton cloth (Fig 3D). In contrast, a variable decrease in the proportion of
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Fig 1. Effect of PMA treatment on viable and non-viable Chlamydia trachomatis cultures. Quantitative PCR was

performed using primers targeting the single copy omcB gene. Error bars represent standard deviations from three

independent replicates.

https://doi.org/10.1371/journal.pntd.0008449.g001

Fig 2. Chlamydia trachomatis DNA recovery from spiked surfaces. Quantitative PCR was performed using primers

targeting the single copy omcB gene. Error bars represent standard deviations from three independent replicates.

https://doi.org/10.1371/journal.pntd.0008449.g002
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viable Ct was observed over time depending on the different surfaces and concentrations used.

Control aliquots, plastic and skin gave similar results with only 100 or 1000 omcB copies/μL

still having detectable viable load after 24 hours, while fluid containing concentrations of up to

100 omcB copies/μL left no residual viable load after 4 hrs (1 omcB copy/μL) and 8 hrs (10

omcB copies/μL). For cotton cloth, a more rapid decrease in detectable viable DNA was

observed, with a concentration of 1 omcB copy/μL not being detectable at any timepoint. A

concentration of 10 omcB copies/μL was detectable up to 2 hours and a concentration of 100

omcB copies/μL was detectable up to 4 hours. Viable DNA could only be detected up to 24

hours for a concentration of 1000 omcB copies/μL. Overall, these results indicate that Ct can

remain viable at detectable levels on plastic, skin and cotton cloth for up to 24 hours, depend-

ing on Ct load.

Estimated decline in viable Chlamydia trachomatis per hour

Decline in viable loge omcB copies per hour was only estimated for the highest concentration

(1000 omcB copies/μL) since this was the only concentration that was detectable up to 8 hours

on all surfaces. Moreover, we only estimated the decline in viable Ct per hour for the first 8

hours since the gap between the 8-hour and 24-hour timepoint introduced too much uncer-

tainty at later time points (Table 2). Decline in viable Ct varied per surface with pig skin show-

ing the highest reduction rates: -0.35 loge omcB copies per hour (30% reduction in viable load

per hour), followed by cotton cloth which showed a decrease in viability of -0.30 loge omcB
copies per hour (30% per hour) and plastic -0.26 loge omcB copies per hour (23% per hour).

Control aliquots taken at each timepoint showed a decline in viable Ct of -0.22 loge omcB cop-

ies per hour (20% per hour).

Table 1. Chlamydia trachomatis DNA recovery from spiked surfaces.

Surface Spiked concentration (omcB copies/μL) omcB loge load range Mean loge omcB load (sd) Mean percentage recoverya

Spiked swab 1000 7.14–7.72 7.43 (0.22) 100%

100 5.22–5.76 5.57 (0.18) 100%

10 3.68–3.99 3.87 (0.15) 100%

1 1.73–2.05 1.99 (0.13) 100%

Plastic 1000 6.92–7.40 7.17 (0.21) 97%

100 5.15–5.47 5.26 (0.13) 95%

10 3.24–3.64 3.85 (0.13) 91%

1 1.34–2.05 1.84 (0.27) 92%

Skin 1000 5.06–5.38 5.22 (0.18) 70%

100 3.77–4.06 3.92 (0.16) 70%

10 1.80–2.25 2.12 (0.17) 55%

1 1.01–1.25 1.17 (0.09) 59%

Cotton cloth 1000 3.95–4.55 4.29 (0.28) 58%

100 2.05–2.53 2.25 (0.18) 41%

10 0.90–1.15 1.06 (0.11) 27%

1 0.00–0.86 0.14 (0.35) 7%

Woven mat 1000 0.00–0.00 0.00 (0.00) 0%

100 0.00–0.00 0.00 (0.00) 0%

10 0.00–0.00 0.00 (0.00) 0%

1 0.00–0.00 0.00 (0.00) 0%

aMean percentage recovery compared to loge omcB load detected on spiked swabs.

https://doi.org/10.1371/journal.pntd.0008449.t001
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Fig 3. Detection Chlamydia trachomatis viability on spiked surfaces over time. Showing (A) detectable viable load in control aliquots, (B) detectable viable load on

spiked plastic surface, (C) detectable load on spiked pig skin surface and (D) detectable viable load on spiked cotton cloth surface. Error bars represent standard

deviations from two independent replicates.

https://doi.org/10.1371/journal.pntd.0008449.g003

Table 2. Estimated decline of viable Chlamydia trachomatis omcB copies per hour from spiked surfaces.

PCR vPCR

Surface Loge reductiona Proportion reductiona Loge reductiona Proportion reductiona

Control aliquot -0.04 4% -0.22 20%

Plastic -0.04 4% -0.26 23%

Pig skin -0.01 0.8% -0.35 30%

Cotton cloth -0.07 7% -0.30 26%

aReduction refers to the estimated reduction of detectable omcB copies per hour.

https://doi.org/10.1371/journal.pntd.0008449.t002
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Discussion

In this study, viability PCR was used to investigate how long an ocular Ct strain remains viable

at non-ocular sites in a controlled environment by spiking different surfaces including pig

skin, plastic, woven mat and cotton cloth. Using standard qPCR and viability PCR, we demon-

strated that viable ocular Ct remains detectable on several different surfaces for up to 24 hours.

To the best of our knowledge, this is the first study to look at recovery of total and viable ocular

Ct DNA from different surfaces over time in a reproducibly controlled environment.

We technically validated the use of PMA treatment combined with our Ct qPCR assay. Vali-

dation was performed by applying viability PCR to a fresh Ct culture and Ct culture after a

heat-kill step. Without PMA treatment, detectable omcB loads were similar for cultures with

and without heat-killing. When comparing load values before and after PMA treatment of

fresh Ct culture there was a slight difference in detectable omcB load. This difference was most

likely caused by the presence of non-viable Ct at the start of Ct culture that entered HEp-2 cells

through centrifugation-assisted inoculation or due to prolonged incubation times (48–72

hours). PMA treatment of Ct culture after a heat-kill step significantly reduced qPCR detection

of omcB load. These results are in line with previous studies validating PMA-based viability

PCR for Ct [17] and other pathogens [26, 28, 29], all of which demonstrated that PMA treat-

ment of heat-inactivated bacterial cultures resulted in up to a 3–4 loge reduction of detectable

target sequences.

Ct DNA could be recovered from all surfaces except woven mat. These results are in line

with previous work demonstrating that Ct DNA could be detected on hands, faces and cloth-

ing of individuals and water cans in households where at least one household member had an

ocular Ct infection detectable by PCR [6, 9, 30, 31]. The lack of detection from woven mat in

the present study may have occurred because Ct culture in 2SP solution seeped through the

material and did not leave sufficient DNA on the surface to allow later recovery. In addition,

although we could recover DNA from plastic, skin and cotton cloth, we observed differences

in the proportion of DNA we recovered compared to spiked swabs that served as controls.

Less DNA was recovered from skin and cotton cloth, which were probably both able to absorb

some 2SP solution, than from plastic, on which 2SP solution remained surface-bound.

This is the first study to assess viability of ocular Ct over time on different surfaces. Our

results demonstrate that Ct remains viable on plastic, skin and cotton cloth for up to 24 hours,

suggesting that these surfaces could contribute to transmission. However, reduction in viabil-

ity was dependent on the initial concentrations that were used to spike these surfaces, with

lower concentrations becoming non-viable more rapidly (Fig 3). The more rapid decreases in

viability for skin and cotton cloth surfaces likely reflects lower DNA recovery from these sur-

faces. As a result of lower detectable loads directly after spiking, viable loads on these surfaces

may become undetectable more rapidly. This may provide some indication of the relative

potential of different types of surfaces to act as platforms for onward transmission. Overall, for

solutions containing 1000 omcB copies/μL, we estimated that the amount of viable Ct remain-

ing on surfaces and in control solution declines at 22–30% and 20% per hour, respectively.

Potential limitations of our study should be noted. PMA treatment did not block amplifica-

tion of all heat-killed organism. Viability PCR may overestimate the proportion of truly viable

bacteria, since it assumes viability based on an intact cell membrane [17, 27]. It is possible that

a proportion of the DNA we amplified belonged to non-viable organisms that had not yet

been affected by loss of membrane integrity. This overestimation may have increased during

our time series experiments, depending on the time lag between loss of actual viability and dis-

ruption of cell membranes. It is generally believed that cell culture has the highest specificity

for assessing Ct viability, but unfortunately culture has low sensitivity compared to nucleic
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acid amplification-based tests, making it a poor method for determining viability in this kind

of study [11–16].Our data were obtained in a controlled environment and might therefore be

an overestimation of true viability on surfaces in a typical trachoma-endemic household. We

cannot rule out that external factors such as exposure to UV light through sunlight, dirt, water

or the absence of 2SP transport medium would cause a more rapid decrease in Ct viability, or,

conversely, that deposition of Ct on surfaces within ocular or nasal discharge could prolong

survival in the real world. These results can therefore not be simply generalised for affected

communities, indicating the need to repeat this study. It is important that swabs collected in

such study are stored in appropriate transport medium and that an adequate cold chain can be

established to ensure samples are frozen as quickly as possible to prevent any loss of viability.

In conclusion, Ct DNA could be recovered from all surfaces except woven mat. Viable Ct
DNA could be recovered from plastic, cotton cloth and skin surfaces for up to 24 hours. These

results suggest that plastic, cotton cloth and skin surfaces may play a role in ocular Ct
transmission.
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