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4. ABSTRACT 

Characterizing the drug resistance mutations that have evolved in Mycobacterium 
tuberculosis (Mtb), has important implications for control of tuberculosis (TB) disease, 
through more accurate and timely use of therapy. Whole genome sequencing of Mtb 
can assist this characterization by providing insights into loci and specific mutations 
underlying drug resistance and the transmission success that enables their spread.  
 
We hypothesised that genetic variation outside of known resistance-conferring 
mutations might give additional information concerning drug resistance and fitness. 
Firstly, we explored the effect of lineage on the identification of drug resistance 
associations, applying novel lineage level genome-wide association study (GWAS) and 
convergence-based (PhyC) methods to drug resistance phenotypes of a global dataset 
of Mtb lineages 2 and 4. We identified known drug resistance variants and novel 
associations, uniquely identifying associations for lineage-specific GWAS analyses and 
reporting 17 novel associations between antimicrobial resistance phenotypes and Mtb 
genomic variants, demonstrating the utility of lineage-specific GWAS. 
 
To further examine the genomic basis of extensively drug resistant (XDR)-TB, we next 
applied the GWAS and PhyC techniques to a global dataset of 18,255 Mtb isolates. 
Through GWAS we identified 20 loci in novel associations within highly drug-resistant 
Mtb strains. Cluster-based GWAS and a lack of overlap with associations identified 
through convergent-evolution-based analyses confirmed that many such associations 
have been driven by transmission in outbreaks of XDR-TB.  
 
We then investigated the feasibility of applying a learning classifier system to this 
dataset to predict rifampicin resistance and discover candidate loci for novel 
involvement, finally enabling a sensitivity of 93.7% and a specificity of 94.8% of 
rifampicin resistance prediction.  
 
Finally, we applied this methodology to the XDR phenotype in lineages 2 and 4 of a 
global dataset (n=13,270), achieving high accuracy of prediction and identifying a 
number of candidate loci for involvement in XDR, including candidates for epistasis. 
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Tuberculosis Disease 

Global Tuberculosis Disease Burden 

With an estimated 10.0 million people developing tuberculosis (TB) in 2017 and an 

estimated 1.6 million deaths [1], the global burden of TB is overwhelming. Worldwide, 

it is estimated that between 1.7 billion individuals are infected with the causative 

agent, Mycobacterium tuberculosis (Mtb), with 5-10% of those infected developing 

active disease [1].  There is great variation in the distribution of tuberculosis disease 

globally. Of those who developed TB in 2017, two thirds were in eight countries; India, 

China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh and South Africa [1]. 

Most high income countries had less than 10 new cases per 100,000 population, whilst 

there were more than 500 cases per 100,000 population in countries such as 

Mozambique, the Philippines and South Africa [1]. 

 

Global Diversity of Mtb 

Mtb is a member of a larger group of related species, known as the Mtb 

complex. Today, Mtb has seven lineages, defined on the basis of molecular typing, 

which are endemic in different locations around the globe, with some persisting in 

geographical regions (lineages 5 and 6 in West Africa) and others across continents 

(lineage 2- East Asian/Beijing strains or lineage 4 – Euro-American strains) leading to 

the hypothesis that the strain-types are specifically adapted to people of different 

genetic backgrounds [2]. These lineages may vary in propensity to transmit, virulence, 
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site of infection and ultimately propensity to cause disease [3–5] but results are 

inconsistent and there is considerable inter-strain variation within lineages [6, 7]. 

Recent research into lineage 4 alludes to this variation, suggesting different 

evolutionary strategies are employed by different sublineages [8]. A set of single 

nucleotide polymorphisms (SNPs) has been identified that can be used to barcode sub-

lineages [9], leading to informatic tools that position sequenced samples within a 

global phylogeny [10].  

This global distribution of modern Mtb lineages is thought to be explained by 

their distribution through human migration and evolution resulting from changes in 

selection pressure as human populations underwent increases in population density or 

neutral evolution [5, 11–14]. 

 

Tuberculosis Disease Aetiology 

Under the classical model of TB, upon infection by Mtb there are three possible 

outcomes; clearance, latent disease or active disease. Transmission occurs during 

active disease due to the release of Mtb bacteria from the lungs in aerosol form. 

Inhalation of the Mtb bacterium can then result in macrophage infection within the 

lungs, invoking an immune response; macrophages likely phagocytose the bacteria, 

which are then resistant to macrophage killing mechanisms. 

The primary site of interaction between host and Mtb is the granuloma; which 

forms as a result of host immune response. Latent disease occurs when the granuloma 

successfully contains the Mtb infection. This is an active and complex process and lack 



 13 

of containment allows dissemination of Mtb and progression to active TB disease [15–

17]. This granuloma diversity may impact in disease progression and outcomes; there is 

evidence that there is a spectrum of latent disease [18] and that reactivation risk is 

granuloma specific, with the potential of Mtb dissemination from only one or a few 

granuloma to cause active disease [19, 20].  

A number of reasons have been put forward to explain host heterogeneity in 

response to Mtb infection including; environmental host factors such as nutrition or 

HIV+ status, resulting in immunosuppression, Mtb genetics and host genetics. Indeed, a 

number of studies have found associations between human ethnicity and Mtb 

populations [2, 21], and additionally human ethnicity and M. africanum populations 

[22]. Such findings have led to suggestions of population specific adaptations in Mtb 

and host-pathogen coevolution [5]. Furthermore, ethnicity has been implicated in 

clinical TB phenotype [23].  

 

Vaccines 

Attenuated Mycobacterium bovis strain bacillus Callmette Guerin (BCG) has 

been used as a vaccine against TB since 1921. BCG shows variable efficacy [24], with 

factors such as previous exposure to non-tuberculous mycobacteria, human genetic 

variation and genetic variation of the vaccine strain itself potentially implicated  [25]. 

There remains a need for a new vaccine with increased efficacy [26]. 
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Treatment and the Evolution of Resistance 

Regardless of the initial emergence of Mtb, the widespread use and misuse of chemical 

antimicrobials since the 1960s likely represents a major new selection pressure 

governing Mtb evolution. Indeed, the emergence of drug resistance in Mtb is 

threatening disease control efforts. The evolution of drug resistance has occurred, 

despite clonal reproduction and a lack of lateral gene transfer in Mtb. Mtb resistance 

has developed to all anti-Mtb drugs, usually relatively shortly after their introduction 

and now isolates occur with multiple different drug resistances. 

Drug-resistant TB is phenotypically categorised as singly resistant to any anti-

Mtb drug, multi-drug resistant (MDR), resistance to two first–line treatments, 

rifampicin and isoniazid; extensively drug-resistant (XDR), defined as MDR alongside 

resistance to fluoroquinolones and at least one second-line injectable; or totally drug-

resistant (TDR or XXDR). In 2017, MDR TB amounted to 3.5% of new TB cases globally 

and 8.5% of these were XDR [1]. Treatment success rates for MDR and XDR TB are only 

55% and 34%, respectively [1]. 

 Two new drugs, bedaquiline and delaminid, have recently been introduced, but 

there remains a need for further development of new drugs and drug regimens, 

alongside increased drug susceptibility testing, better diagnosis and easier access to 

continued treatment [1]. 
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Diagnosis and Surveillance 

Currently culture-based assays are the standard for diagnosis and drug susceptibility 

testing of clinical Mtb isolates. Due to the slow growth of Mtb, this process is time 

consuming. For simplicity and speed, determining drug susceptibility is routinely done 

using agreed standardised cut-offs, resulting in the binary resistant or susceptible 

phenotype. However, these thresholds are subject to change over time and do not 

reflect the full diversity of the drug resistant phenotype. Additionally, it is possible to 

measure the minimum inhibitory concentration (MIC) required to prevent growth of 

an Mtb isolate, generating a more accurate continuous variable. Not only would this 

help to improve appropriate drug use for patients, but this data would greatly increase 

the information on determining the genetics of the drug resistance.  

Rapid molecular tests offer an interesting alternative to standard drug 

susceptibility testing, such as XPERT MTB/RIF, which is PCR-based and is able to 

diagnose tuberculosis alongside resistance to rifampicin, as well as new methods 

showing promise as point of care tests [27]. 

 

Genomics of Drug Resistance 

De novo emergence of drug resistance has been observed, with the presence of 

multiple unfixed drug-resistance mutations and selective sweeps in Mtb populations 

within patients [28–30]. Additionally, transmission of resistant strains is frequently 

observed [31, 32]. Indeed, many mutations associated with antimicrobial resistance 

have been identified [33], some have been associated with no fitness cost and others 
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with additional compensatory mutations that may increase fitness and enable 

transmission [34]; this area requires further investigation. Such mutations include both 

point mutations, for example, single nucleotide polymorphisms (SNPs) such as in rpoB 

[35] and structural variants such as the dfrA-thyA double deletion linked to para-

aminosalicylic acid resistance [36]. Genes involved in resistance to some drugs are well 

known; for example, mutations for rifampicin (in rpoB and rpoC) and isoniazid (in katG) 

are well characterised [33]. However, the mechanisms for ethambutol (embB), 

pyrazinimde (pncA) and second line drugs are not fully known. As whole genome 

sequencing (WGS) is applied to Mtb more routinely [37] , association approaches using 

genomic variation have the potential to provide new insights into these resistance 

mechanisms. Compensatory mutations such as those in rpoA and rpoC, associated with 

the rpoB rifampicin resistance mutations, have been associated with transmission of 

drug resistant strains [38]. 

 

Whole Genome Sequencing 

WGS is increasingly being applied to Mtb, either after culturing or directly from 

sputum[39–42]. A number of tools have been developed to predict drug susceptibility 

from genome sequence [43–50]. 

Additionally, WGS has important implications for TB surveillance; it allows the 

phylogenetic reconstruction of relationships between strains and thus the inference of 

transmission events [51–54]. Such inference of transmission events can be used to 

inform public health strategy. Furthermore, WGS can enable the monitoring of drug 
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resistance evolution at a genomic level, for example determining the relative 

importance of within patient evolution versus transmission of drug resistance [28–32]. 

 

Genome-Wide Discovery Methods 

Genome Wide Association 

The genome-wide association study (GWAS) approach has been applied as a method to 

discover genomic variants involved in drug resistance phenotypes. 

This approach seeks to identify genomic variants associated with phenotypes of 

interest, classically through case-control designs, in which the genomic data of a group 

with the phenotype of interest is compared to that of a group without the phenotype 

of interest, and statistical association is assessed. Such methods are firmly established 

in the field of human genetics research.  

However, there are important differences between humans and bacterial 

pathogens in relation to GWAS methodology that must be considered. Haploid 

organisms like bacteria often form highly structured populations resulting from 

transmission and clonal reproduction. They may even group into distinct lineages, 

which may have important biological differences encoded in their genome. Thus, there 

is a need to deal with population structure, such that relatedness is accounted for, 

minimising spurious associations as a result of common genetic background, whilst 

maximising sensitivity to detect biologically relevant effects. Furthermore, for many 

bacterial species, there are added complications, such as lateral gene transfer, which 
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can lead to variable gene content between isolates; there may be differences in the 

presence or absence of entire genes [55].  

With the development of linear mixed model approaches that seek to account 

for relatedness [56] and increasing availability of bacterial whole genome sequences, 

there is new potential in the application of GWAS to understand evolutionary dynamics 

in bacterial pathogens [57].  

It is interesting to note that human GWAS typically rely on typed SNPs, and 

exploit patterns of known linkage disequilibrium, the patterns by which variants in 

close proximity are commonly co-inherited, within human populations, to link SNPs to 

potential causal genomic variants. However, WGS data negates the need for 

characterised linkage disequilibrium patterns and allows the possibility of detecting 

causal variants directly. 

The GWAS approach, widely used in human genetics, is increasingly being 

applied to pathogen research and shows great promise [58]. It allows the identification 

of variants across the genome, associated with specific phenotypes, and has been used 

in humans, for example, to identify variants in the class II human leukocyte antigens 

(HLA) region associated with susceptibility to TB infection [59]. In order to prevent 

spurious associations, pathogen GWAS face the need to deal with the much higher 

levels of population structure seen in bacteria compared to humans, whilst maximising 

sensitivity [56, 60]. This is especially prescient for Mtb due to its clonality. 
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GWAS has been demonstrated as a useful methodology for investigating drug 

resistance in Mtb, identifying genes known to be involved in drug resistance 

phenotypes [61–64]. 

 

Convergence-Based Methods 

PhyC is a methodology that seeks to identify genomic signatures of selection resulting 

from convergent evolution. This occurs when a mutation independently becomes fixed 

multiple times. To detect such events, ancestral reconstruction is performed for each 

variant, using parsimony to infer at which node in the phylogenetic tree the mutation 

event likely occurred. The variant frequency in branches with the phenotype in 

question can then be compared to the variant frequency in branches without the 

phenotype and tested for statistical difference [65]. 

These methods have yet to be universally applied across pathogen species. As a 

clonal bacterial pathogen with no evidence of lateral gene transfer, Mtb, the causal 

agent of TB, may prove to be a useful organism on which to develop such methods. 

This is especially prescient in relation to drug resistance phenotypes, as the use of anti-

microbial therapy represents a strong selective force on Mtb. 

Convergence-based methods have been used to identify resistance mutations in 

Mtb [65, 66]. Such methods seek to identify convergent evolution in phenotypically 

resistant strains. This occurs when mutations in the same gene or nucleotide position 

repeatedly and independently become fixed, thus signalling positive selection for a 

particular phenotype. 
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Previous applications of convergence-based methods in Mtb have resulted in 

the identification of a number of new targets of independent selection in relation to 

drug resistance, including a mutation in ponA1 [65] and prpR [66]. It was shown 

through functional genetic analyses that strains carrying the ponA1 mutation showed a 

survival advantage during in vitro growth in the presence of rifampicin [65]; whilst 

common variants in prpR were found to confer multidrug tolerance [66].  

Furthermore, both association and convergent evolution analyses have been 

successfully combined together, resulting in the finding that loss of function mutations 

in ald confer resistance to D-cycloserine in Mtb [67]. Although there have been notable 

difficulties in disentangling individual drug resistance-conferring variants from drug 

resistance phenotypes that are not directly related, due to co-occurring drug resistance 

phenotypes as a result of combined drug therapy, and there is a need for further 

methods development [61, 67]. 

 

Application of Machine Learning 

Broadly, there has been interest in the application of machine learning methods to 

predict drug resistance in Mtb. A number of methods have been employed, 

demonstrating their potential utility in predicting resistance phenotypes from Mtb 

genome sequence, including support vector machines (SVM), k-nearest neighbour 

clustering, random forests and neural networks [68–76]. Such applications include 

approaches that did not require the need for mapping next generation sequencing 

(NGS) reads to a reference sequence [68]. Unlike GWAS and phyC, which detect 
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additive effects, such approaches might offer capability to detect epistasis [68]. 

However, explainability of some machine learning models can be limited, and due to 

high computational costs, such analyses are often restricted to specific loci already 

known to be involved in resistance. 

 Learning classifier systems (LCS) may offer an interesting approach to 

disentangling epistatic interactions in relation to drug resistance in Mtb. LCS broadly 

work through the creation of populations of rules; collectively these rules form the 

model. Each rule predicts phenotype based on the state of one or more attributes. 

During prediction, rules across the whole population ‘vote’ for a specific phenotype. 

Rule populations are formed through supervised learning; a genetic algorithm is 

employed in which rules can reproduce, recombine and mutate as a function of their  

prediction accuracy, with preference for more general rules to prevent overfitting [77]. 

Thus, LCS can be considered to employ an evolutionary approach to learning. 

 In this way, LCS may cope with epistasis- where multiple attributes contribute 

to a phenotype, as well as heterogeneity within the genomics of a specific phenotype- 

where multiple different genomic mechanisms can underpin the phenotype. Further to 

this, inspection of rules within the rule population may provide insight into the 

biological mechanisms involved in a given phenotype. 

 

Data 

The data used throughout this work comprises of WGS data coupled with drug 

resistance phenotype data aggregated from multiple studies (see Chapters 2-5). Clinical 
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isolates from individual patients underwent WGS and drug susceptibility testing; 

isolates were cultured and susceptibility was tested using phenotypic testing protocols 

recognized by WHO [63,78]. This resulted in a binary phenotype for resistance versus 

susceptibility. Each isolate was not necessarily tested for susceptibility to each drug; 

where isolates were found to be susceptible to first-line treatments, they often did not 

undergo additional drug susceptibility testing for second-line treatments.  
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Project Overview 

This work is structured in four parts, as explained below. 

 

Title Published 

Genome-wide analysis of Mycobacterium tuberculosis polymorphisms 

reveals lineage- specific associations with drug resistance 

2019 

Genome-wide analyses identify novel associations with Extensively 

Drug Resistant tuberculosis 

Under 

Review 

Genome-wide machine learning classifier applied to Mycobacterium 

tuberculosis as a novel approach to unravel genomic complexity 

associated with drug resistance 

In prep. 

Genome-wide Learning Classifier System applied to Extensively Drug 

Resistant Mycobacterium tuberculosis discovers novel resistance 

mechanisms 

In prep. 
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b Number of variants per sample;; variants called in comparison to the 

H37Rv reference, with monomorphic variants removed for each dataset. 

a Total  numbers of variants by lineage; variants called in comparison to 

the H37Rv reference, with monomorphic variants removed for each 

dataset. 

c Non-reference variant frequency summary; variants called in comparison to 
the H37rv reference; variants called in comparison to the H37rv reference, with 

monomorphic variants removed for each dataset. 
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Population diversity within investigated strains. 

a Principal component 1 (PC1) by principal component 2 (PC2) for lineage 2, The first 10 

principal components account for 71.9% of the variation in lineage 2; b Distance plot for 

lineage 2 showing pairwise number of variant differences between samples; c Principal 

component 1 (PC1) by principal component 2 (PC2) for lineage 4, the first 10 principal 

components account for 88.9% of the variation in lineage 4.  d Distance plot for lineage 2 

showing pairwise number of variant differences between samples.  
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Additional File 4 

 

 
Scree plots showing the proportion of variation accounted for by the first ten principal 

components, calculated for the pairwise distances within a lineage 4 and b lineage 2. 
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Additional File 5 

 
Drug-resistance phenotype frequency table by lineage; ‘Total’ shows the 
number and percentage by lineage of known drug-resistance phenotypes. 
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Additional File 6 

 

 

 

Cross-Resistance Table upper triangle shows proportion of samples 
with a known phenotype for both vertical and horizontal phenotype, 
that test positive for vertical phenotype. Diagonal (in bold) shows 
number of samples with a known phenotype for each phenotype. 
Lower triangle shows number of samples with a known phenotype 
for both horizontal and vertical phenotype. 
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Additional File 7  

 

 

 

Variant Position Table detailing variants at all positions with at least one non-synonymous 
variant found to be significantly associated with a phenotype in any of the variant-based 
analyses. 
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Additional File 8 

   

 

 

Locus Comparison Table showing which analyses and in which lineage each loci was 
identified. A ‘x’ indicates a locus which was not identified by the method of analysis in 
question. Loci without a known association with the phenotype are highlighted in bold. 
There were 9 loci identified by Coll et al. (2018) using the wider non-lineage specific 
dataset that were not identified here13.  
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Study frequency table, showing numbers and percentage of strains from each 
study by lineage. 
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Additional File 10 

 

 
Sublineage frequency table; numbers and percentage by  lineage 
assigned to each sublineage. 
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ABSTRACT 

Rationale: The transmission of extensively drug resistant Mycobacterium tuberculosis 

(XDR-TB) is threatening the control of tuberculosis disease. Whole genome sequencing 

of XDR-TB and non-XDR-TB strains can provide much needed insights into the loci and 

specific mutations underlying drug resistance and transmission. 

Objectives: To examine the genomic basis of XDR-TB. 

Methods: We characterised 613,821 single nucleotide polymorphisms (SNPs) from 

whole genome sequencing data for a global dataset of 18,255 M. tuberculosis isolates 

representing the four main M. tuberculosis lineages. The SNPs were applied in genome-

wide association study (GWAS) and convergent evolution analysis approaches to 

identify genetic markers of XDR-TB. 

Measurements and Main Results: Through GWAS we identify 20 loci in novel 

associations within highly drug-resistant M. tuberculosis strains, including Rv2000 and 

espA-ephA, that may enhance transmissibility. Cluster-based GWAS and a lack of 

overlap with associations identified through convergent-evolution-based analyses 

confirmed that many of the novel associations have been driven by transmission in 

outbreaks of highly-resistant M. tuberculosis.  

Conclusions: Our XDR-TB genomic analysis revealed direct resistance-conferring 

mutations, as well as markers of high transmissibility.  

ABSTRACT WORD COUNT: 175 

KEYWORDS: Mycobacterium tuberculosis, antimicrobial resistance, transmission 
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INTRODUCTION 

Tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is an 

important global public health issue, with 10 million new cases, and 1.6 million deaths 

in 2017 (1). The evolution of antimicrobial resistance in Mtb poses a serious threat to 

global TB control efforts. Resistant Mtb can be categorised as multi-drug resistant 

(MDR-TB), defined as resistance to two first–line drugs, rifampicin and isoniazid, or 

extensively-drug resistant (XDR-TB), defined as MDR-TB Mtb that is additionally 

resistant to fluoroquinolones and at least one second-line injectable. About 8.5% of 

MDR-TB cases were XDR-TB in 2017. At least 123 countries have had at least one XDR-

TB case. Transmission of XDR-TB Mtb has been observed in the community, including in 

TB endemic South Africa (2). There is evidence of a genomic basis of transmissibility 

(3,4) (Sobkowiak et al., under review), though such complex phenotypes have been less 

studied than drug resistance outcomes. Genome wide association studies (GWAS) and 

convergent evolution-based approaches are proving useful in characterising the 

genetic basis of drug resistance in Mtb (5–7), with evidence of differing resistance 

genomics between the seven lineages into which members of the Mtb complex are 

categorised (8,9). They have also identified compensatory mutations, defined as 

mutations that restore fitness when costly resistance conferring variants are present in 

the genome, which have been suggested as drivers of transmission (10,11). The 

importance of these compensatory mutations in the Mtb genome in contributing to 

XDR-TB remains to be established (12,13). 
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An improved understanding of XDR-TB evolution, and in particular transmission, is 

critical for TB disease control. With the increasing availability of whole genome 

sequence (WGS) data for highly resistant XDR-TB isolates, it has become possible to 

take a more detailed look at the related Mtb population genomics. Here we perform 

GWAS analysis on a global dataset of >18,000 lineage 1, 2 ,3 and 4 Mtb isolates to 

identify genomic variants associated with XDR-TB.  

 

METHODS 

Genomic Data and processing 

Mtb WGS raw data was available from across 18,255 isolates (see Supplementary 

Table E1 for ENA Project accession numbers), including those described in recent 

studies (14,15). Variants were called from the raw WGS data in relation to the H37rv 

reference genome using in-house pipelines, as described in (5). In brief, sequencing 

reads were trimmed using trimmomatic (16) to remove low quality sequences, and 

then mapped against the H37Rv reference genome (AL123456) using BWA (17) 

(v0.7.17). SNPs were called using SAMtools/BCFtools (v1.8) (18) in regions where at 

least 10 reads were present. SNPs were converted into a FASTA format alignment, 

which was used by ExaML software (19) to reconstruct the phylogeny for each lineage 

and combined. Drug resistance profiles and lineages were predicted in-silico using 

TBProfiler (v2.0) software (15). Lineages 1, 2, 3, and 4 were used in downstream 

analyses and isolates assigned to multiple lineages were thought to be mixed infections 

and were removed. 
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Phenotypic Data 

Resistance phenotypes were generated through laboratory-based drug susceptibility 

testing, as described in (5). Resistance phenotypes associated with the WGS data were 

collated (see Supplementary Table E2), providing a binary drug resistance phenotype 

for 15 potential drugs; amikacin, capreomycin, ciprofloxacin, cycloserine, ethambutol, 

ethionamide, isoniazid, kanamycin, moxifloxacin, ofloxacin, para aminosalicylic acid 

(PAS), pyrazinamide, rifabutin, rifampicin and streptomycin. Phenotypic data was not 

complete across all drugs, as resistance to first line treatments leads to second-line 

assessment (see Supplementary Table E2). Rifampicin and isoniazid drug susceptibility 

testing data was the most complete (>99%), and ciprofloxacin, PAS and cycloserine the 

least complete (<3%). Five composite “resistance” phenotypes were inferred from the 

phenotypic data: (i) aminoglycosides (amikacin, kanamycin or streptomycin), (ii) 

fluoroquinolones (ofloxacin, moxifloxacin or ciprofloxacin), (iii) MDR-TB (isoniazid and 

rifampicin, but not XDR-TB), (iv) XDR-TB (MDR-TB + resistance to fluoroquinolones or 

second line injectables (amikacin, kanamycin or capreomycin)) and (v) pan susceptible 

(susceptible to rifampicin and isoniazid and with no other known resistance). Low 

frequency phenotypes in each lineage were removed from downstream analyses as 

such; for each lineage, any total phenotype frequency of <100 or resistance frequency 

of <25 isolates (Supplementary Table E3). 

Association Analyses 

GWAS analyses were conducted using a statistical mixed model implemented in  

GEMMA software (20) for lineages 1, 2, 3 and 4 separately and combined. Models 
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contained individual SNPs (“variant-based”) or aggregated mutations in gene and 

intergenic regions (“locus-based”). They also incorporated a kinship matrix (“random 

effect”) to account for bacterial genetic relatedness, as described in (9). A conservative 

p-value cut-off of 1x10-21 (1E-21) was applied, as described in (9). Convergent-based 

phyC analyses were conducted on each SNP across each lineage separately and 

combined (6). For both GWAS and phyC analyses, the phenotypes of XDR-TB and MDR-

TB were compared to the pan-susceptible phenotype. XDR-TB was additionally 

compared to the MDR-TB phenotype. For variant GWAS a minor allele frequency cut-

off of > 0.001 (0.1%) was applied. Additionally, GWAS was conducted on isolates 

belonging to XDR-TB transmission clusters (determined by pairwise SNP distance <10) 

compared to all other (XDR-TB) isolates. PE/PPE genes were removed from analyses 

due to their repetitive nature and consequent difficulties in mapping these regions 

(21). 

Functional Classification 

Functional classification was conducted for loci identified to be in novel association 

with resistance phenotypes, using the STRING database (22). For intergenic loci; the 

functions of both flanking genes were included. For each novel loci, genes linked by 

neighbourhood, co-occurrence, co-expression, experiments, databases, text mining or 

homology were identified using STRING (22), to look for known resistance-conferring 

genes. 
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RESULTS 

Lineages, drug resistance and transmission 

In total 18,255 Mtb isolates were included in analyses. The majority were in lineage 4 

(n=8,892; 47.3%), followed by lineage 2 (n=4,761; 25.3%), lineage 3 (n=2,860; 15.2%) 

and lineage 1 (n=2,270; 12.1%). There was a total of 10,924 (58.2%) pan susceptible, 

3,804 (20.3%) MDR-TB and 351 (1.9%) XDR-TB (Supplementary Table E3). There were 6 

(1.7%), 163 (46.4%), 28 (8.0%), and 154 (44.0%) XDR-TB isolates in lineages 1, 2, 3 and 

4, respectively. The majority of pan susceptible isolates were in lineage 4 (n=5,838, 

53.4%) (see Supplementary Table E3). Lineage 1 had the greatest diversity, as 

measured by the number of SNPs difference (mean=896.3, median=983.0), whereas 

lineage 2 had the lowest (mean=322.0, median=244.9) (see Supplementary Table E4, 

Supplementary Figure E1).  

By looking at the XDR-TB isolates that were <10 SNPs different from each other, we 

determined potential transmission networks (lineage (no. samples in networks): 1 (0), 

2 (67), 3 (7), and 4 (95)) (see Supplementary Figure E2, Supplementary Figure E3,  

Supplementary Figure E4, Supplementary Figure E5, Supplementary Figure E6, 

Supplementary Figure E7). The most numerous sub-lineage with transmission events 

being 4.3.3 (Euro-American (LAM), n=54), followed by 2.2.2 (East-Asian (Beijing), n=45) 

(see Supplementary Table E4). Of the XDR-TB isolates that were <10 SNPs different to 

at least one other isolate, 107 were from South Africa, 22 from Belarus, 21 from 

Portugal, 7 from Argentina, 7 from Pakistan, 3 from Brazil and 2 from China (see 

Supplementary Table E4).  
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GWAS analyses reveal known and novel loci associated with MDR-TB and XDR-TB 

A GWAS association approach revealed eleven loci known to be involved with drug 

resistance phenotypes, including MDR-TB and XDR-TB. These loci were embB, embC-

embA, gyrA, gyrB,  inhA, katG, oxyR’-ahpC, pncA, rpoB, Rv1482c-fabG1 and ubiA (see 

Supplementary Tables E5 and E6). An analysis of the same phenotypes using phyC 

detected eleven loci: eis-Rv2417c, embB, embC-embA, gyrA, inhA, katG, rpoB, rpsL, 

rrs, and Rv1482c-fabG1 (see Supplementary Table E7, overlaps with GWAS indicated in 

bold). 

Across all GWAS analyses there were 31 novel associations relating to 20 loci (see 

Tables 1 and 2). There were 21 novel associations with XDR-TB compared to pan 

susceptibility, involving 15 loci (aroG, cydB-cydA, echA2-mazF1, pks6, PPE13-Rv0879c, 

recF, Rv0197, Rv0530A-Rv0531, Rv1373, Rv1616, Rv1924c-fadD31, Rv3235, Rv3238c-

Rv3239c, Rv3554-Rv3555c, Rv3755c-proZ); seven novel associations with XDR-TB 

compared to MDR-TB, involving three loci (espA-ephA, Rv0571c-Rv0572c, Rv2000);  and 

three novel associations with fluoroquinolones, involving three loci (folD-relJ, Rv0530A-

Rv0531, ligC-Rv3732). No novel associations were identified with individual drug 

resistance phenotypes in either the locus- or SNP-based GWAS, except ciprofloxacin for 

lineage-combined, which this was excluded due to lineage-specific phenotype 

frequency threshold (see Tables 1 and 2). 

Distinguishing Lineage-combined from lineage specific effects 

For lineage-combined locus-based GWAS analyses, one novel association was identified 

between Rv3755c-proZ and XDR-TB compared to pan susceptible (p-value= 4.15E-59) 
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(see Table 1). For SNP-based GWAS analyses, seven novel associations were identified 

for seven loci. Three loci ( (Rv1616, pks6, Rv1373 and Rv0197) in association with XDR-

TB compared to pan susceptible (p-values< 2.78E-23). A further four loci (Rv2000, 

Rv0571c-Rv0572c and espA-ephA) in association with XDR-TB compared to MDR-TB (p-

values< 2.11E-22) (see Table 2). Additionally, we identified one significant novel 

association with ciprofloxacin involving Rv2128 (p-value= 4.4E-22). The only novel 

association identified solely by lineage-combined GWAS analyses was pks6 (see Table 

2). PhyC based analysis identified 20 non-synonymous SNPs in novel association with 

resistance phenotypes in 14 loci; Rv0336, Rv1765c, Rv3611, Rv0797, Rv1150, Rv2015c, 

Rv1588c, pks12, Rv0515, Rv0094c, Rv2186c, Rv2512c, Rv1042c, Rv3115, Rv3193c (P-

values< 10E-5, see Supplementary Table E8). 

Lineage-specific analysis 

No novel associations were found for any of the lineage 1 specific GWAS analyses (see 

Tables 1 and 2; Supplementary table E5). Seven associations with known resistance 

loci were identified (locus-based: rpoB , Rv1482c- fabG1, katG, pncA and embB; 

variant-based: katG, embB, rpoB, rrs, Rv1482c-fabG1 and inhA). PhyC analyses found 

two novel associations (Rv1204c and Rv2186c), both in association with ethambutol 

(both Fisher-test p-value= 2.57E-06) (see Supplementary Table E8). 

For lineage 2, specific locus-based GWAS analyses, novel associations were identified 

for three loci (Rv1924c-fadD31, aroG and Rv3235) in association with XDR-TB 

compared to pan susceptible (p-values< 7.76E-25, respectively) (see Table 1). For SNP-

based GWAS analyses, Rv1373 was identified in association with XDR-TB compared to 
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pan susceptible (p-value= 2.62E-31) (Table 2). Application of phyC did not detect 

lineage 2 specific associations (see Supplementary Table E8). 

For lineage 3 specific locus-based GWAS analyses, five novel associations were 

identified for four loci; Rv0530A-Rv0531 and Rv3554-Rv3555c in association with XDR-

TB compared to pan susceptible (p-values< 1.11E-22) and folD-relJ, Rv0530A-Rv0531 

and ligC-Rv3732 in association with fluoroquinolones (p-values < 8.96E-23) (see Table 

1). For SNP-based GWAS analyses, one novel association was identified; PPE13-

Rv0879c identified in association with XDR-TB compared to pan susceptible (p-value= 

1.04E-24) (see Table 2). There were no associations identified by lineage 3 specific 

phyC (see Supplementary Table E8). 

For lineage 4 specific locus-based GWAS analyses, four novel associations were 

identified for four loci; Rv3755c-proZ, Rv3238c-Rv3239c and cydB-cydA, in association 

with XDR-TB compared to pan susceptible (p-values < 2.24E-24) and Rv0571c-Rv0572c 

in association with XDR-TB compared to MDR-TB (p-value= 5.93E-31) (see Table 1). For 

SNP-based GWAS analyses, seven novel associations were identified across seven loci. 

In particular, four loci (recF, Rv1616, echA2-mazF1 and Rv0197) were revealed in 

association with XDR-TB compared to pan susceptible (p-values < 6.02E-22). Whilst, a 

further three loci (Rv2000, Rv0571c-Rv0572c and espA-ephA) were in association with 

XDR-TB compared to MDR-TB (p-values< 2.23E-29) (see Table 2). The Rv0571c-Rv0572c 

was identified by locus-based and SNP-based GWAS analyses in association analysis 

with XDR-TB compared to MDR-TB. The application of PhyC revealed no novel 
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associations, but found known associations of rpoB with MDR-TB and rifampicin 

resistance (fisher-test p-value< 1.72E-07) (see Supplementary Table E8). 

Functional Characterisation 

Analysis of the functional annotation of the locus-based GWAS hits revealed that LigC, 

of ligC-Rv3732, is a DNA ligase involved in DNA repair, and Rv3239c, of Rv3238c-

Rv3239c, is similar to antibiotic resistance, and efflux proteins (see Table 1). 

Annotation of the locus-based GWAS hits with associated proteins from STRING 

revealed, folD of folD-relJ is associated with thyX and thyA, Rv0571c of Rv0571c-

Rv0572c is associated with hspX, and Rv3554-Rv3555c is associated with fas and 

echA20 (see Supplementary Table E9). Similarly, analysis of the SNP-based GWAS hits 

revealed that recF is involved in replication and repair and espA-ephA is associated with 

ESX-1 secretion. Annotation of the SNP-based GWAS hits with associated proteins from 

STRING revealed several pathways: (i) recF is associated with gyrA and gyrB, (ii) Rv2000 

is associated with ubiA  and ephA  (see Supplementary Figure E6), (iii) Rv0571c-

Rv0572c Is associated with hspX, and (iv) pks6 is associated with fas (see 

Supplementary Table E9). 

Functional annotation of the novel associations identified by phyC revealed that, 

amongst other functions, four loci are transposases or putative transposases (Rv2512c, 

Rv1042c, Rv3115, Rv0797) and three loci are members of the 13E11 repeat family 

(Rv0336, Rv0515, Rv0094c ) (see Supplementary Table E8). 
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Transmission Cluster GWAS 

The locus-based transmission cluster GWAS comparing XDR-TB transmission clusters to 

all isolates revealed an association with Rv0571c-Rv0572c (p-value= 1.45E-34) (See 

Supplementary Table E10). The similar SNP-based analyses revealed associations in 

two known drug resistant loci: rpoB (p-value=3.08E-284) and ubiA (p-value=1.9E-129) 

(see Supplementary Table E10). rpoB was previously identified by locus-based GWAS, 

SNP-based GWAS and phyC (see Supplementary Tables E5, E6, and E7). ubiA was 

previously identified by SNP-based GWAS and phyC, but not locus-based GWAS (see 

Supplementary Tables E5, E6, E7). Additionally, the SNP-based transmission cluster 

GWAS, which compared XDR-TB transmission clusters to all isolates, revealed 

associations with three loci identified by the non-cluster-based methods. In particular, 

these were Rv2000 (p-value= 2.09E-310), Rv0571c-Rv0572c (p-value= 1.33E-201) and 

espA-ephA (p-value= 4.46E-173) (see Supplementary Table E10). The SNP-based 

transmission cluster GWAS comparing Mtb isolates in XDR-TB transmission clusters to 

all other isolates, revealed associations with nine loci identified by the non-cluster-

based methods. In particular, these were Rv1061 (p-value= 8.57E-95), mce2B (p-value= 

2.32E-81), iniA (p-value= 1.88E-30), Rv2425c (p-value= 1.88E-30), Rv1144-mmpL13a (p-

value= 1.07E-27), Rv3471c (p-value= 1.07E-27), atsD (p-value= 1.31E-24), secD (p-

value= 8.76E-24), and Rv2499c (p-value= 2.29E-23) (see Supplementary Table E10). A 

locus-based GWAS of XDR-TB transmission clusters compared to non-clustering XDR-TB 

also identified Rv0571c-Rv0572c (p-value=2.15E-21). SNP-based GWAS of cluster XDR 

compared to non-cluster XDR also identified rpoB (p-value= 6.78E-27), Rv2000 (p-
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value= 6.78E-27), espA-ephA (p-value= 4.87E-23) and Rv0571c-Rv0572c (p-value= 9.5E-

23) (see Supplementary Table E10). 

 
Rv2000, which had the  most significant association from the SNP-based transmission 

cluster GWAS comparing XDR-TB transmission clusters to all isolates (see 

Supplementary Table E10), was found in 48 clustering isolates and seven isolates that 

did not belong to an XDR transmission cluster, all of which belonged to sub-lineage 

4.3.3. Of the non-XDR-cluster isolates with the Rv2000 mutation, one was XDR-TB, two 

were MDR-TB and none were pan-susceptible (see Figure 1). All Rv2000 mutant 

isolates were from South Africa. A STRING pathway analysis linked Rv2000 to ephA, 

Rv2001, fabG3, ubiA, yidC, ctpB, fhaA, atsD, Rv0493c and mmpL13a (see 

Supplementary Figure E7). 

 

DISCUSSION  

The application of GWAS to this global Mtb dataset has revealed a number of lineage 

specific associations between genomic variants and XDR-TB. This is one of the largest 

MDR-/XDR-TB genomic studies, and one reason for the numerous novel associations 

with XDR-TB could be increased statistical power. However, many of these variants 

could have become frequent due to transmission in XDR-TB outbreak settings. Lack of 

overlap between novel GWAS findings and novel phyC findings further supports this 

conclusion; suggesting higher relative importance of transmission versus convergent 

evolution in the development of these GWAS identified variants. Indeed, if there is a 

genomic contribution to transmissibility, as has been suggested (3), transmissibility and 
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drug resistance might be presumed to coevolve; more virulent, less latent strains, 

would likely experience more drug therapy and increased selection for resistance. A 

genetic component that increases the rate of transmission of MDR-TB or XDR-TB 

strains could account for these observations, meaning that these strains could be 

exposed to more drug therapy and thus more selection pressure to develop both drug 

resistance and transmission success. Occurrence of outbreaks are likely multifactorial, 

caused by factors including behaviour, environment and genomics. Thus, it is unclear 

the relative importance of selection versus genetic drift in increasing frequencies of the 

associated variants identified amongst XDR-TB outbreaks; nevertheless, our work 

shows these variants are compatible with XDR-TB transmission and present in clinically 

important outbreak strains and thus warrant further study. 

Some of the variants identified may play a role in directly conferring resistance whilst 

others may play a role in compensating phenotypes with reduced fitness as a result of 

costly resistance mutations. Interestingly, a number of novel associated variants 

identified have been linked to known resistance conferring mutations, such as folD-relJ 

(linked to thyX; thyA), recF (linked to gyrA and gyrB) and Rv2000 (linked to ubiA). The 

Rv0197 locus has previously been implicated in transmissibility (3), here we find it to be 

in association with  XDR-TB for lineage 4 and lineages-combined GWAS analyses. 

The Rv2000 locus may be of particular interest, considering its highly significant 

association with XDR-TB transmission. Rv2000 has an unknown function (22), but 

interestingly has been linked to ephA including through potential gene fusion, 

coexpression of putative homologs in other species and interaction of putative 
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homologs in other species (22). The intergenic region espA-ephA was detected by our 

analyses. EphA is an epoxide hydrolase with suggested involvement in detoxification of 

extraneous host- cell epoxides (22). There is potential for these loci to be implicated in 

the transmissible XDR-TB phenotype and thus they merit further exploration. 

Additionally, Rv2000 has been linked in the literature to ubiA, which is itself linked to 

ethambutol resistance, and mmpl13a, a probable conserved transmembrane transport 

protein; the intergenic region Rv1144-mmpL13a  was identified by cluster variant 

GWAS analysis (23,24).  

Overall, most novel associations identified by phyC were identified through lineage-

combined rather than lineage specific analyses. This is concordant with the idea that, in 

contrast to GWAS, phyC gains power from more diverse datasets with a greater 

magnitude of convergent evolution and thus may be particularly suited to identifying 

independent mutation events leading to drug resistance . 

In conclusion, through lineage specific GWAS, we have identified genetic associations 

with XDR-TB that are cluster specific and not directly associated with drug resistance. 

These loci are consistent with expansion of XDR-TB clones through transmission chains 

and may be compensatory or transmission associated. Further work into the biological 

impact of these variants would provide a deeper understanding into the potential 

biological mechanisms of their involvement with XDR-TB. The identification of 

genetically distinct XDR-TB transmission chains may have important implications for TB 

control. 
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FIGURE LEGENDS 

Figure 1- Maximum likelihood phylogenetic tree based on SNPs for lineage 4 showing 

cluster GWAS novel variants and transmission chain. 
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TABLES 

Table 1 showing all novel associations identified by locus-based GWAS across all 

lineages and resistance phenotypes.  

Locus Comparison Lineage P-value Function  
Rv3755c-proZ XDR-TB vs. Pan 

Susc. 
All 4.15E-

59 
Conserved protein  

Rv0530A-
Rv0531 

XDR-TB vs. Pan 
Susc. 

3 2.50E-
56 

Conserved protein 

Rv3755c-proZ XDR-TB vs.  Pan 
Susc. 

4 2.49E-
48 

Conserved protein  

folD-relJ Fluoroquinolones 3 3.96E-
44 

Bifunctional protein FolD 

Rv0530A-
Rv0531 

Fluoroquinolones 3 1.01E-
41 

Conserved protein 

Rv3238c-
Rv3239c 

XDR-TB vs. Pan 
Susc. 

4 5.77E-
39 

Probable conserved 
integral membrane protein 

aroG XDR-TB vs. Pan 
Susc. 

2 2.62E-
31 

Phospho-2-dehydro-3-
deoxyheptonate aldolase 

Rv1924c-
fadD31 

XDR-TB vs. Pan 
Susc. 

2 2.62E-
31 

Uncharacterized protein 

Rv0571c 
-Rv0572c 

XDR-TB vs MDR-
TB 

4 5.93E-
31 

Putative phosphoribosyl 
transferase 

Rv3235 XDR-TB vs. Pan 
Susc. 

2 7.76E-
25 

Hypothetical unknown ala-, 
arg-, pro-rich protein 

cydB-cydA XDR-TB vs. Pan 
Susc. 

4 2.24E-
24 

Probable cydB, cytochrome 
D ubiquinol oxidase 
subunit II, integral 
membrane protein 

ligC-Rv3732 Fluoroquinolones 3 8.96E-
23 

DNA ligase C 

FdxB-Rv3555c XDR-TB vs. Pan 
Susc. 

3 1.11E-
22 

Possible electron transfer 
protein 

XDR-TB = extensively drug resistant TB; MDR-TB = multi-drug resistant TB 
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Table 2 showing all novel associations identified by SNP-based GWAS across all 

lineages and resistance phenotypes, where the SNPs have a minor allele frequency of 

at least 0.1%. 

Locus Genome 
Position 
(bp) 

Comparison Lineage P-value Odds 
ratio 

Function 

recF 4047 XDR-TB vs. Pan 
Susc.,  

4 5.82E-
69,  

1.37,  DNA replication 
and repair 
protein 

Rv1616 1815877 XDR-TB vs. Pan 
Susc., XDR-TB 
vs. Pan Susc. 

All, 4 4.97E-
52, 
4.66E-
43  

0.46, 
0.55 

Conserved 
membrane 
protein 

Rv2000 2246032 XDR-TB vs 
MDR-TB, XDR-
TB vs MDR-TB 

4, All 5.07E-
38, 
2.11E-
29 

375.51, 
309.22 

Unknown protein 

Rv0571c-
Rv0572c 

664929 XDR-TB vs 
MDR-TB, XDR-
TB vs MDR-TB 

4, All 2.10E-
34, 
2.41E-
27 

703.67, 
585.35 

Putative 
phosphoribosyl 
transferase; 
Uncharacterized 
protein 

echA2-
mazF1 

546914 XDR-TB vs. Pan 
Susc. 

4 6.13E-
33 

0.71 Enoyl-CoA 
hydratase; 
Probable 
endoribonuclease 

Rv1373 1546703 XDR-TB vs. Pan 
Susc., XDR-TB 
vs. Pan Susc. 

2, All 2.62E-
31, 
1.15E-
23 

0.06, 
1.40 

Glycolipid 
sulfotransferase 

espA-
ephA 

4056430 XDR-TB vs 
MDR-TB, XDR-
TB vs MDR-TB 

4, All 2.23E-
29, 
2.11E-
22 

150.30, 
123.75 

ESX-1 secretion-
associated 
protein; Epoxide 
hydrolase 

pks6 486978 XDR-TB vs. Pan 
Susc. 

All 1.95E-
25 

0.84 Probable 
pks6,membrane-
bound polyketide 
synthase 

PPE13- 978350 XDR-TB vs. Pan 3 1.04E- 2.57 Uncharacterized 
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Rv0879c Susc. 24 PPE family 
protein; Possible 
conserved 
transmembrane 
protein 

Rv0197 232574 XDR-TB vs. Pan 
Susc., XDR-TB 
vs. Pan Susc. 

All, 4 2.78E-
23, 
6.02E-
22 

0.90, 
1.10 

probable 
molybdopterin 
oxidoreductase 

XDR = extensively drug resistant TB; MDR-TB = multi-drug resistant TB
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FIGURES 

Figure 1- Maximum likelihood phylogenetic tree based on SNPs for lineage 4 showing 

distribution of Rv2000 variant and transmission chain 
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Supplementary Table E1- ENA project codes of isolates used in the study 
 
 
Project Drug-resistant MDR-TB Susceptible XDR-TB Total 
cryptic_nejm_2018(25) 754 2391 5124 0 8269 
PRJEB10385 210 303 106 95 780 
PRJEB11653 77 35 14 0 126 
PRJEB14199 34 14 0 77 125 
PRJEB15857 8 20 20 0 48 
PRJEB2138 4 13 8 11 38 
PRJEB2221 19 6 333 0 358 
PRJEB2358 30 2 290 0 322 
PRJEB2424 2 40 3 0 51 
PRJEB2777 0 0 93 0 93 
PRJEB2794 79 7 1198 0 1284 
PRJEB5162 14 2 176 0 192 
PRJEB6276 0 0 3 0 3 
PRJEB6945 0 0 55 0 55 
PRJEB7056 177 42 890 0 1186 
PRJEB7281 16 41 38 2 110 
PRJEB7669 3 234 0 11 248 
PRJEB7727 12 5 13 0 59 
PRJEB9680 71 249 717 2 1039 
PRJNA183624 43 140 85 67 335 
PRJNA187550 0 94 44 23 161 
PRJNA200335 6 47 25 58 136 
PRJNA235852 35 20 157 0 212 
PRJNA282721 283 91 1485 5 1864 
PRJNA355614 0 0 0 0 1633 
PRJNA376471 0 8 12 0 20 
PRJNA49659 0 0 35 0 36 
Total 1877 3804 10924 351 18783 
MDR-TB = multi-drug-resistant TB; XDR-TB = extensively-drug-resistant TB  
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Supplementary Table E2- Number of tested isolates for each drug 

Drug No. 
Tested 

% 
Tested Susceptible Resistant Resistant % 

Rifampicin 16296 86.8% 11879 4417 27.1% 
Isoniazid 16211 86.3% 11053 5158 31.8% 
Ethambutol 14655 78.0% 12108 2547 17.4% 
Pyrazinamide 11808 62.9% 10016 1792 15.2% 
Streptomycin 5161 27.5% 3833 1328 25.7% 
Ofloxacin 1982 10.6% 1477 505 25.5% 
Kanamycin 1830 9.7% 1194 636 34.8% 
Capreomycin 1721 9.2% 1333 388 22.5% 
Amikacin 1427 7.6% 1093 334 23.4% 
Ethionamide 938 5.0% 609 329 35.1% 
Moxifloxacin 870 4.6% 767 103 11.8% 
PAS 406 2.2% 363 43 10.6% 
Cycloserine 390 2.1% 286 104 26.7% 
Ciprofloxacin 394 2.1% 331 63 16.0% 
Fluoroquinolones - - 10924 574 - 
MDR-TB - - 10924 3707 - 
XDR-TB - - 10924 342 - 
PAS = Para-aminosalisylic acid; MDR-TB = multi-drug-resistant TB; XDR-TB = 
extensively-drug-resistant TB 
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Supplementary Table E3- Distribution of drug resistance types by lineage 

Lineage Drug-resistant MDR-TB Susceptible XDR-TB Total 
1 207 147 1477 6 2270 (12.1%) 
2 481 1591 1423 163 4761 (25.3%) 
3 214 424 2186 28 2860 (15.2%) 
4 975 1642 5838 154 8892 (47.3%) 

Total 1877 (10.0%) 3804 (20.3%) 10924 (58.2%) 351 (1.9%) 18783 
(100.0%)  

MDR-TB = multi-drug-resistant TB; XDR-TB = extensively-drug-resistant TB 
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Supplementary Table E4- XDR-TB isolates of pairwise distance <10 SNPs cluster 

summary by lineage 

  
Sub-lineage Country Frequency Total 
2.2.1  Belarus 14 22 

China 2 
South Africa 6 

2.2.2 South 45 45 
3 Pakistan 2 2 
3.1 Pakistan 2 2 
3.1.2 Pakistan 3 3 
4.1.1.3 South Africa 4 4 
4.1.2.1  Argentina 7 9 

Belarus 2 
4.3.2.1 South Africa 2 2 
4.3.3  Belarus 6 54 

South Africa 48 
4.3.4.1 Brazil 3 3 
4.3.4.2 Portugal 21 21 
4.4.1.1 South Africa 2 2 
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Supplementary table E5- Locus-based GWAS hits involving known resistance loci  

Locus P-value Drug Lineage 
pncA 0 Pyrazinamide All 
rpoB 9.80E-278 Rifampicin All 
katG 2.31E-273 Isoniazid All 
pncA 4.13E-255 Pyrazinamide 4 
katG 4.76E-219 MDR-TB vs. PAN All 
rpoB 4.19E-215 MDR-TB vs. PAN All 
rpoB 2.97E-178 Rifampicin 4 
katG 2.02E-156 Isoniazid 4 
rpoB 1.20E-150 Rifampicin 1 
rpoB 2.74E-142 Rifampicin 3 
rpoB 4.18E-130 FQ All 
oxyR'-ahpC 1.92E-129 Isoniazid All 
Rv3795 3.50E-126 Ethambutol All 
Rv3795 4.58E-119 Ethambutol 4 
katG 2.92E-116 MDR-TB vs. PAN 4 
rpoB 4.26E-116 MDR-TB vs. PAN 4 
oxyR'-ahpC 2.13E-105 MDR-TB vs. PAN All 
rpsL 1.74E-103 Streptomycin 2 
rpoB 4.80E-95 MDR-TB vs. PAN 3 
rpoB 1.22E-93 Rifampicin 2 
rpsL 8.28E-93 Streptomycin All 
gyrA 4.89E-92 Ofloxacin 4 
katG 2.61E-90 Isoniazid 2 
rpoB 5.23E-89 MDR-TB vs. PAN 1 
rpoB 4.20E-85 FQ 2 
Rv3919c 2.23E-84 AG 4 
Rv3795 1.16E-79 Ethambutol 3 
pncA 3.08E-77 Pyrazinamide 3 
katG 3.29E-76 MDR-TB vs. PAN 2 
rpoB 9.97E-74 AG All 
Rv3795 1.22E-73 Pyrazinamide 4 
Rv3919c 1.66E-73 AG All 
rpoB 1.40E-67 FQ 4 
katG 6.10E-65 Isoniazid 3 
Rv1482c-fabG1  2.78E-61 Isoniazid 1 
rpoB 8.80E-61 XDR-TB vs. PAN All 
pncA 1.45E-59 XDR-TB vs. PAN All 
rpoB 3.46E-58 MDR-TB vs. PAN 2 
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katG 1.29E-57 AG All 
Rv3795 4.19E-57 Pyrazinamide All 
rpsL 4.87E-57 AG 2 
rpoB 8.19E-55 Pyrazinamide 4 
Rv3795 2.19E-50 Ethambutol 2 
Rv1482c-fabG1  4.76E-49 Isoniazid 3 
katG 6.07E-49 MDR-TB vs. PAN 3 
pncA 7.42E-48 Ethambutol All 
rpoB 1.64E-47 AG 3 
oxyR'-ahpC 9.07E-47 Isoniazid 4 
Rv3919c 1.27E-46 Streptomycin All 
katG 1.56E-46 AG 4 
katG 2.39E-46 FQ All 
pncA 3.48E-46 FQ All 
katG 3.88E-45 Isoniazid 1 
eis-Rv2417c 1.99E-44 FQ 3 
oxyR'-ahpC 3.75E-44 Isoniazid 2 
pncA 7.35E-43 XDR-TB vs. PAN 2 
rpoB 1.05E-42 AG 4 
katG 2.66E-42 AG 3 
rpsL 5.86E-42 AG All 
embB 1.29E-40 Ethambutol 1 
oxyR'-ahpC 1.63E-40 MDR-TB vs. PAN 4 
Rv1482c-fabG1  2.86E-40 MDR-TB vs. PAN 1 
embC-embA 4.23E-40 Ethambutol 4 
gyrA 6.09E-40 Ciprofloxacin All 
rpoB 9.64E-40 FQ 3 
oxyR'-ahpC 1.73E-39 AG All 
pncA 2.18E-39 FQ 2 
pncA 2.69E-39 Pyrazinamide 2 
Rv3795 3.88E-39 Pyrazinamide 3 
rpoB 5.01E-39 Ethambutol All 
Rv1482c-fabG1  7.57E-39 Isoniazid All 
pncA 3.31E-38 Ethambutol 4 
embC-embA 6.73E-38 Ethambutol All 
rpoB 1.48E-37 XDR-TB vs. PAN 2 
rpoB 1.97E-37 Ethambutol 1 
rpoB 9.87E-37 Isoniazid All 
oxyR'-ahpC 1.22E-35 MDR-TB vs. PAN 2 
katG 1.60E-35 Rifampicin All 
rpoB 8.11E-35 Pyrazinamide All 
Rv1482c- fabG1  9.44E-35 Isoniazid 4 
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rpoB 1.84E-34 XDR-TB vs. PAN 4 
Rv3919c 8.20E-34 Streptomycin 4 
pncA 1.07E-32 XDR-TB vs. PAN 4 
rpoB 2.08E-32 Ethambutol 4 
rpoB 3.00E-30 Ethambutol 3 
Rv3806c 1.02E-29 Ethambutol All 
rpoB 1.50E-29 AG 1 
katG 2.51E-29 FQ 4 
rpsL 6.53E-29 Streptomycin 4 
gyrA 4.28E-28 Ciprofloxacin 3 
katG 4.45E-28 AG 1 
oxyR'-ahpC 5.77E-28 FQ All 
rpoB 1.42E-26 AG 2 
embC-embA 9.67E-26 XDR-TB vs. PAN All 
rpoB 9.79E-26 XDR-TB vs. PAN 3 
katG 1.00E-25 MDR-TB vs. PAN 1 
Rv3795 1.01E-25 FQ All 
pncA 1.13E-25 Pyrazinamide 1 
Rv3806c 6.80E-25 Ethambutol 4 
katG 8.82E-24 FQ 2 
katG 9.40E-23 AG 2 
gyrA 9.94E-23 Moxifloxacin All 
gyrA 5.92E-22 XDR-TB vs. MDR-TB 4 
AG = Aminoglycosides; MDR-TB = multi-drug resistant TB; FQ = Fluoroquinolones; PAN 
= Pan susceptible; XDR-TB = extensively drug resistant TB  
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Supplementary Table E6- SNP-based GWAS hits involving known resistance loci  

Position P-value Locus Drug Lineage 
2155168 8.01E-203 katG AG 3 
761110 9.06E-164 rpoB FQ 3 
761155 7.14E-159 rpoB XDR-TB vs. PAN 3 
761155 8.35E-157 rpoB XDR-TB vs. PAN All 
1473246 5.13E-126 rrs Amikacin All 
761155 5.45E-125 rpoB XDR-TB vs. PAN 4 
761155 2.12E-120 rpoB FQ 3 
2155168 6.06E-109 katG Isoniazid All 
761155 4.05E-101 rpoB FQ All 
2155168 1.04E-99 katG AG 4 
2155168 1.60E-96 katG Isoniazid 4 
761110 1.40E-94 rpoB XDR-TB vs. PAN 4 
1473246 1.05E-93 rrs Amikacin 4 
2155168 3.80E-91 katG FQ 4 
2155168 1.73E-90 katG Isoniazid 1 
761110 2.66E-86 rpoB XDR-TB vs. PAN All 
4247429 2.44E-85 embB Ethambutol 1 
2155168 1.06E-84 katG AG 1 
1473246 4.09E-84 rrs Capreomycin All 
2155168 1.38E-82 katG AG All 
2155168 1.29E-81 katG MDR-TB vs. PAN 1 
761155 1.68E-79 rpoB Rifampicin 1 
2155168 4.32E-79 katG FQ All 
761155 2.28E-78 rpoB Rifampicin All 
761155 2.73E-78 rpoB FQ 4 
760314 2.08E-73 rpoB Rifampicin All 
760314 7.78E-72 rpoB MDR-TB vs. PAN All 
1472362 2.18E-71 rrs AG 1 
761155 1.31E-70 rpoB Rifampicin 4 
1473246 2.42E-70 rrs XDR-TB vs. PAN 3 
2155168 1.40E-68 katG XDR-TB vs. PAN 3 
1473246 9.54E-68 rrs Capreomycin 4 
761155 2.16E-66 rpoB AG 3 
1473246 2.85E-66 rrs Kanamycin All 
1673425 1.01E-64 Rv1482c-fabG1 Isoniazid 1 
2155168 3.17E-64 katG Isoniazid 3 
761139 1.62E-60 rpoB Rifampicin All 
761110 2.30E-60 rpoB FQ All 
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761110 1.05E-58 rpoB Rifampicin All 
761155 3.06E-55 rpoB AG 1 
781687 5.21E-55 rpsL Streptomycin All 
761139 3.37E-54 rpoB Rifampicin 4 
2155168 9.94E-54 katG XDR-TB vs. PAN All 
2155168 2.09E-53 katG XDR-TB vs. PAN 4 
2155168 3.19E-53 katG Isoniazid 2 
1673425 5.05E-53 Rv1482c-fabG1 Isoniazid All 
1473246 1.16E-52 rrs Kanamycin 4 
761110 1.55E-51 rpoB Rifampicin 4 
2155168 3.86E-51 katG FQ 3 
781687 1.25E-50 rpsL Streptomycin 2 
2155168 5.75E-50 katG MDR-TB vs. PAN All 
1673425 9.56E-50 Rv1482c-fabG1 Isoniazid 4 
1673425 2.11E-49 Rv1482c-fabG1 MDR-TB vs. PAN 1 
761155 4.81E-48 rpoB MDR-TB vs. PAN 4 
761155 7.37E-48 rpoB Rifampicin 3 
2155168 2.52E-47 katG MDR-TB vs. PAN 3 
2155168 5.66E-46 katG MDR-TB vs. PAN 4 
761155 3.01E-45 rpoB MDR-TB vs. PAN All 
7582 1.86E-43 gyrA Ciprofloxacin All 
7582 2.39E-42 gyrA Ofloxacin 4 
4247429 5.23E-42 embB Ethambutol All 
7582 6.54E-42 gyrA Ofloxacin All 
760314 1.87E-40 rpoB Rifampicin 4 
761139 5.33E-40 rpoB Rifampicin 1 
1472362 8.46E-40 rrs Streptomycin 1 
761110 1.80E-37 rpoB MDR-TB vs. PAN All 
1673425 4.65E-37 Rv1482c-fabG1 Isoniazid 3 
4247429 5.65E-37 embB AG 1 
761155 1.11E-36 rpoB XDR-TB vs. PAN 2 
1473246 6.28E-36 rrs Pyrazinamide 3 
761140 1.07E-34 rpoB Rifampicin All 
763123 1.18E-34 rpoB XDR-TB vs. MDR-TB 4 
761155 1.25E-34 rpoB FQ 2 
4247429 5.17E-34 embB Ethambutol 3 
4247429 7.48E-34 embB Ethambutol 4 
761110 1.56E-33 rpoB MDR-TB vs. PAN 4 
4247431 3.75E-33 embB Ethambutol 3 
761155 4.01E-33 rpoB MDR-TB vs. PAN 1 
760314 2.44E-32 rpoB MDR-TB vs. PAN 4 
761139 1.04E-31 rpoB MDR-TB vs. PAN All 
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781822 2.41E-31 rpsL Streptomycin All 
761139 3.60E-31 rpoB MDR-TB vs. PAN 4 
7570 9.79E-31 gyrA Ofloxacin All 
1473246 1.52E-30 rrs AG 3 
1473246 1.52E-30 rrs FQ 3 
1472362 2.07E-30 rrs Streptomycin All 
761110 2.93E-30 rpoB FQ 4 
4269271 4.08E-30 ubiA XDR-TB vs. MDR-TB 4 
761109 1.12E-29 rpoB XDR-TB vs. PAN All 
761155 2.44E-29 rpoB Rifampicin 2 
761277 4.94E-29 rpoB FQ All 
1473246 4.99E-29 rrs XDR-TB vs. PAN All 
7582 8.16E-29 gyrA XDR-TB vs. PAN 3 
761140 3.12E-28 rpoB Rifampicin 3 
1473246 4.73E-28 rrs XDR-TB vs. MDR-TB 3 
761155 6.12E-28 rpoB MDR-TB vs. PAN 3 
2155168 9.08E-28 katG MDR-TB vs. PAN 2 
4249583 1.62E-27 embB XDR-TB vs. PAN 3 
1472362 1.72E-27 rrs AG All 
2289213 1.91E-27 pncA Pyrazinamide 4 
761139 5.96E-27 rpoB Rifampicin 2 
2289213 7.81E-27 pncA Pyrazinamide All 
761155 2.32E-26 rpoB AG 4 
763123 2.32E-26 rpoB XDR-TB vs. MDR-TB All 
761155 3.24E-26 rpoB AG All 
761110 3.63E-26 rpoB Rifampicin 3 
6750 5.62E-26 gyrB XDR-TB vs. MDR-TB 4 
1674481 7.65E-26 inhA XDR-TB vs. PAN 4 
7570 8.49E-26 gyrA Ofloxacin 4 
7582 8.61E-26 gyrA Moxifloxacin All 
761109 1.06E-25 rpoB FQ 3 
761155 1.41E-25 rpoB Ethambutol 1 
2155168 1.55E-25 katG XDR-TB vs. PAN 2 
1674481 2.70E-25 inhA XDR-TB vs. PAN All 
781687 3.09E-25 rpsL AG 2 
1472359 7.24E-25 rrs AG 4 
761140 1.02E-24 rpoB MDR-TB vs. PAN All 
1472359 2.82E-24 rrs AG 1 
4247429 4.37E-24 embB XDR-TB vs. PAN All 
781822 5.29E-24 rpsL Streptomycin 2 
4247431 7.44E-24 embB Ethambutol All 
761109 9.52E-24 rpoB XDR-TB vs. PAN 3 
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7582 1.21E-23 gyrA Moxifloxacin 4 
761161 1.81E-23 rpoB Rifampicin All 
7581 7.49E-23 gyrA Ofloxacin All 
1674782 1.75E-22 inhA AG 1 
781687 3.28E-22 rpsL Streptomycin 4 
761161 8.10E-22 rpoB MDR-TB vs. PAN All 
761161 1.00E-21 rpoB MDR-TB vs. PAN 4 
AG = Aminoglycosides; MDR-TB =multi-drug resistant TB; FQ = Fluoroquinolones; PAN = 
Pan susceptible; XDR-TB = extensively drug resistant TB  
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Supplementary Table E7- Phyc hits involving known resistance loci (P<10-5) 
 
Lineage Phenotype Position Fisher Test 

P-value 
Locus 

1 Isoniazid 2155168 5.63E-62 katG 
1 Isoniazid 1673425 1.50E-40 Rv1482c-fabG1 
1 Rifampicin 761155 2.97E-33 rpoB 
All Rifampicin 761155 4.85E-30 rpoB 
1 MDR-TB vs. PAN 761155 6.46E-30 rpoB 
All MDR-TB vs. PAN 761155 7.61E-30 rpoB 
1 MDR-TB vs. PAN 2155168 1.62E-29 katG 
1 MDR-TB vs. PAN 1673425 1.05E-23 Rv1482c-fabG1 
All MDR-TB vs. PAN 781687 2.08E-22 rpsL 
All Rifampicin 4247431 2.19E-21 embB 
All Rifampicin 781687 1.93E-20 rpsL 
All Rifampicin 4247429 2.06E-19 embB 
1 Isoniazid 761155 2.41E-19 rpoB 
1 Ethambutol 4247429 8.14E-19 embB 
All MDR-TB vs. PAN 4247431 1.67E-17 embB 
All MDR-TB vs. PAN 1673425 3.11E-17 Rv1482c-fabG1 
1 MDR-TB vs. PAN 4247429 3.44E-17 embB 
All MDR-TB vs. PAN 4247429 3.94E-17 embB 
All MDR-TB vs. PAN 761139 1.17E-16 rpoB 
All Ethambutol 4247429 3.90E-16 embB 
1 Rifampicin 761139 5.69E-16 rpoB 
All Rifampicin 761139 8.64E-16 rpoB 
All MDR-TB vs. PAN 2155168 1.34E-15 katG 
All Rifampicin 7582 3.45E-15 gyrA 
1 Rifampicin 2155168 4.59E-15 katG 
1 AG 2155168 6.68E-15 katG 
All Ethambutol 761155 7.57E-15 rpoB 
1 Ethambutol 761155 7.58E-15 rpoB 
1 Rifampicin 4247429 7.69E-15 embB 
1 MDR-TB vs. PAN 761139 7.70E-15 rpoB 
All MDR-TB vs. PAN 7582 1.21E-14 gyrA 
1 Rifampicin 1673425 1.95E-13 Rv1482c-fabG1 
All AG 781687 2.91E-13 rpsL 
1 Isoniazid 4247429 3.25E-12 embB 
All Rifampicin 2155168 5.12E-12 katG 
All Ethambutol 781687 7.64E-12 rpsL 
All AG 761155 8.00E-12 rpoB 
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All Rifampicin 1673425 1.48E-11 Rv1482c-fabG1 
All Pyrazinamide 781687 2.05E-11 rpsL 
All Rifampicin 1473246 3.27E-11 rrs 
All Streptomycin 4247429 1.78E-10 embB 
1 MDR-TB vs. PAN 761140 3.89E-10 rpoB 
1 Isoniazid 761139 7.78E-10 rpoB 
1 AG 1472362 1.11E-09 rrs 
All Streptomycin 781687 1.13E-09 rpsL 
All MDR-TB vs. PAN 1473246 1.13E-09 rrs 
All Ethambutol 4247431 1.17E-09 embB 
1 AG 761155 1.22E-09 rpoB 
All AG 2155168 1.98E-09 katG 
All Rifampicin 7570 2.20E-09 gyrA 
All Ethambutol 2155168 2.82E-09 katG 
1 Ethambutol 2155168 2.90E-09 katG 
All Pyrazinamide 761155 3.31E-09 rpoB 
1 Isoniazid 761140 3.40E-09 rpoB 
1 Isoniazid 1472362 3.40E-09 rrs 
1 Rifampicin 761140 3.51E-09 rpoB 
All FQ 1473246 4.51E-09 rrs 
All AG 4247429 6.23E-09 embB 
All Ethambutol 761139 9.24E-09 rpoB 
1 Streptomycin 1472362 2.28E-08 rrs 
All AG 7570 2.53E-08 gyrA 
All Rifampicin 4247730 3.00E-08 embB 
All AG 1473246 4.05E-08 rrs 
All Streptomycin 7582 5.64E-08 gyrA 
All Streptomycin 761155 6.03E-08 rpoB 
All FQ 7570 7.40E-08 gyrA 
All Streptomycin 2155168 8.62E-08 katG 
1 MDR-TB vs. PAN 1472362 8.75E-08 rrs 
4 MDR-TB vs. PAN 761155 9.17E-08 rpoB 
1 Ethambutol 4243217 1.03E-07 embC-embA 
1 Ethambutol 761139 1.10E-07 rpoB 
1 FQ 2155168 1.14E-07 katG 
All Rifampicin 761140 1.18E-07 rpoB 
All MDR-TB vs. PAN 7570 1.32E-07 gyrA 
All Rifampicin 2715342 1.63E-07 eis-Rv2417c 
1 FQ 1473246 1.67E-07 rrs 
4 Rifampicin 761155 1.72E-07 rpoB 
All Amikacin 1473246 2.45E-07 rrs 
All Ethambutol 1473246 2.57E-07 rrs 
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All Amikacin 781687 2.77E-07 rpsL 
All Pyrazinamide 1473246 3.04E-07 rrs 
All AG 761139 3.16E-07 rpoB 
All Pyrazinamide 4247429 4.31E-07 embB 
All Ofloxacin 7570 4.91E-07 gyrA 
1 XDR-TB vs. PAN 761155 5.05E-07 rpoB 
All MDR-TB vs. PAN 2715342 5.20E-07 eis-Rv2417c 
All Rifampicin 1472359 5.49E-07 rrs 
1 MDR-TB vs. PAN 4247431 5.78E-07 embB 
All Ethambutol 7570 5.82E-07 gyrA 
1 FQ 4247429 6.65E-07 embB 
4 Rifampicin 4247431 7.37E-07 embB 
All Streptomycin 761139 7.93E-07 rpoB 
All Streptomycin 7570 8.00E-07 gyrA 
All XDR-TB vs. PAN 1473246 9.43E-07 rrs 
All MDR-TB vs. PAN 4247730 1.08E-06 embB 
All ethambutol 7582 1.25E-06 gyrA 
1 MDR-TB vs. PAN 4247730 1.31E-06 embB 
1 MDR-TB vs. PAN 4243217 1.31E-06 embC-embA 
1 MDR-TB vs. PAN 1472359 1.31E-06 rrs 
1 Rifampicin 4247730 1.37E-06 embB 
1 Rifampicin 4243217 1.37E-06 embC-embA 
All Ethambutol 761140 1.42E-06 rpoB 
1 FQ 761155 1.66E-06 rpoB 
All Rifampicin 761161 1.72E-06 rpoB 
All MDR-TB vs. PAN 761140 2.00E-06 rpoB 
All MDR-TB vs. PAN 1472359 2.00E-06 rrs 
All AG 7582 2.27E-06 gyrA 
1 Rifampicin 4247431 2.28E-06 embB 
1 Ethambutol 4269293 2.57E-06 ubiA 
1 Ethambutol 1673425 3.23E-06 Rv1482c-fabG1 
All FQ 2155168 3.92E-06 katG 
All Rifampicin 1673432 3.98E-06 Rv1482c-fabG1 
All MDR-TB vs. PAN 1673432 4.23E-06 Rv1482c-fabG1 
1 AG 1673425 4.33E-06 Rv1482c-fabG1 
All AG 1673425 4.57E-06 Rv1482c-fabG1 
All MDR-TB vs. PAN 1674263 4.65E-06 inhA 
1 Ethambutol 761140 5.22E-06 rpoB 
1 MDR-TB vs. PAN 4248003 7.44E-06 embB 
1 Pyrazinamide 761155 7.44E-06 rpoB 
1 Rifampicin 4248003 7.73E-06 embB 
1 Rifampicin 1472359 7.73E-06 rrs 
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1 Streptomycin 781822 8.03E-06 rpsL 
1 Isoniazid 4247431 8.26E-06 embB 
AG = Aminoglycosides; MDR-TB =multi-drug resistant TB; FQ = Fluoroquinolones; PAN = 
Pan susceptible
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Supplementary Table E8- Novel non-synonymous PhyC hits (P<10-5); for all 

phenotypes and lineages; specific and combined 

Gene SNP 
Position 

Phenotype Min. Fisher 
test P 

Lineage Function 

Rv0336 401318 Rifampicin, MDR-TB 
vs. PAN, AG, 
Ethambutol, 
Pyrazinamide, FQ, 
Streptomycin, XDR-
TB vs. PAN, 
Amikacin, 
Capreomycin, 
Moxifloxacin 

1.50E-51 All Conserved 
13E12 repeat 
family protein 

Rv1765c 1998063 Rifampicin, MDR-TB 
vs. PAN, 
Ethambutol, 
Amikacin, 
Pyrazinamide, 
Capreomycin, 
Streptomycin, AG, 
Rifabutin 

4.25E-19 All Uncharacterized 
protein 

Rv1765c 1998063 MDR-TB vs. PAN 2.91E-16 All Uncharacterized 
protein 

Rv3611 4053161 Rifampicin, MDR-TB 
vs. PAN, AG, FQ 

2.71E-15 All Hypothetical 
unknown arg-, 
pro-rich 
protein.  

Rv0797 891220 MDR-TB vs. PAN, 
Rifampicin, 
Ethambutol, AG 

9.33E-13 All Putative 
transposase for 
IS1547 

Rv1150 1278278 Rifampicin, MDR-TB 
vs. PAN, Rifabutin, 
Pyrazinamide, 
Ethambutol, AG, 
Amikacin 

1.10E-12 All Possible 
fragment of 
transposase 
(pseudogene).  

Rv2015c 2262620 Amikacin, 
Rifampicin, 
Capreomycin, MDR-
TB vs. PAN, 
Ethambutol 

4.00E-10 All Uncharacterized 
protein 
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Rv0797 890549 Rifampicin, 
MDRvPAN 

1.10E-09 All Putative 
transposase for 
IS1547 

Rv3611 4053050 Rifampicin, MDR-TB 
vs. PAN, 
Streptomycin 

1.54E-09 All Hypothetical 
unknown arg-, 
pro-rich 
protein.  

Rv1588c 1789446 Ciprofloxacin 1.68E-08 All Uncharacterized 
protein  

pks12 2295685 Rifampicin, MDR-TB 
vs. PAN, 
Ethambutol 

2.54E-07  All Polyketide 
synthase  

Rv0515 607677 MDR-TB vs. PAN, 
AG, Streptomycin 

1.08E-06 All Conserved 
13E12 repeat 
family protein 

Rv0094c 103756 AG 2.20E-06 All Member of 
13E12 repeat 
family 

Rv2186c 2447616 Ethambutol 2.57E-06 1 Uncharacterized 
protein 

Rv2512c 2829656 Pyrazinamide 3.69E-06 All Transposase for 
insertion 
sequence 
element IS1081  

Rv1042c 1165114 MDR-TB vs. PAN, 
Rifampicin 

5.19E-06 All Probable is like-
2 transposase 

Rv3115 3482432 Ethionamide 6.16E-06 All Probable 
transposase 

Rv3193c 3560945 XDR-TB vs. PAN 8.80E-06 All Probable 
conserved 
transmembrane 
protein 

AG = Aminoglycosides; MDR-TB =multi-drug resistant TB; FQ = Fluoroquinolones; PAN = 

Pan susceptible; XDR-TB = extensively drug resistant TB  
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Supplementary Table E9- novel hits with their STRING associations 

Locus Rv Analysis STRING Associations 
recF Rv0003 variant dnaA dnaN gyrA* gyrB* recA recO recR recX rnpA 

Rv0004 
Rv0197 Rv0197 variant lppM narX Rv0196 Rv0218 Rv0236.1 Rv2172c 

Rv2813 Rv3403c Rv3549c Rv3777 
iniA Rv0342 cluster 

variant 
iniB iniC Rv0049 Rv0110 Rv0312 Rv0339c Rv0340 
Rv2264c Rv3863 whiB6 

pks6 Rv0405 variant fadD30 fas mbtA mbtB mbtD mbtE mbtH nrp pptT 
tesA 

Rv0571c-
Rv0572c 

Rv0571c locus; 
variant; 
cluster 
variant; 
cluster 
locus 

rip3 ctpF hspX Rv0572c rtcB hrp1 Rv0569 Rv1734c 
Rv0574c vapB32 

Rv0571c-
Rv0572c 

Rv0572c locus; 
variant; 
cluster 
variant; 
cluster 
locus 

Rv1734c Rv3127 Rv0571c Rv3126c rip3 Rv3129 
rtcB Rv1812c Rv2003c vapB22 

Rv0530A-
Rv0531 

Rv0530A locus; 
variant; 
cluster 
variant; 
cluster 
locus 

Rv0048c Rv0157A Rv0381c Rv0531 Rv0680c 
Rv0686 Rv2799 Rv3493c Rv3572 TB22.2 

Rv0530A-
Rv0531 

Rv0531 locus; 
variant; 
cluster 
variant; 
cluster 
locus 

aftA aftC Rv0466 Rv0955 Rv1476 Rv1610 Rv3035 
Rv3635 Rv3668c Rv3802c 

mce2B Rv0590 cluster 
variant 

lprL mce2A mce2C mce2D mce2F Rv0590A yrbE2A 
yrbE2B yrbE4A yrbE4B 

atsD Rv0663 cluster 
variant 

atsA atsB rnz Rv0296c Rv0712 Rv2000 Rv3077 
Rv3406 Rv3762c Rv3796 

Rv1061 Rv1061 cluster 
variant 

fadD14 Rv0426c Rv1059 Rv1060 Rv1062 

Rv1144- Rv1144 cluster bioF1 echA10 hycD mcr mmpL13a purH Rv2635 
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mmpL13a variant Rv2636 Rv3836 Rv3837c 
Rv1144-
mmpL13a 

Rv1145 cluster 
variant 

efpA mmpL1 mmpL13a mmr Rv0590A Rv0849 
Rv1144 Rv1877 Rv2000 Rv3836 

Rv1373 Rv1373 variant PE_PGRS2 PE_PGRS23 PE_PGRS48 pks18 PPE39 
PPE40 PPE53 PPE64 Rv1371 Rv1676 

Rv1616 Rv1616 variant crcB1 pykA Rv1517 Rv1610 Rv1615Rv1619 Rv1861 
Rv2203 Rv2433c tesB1 

cydB-
cydA 

Rv1622c locus atpH ctaC ctaE cydA cydC cydD narG qcrA qcrB 
qcrC 

cydB-
cydA 

Rv1623c locus atpA ctaC cydA cydB cydC cydD qcrA qcrB qcrC 
Rv1488 Rv1579c 

Rv1924c-
fadD31 

Rv1924c locus fadD31 

Rv1924c-
fadD31 

Rv1925 locus fadD22 fadD9 mbtE mbtF nrp pks13 Rv0068 
Rv0149 Rv0149 Rv1924c tesA 

Rv2000 Rv2000 variant; 
cluster 
variant 

atsD ctpB ephA fabG3 fhaA mmpL13a Rv0493c 
Rv2001 ubiA* yidC 

aroG Rv2178c locus aroB aroD aroE aroK pheA pheA Rv0948c Rv1885c 
Rv2179c Rv2180c trpA 

Rv2425c Rv2425c cluster 
variant 

kgd mobA oxyR proA Rv0370c Rv2424c Rv2426c 
Rv2456c 

Rv2499c Rv2499c cluster 
variant 

accA1 accD1 citE fadD35 fadE19 Rv0575c Rv2506 
scoA scoB yrbE3B 

secD Rv2587c cluster 
variant 

ffh ftsY Rv2585c secA1 secE1 secF secG secY yajC 
yidC 

Rv3235 Rv3235 locus fadD16 Rv0428c Rv1045 Rv1125 Rv1682 Rv2712c 
Rv3231c Rv3231c Rv3289c Rv3415c tgs3 

Rv3238c-
Rv3239c 

Rv3238c locus cbs cysA3 metB metC metH metZ mmuM sahH 
sseA sseB 

Rv3238c-
Rv3239c 

Rv3239c locus gltB lipJ ribG Rv0104 Rv1364c Rv1937 Rv2209 
Rv2434c Rv3238c secA1 

folD-relJ Rv3356c locus fmt gcvT glyA1 glyA2 guaA purH purN purU thyA* 
thyX* 

folD-relJ Rv3357 locus ccdA higB3 relB relE relF relG relK Rv3359 vapB2 
vapC2 

Rv3471c Rv3471c cluster 
variant 

gmdA ilvB2 mhpE mrsA Rv0521 Rv1508A Rv2305 
Rv3468c Rv3472 udgA 

Rv3554-
Rv3555c 

Rv3554 locus echA20 fadB3 fadH fas fdxD fprA ompA Rv3551 
Rv3552 Rv3553 

Rv3554-
Rv3555c 

Rv3555c locus fadA6 Rv0083 Rv0336 Rv0393 Rv0515 Rv0756c 
Rv1765c Rv2100 Rv2642 Rv3776 

espA- Rv3616c variant; eccCa1 eccCb1 espB espB espC espD espR esxA 
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ephA cluster 
variant 

esxB phoP Rv3612c 

espA-
ephA 

Rv3617 variant; 
cluster 
variant 

echA1 ephG espA folE lpqG Rv1056 Rv2000 
Rv3612c Rv3613c Rv3618 

ligC-
Rv3732 

Rv3731 locus dnaN ligA mku polA recA recC recG Rv0269c 
Rv2090 Rv3730c 

ligC-
Rv3732 

Rv3732 locus csm4 csm6 ligC lppH lprF mmpS1 PPE46 Rv1682 
Rv1754c Rv3096 

Rv3755c-
proZ 

Rv3755c locus mmpR5 proV proW proX proZ Rv0513 Rv2739c 
Rv3479 Rv3489 Rv3760 

Rv3755c-
proZ 

Rv3756c locus cobL hsaF lpqZ proV proW proX Rv0191 Rv1667c 
Rv3008 Rv3755c 

* Loci known to be involved in resistance
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Supplementary Table E10- SNP-based cluster GWAS comparing the transmission 

clusters groups versus others 

Position P-value Locus Links to 
candidates* 

2246032 2.09e-310 Rv2000 ubiA 
763123 3.08E-284 rpoB 

 

664929 1.33E-201 Rv0571c-Rv0572c*** 
 

4056430 4.46E-173 espA-ephA Rv2000 
4269271 1.90E-129 ubiA Rv2000  
1184080 8.57E-95 Rv1061 

 

688228 2.32E-81 mce2B 
 

410962 1.88E-30 iniA 
 

2722670 1.88E-30 Rv2425c 
 

1272321 1.07E-27 Rv1144-mmpL13a 
 

3889150 1.07E-27 Rv3471c 
 

763123** 6.78E-27 rpoB 
 

2246032** 6.78E-27 Rv2000 ubiA 
756757 1.31E-24 atsD Rv2000 
2915226 8.76E-24 secD 

 

2813575 2.29E-23 Rv2499c 
 

4056430** 4.87E-23 espA-ephA Rv2000 
664929** 9.50E-23 Rv0571c-Rv0572c 

 

* in STRING database; ** comparison group is the non-transmitted XDR-TB; *** also 
found in a locus based analysis (P=1.45E-34, vs. all; P=2.15E-21, vs. non-transmitted 
XDR-TB) 
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Supplementary Figure E1- Boxplot showing pairwise SNP distance summary by lineage 
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Supplementary Figure E2- within MDR distance plots, within XDR distance plots 
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Supplementary Figure E2 (cont.)
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Supplementary Figure E3- lineage 1 maximum likelihood tree with novel associations 
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Supplementary Figure E4- lineage 2 maximum likelihood tree with novel associations 
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Supplementary Figure E5- lineage 3 maximum likelihood tree with novel associations 
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Supplementary Figure E6- Lineage 4 maximum likelihood tree with novel associations 
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Supplementary Figure E7- Rv2000 string associations 
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ABSTRACT 

Motivation 

The identification of genomic variants in whole genome sequencing data associated 

with Mycobacterium tuberculosis (Mtb) drug-resistance rely on genome-wide 

association study (GWAS) or convergent evolution approaches. However, these 

methods are potentially limited in their ability to detect multiple interacting loci 

contributing towards drug resistance. We investigate the use of a (machine) learning 

classifier system (LCS) to gain insights into within genome interactions, with the aim of 

developing an approach capable of disentangling complex drug resistance genomics, 

for use in predicting phenotypes and discovering novel loci involved in resistance. 

Results 

The LCS algorithm parameters and performance were benchmarked on the rifampicin 

anti-TB drug for which we know the underlying genes (e.g. rpoB) involved in resistance.  

We achieved a sensitivity of 93.7% and a specificity of 94.8% in predicting rifampicin 

resistance, and the model included rpoB and rpoC, known to be epistaticly involved in 

drug resistance. We then applied LCS to isoniazid resistance and multi-drug (rifampicin 

and isoniazid) resistance, achieving sensitivity of 86.8% and 93.5% and specificity of 

94.2% and 97.6%, respectively. Additionally, we identified candidate loci for novel 

involvement in resistance such as celA1. Our work demonstrates the potential of 

machine learning approaches to disentangle complex genomic interactions and provide 
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mechanistic inferences in relation to drug resistance in Mtb, without the requirement 

for prior knowledge. 
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INTRODUCTION 

The evolution of drug-resistant Mycobacterium tuberculosis (Mtb) is threatening the 

control of tuberculosis disease, with multi-drug resistant (MDR-TB)  forms making up 

82% of the 558,000 new cases in 2017 with resistance to rifampicin – the most 

effective first-line drug [1]. Large whole-genome sequence (WGS) datasets are 

increasingly becoming available for Mtb, coupled with drug resistance phenotype data, 

enabling the possibility of precision public health and diagnostics. This advance would 

require a deeper understanding of the genomic basis of drug resistance in Mtb, in all its 

complexity.  

Drug resistance in Mtb can be due to mutations (including single nucleotide 

polymorphisms (SNPs), insertions and deletions (indels)) in genes coding for drug-

targets or -converting enzymes. However, the full repertoire of resistance variants 

across the more than sixteen anti-TB drugs is unknown, and other mechanisms that are 

compensatory or related to efflux pumps have been described [2]. Current methods 

employed to gain insight into Mtb genomics and drug resistance include genome-wide 

association studies (GWAS) using  linear mixed models [2,3] and convergent evolution 

analysis [4]. Recently, machine learning approaches such as random forest  [5], support 

vector machines [6,7] and deep learning [8,9] have been applied and show promise. 

However, such methods are often limited in their ability to detect complex genetic 

interactions, known as epistasis, especially those involving more than two loci, in a 

mechanistically explainable way and often require prior knowledge. 



 133 

Learning classifier systems (LCS) offer an alternative approach with scope to gain 

insight into epistatic interactions that contribute towards drug resistance, in a genome-

wide fashion, without the use of prior knowledge. They work by constructing ‘rules’ 

involving combinations of variants that are predictive of a phenotype, through 

evolutionary optimization techniques. Unlike some other machine learning methods, 

LCS allows ease of interpretation of predictive loci and therefore underlying biological 

mechanisms. The availability of computationally efficient LCS implementation libraries 

allows for the approach to be applied on large datasets. Here, we apply LCS to an Mtb 

global dataset consisting of >18k isolates with whole genome sequences (>600k SNPs; 

>6000 genes/intergenic regions) and drug susceptibility testing-based phenotypes for 

first-line rifampicin and isoniazid drugs [10]. We optimize the parameters and assess 

the performance of LCS on rifampicin, which has known resistance gene (rpoB, and 

compensatory rpoC) mechanisms.  We then apply the algorithms to establish mutation 

‘rules’ for the prediction of isoniazid resistance and MDR-TB, and assess its feasibility as 

a tool for drug resistance phenotype prediction and discovery of drug resistance.  

METHODS 

Whole Genome Sequence Data and Processing 

A global dataset of whole genome sequence data for 18,255 Mtb isolates from lineages 

1, 2, 3 and 4 was collated, alongside phenotypic drug susceptibility testing data for 

rifampicin (n=16,296; 27.1% resistance), and isoniazid (n=16,211; 31.8% resistance), 

allowing MDR-TB (n=14,322; 25.9% resistant) to be determined (see Supplementary 

Table 1). 613,821 SNPs and their genotypes were called after aligning the sequence 
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data to the H37rv reference. SNP data was also collapsed by its gene or intergenic 

region,  where a binary ’locus-type’ was assigned; any loci containing one or more non-

synonymous SNPs were coded as ‘1’,  any loci that did not contain one or more non-

synonymous SNPs were coded as ‘0’, producing a dataset of 6,879 loci.  

Learning Classifier System 

For all applications, data was randomly divided into a training set (80%) and test set 

(20%), and LCS was performed using ExSTraCS (version 2.0) [10] for 30,000,000 

iterations. Two key parameters were varied in order to allow optimization: (i) 

maximum rule population size (“N”; 1000 to 5000, by 1000) and (ii) accuracy threshold 

applied to the subsumption mechanism (“acc_sub”; 0.90, 0.95, 0.99), which 

determines the minimum accuracy of a classifier in order for it to potentially subsume 

another classifer (one classifier subsumes another if it has greater or equal accuracy 

and is more general) [11]. The maximum rule population size should be large enough to 

fully explore the search space and allow useful classifiers to be kept in the rule 

population, whilst it not too large so as to unnecessarily increase the run time of the 

algorithm and keep classifiers in the population that are not useful [11]. Lower  

subsumption mechanism (sub_acc) values may perform better in noisier problem 

domains [11]. All other parameters were set as default [10], including the probability of 

a model crossover (default=0.8) and  mutation (default=0.04) operation [11]. Within 

the final rule populations, the frequencies of individual loci, their co-occurring pairs 

and whole rules were quantified. Additionally, rule lengths (the number of loci in each 

rule) were inspected. Functions for each locus were taken from STRING [12] and 
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Mycobrowser [13]. Frequency refers to total number across the total rule population, 

macro frequency refers to the total number across unique rules. The final models were 

compared to the TB-Profiler mutation panel [14], and the predictive performance was 

estimated (and compared to TB-Profiler) using sensitivity and specificity metrics, 

assuming the drug susceptibility testing result as the gold standard. 

RESULTS 

Parameter Exploration and Application to Rifampicin 

The predictive performance (sensitivity, specificity) of the LCS for rifampicin resistance 

was insensitive to the population sizes considered (see Table 1, Supplementary Figure 

1). Similarly, the sub_acc parameter was tested, and the predictive performance was 

similar across the range of values but marginally higher for the default value of 0.99 

(Table 1, Supplementary Figure 2). Therefore, the parameter settings for population 

size (N=2,000) and sub_acc (0.99) [11] (see Table 1) were applied  in subsequent 

analyses.  

The final LCS analysis for rifampicin contained 971 different rules, with the majority 

containing the rpoB gene (frequency = 850) (Table 2, Figure 1), a locus known to be 

causally involved in rifampicin resistance. The median number of loci in the rules was 4 

(range: 1 to 14) (Supplementary Table 2, Figure 1). The most numerous rule in the 

population was rpoB by itself (frequency = 14), including the reference-and mutation-

types to predict rifampicin susceptibility and resistance, respectively (Supplementary 

Table 3). rpoB was most commonly found in association with katG (n=182, isoniazid) 

(Supplementary Table 4, Figure 2), directly as a result of some patients having 
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additional resistance to isoniazid, and therefore MDR-TB. rpoC was also detected 

(frequency = 159, rifampicin), and is a known rifampicin resistance related 

compensatory locus (see Figure 2, Supplementary Table 4). Six other loci known to be 

involved in resistance to other drugs were identified: pncA (freq=588; pyrazinamide), 

katG (freq.= 478, isoniazid), Rv1482c-fabG1 (freq.=461, isoniazid), embB (freq.=454, 

ethambutol), rrs (freq=314, streptomycin), and rpsL (freq.=132, streptomycin) (see 

Table 2). These were detected through co-occurring resistance mutations arising from 

TB patients receiving multiple drugs. Forty loci not previously established as being 

involved in drug resistance were identified, including Rv2395 (frequency=305), Rv2230c 

(frequency=253), pbpB (frequency=233), uspC (frequency=225), celA1 (frequency=209) 

and guaB2 (frequency=196) (see Table 2). Non-reference Rv2395, pbpB and uspC and 

reference guaB2 was found in rules predictive of rifampicin susceptibility.  Whilst, 

reference Rv2230c and celA1 was found in rules predictive of rifampicin resistance. The 

final model achieved a sensitivity in predicting rifampicin resistance of 93.7% and 

specificity of 95.8% (Table 1).  This is comparable to current methods (see Table 1) 

using databases of known resistance variants [5–9,14]. 

 

 

Application to Isoniazid and MDR-TB 

Applying the LCS to isoniazid resistance led to a final rule set consisting of 49 loci. The 

Rv1482c-fabG1 (frequency = 836) operon, known to be related to isoniazid resistance, 

was the locus with the highest frequency in the rule population (Supplementary Table 
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5, Supplementary Table 6, Supplementary Figure 3). In total, 7 loci known to be 

involved in drug resistance were identified, many of which signal cross-resistance with 

other drugs, similar to the rifampicin analysis; Rv1482c-fabG1 (frequency=836; 

isoniazid), rpoB (frequency=782; rifampicin), rpsL (frequency=667; streptomycin), embB 

(frequency=573; ethambutol), katG (frequency=467; isoniazid), gid (frequency=183; 

streptomycin) and rrs (frequency=110; strepromycin) (see Supplementary Table 5). 

Forty-two loci that have not previously been established as being involved in drug 

resistance were present in the rule population. The most frequent of which were 

desA3-Rv3230c (frequency=385), cyp135B1-Rv0569 (frequency=278), mmpS2 

(frequency=235), Rv3403c (frequency=233) and espF (frequency=218) (see 

Supplementary Table 5). Reference form desA3-Rv3230c was found in rules predictive 

of isoniazid resistance. Whilst, reference espF, cyp135B1-Rv0569, mmpS2 and Rv3403c 

in rules predictive of isoniazid susceptibility (see Supplementary Table 6). The most 

frequently co-occurring pair of loci was rpoB and Rv1482c-fabG1 (frequency= 308) (see 

Supplementary Table 7). The most numerous rule was non-reference rpoB with non-

reference embB in association with isoniazid resistance (see Supplementary Table 6). 

The median rule length was 4 loci (range: 1 to 13) (see Supplementary Table 2). The 

LCS achieved sensitivity of 86.8% and specificity of 94.2% in predicting isoniazid 

resistance (see Table 1).  

Applying LCS to the MDR-TB compared to pan-susceptibility detected fifty-two 

different loci across 683 different rules. The most frequent individual locus was rpoB 

(frequency=488) (see Supplementary Table 8, Supplementary Table 9, Supplementary 
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Figure 4). Nine loci known to be involved in drug resistance were identified; rpoB 

(frequency=488; rifampicin), embB (frequency=434; ethambutol), katG 

(frequency=420; isoniazid), pncA (frequency=315; pyrazinamide), rpsL (frequency=309; 

streptomycin), Rv1482c-fabG1 (frequency=288; isoniazid), gid (frequency=159; 

streptomycin), inhA (frequency=67, isoniazid) and rpoA (frequency=2; rifampicin) (see 

Supplementary Table 8). Forty-three loci that are not established drug resistance 

involved loci were identified. The most frequent of which were PPE5 (frequency=197), 

Rv3903c (frequency=164), Rv0075 (frequency=156), Rv2512c (frequency=153), 

Rv3249c (frequency=129) (see Supplementary Table 8). Non-reference PPE5, Rv3903c, 

Rv0075, Rv3249c and reference Rv2512c were found in rules predictive of pan-

susceptibility (see Supplementary Table 9). The most frequently co-occurring pair of 

loci was katG and embB (frequency= 308) (see Supplementary Table 10). The most 

numerous rule was non-reference rpoB in prediction of MDR-TB (see Supplementary 

Table 9). The median rule length was 3 (range 1 to 10) (see Supplementary Table 2). 

The final model achieved prediction sensitivity of 93.5% and specificity of 97.6% (see 

Table 1). 

DISCUSSION 

We have applied LCS to a dataset of lineages 1, 2, 3 and 4 Mtb in prediction of 

rifampicin resistance, isoniazid resistance and MDR, achieving sensitivity and specificity 

comparable to current methods and discovering a number of candidate loci for novel 

involvement in these phenotypes. 
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One limitation of this method is that by collapsing loci into reference or non-reference 

on the basis of containing one or more non-synonymous mutation, within loci 

complexities may be masked, potentially reducing resolution. Nevertheless, application 

of LCS to this Mtb dataset has provided prediction accuracy for rifampicin resistance 

comparable to current prediction methods [14], without the need for any prior 

knowledge of resistance genomics. The simultaneous consideration of multiple loci, 

within rules, may be partially responsible for this predictive power. It is interesting to 

note we found shorter rule lengths for MDR than the other phenotypes, yet more 

individual loci overall. Perhaps, this points towards the high predictive power of 

multiple resistance loci across the rule population without the need to be present 

together in long rules. One situation in which longer rules might reduce predictive 

power is where genomes are highly variable, in terms of the combinations of loci in 

which resistance mutations are present; in other words, high genetic heterogeneity of 

MDR due to independent evolution.  

Eleven loci known to be involved in drug resistance were identified across analyses by 

LCS, including rpoB which was the most frequent locus in the rule population in 

prediction of rifampicin resistance, and is known to be commonly responsible. 

Additionally, rpoC was identified by this analysis. It has been proposed that rpoC is in 

epistasis with rpoB, and it helps restore fitness when costly rifampicin-resistance 

conferring rpoB mutations are present [15,16]. 

Additionally, 125 loci were identified as novel candidates for involvement in resistance, 

and thus interesting subjects for further mechanistic exploration. One such locus is sigA 
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(rpoD), an RNA polymerase sigma factor [17]. It was identified in the rifampicin 

resistance analysis, always in reference form and always in prediction of rifampicin 

susceptibility. It is potentially an alternative mechanism directly conferring rifampicin 

resistance, or compensatory mutation in a similar fashion to rpoC. celA1 was identified 

as predictive of rifampicin resistance when in reference form. celA1 is a cellulase that 

has been shown to cause the breakdown of biofilms in M. smegmatis, where biofilms 

have been shown to be induced by exposure to rifampicin in M. smegmatis [18].  This 

observation might allude to a role of biofilm formation in drug resistance in Mtb.  If 

reference celA1 is more effective at biofilm breakdown than non-reference, the 

association between celA1 and rpoB might suggest that biofilms are not required to 

provide rifampicin resistance when rpoB is present. Conversely, if reference celA1 is 

less effective than non-reference, it could suggest that biofilm formation is a useful 

step in the evolution of rpoB in response to treatment with rifampicin. 

pbpB is also an interesting candidate for future work. It has been shown to form part of 

a ternary septation complex involved in septum synthesis. In M. smegmatis, it is 

upregulated in starved cells as they transition into a non-replicative state [19], and thus 

may play a role in phenotypic drug resistance. Interestingly, the isocitrate lyase aceA 

was also shown to be upregulated under starvation conditions in M. smegmatis [19], 

the MDR-TB analysis described here identified aceAb-PPE3; perhaps this intergenic 

region could play a role in the regulation of aceAb- a putative isocitrate lyase subunit B 

in Mtb [12]. Furthermore, uspC is an amino-sugar transporter that allows the 
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optimisation of scarce nutrient resources in Mtb [20], and was identified here  by LCS 

to be predictive of rifampicin resistance.   

Four loci identified by the isoniazid-resistance LCS, espF, eccA1, espR, and eccD1, were 

all linked to the ESX-1 secretion system. ESX-1 is a secretion system involved in 

virulence, thus it may be important to investigate how this might relate to drug 

resistance. A number of loci identified mention tRNA in their function; thrT-metT (both 

tRNA anticodons) and Rv2630-Rv2631- found by the MDR-TB analysis, tyrT-Rv0567 

(both tRNA anticodons), mpt53-Rv2879c and fusA1- found by the isoniazid-resistance 

analysis and rplS and leuU-parE2 (leuU is a tRNA anticodon) (see Table 5, Table 4, Table 

2). 

There is the additional possibility that variants in some loci identified here may not play 

a role in drug resistance phenotypes, but may instead be markers of population 

structure. However, as our analyses includes only non-synonymous variants, they may 

have important functional implications for resistant strains, regardless. For example, 

further work may be warranted regarding guaB2, identified in the rifampicin resistance 

analysis, and the impact such findings have on its potential as a new drug target, as has 

been suggested [21]. Similarly, esxV has been considered a potential vaccine candidate 

[22], it may be useful to assess how a potential link with rifampicin resistance would 

affect this. 

Our results differ from previous applications of machine learning methods to identify 

epistasis [6]; perhaps, in part, because our approach does not rely on prior knowledge 

and is genome-wide; we did not restrict analyses to specific loci. 
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In conclusion, LCS is a feasible approach to both resistance prediction and the 

disentangling of complex drug resistance genomics in Mtb, detecting known epistatic 

variants and providing novel candidates for further investigation, with scope to explore 

other phenotypes in Mtb and beyond. 
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Figure 1  

Rule plot for rifampicin: clockwise showing from top left; Frequency of locus against 

locus number; Rule index (the highest index is the most frequent rule) against rule 

length;  Rule index (the highest index is the most frequent rule) against locus number- 

red indicates resistance, blue indicates susceptibility, hollow points represent 

reference, filled points represent non-reference; Rule index against frequency (also 

referred to as ‘numerosity’). 
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Figure 2 

Co-occurrence heat map for rifampicin: Heat map showing co-occurring pairs of loci found 

in rules predictive rifampicin. 
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Figure 3  

Co-occurrence heat map for isoniazid: Heat map showing co-occurring pairs of loci found 

in rules predictive isoniazid. 
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Figure 4 

Co-occurrence heat map for MDR-TB: Heat map showing co-occurring pairs of loci found 

in rules predictive of MDR-TB. 
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Supplementary Figure 1 

Accuracy Plots for different Rule Population Sizes (A) N=1000, (B) N=2000, (C) N=3000, 

(D) N=4000, (E) N=5000, (F) N=2000 and sub_acc=0.95 
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Supplementary Figure 2 

Numerosity Plots for different Rule Population Sizes (A) N=1000, (B) N=2000, (C) 

N=3000, (D) N=4000, (E) N=5000, (F) N=2000 and sub_acc=0.95 
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Supplementary Figure 3 

Rule plot for isoniazid: clockwise showing from top left; Frequency of locus against 

locus number; Rule index (the highest index is the most frequent rule) against rule 

length;  Rule index (the highest index is the most frequent rule) against locus number- 

red indicates resistance, blue indicates susceptibility, hollow points represent 

reference, filled points represent non-reference; Rule index against frequency (also 

referred to as ‘numerosity’). 
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Supplementary Figure 4 

Rule plot for MDR-TB: clockwise showing from top left; Frequency of locus against 

locus number; Rule index (the highest index is the most frequent rule) against rule 

length;  Rule index (the highest index is the most frequent rule) against locus number- 

red indicates resistance, blue indicates susceptibility, hollow points represent 

reference, filled points represent non-reference; Rule index against frequency (also 

referred to as ‘numerosity’). 
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Table 1 

Phenotype Sensitivity Specificity Number in 
Test Set 

Number of  
Resistant 
in Test Set 

Rule 
Population 
Size 

No. 
Iterations 

Sub_acc TBProfiler 
Benchmark 
for 
Phenotype- 
Sensitivity 
[14] 

TBProfiler 
Benchmark 
for 
Phenotype- 
Specificity 
[14] 

rifampicin 93.9% 94.9% 3259 876 1000 30000000 0.99 95.9% 98.2% 

MDRvPAN 93.5% 97.6% 2864 742 2000 30000000 0.99 94.1% 98.3% 

rifampicin 93.7% 95.8% 3259 876 2000 30000000 0.99 95.9% 98.2% 

isoniazid 86.8% 94.2% 3242 1025 2000 30000000 0.99 93.7% 98.1% 

rifampicin 93.6% 92.9% 3259 876 2000 30000000 0.95 95.9% 98.2% 

rifampicin 93.4% 92.5% 3259 876 2000 30000000 0.90 95.9% 98.2% 

rifampicin 93.7% 95.8% 3259 876 4000 30000000 0.99 95.9% 98.2% 

rifampicin 91.4% 96.5% 3259 876 3000 30000000 0.99 95.9% 98.2% 

rifampicin 93.7% 95.8% 3259 876 5000 30000000 0.99 95.9% 98.2% 
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Table 2 

Frequency  Macro 
Frequen-
cy 

Locus 
Name 

Known Min. 
Rule 
Length 

Median 
Rule 
Length 

Max 
Rule 
Length 

Companions 

850 253 rpoB Y 1 3 5 sigA;katG;Rv3818;Rv2395;pncA;embB;proC;Rv2230c;Rv
1482c-fabG1;Rv3193c;purA;celA1;rpoC;gltB;Rv2576c-
Rv2577;esxV;hns;Rv0338c;sdhA;rrs;pyrF;Rv1726;Rv1215
c;Rv0140;rpsL;Rv2913c;Rv1129c-
prpD;PE_PGRS30;uspC;Rv0303;rplS;Rv2424c;Rv1254;Rv
3142c;rpe;leuU-parE2;pbpB;otsB2 

588 352 pncA Y 1 5 14 rpoB;Rv2395;accD5;Rv1482c-
fabG1;purA;guaB2;embB;fadE10-Rv0874c;Rv1129c-
prpD;Rv3818;celA1;katG;uspC;Rv2929-
fadD26;rrs;Rv1254;Rv2576c-
Rv2577;sigA;pbpB;Rv2913c;hns;pyrF;Rv3193c;rpoC;proC
;otsB2;Rv1215c;Rv1726;Rv2230c;Rv3142c;gltB;PE_PGRS
30;sdhA;Rv0140;esxV;Rv0338c;rpsL;Rv0690c;Rv1765A-
Rv1766;rplS;Rv0303 

478 245 katG Y 1 4 10 Rv1482c-
fabG1;Rv3142c;uspC;rpoB;Rv3818;Rv2395;sdhA;celA1;p
ncA;proC;PE_PGRS30;pbpB;embB;otsB2;Rv1215c;guaB2;
rrs;Rv2230c;Rv0338c;esxV;gltB;purA;rpoC;pyrF;Rv1129c-
prpD;rpsL;Rv1726;accD5;hns;sigA;Rv2913c;Rv0140;inhA
-hemZ;Rv3193c;rplS;Rv0303;rpe;tgs1-Rv3131 

461 283 Rv148

2c-

fabG1 

Y 1 4 14 katG;Rv3142c;uspC;guaB2;Rv2913c;sdhA;rpoB;Rv2230c;
accD5;purA;pncA;Rv2929-
fadD26;rrs;Rv1254;Rv2395;Rv2576c-
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Rv2577;sigA;pbpB;hns;proC;Rv3193c;Rv1215c;pyrF;otsB
2;Rv3818;Rv1726;PE_PGRS30;embB;esxV;Rv0338c;celA1
;gltB;lipL;inhA-hemZ;Rv1129c-prpD;rpoC;Rv1765A-
Rv1766;rplS;Rv0303 

454 233 embB Y 1 4 13 rpoB;proC;guaB2;sigA;Rv3193c;Rv2395;celA1;pncA;fadE
10-Rv0874c;Rv1129c-
prpD;Rv3818;pbpB;katG;rpoC;gltB;pyrF;Rv2230c;rpsL;rrs
;Rv0338c;esxV;uspC;sdhA;PE_PGRS30;Rv2913c;Rv1482c-
fabG1;otsB2;Rv0140;accD5;purA;Rv1726;Rv2576c-
Rv2577;Rv2929-fadD26;Rv3142c;hns;inhA-
hemZ;rplS;rpe;Rv1254 

314 191 rrs Y 1 5 14 celA1;Rv1482c-fabG1;pncA;uspC;Rv2929-
fadD26;Rv1254;Rv2395;Rv2576c-
Rv2577;sigA;purA;pbpB;Rv2913c;hns;Rv3193c;accD5;py
rF;Rv2230c;guaB2;Rv1215c;katG;otsB2;proC;rpoB;gltB;R
v3142c;PE_PGRS30;Rv1726;rpoC;embB;Rv3818;Rv1129c
-prpD;esxV;Rv0338c;rpsL;lipL;Rv0140;sdhA;Rv0303;rplS 

305 164 Rv239

5 

N 1 5 14 rpoB;pncA;accD5;katG;uspC;sdhA;embB;Rv3193c;Rv148
2c-fabG1;Rv2929-fadD26;rrs;Rv1254;Rv2576c-
Rv2577;sigA;purA;pbpB;Rv2913c;hns;Rv1215c;Rv1726;g
uaB2;Rv3142c;PE_PGRS30;Rv0338c;proC;esxV;otsB2;Rv
0690c;Rv0303 

253 119 Rv223

0c 

N 2 4 8 rpoB;Rv1482c-fabG1;gltB;celA1;rrs;pyrF;rpoC;Rv1129c-
prpD;katG;Rv3818;embB;pncA;Rv0140;rpsL;rplS;tgs1-
Rv3131 

233 166 pbpB N 1 6 14 Rv1482c-fabG1;pncA;uspC;Rv2929-
fadD26;rrs;Rv1254;Rv2395;Rv2576c-
Rv2577;sigA;purA;Rv2913c;hns;Rv3193c;embB;katG;acc
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D5;Rv0338c;esxV;guaB2;proC;PE_PGRS30;Rv1726;Rv31
42c;Rv1215c;lipL;otsB2;sdhA;Rv0303;rpoB 

225 167 uspC N 2 6 14 katG;Rv1482c-
fabG1;Rv3142c;Rv2395;sdhA;pncA;Rv2929-
fadD26;rrs;Rv1254;Rv2576c-
Rv2577;sigA;purA;pbpB;Rv2913c;hns;proC;accD5;otsB2;
Rv1726;Rv0338c;esxV;embB;guaB2;Rv1215c;Rv3193c;P
E_PGRS30;rpoB;Rv1765A-Rv1766;rpe 

209 98 celA1 N 2 4 8 rrs;embB;rpoB;rpoC;gltB;Rv2230c;katG;pncA;Rv1129c-
prpD;pyrF;Rv3818;rpsL;Rv1482c-
fabG1;Rv0140;rplS;tgs1-Rv3131 

196 148 guaB2 N 1 6 14 Rv1482c-
fabG1;Rv2913c;sdhA;embB;accD5;purA;pncA;rrs;Rv1215
c;Rv2576c-
Rv2577;katG;otsB2;proC;Rv0338c;esxV;pbpB;Rv3142c;P
E_PGRS30;Rv1726;Rv3193c;hns;uspC;Rv2395;sigA;Rv12
54;Rv2929-fadD26;Rv1765A-Rv1766 

160 91 PE_P

GRS3

0 

N 1 4 14 sdhA;katG;purA;Rv1726;pbpB;Rv3142c;accD5;guaB2;rrs
;Rv1482c-
fabG1;Rv3193c;hns;Rv1215c;embB;pncA;Rv2913c;otsB2
;esxV;Rv1254;uspC;rpoB;Rv2395;sigA;Rv0690c;Rv2929-
fadD26;proC;Rv2576c-Rv2577 

159 96 rpoC Y 2 4 8 rpoB;celA1;embB;pncA;Rv2230c;Rv1129c-
prpD;Rv3818;pyrF;rrs;gltB;rpsL;katG;Rv1482c-
fabG1;rplS;Rv0140 

152 81 esxV N 1 4 9 rpoB;purA;proC;Rv0338c;pbpB;guaB2;katG;embB;uspC;
PE_PGRS30;sdhA;Rv1482c-
fabG1;otsB2;pncA;rrs;Rv2395;Rv2913c;Rv1726;Rv3193c;
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Rv1215c;Rv3142c;Rv1765A-Rv1766;sigA;Rv1254;Rv0303 

149 116 Rv121

5c 

N 1 6 14 Rv1482c-
fabG1;Rv3193c;hns;purA;Rv2395;guaB2;Rv2576c-
Rv2577;rrs;katG;otsB2;proC;pncA;Rv3142c;pbpB;PE_PG
RS30;Rv1726;rpoB;uspC;sigA;accD5;lipL;sdhA;esxV;Rv29
13c;Rv2929-fadD26;Rv0303 

144 95 sdhA N 1 4 13 Rv1482c-
fabG1;guaB2;Rv2913c;katG;uspC;Rv2395;PE_PGRS30;pr
oC;otsB2;Rv2576c-
Rv2577;rpoB;embB;pncA;esxV;Rv0338c;Rv1726;pbpB;Rv
2929-
fadD26;Rv3193c;hns;Rv1215c;sigA;Rv3142c;purA;rrs;Rv
1254;rpe 

140 114 Rv314

2c 

N 1 7 14 katG;Rv1482c-
fabG1;uspC;purA;Rv1215c;guaB2;rrs;PE_PGRS30;Rv172
6;pbpB;accD5;pncA;hns;Rv2395;Rv2576c-
Rv2577;sigA;Rv3193c;Rv1254;lipL;embB;Rv2929-
fadD26;Rv0338c;proC;sdhA;otsB2;esxV;Rv2913c;rpoB 

139 88 accD5 N 1 5 13 pncA;Rv2395;Rv1482c-
fabG1;purA;guaB2;uspC;pbpB;rrs;PE_PGRS30;Rv1726;Rv
3142c;Rv0338c;katG;embB;hns;Rv1215c;proC;Rv2576c-
Rv2577;sigA;Rv2929-fadD26;Rv2913c;rpe;Rv3193c 

132 67 rpsL Y 1 4 7 rpoC;celA1;embB;Rv3818;rpoB;katG;rrs;gltB;pncA;Rv112
9c-prpD;Rv2230c;rplS;pyrF;Rv0140 

115 69 Rv319

3c 

N 2 4 13 rpoB;sigA;embB;Rv2395;purA;rrs;Rv1482c-
fabG1;hns;pbpB;pncA;Rv2929-
fadD26;Rv1215c;PE_PGRS30;guaB2;Rv1726;uspC;Rv257
6c-
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Rv2577;Rv3142c;Rv2913c;otsB2;sdhA;Rv0690c;Rv1254;
esxV;katG;proC;rpe;accD5 

114 67 Rv291

3c 

N 1 5 13 Rv1482c-fabG1;guaB2;sdhA;pncA;uspC;Rv2929-
fadD26;rrs;Rv1254;Rv2395;Rv2576c-
Rv2577;sigA;purA;pbpB;hns;embB;PE_PGRS30;rpoB;pro
C;otsB2;Rv0338c;esxV;Rv3193c;Rv1726;katG;Rv3142c;R
v1215c;accD5 

106 70 Rv172

6 

N 2 7 14 PE_PGRS30;purA;pbpB;Rv3142c;accD5;guaB2;rrs;Rv148
2c-
fabG1;uspC;Rv2395;pncA;hns;rpoB;Rv1215c;katG;Rv257
6c-
Rv2577;sigA;Rv3193c;Rv2913c;proC;otsB2;sdhA;embB;R
v2929-fadD26;esxV 

102 77 proC N 1 4 13 embB;rpoB;katG;Rv1482c-
fabG1;uspC;pncA;otsB2;sdhA;Rv2576c-
Rv2577;Rv0338c;esxV;Rv1215c;guaB2;rrs;pbpB;Rv2395;
Rv2913c;Rv1726;accD5;hns;purA;sigA;Rv2929-
fadD26;Rv3142c;Rv1254;PE_PGRS30;Rv3193c;rpe 

102 60 Rv381

8 

N 2 4 8 rpoB;katG;embB;pncA;fadE10-Rv0874c;Rv1129c-
prpD;gltB;Rv1482c-
fabG1;pyrF;rpoC;Rv2230c;celA1;rpsL;rrs;Rv0140 

97 84 hns N 2 8 14 Rv1482c-fabG1;pncA;uspC;Rv2929-
fadD26;rrs;Rv1254;Rv2395;Rv2576c-
Rv2577;sigA;purA;pbpB;Rv2913c;Rv3193c;Rv1215c;rpoB
;Rv1726;PE_PGRS30;guaB2;Rv3142c;accD5;katG;embB;
otsB2;sdhA;Rv0338c;proC;rpe 

95 67 sigA N 2 7 14 rpoB;embB;Rv3193c;purA;Rv1482c-
fabG1;pncA;uspC;Rv2929-
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fadD26;rrs;Rv1254;Rv2395;Rv2576c-
Rv2577;pbpB;Rv2913c;hns;Rv1726;guaB2;Rv1215c;Rv31
42c;Rv0338c;accD5;proC;PE_PGRS30;katG;sdhA;otsB2;R
v0303;esxV;Rv1765A-Rv1766 

76 57 pyrF N 2 4 8 pncA;rrs;Rv1482c-
fabG1;Rv2230c;Rv3818;rpoB;celA1;rpoC;embB;gltB;kat
G;Rv1129c-prpD;rpsL;rplS;tgs1-Rv3131;Rv0140 

75 51 gltB N 2 4 7 rpoB;celA1;Rv2230c;embB;Rv3818;rrs;rpoC;katG;pncA;p
yrF;Rv1129c-prpD;Rv1482c-fabG1;rpsL;rplS;Rv0140 

66 49 Rv112

9c-

prpD 

N 2 5 8 embB;pncA;fadE10-
Rv0874c;Rv3818;Rv2230c;rpoC;celA1;rrs;katG;rpoB;gltB;
pyrF;rpsL;Rv0140;Rv1482c-fabG1;rplS 

61 30 Rv125

4 

N 1 4 13 Rv1482c-fabG1;pncA;uspC;Rv2929-
fadD26;rrs;Rv2395;Rv2576c-
Rv2577;sigA;purA;pbpB;Rv2913c;hns;guaB2;PE_PGRS30
;Rv3142c;Rv3193c;proC;esxV;Rv1765A-
Rv1766;sdhA;rpoB;embB 

46 32 otsB2 N 1 4.5 8 proC;uspC;sdhA;Rv2576c-Rv2577;katG;Rv1482c-
fabG1;pncA;Rv1215c;guaB2;rrs;PE_PGRS30;embB;esxV;
Rv2913c;Rv0338c;Rv2395;Rv1726;pbpB;Rv2929-
fadD26;Rv3193c;hns;sigA;Rv3142c;inhA-hemZ;rpoB 

45 36 Rv033

8c 

N 2 6 13 rpoB;proC;esxV;pbpB;guaB2;katG;embB;uspC;pncA;rrs;R
v1482c-
fabG1;accD5;Rv2395;otsB2;sdhA;Rv2913c;hns;purA;Rv2
576c-Rv2577;sigA;Rv2929-fadD26;Rv3142c 

42 37 purA N 2 8 14 rpoB;sigA;Rv3193c;Rv1482c-
fabG1;accD5;pncA;guaB2;uspC;Rv2929-
fadD26;rrs;Rv1254;Rv2395;Rv2576c-
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Rv2577;pbpB;Rv2913c;hns;esxV;Rv1215c;Rv3142c;PE_P
GRS30;Rv1726;katG;embB;Rv0338c;proC;sdhA 

32 20 rplS N 2 4 7 embB;Rv1482c-
fabG1;Rv2230c;celA1;rpsL;gltB;rpoC;rpoB;katG;rrs;pncA;
pyrF;Rv0140;Rv1129c-prpD 

25 23 Rv292

9-

fadD2

6 

N 4 11 13 Rv1482c-fabG1;pncA;uspC;rrs;Rv1254;Rv2395;Rv2576c-
Rv2577;sigA;purA;pbpB;Rv2913c;hns;Rv3193c;embB;Rv
1726;Rv3142c;otsB2;sdhA;Rv0338c;accD5;proC;guaB2;R
v1215c;PE_PGRS30 

21 21 Rv257

6c-

Rv257

7 

N 2 12 13 rpoB;Rv1482c-fabG1;pncA;uspC;Rv2929-
fadD26;rrs;Rv1254;Rv2395;sigA;purA;pbpB;Rv2913c;hns
;proC;otsB2;sdhA;guaB2;Rv1215c;Rv1726;Rv3142c;Rv31
93c;embB;Rv0338c;accD5;PE_PGRS30 

17 11 Rv030

3 

N 2 3 6 rpoB;sigA;Rv2395;katG;Rv1482c-
fabG1;esxV;rrs;Rv1215c;pncA;pbpB 

16 15 Rv014

0 

N 2 6 8 rpoB;pncA;embB;Rv2230c;rrs;Rv1129c-
prpD;katG;celA1;Rv3818;gltB;rpoC;pyrF;rpsL;rplS 

8 5 rpe N 2 3 5 katG;uspC;accD5;hns;proC;Rv3193c;sdhA;embB;rpoB 

2 2 Rv176

5A-

Rv176

6 

N 7 7 7 uspC;esxV;Rv1482c-fabG1;pncA;sigA;guaB2;Rv1254 

2 1 leuU-

parE2 

N 2 2 2 rpoB 

1 1 Rv069

0c 

N 5 5 5 Rv2395;PE_PGRS30;pncA;Rv3193c 

1 1 fadE1

0-

N 5 5 5 embB;pncA;Rv1129c-prpD;Rv3818 
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Rv087

4c 

1 1 inhA-

hemZ 

N 5 5 5 katG;otsB2;Rv1482c-fabG1;embB 

1 1 lipL N 6 6 6 Rv1482c-fabG1;Rv1215c;pbpB;Rv3142c;rrs 

1 1 Rv242

4c 

N 2 2 2 rpoB 

1 1 tgs1-

Rv313

1 

N 5 5 5 katG;celA1;Rv2230c;pyrF 

For ‘Known’, ‘Y’= Yes/Known, ‘N’=No/Unknown 
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Supplementary Table 1 

Project Rifampi-
cin 
tested 
total 

Rifampi-
cin 
resistant 
% 

Isoniazid 
tested 
total 

Isoniaizid 
resistant 
% 

MDR Pan-
suscept-
ible 

cryptic_nejm_2

018 

7964 32.3% 7842 35.7% 2344 4946 

PRJEB10385 610 70.0% 611 78.7% 295 98 

PRJEB11653 125 44.0% 125 42.4% 35 14 

PRJEB14199 123 95.1% 123 74.0% 14 0 

PRJEB15857 38 39.5% 38 42.1% 15 18 

PRJEB2138 34 64.7% 34 70.6% 13 8 

PRJEB2221 355 2.0% 355 5.1% 6 331 

PRJEB2358 321 0.6% 321 8.7% 2 289 

PRJEB2424 45 88.9% 45 93.3% 40 3 

PRJEB2777 93 0.0% 93 0.0% 0 93 

PRJEB2794 1258 0.6% 1257 6.5% 7 1175 

PRJEB5162 185 1.6% 190 5.8% 2 174 

PRJEB6276 3 0.0% 3 0.0% 0 3 

PRJEB6945 46 0.0% 46 0.0% 0 46 

PRJEB7056 1087 4.8% 1086 13.3% 41 873 

PRJEB7281 95 45.3% 95 56.8% 41 38 

PRJEB7669 228 100.0% 231 100.0% 217 0 

PRJEB7727 28 25.0% 28 32.1% 5 12 

PRJEB9680 1019 24.3% 1019 28.0% 246 700 

PRJNA183624 329 66.0% 329 69.9% 138 83 

PRJNA187550 157 72.6% 157 72.6% 91 43 

PRJNA200335 124 78.2% 125 78.4% 43 23 

PRJNA235852 208 9.6% 208 21.6% 20 155 

PRJNA282721 1778 6.5% 1807 16.5% 87 1452 

PRJNA376471 13 38.5% 13 38.5% 5 8 

PRJNA49659 30 0.0% 30 0.0% 0 30 
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Supplementary Table 2 

Phenotype Min. Median Max. 
rifampicin 1 4 14 

MDRvPAN 1 3 10 

isoniaizid 1 4 13 
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Chapter 5: 

 Genome-wide Learning 
Classifier System applied to 
Extensively Drug Resistant 

Mycobacterium tuberculosis 
discovers novel resistance 

mechanisms 
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ABSTRACT 

Background 

Tuberculosis, caused by Mycobacterium tuberculosis bacteria, is a major global public 

health issue, with drug resistance making disease control more difficult.  Of major concern 

is the evolution of extensively drug resistant M. tuberculosis (XDR-TB), which is multidrug-

resistant tuberculosis to isoniazid and rifampicin plus resistance to fluoroquinolones and 

injectable second-line drugs. The analysis of M. tuberculosis (XDR-TB) whole genome 

sequencing (WGS) and drug susceptibility test data can improve the understanding of the 

complex combination of M. tuberculosis genetic mutations involved in XDR-TB, and thereby 

have important positive implications for surveillance, diagnosis and treatment. 

Results 

A machine learning classifier system was applied on a locus-based resolution to a global 

dataset (n=13,270; 308 XDR-TB), consisting of two M. tuberculosis lineages (2 and 4).  The 

analyses identified known resistance loci (9 for lineage 2, 13 for lineage 4), as well as 

potential novel ones (107 for lineage 2, 116 for lineage 4). The constructed models included 

loci to adjust for the confounding effect of M. tuberculosis strain-types, as well as avoided 

overfitting. They predicted XDR-TB with sensitivity of 93.9% and specificity of 98.6% for 

lineage 2 and sensitivity of 100% and specificity of 99.5% for lineage 4, which is similar to 

other recent machine learning applications. 

Conclusions 

The learning classifier system approach is an effective predictor of XDR Mtb, requiring no 

prior knowledge of M. tuberculosis genomics and could be used to inform outbreak control 

and drug resistance, through the prediction of phenotype and discovery of biological 

mechanisms.
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INTRODUCTION 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading global cause of 

mortality and morbidity, with the evolution of drug resistance threatening disease control. 

Extensively drug-resistant Mtb (XDR-TB) is defined as multidrug resistant (MDR-TB, 

resistance to two first-line treatments, isoniazid and rifampicin) plus additional resistance 

to fluoroquinolones and one second-line injectable. XDR-TB has been observed in at least 

123 countries, with around 8.5% of MDR TB cases being XDR in 2017 [1]. The transmission 

of XDR-TB has been observed [2] and the complexity of underlying genomics of XDR-TB 

strains has been described [3] (Oppong et al., submitted), with suggestions of epistatic 

interactions contributing to fitness in resistant strains [4, 5] and differences in genomics 

between Mtb lineages [6].  

 

The increased availability of whole genome sequencing (WGS) data for clinical Mtb isolates, 

raises the possibility of gaining a deeper understanding of XDR-TB outbreak dynamics to 

inform outbreak control strategies, diagnosis and treatment [7]. Current analytical 

approaches include the application of phylogenetic based characterisation of transmission 

clusters, and the use of GWAS and convergent evolution methods to identify mutations 

associated with drug resistance and transmissibility [8–10]. Such methods have detected 

individual known mutations in the context of MDR-TB, but there is a need to identify novel 

mechanisms to explain the XDR-TB phenotype, including any epistasis at play. The 

application of machine learning approaches has the potential to uncover new resistance 

loci [11–19]. Learning classifier systems (LCS) iteratively search for combinations of loci in 

populations of models using mechanisms inspired by biological evolution, such as 

reproduction, mutation, recombination, and selection. These approaches have the 

potential to explore large datasets and epistatic effects in relation to complex “resistance” 
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traits (Oppong et al, in prep). Here we apply an LCS approach to predict Mtb XDR-TB in a 

global dataset (n=13,270; 308 XDR-TB), with paired WGS and drug susceptibility testing 

data. 

 

METHODS 

Data and Processing 

A global dataset of WGS data for 18,255 Mtb isolates from lineages 1 (12.1%), 2 (25.3%), 3 

(15.2%) and 4 (47.3%) was collated, alongside phenotypic drug susceptibility testing data 

across 16 anti-TB drugs (Oppong et al., under review, 2019). XDR-TB was assigned as 

combined resistance to isoniazid and rifampicin plus resistance to a fluoroquinolone 

(ciprofloxacin, levofloxacin, moxifloxacin) and to a second line injectable (amikacin, 

kanamycin, capreomycin). Pan-susceptibility was assigned as susceptibility to rifampicin 

and isoniazid alongside no other known resistance (see Supplementary Table 1, Oppong et 

al., submitted) (n=7,063, 53.2%). Only analyses where the number of XDR-TB isolates in the 

test set was >10 were included in downstream analyses, leaving lineages 2 (n=4,642) and 4 

(n=8,628). Overall the number of XDR-TB cases was 308 (lineage 2, n=155, 3.34%; lineage 4, 

n=153, 1.77%). 

 

Sequence data was aligned to the H37rv reference and variants were called, resulting in a 

total of 613,821 SNPs. A binary ’locus-type’ was assigned by collapsing SNP data by its gene 

or intergenic region. The loci containing one or more non-synonymous SNPs were coded as 

‘1’ and any loci that did not contain one or more non-synonymous SNPs were coded as ‘0’, 

producing a dataset of 6,195 variant loci for lineage 2 and 6,677 for lineage 4. 
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Learning classifier systems (LCS)  

The ExSTraCS Learning Classifier System [20] was applied to each lineage (2 and 4) to 

construct populations of models that predict XDR-TB (vs. pan-susceptible). All parameters 

were default except the rule population size (n=2,000), which was recommended for 

complex and noisy problems [21]. For each analysis, the data was split into a training (80%) 

and test (20%) set (see Figure 1). The frequencies of entire rules, co-occurring pairs and 

individual loci were quantified in the final rule populations. Frequency is defined as the 

total number across the total rule population. Macro frequency is defined as the total 

number across unique rules. The number of loci in each rule (rule length) was also 

enumerated. Phenotypes, testing and training sets and misclassified isolates were plotted 

on lineage specific maximum likelihood phylogenetic trees, created using ExaML [22], as 

described in (Oppong et al., submitted). The functionality of loci identified in the LCS 

analysis were taken from STRING [23] and Mycobrowser [24].  

 

RESULTS 

The lineage 2 and lineage 4 analyses identified nine loci in common as predictive of XDR-

TB: embB (ethambutol), ethA (ethionamide), lppC, pncA (pyrazinamide), rpoB (rifampicin), 

rrs (streptomycin), Rv0458, Rv1482c-fabG1 (isoniazid) and Rv2434c. Of these lppC, rv0458 

and Rv2434c have not previously been implicated in drug resistance (see Table 2 and Table 

3). lppC is a putative lipoprotein, Rv0458 is a putative aldehyde dehydrogenase and 

Rv2434c is a putative conserved transmembrane protein [23]. Assuming the drug 

susceptibility test result as the gold standard, the LCS achieved a predictive performance of 

93.9% sensitivity and 98.6% specificity for lineage 2 and 100.0% sensitivity and 99.5% 

specificity for lineage 4 (see Table 1). Performing the final models on the test set resulted 

in a low misclassification error in both lineages (6/310 lineage 2, 6/1163 lineage 4) (see 

Table 1, Supplementary Figure 1). 
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Lineage 2 analysis 

Nine known resistance involved loci were identified by lineage 2 analysis: Rv1482c-fabG1, 

rpoB, ethA, rrs, embB, pncA, rpoC, rpoA and alr (see Table 2). 107 novel loci identified by 

lineage 2 analysis (see Table 2), where these included markers to stratify by different 

strain-types. The most frequent loci across the population of 2,000 models were: Rv0575c 

(frequency 186), Rv1823 (f126), hycE-Rv0088 (121), narJ (110), Rv3115-moeB2 (110) and 

ponA1 (105). The most frequently co-occurring pair of loci was Rv0575C and narJ 

(frequency 45) (see Supplementary Table 2). Whilst, the most frequently occurring rules 

were non-reference Rv1922 (frequency 11), fadE1 (11), and Rv2897c (11) in prediction of 

pan-susceptibility (Supplementary Table 3). Based on an analysis of gene function, a 

number of novel loci are candidates for directly conferring resistance, including Rv1877 

which shows similarity to drug efflux proteins [23] (see Table 2). 

 

Lineage 4 analysis 

Thirteen known resistance involved loci were identified by lineage 4 analysis: rpoB 

(rifampicin), embB (ethambutol), katG (isoniazid), ethA-ethR (ethionamide), rrs 

(streptomycin), pncA (pyrazinamide), Rv1482c-fabG1 (isoniazid), drrA, gyrB 

(fluorquinolones), rpsL (streptomycin), embC-embA (ethambutol), inhA (isoniazid) and ethA 

(ethionamide) (see Table 3). 116 novel loci were identified by lineage 4 analysis (see Table 

3), where the most frequent across the 2,000 models were fadD30 (226), Rv2059 (166), 

Rv0158 (125), vapB34 (125) and glnA3 (124) (see Table 3). Rv0158 and glnA3 was the most 

frequently occurring pair of loci (frequency 43) (see Supplementary Table 4). The most 

frequent rule in the rule population was non-reference fadE15-PE_PGRS29 in prediction of 

pan-susceptibility (12) (see Supplementary Table 5). A number of novel loci identified were 

potentially involved in efflux such as (i) Rv2025c, where Rv2024c-Rv2025c is a probable 
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cation efflux system; (ii) mctB involved in efflux of copper, and (iii) Rv0194 of Rv0193c-

Rv0194, which is a multidrug efflux protein [23] (see Table 3).  

 

DISCUSSION 

We have applied LCS to a global dataset of XDR and pan-susceptible Mtb isolates from 

lineages 2 and 4, achieving high accuracy of prediction and identifying known loci and novel 

candidates for involvement in these phenotypes.  

 

The high accuracy of XDR-TB prediction, as observed here for lineage 4, is especially 

interesting considering the model presented is based solely on loci, rather than single 

nucleotide polymorphisms or indels. It would appear even lower resolution locus-level data 

can provide enough information to predict XDR-TB phenotype, when multiple loci are being 

considered in tandem. The idea that many loci are of importance in predicting the XDR-TB 

phenotype is supported by the lower and more evenly distributed rule frequencies that 

make up the rule populations described here, compared to previous analyses predicting 

single resistance to rifampicin (Oppong et al., in prep). It follows that phenotype prediction 

through locus-level, as opposed to mutation-level, LCS may work better when the 

phenotype in question is highly complex, involving multiple loci, rather than a simple 

Mendelian trait.  

 

One factor contributing towards the higher prediction accuracy observed for lineage 4 

compared to lineage 2 could be the increased diversity in lineage 4 (Oppong et al., 

submitted). Perhaps the lineage 2 analyses could benefit from the inclusion of SNP and 

indel data or from greater numbers to capture more low frequency variants involved in the 

phenotype. Indeed, as it becomes more computationally feasible, applying the 

methodology presented here to mutation-level data could enable real-time monitoring of 
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clinical Mtb isolates to predict XDR-TB outbreaks before they occur, allowing more targeted 

resource allocation and thus more effective intervention to prevent further transmission. 

Furthermore, the high accuracy XDR-TB prediction, as achieved here, could be useful in 

diagnosis of clinical Mtb isolates in order to inform treatment regimen.  

 

There is potential that the LCS is picking up on variation unrelated to fitness of XDR Mtb 

and rather identifying markers related to population structure. Thus, it might be interesting 

to further test the LCS models developed here on new data. However, the use of only non-

synonymous mutations at locus level means any loci identified may well have functional 

importance and at the very least be descriptive of clinically relevant XDR strains. Moreover, 

it is interesting to note that both true and false predictions appear to be evenly distributed 

throughout the phylogenetic tree for each lineage.  

 

A number of understudied loci were identified, some in prediction of XDR-TB and some in 

prediction of pan-susceptibility, and thus warrant further biological investigation. These 

include potential mechanisms of drug resistance such as probable drug efflux pumps. 

The high number of novel candidate loci identified here is in keeping with the nature of this 

method. Unlike other machine learning methods previously applied to detect epistasis in 

drug resistant Mtb [11], LCS is able to identify associated loci across the entire genome, 

without the need for prior knowledge. 

 

CONCLUSIONS 

LCS is a potentially useful methodology for predicting the complex XDR-TB phenotype. It 

requires no prior knowledge, but seems to demonstrate high predictive accuracy, account 

for population structure, and identify plausible and biologically interesting loci as 

candidates for further study. Large-scale use of this approach could be useful in the real-
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time monitoring of Mtb genomics in outbreak settings, informing more targeted public 

health intervention,  especially with the extended application of LCS to individual mutation 

level data. Furthermore, its high predictive accuracy could be useful in diagnosing XDR-TB 

in order to inform treatment. 
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FIGURES AND TABLES 

Figure 1- Rule plots lineage 2 and lineage 4 XDR  

Figure 2- Co-occurrence heatmaps for lineage 2 and lineage 4 

Supplementary Figure 1- Phylogenetic trees for lineage 2 and lineage 4  

Table 1- Prediction Accuracies 

Table 2- Locus table lineage 2 XDR 

Table 3- Locus table lineage 4 XDR 

Supplementary Table 1- Phenotype Frequencies by lineage  

Supplementary Table 2 (see [25])- Co-occurrence table lineage 2 XDR 

Supplementary Table 3 (see [25])- Rule table lineage 2 XDR 

Supplementary Table 4 (see [25])- Co-occurrence table lin4 XDR 

Supplementary Table 5 (see [25])- Rule table lineage 4 XDR 
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Figure 1  

Rule plots lin2 and 4 XDR:(A) lineage 2 and (B) lineage 4. clockwise showing from top 

left; Frequency of locus against locus number; Rule index (the highest index is the 

most frequent rule) against rule length;  Rule index (the highest index is the most 

frequent rule) against locus number- red indicates resistance, blue indicates 

susceptibility, hollow points represent reference, filled points represent non-

reference; Rule index against frequency (also referred to as ‘numerosity’). 

  

 A-lineage 2 
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Figure 1 (cont.) 

B- lineage 4 
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Figure 2 

Heat maps showing co-occurring loci found in rules predictive of XDR for (A) lineage 2 and 

(B) lineage 4 XDR. 
 

A-lineage 2 
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Figure 2 (cont.) 

B-lineage 4 
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Supplementary Figure 1 
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 Table 1 

Phenotype Sensitivity Specificity Number 

in Test 

Set 

Number of 

Resistant in 

Test Set 

Lineage 

XDRvPAN 100.0% 99.5% 1163 31 4 

XDRvPAN 93.9% 98.6% 310 33 2 
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Table 2 

Locus table lin2 XDR 

 

Frequ

ency 

Macro 

Frequency 

Locus 

Name 

Known Min. 

Rule 

Length 

Median 

Rule 

Length 

Max. 

Rule 

Length 

Companions Function 

186 60 Rv057

5c 

N 1 3 5 deaD;Rv1823;Rv1507A-

Rv1508c;mce1D;ppsC;hycE-

Rv0088;Rv0145;Rv1482c-

fabG1;narJ;Rv2949c;Rv1405c;

Rv2897c;cobU;gmhB;Rv3796-

fadE35;dhaA;Rv1566c-

Rv1567c;PPE13;Rv1507c 

Possible oxidoreductase, similar to 

many diverse oxidoreductases and 

monooxygenases 
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186 55 Rv148

2c-

fabG1 

Y 1 2 5 Rv1507c;Rv1507A-

Rv1508c;ppsC;hycE-

Rv0088;Rv0145;Rv0575c;dea

D;rrs;Rv1823;Rv2949c;Rv140

5c;narJ;Rv1877;ispE;lysX;carB

;PPE37;rskA;vapB35-

mce3R;gnd2;Rv2923c;echA10

;cyp141-

Rv3122;umaA;mmpL8-

papA1;Rv3115-

moeB2;vapC12;embB;Rv2434

c;rpoC;ponA1;Rv2897c;ethA;r

poB;pncA 

Uncharacterized protein; Catalyzes the 

NADPH-dependent reduction of beta- 

ketoacyl-ACP substrates to beta-

hydroxyacyl-ACP products, the first 

reductive step in the elongation cycle 

of fatty acid biosynthesis 
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174 47 rpoB Y 1 3 4 rpoC;ethA;Rv0893c-

Rv0894;ponA1;vapC12;Rv319

0A-Rv3191c;Rv0792c-

Rv0793;Rv3115-

moeB2;Rv3815c;vapB35-

mce3R;embB;lysX;argS;ispE;c

arB;mmpL8-

papA1;Rv1877;Rv2434c;uma

A;rrs;pncA;Rv1482c-fabG1 

DNA-directed RNA polymerase subunit 

beta- DNA-dependent RNA 

polymerase catalyzes the transcription 

of DNA into RNA using the four 

ribonucleoside triphosphates as 

substrates 

167 51 ethA Y 1 2 4 rpoC;rpoB;Rv0893c-

Rv0894;echA10;lysX;rrs;birA;

Rv2897c;pncA;PPE13;Rv1830;

PPE37;argS;carB;embB;Rv079

FAD-containing monooxygenase- 

monooxygenase able to convert a 

wide range of ketones to the 

corresponding esters or lactones via a 
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2c-Rv0793;vapC12;Rv3115-

moeB2;mmpL8-

papA1;Rv1507c;PE_PGRS61-

Rv3654c;nrdF2-

Rv3049c;Rv2434c;ispE;Rv140

5c;Rv1482c-fabG1;gnd2 

Baeyer-Villiger oxidation reaction. C 

126 51 Rv182

3 

N 1 3 5 deaD;Rv0575c;Rv1507A-

Rv1508c;Rv3796-

fadE35;narJ;Rv0145;ppsC;Rv1

482c-

fabG1;Rv2949c;PPE13;cobU;

hycE-Rv0088;dhaA;Rv1566c-

Rv1567c;Rv2897c 

Conserved protein 
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121 40 hycE-

Rv008

8 

N 1 3 5 pepE;ppsC;Rv0145;Rv0575c;R

v1482c-

fabG1;narJ;Rv2949c;pks16-

pth;deaD;cobU;Rv1507A-

Rv1508c;Rv1823;Rv3796-

fadE35;dhaA;Rv1566c-

Rv1567c;PPE13;Rv1507c 

Possible formate hydrogenase HycE; 

Possible polyketide 

cyclase/dehydrase. Belongs to the 

SRPBCC ligand-binding domain 

superfamily. Predicted to be an outer 

membrane protein. 

113 33 rrs Y 1 2 4 vapB35-

mce3R;Rv2923c;ethA;rpoC;bi

rA;Rv2949c;echA10;ispE;pon

A1;Rv3815c;Rv1482c-

fabG1;senX3-

regX3;Rv1830;alr;carB;embB;

Ribosomal RNA 16S 
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Rv3466;betP-

Rv0918;Rv0893c-

Rv0894;lysX;pncA;Rv2434c;R

v1405c;rpoB;uvrD1;Rv2897c;

gnd2 

110 42 narJ N 1 3 4 Rv3796-

fadE35;Rv0145;Rv1823;ppsC;

Rv0575c;hycE-

Rv0088;Rv2949c;deaD;Rv150

7A-Rv1508c;Rv1482c-

fabG1;Rv2897c;cobU;PPE13;

Rv1405c 

Probable respiratory nitrate reductase 

delta chain 
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110 44 Rv311

5-

moeB2 

N 2 3 5 Rv3190A-

Rv3191c;argS;Rv3815c;ponA

1;rpoB;echA10;embB;ispE;acc

D4;lysX;carB;vapB35-

mce3R;Rv0792c-

Rv0793;rpoC;Rv0893c-

Rv0894;ethA;Rv2923c;betP-

Rv0918;pncA;vapC12;Rv2434

c;Rv1482c-fabG1 

Probable IS1081 transposase; 

Probable moeB2,molybdopterin 

cofactor biosynthesis protein 

105 32 embB Y 1 3 4 pncA;mmpL8-papA1;Rv3115-

moeB2;Rv3815c;ponA1;Rv08

93c-

Rv0894;rpoB;rrs;Rv0792c-

Probable arabinosyltransferase B; 

Arabinosyl transferase responsible for 

the polymerization of arabinose into 

the arabinan of arabinogalactan 
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Rv0793;echA10;argS;lysX;car

B;ethA;rpoC;Rv2923c;Rv3190

A-Rv3191c;umaA;Rv1482c-

fabG1;Rv1877;Rv2434c 

105 41 ponA1 N 2 3 5 vapC12;rpoB;Rv0792c-

Rv0793;Rv3190A-

Rv3191c;Rv3115-

moeB2;Rv3815c;ispE;rrs;emb

B;lysX;betP-

Rv0918;rpoC;pncA;vapB35-

mce3R;accD4;Rv2923c;echA1

0;Rv1482c-fabG1 

Penicillin-binding protein 1A- cell wall 

formation. Synthesis of cross-linked 

peptidoglycan from the lipid 

intermediates. The enzyme has a 

penicillin-insensitive transglycosylase 

N-terminal domain (formation of 

linear glycan strands) and a penicillin-

sensitive transpeptidase C-terminal 

domain (cross-linking of the peptide 
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subunits) (By similarity). Has little 

peptidoglycan hydrolytic activity, 

however it inhibits the synergistic 

peptidoglycan hydrolysis of RipA plus 

RpfB 

100 23 pncA Y 1 2 3 embB;ethA;ispE;argS;Rv1877;

ponA1;nrdF2-

Rv3049c;Rv1405c;Rv3115-

moeB2;Rv2434c;gnd2;rpoC;rr

s;PPE13;Rv2897c;rpoB;Rv148

2c-fabG1 

Nicotinamidase/pyrazinamidase- 

catalyzes the deamidation of 

nicotinamide (NAM) into nicotinate. 

Likely functions in the cyclical salvage 

pathway for production of NAD from 

nicotinamide 

96 34 ispE N 1 3 5 vapB35-mce3R;Rv0792c-

Rv0793;betP-

4-diphosphocytidyl-2-C-methyl-D-

erythritol kinase- catalyzes the 
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Rv0918;accD4;rrs;ponA1;Rv3

815c;vapC12;Rv3115-

moeB2;Rv2434c;Rv3190A-

Rv3191c;pncA;Rv1877;Rv148

2c-

fabG1;Rv2923c;rpoB;rpoC;et

hA;echA10 

phosphorylation of the position 2 

hydroxy group of 4-diphosphocytidyl-

2C-methyl-D-erythritol. Belongs to the 

GHMP kinase family. 

87 42 Rv150

7A-

Rv150

8c 

N 1 3 5 deaD;Rv1823;Rv0575c;Rv148

2c-

fabG1;ppsC;Rv2949c;Rv3796-

fadE35;narJ;Rv0145;cobU;hyc

E-Rv0088;Rv1566c-

Rv1567c;dhaA;PPE13;Rv1405

Uncharacterized protein; Probable 

membrane protein 
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c;Rv2897c 

86 21 Rv140

5c 

N 1 2 3 Rv0575c;Rv2949c;Rv0145;Rv

1482c-

fabG1;pncA;narJ;Rv1507A-

Rv1508c;PE_PGRS61-

Rv3654c;nrdF2-

Rv3049c;cobU;Rv1830;rrs;PP

E13;rpoA;ethA;eccA1;alr;birA 

Uncharacterized protein 

82 30 Rv294

9c 

N 1 3 4 Rv0575c;hycE-

Rv0088;narJ;Rv0145;rrs;Rv14

05c;deaD;Rv1823;Rv1507A-

Rv1508c;Rv1482c-

Chorismate pyruvate-lyase; Removes 

the pyruvyl group from chorismate to 

provide 4- hydroxybenzoate (4HB). 

Involved in the synthesis of 
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fabG1;Rv3796-

fadE35;ppsC;PPE13;cobU;Rv2

897c 

glycosylated p-hydroxybenzoic acid 

methyl esters (p-HBADs) and phenolic 

glycolipids (PGL) that play important 

roles in the pathogenesis of 

mycobacterial infections 

77 10 gnd2 N 1 2 2 Rv1482c-fabG1;pncA;senX3-

regX3;Rv0042c;Rv2897c;ethA

;alkB-Rv3253c;rrs;uvrD1 

Probable gnd2,6-phosphogluconate 

dehydrogenase, decarboxylating 

77 29 lysX N 2 3 4 echA10;ethA;carB;umaA;Rv0

792c-

Rv0793;vapC12;mmpL8-

papA1;Rv1482c-

fabG1;argS;rpoB;ponA1;Rv31

Lysylphosphatidylglycerol biosynthesis 

bifunctional protein- catalyzes the 

production of L-lysyl-tRNA(Lys)transfer 

and the transfer of a lysyl group from 

L-lysyl-tRNA(Lys) to membrane-bound 
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15-

moeB2;embB;rpoC;Rv3656c;r

rs;Rv0893c-Rv0894 

phosphatidylglycerol (PG), which 

produces lysylphosphatidylglycerol 

(LPG), one of the components of the 

bacterial membrane with a positive 

net charge. LPG synthesis contributes 

to the resistance to cationic 

antimicrobial peptides (CAMPs)  

66 12 Rv150

7c 

N 1 2 2 Rv1482c-

fabG1;Rv0302;ethA;hycE-

Rv0088;pepE;PPE37;echA10;

mce1D;Rv0575c;argS;gmhB 

Conserved protein 

63 28 Rv014

5 

N 1 3 5 Rv3796-

fadE35;narJ;Rv1823;ppsC;hyc

Putative S-adenosyl-L-methionine-

dependent methyltransferase 
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E-Rv0088;Rv0575c;Rv1482c-

fabG1;Rv2949c;Rv2897c;Rv1

507A-

Rv1508c;Rv1405c;Rv1566c-

Rv1567c;deaD;cobU 

58 22 carB N 1 3 4 lysX;umaA;rrs;Rv1482c-

fabG1;Rv3115-

moeB2;embB;ethA;rpoB;argS

;Rv2923c;echA10;mmpL8-

papA1;cyp141-Rv3122 

Carbamoyl-phosphate synthase large 

chain 

55 23 argS N 1 3 4 Rv3190A-Rv3191c;Rv3115-

moeB2;echA10;ethA;pncA;lys

X;rpoB;pepE;gmhB;embB;bet

Arginine--tRNA ligase 
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P-Rv0918;Rv0893c-

Rv0894;rpoC;carB;Rv1507c 

55 13 Rv289

7c 

N 1 2 3 ethA;Rv0575c;Rv0145;narJ;d

eaD;senX3-regX3;Rv1507A-

Rv1508c;Rv2949c;Rv1823;uvr

D1;pncA;Rv1482c-

fabG1;rrs;gnd2 

Conserved hypothetical protein, 

possibly Mg-chelatase 

51 23 echA1

0 

N 1 2 4 ethA;lysX;mce1D;Rv3115-

moeB2;rrs;argS;PPE37;embB;

rpoC;carB;Rv1482c-

fabG1;umaA;mmpL8-

papA1;Rv2923c;ponA1;ispE;R

v1507c 

Probable enoyl-CoA hydratase 
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51 12 Rv243

4c 

N 1 2 3 ispE;fadE28;pncA;ethA;rpoC;

Rv3115-

moeB2;rrs;rpoB;Rv1482c-

fabG1;embB 

Probable conserved transmembrane 

protein 

50 23 deaD N 1 3 4 Rv1823;Rv0575c;Rv1507A-

Rv1508c;hycE-

Rv0088;Rv1482c-

fabG1;Rv2949c;narJ;Rv3796-

fadE35;Rv2897c;ppsC;Rv0145 

ATP-dependent RNA helicase- DEAD-

box RNA helicase involved in various 

cellular processes at low temperature, 

including ribosome biogenesis, mRNA 

degradation and translation initiation 

47 9 nrdF2-

Rv304

9c 

N 1 2 2 pncA;PE_PGRS61-

Rv3654c;ethA;Rv1405c;PPE1

3;rpoA;alr;birA 

Ribonucleoside-diphosphate 

reductase subunit beta- provides the 

precursors necessary for DNA 

synthesis. Catalyzes the biosynthesis 
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of deoxyribonucleotides from the 

corresponding ribonucleotides. Two 

genes for this protein are present in 

M.tuberculosis- this is the active form; 

Probable monooxygenase 

47 23 vapC1

2 

N 1 3 4 ponA1;rpoB;Rv3190A-

Rv3191c;Rv0792c-

Rv0793;betP-

Rv0918;ispE;lysX;Rv3815c;va

pB35-mce3R;ethA;Rv3115-

moeB2;Rv1482c-fabG1 

Ribonuclease- toxic component of a 

type II toxin-antitoxin (TA) system. An 

RNase 

46 23 Rv319

0A-

N 1 3 4 vapC12;rpoB;Rv0792c-

Rv0793;Rv3115-

Conserved protein; Probable 

transposase 
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Rv319

1c 

moeB2;argS;ponA1;Rv3815c;i

spE;vapB35-mce3R;betP-

Rv0918;accD4;embB 

45 24 Rv079

2c-

Rv079

3 

N 1 3 5 vapC12;Rv3190A-

Rv3191c;rpoB;ponA1;Rv3815

c;vapB35-mce3R;ispE;betP-

Rv0918;accD4;lysX;embB;Rv3

115-moeB2;ethA 

Probable transcriptional regulatory 

protein (Probably GntR-family);  

Putative monooygenase that might be 

involved in antibiotic biosynthesis, or 

may act as reactive oxygen species 

scavenger that could help in evading 

host defenses 

44 22 Rv381

5c 

N 2 3 4 Rv3115-

moeB2;ponA1;rpoB;Rv0792c-

Rv0793;Rv3190A-

Possible acyltransferase 
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Rv3191c;ispE;rrs;embB;betP-

Rv0918;vapC12;vapB35-

mce3R;rpoC 

42 17 rpoC Y 2 3 4 rpoB;ethA;rrs;lysX;argS;Rv08

93c-

Rv0894;embB;Rv3815c;ponA

1;Rv3115-

moeB2;echA10;ispE;Rv2434c;

pncA;Rv1482c-fabG1 

DNA-directed RNA polymerase subunit 

beta'- DNA-dependent RNA 

polymerase catalyzes the transcription 

of DNA into RNA using the four 

ribonucleoside triphosphates as 

substrates 

40 19 ppsC N 1 3 5 Rv1507A-Rv1508c;hycE-

Rv0088;Rv0145;Rv0575c;Rv1

482c-

fabG1;narJ;Rv1823;Rv1566c-

Phthiocerol synthesis polyketide 

synthase type I PpsC- involved in the 

elongation of either C22-24 fatty acids 

by the addition of malonyl-CoA and 



 209 

Rv1567c;deaD;cobU;Rv2949c methylmalonyl-CoA extender units to 

yield phthiocerol derivatives 

38 10 PE_PG

RS61-

Rv365

4c 

N 1 2 2 birA;Rv1830;eccA1;alr;ethA;n

rdF2-

Rv3049c;Rv1405c;PPE13;rpo

A 

PE-PGRS family protein- mediates 

Ca(2+)-dependent up-regulation of the 

anti- inflammatory cytokine IL-10; 

Apoptosis inhibitor- effector protein 

that participates in the suppression of 

macrophage apoptosis by blocking the 

extrinsic pathway 

35 9 birA N 1 2 2 ethA;rrs;cobU;alr;PE_PGRS61

-Rv3654c;Rv1830;nrdF2-

Rv3049c;Rv1405c 

Possible bifunctional protein: biotin 

operon repressor and biotin--[acetyl-

CoA-carboxylase] synthetase 

33 15 cobU N 1 3 4 hycE- Bifunctional cobinamide 
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Rv0088;Rv0575c;birA;Rv1507

A-

Rv1508c;Rv1823;narJ;ppsC;R

v0145;Rv2949c;Rv1405c 

kinase/cobinamide phosphate 

guanylyltransferase  

32 11 PPE13 N 1 2 4 ethA;Rv1823;Rv3796-

fadE35;eccA1;hycE-

Rv0088;Rv1507A-

Rv1508c;Rv0575c;Rv2949c;n

arJ;nrdF2-

Rv3049c;PE_PGRS61-

Rv3654c;pncA;Rv1405c 

Uncharacterized PPE family protein 

31 18 vapB3

5-

N 1 3 5 rrs;ispE;Rv0792c-

Rv0793;betP-

Antitoxin component of a type II toxin-

antitoxin (TA) system; Transcriptional 
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mce3R Rv0918;accD4;rpoB;Rv3190A

-

Rv3191c;vapC12;Rv3815c;Rv

3115-moeB2;Rv1482c-

fabG1;ponA1 

repressor- represses the transcription 

of mce3 operon and downregulates its 

own expression, but does not affect 

the transcription of mce1, mce2 and 

mce4 operons 

30 16 betP-

Rv091

8 

N 1 3 5 vapB35-mce3R;ispE;Rv0792c-

Rv0793;accD4;vapC12;Rv319

0A-

Rv3191c;Rv3815c;argS;ponA

1;rrs;Rv3115-moeB2 

Uncharacterized transporter; 

Conserved protein 

30 8 rpoA Y 1 2 2 eccA1;Rv1566c-

Rv1567c;Rv1830;alr;Rv1405c;

PE_PGRS61-Rv3654c;nrdF2-

DNA-directed RNA polymerase subunit 

alpha- DNA-dependent RNA 

polymerase catalyzes the transcription 
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Rv3049c of DNA into RNA using the four 

ribonucleoside triphosphates as 

substrates 

28 11 umaA N 1 2 3 lysX;carB;mmpL8-

papA1;echA10;Rv1482c-

fabG1;Rv2923c;embB;rpoB 

S-adenosylmethionine-dependent 

methyltransferase- methyltransferase 

that modifies short-chain fatty acids. 

In vitro, catalyzes the transfer of the 

methyl group from S- adenosyl-L-

methionine (SAM) to the double bond 

of phospholipid- linked oleic acid to 

produce tuberculostearic acid (10- 

methylstearic-acid or TSA) 

27 7 PPE37 N 1 2 2 ethA;Rv1482c- Uncharacterized PPE family protein 
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fabG1;echA10;mce1D;Rv150

7c;Rv3466 

27 5 uvrD1 N 1 2 2 Rv0042c;Rv2897c;rrs;gnd2 ATP-dependent DNA helicase- DNA-

dependent ATPase, acting on dsDNA 

with a 3'-ssDNA tail, unwinding with 

3'-to 5'-polarity. A minimal tail of 18 nt 

is required for activity. Also highly 

efficient on nicked DNA. Involved in 

the post-incision events of nucleotide 

excision repair, as well as in 

nitrosative and oxidative stress 

response and possibly in persistence 

in the host. Inhibits RecA-mediated 
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DNA strand exchange 

26 7 alr Y 1 2 2 rrs;birA;rpoA;PE_PGRS61-

Rv3654c;nrdF2-

Rv3049c;Rv1405c 

Alanine racemase; Catalyzes the 

interconversion of L-alanine and D- 

alanine. D-alanine plays a key role in 

peptidoglycan cross- linking 

26 10 Rv292

3c 

N 1 2 3 rrs;ispE;carB;Rv3115-

moeB2;Rv1482c-

fabG1;embB;ponA1;echA10;u

maA 

Conserved protein 
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25 10 mmpL

8-

papA1 

N 1 2 3 embB;lysX;umaA;ethA;echA1

0;rpoB;carB;Rv1482c-fabG1 

Sulfolipid-1 exporter- required for the 

biosynthesis and the transport across 

the inner membrane of sulfolipid-1 

(SL-1), which is a major cell wall lipid 

of pathogenic mycobacteria; SL659 

acyltransferase 

21 9 Rv089

3c-

Rv089

4 

N 2 3 4 rpoB;ethA;embB;argS;rpoC;R

v3115-moeB2;rrs;lysX 

Putative S-adenosyl-L-methionine-

dependent methyltransferase; 

Uncharacterized protein  

21 8 Rv183

0 

N 1 2 2 eccA1;rrs;ethA;rpoA;birA;PE_

PGRS61-Rv3654c;Rv1405c 

Uncharacterized HTH-type 

transcriptional regulator  

21 11 Rv379 N 1 3 4 narJ;Rv0145;Rv1823;deaD;PP Conserved protein; Probable acyl-CoA 
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6-

fadE35 

E13;Rv1507A-

Rv1508c;Rv0575c;hycE-

Rv0088;Rv2949c 

dehydrogenase 

18 6 eccA1 N 1 2 2 Rv1830;rpoA;PPE13;PE_PGRS

61-Rv3654c;Rv1405c 

ESX-1 secretion system protein- EccA1 

exhibits ATPase activity and may 

provide energy for the export of ESX-1 

substrates 

18 4 senX3-

regX3 

N 1 2 2 rrs;Rv2897c;gnd2 Sensor-like histidine kinase- probably 

forms part of a two-component 

regulatory system senX3/regX3. 

Phosphorylates regX3 (Probable); 

Sensory transduction protein regX3- 

probably forms part of a two-



 217 

component regulatory system 

regX3/senX3 

17 5 gmhB N 1 2 2 Rv0575c;argS;Rv0302;Rv1507

c 

D-glycero-alpha-D-manno-heptose-

1,7-bisphosphate 7-phosphatase- 

converts the D-glycero-alpha-D-

manno-heptose 1,7- bisphosphate 

intermediate into D-glycero-alpha-D-

manno-heptose 1- phosphate by 

removing the phosphate group at the 

C-7 position 

17 6 mce1D N 1 2 2 Rv0575c;echA10;pepE;PPE37;

Rv1507c 

Mce-family protein 

15 2 alkB- N 1 1.5 2 gnd2 Probable transmembrane alkane-1-
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Rv325

3c 

monooxygenase; Possible cationic 

amino acid transporter, integral 

membrane protein 

15 3 Rv346

6 

N 1 2 2 rrs;PPE37 Uncharacterized protein 

13 3 Rv004

2c 

N 1 2 2 uvrD1;gnd2 Possible transcriptional regulatory 

protein, MarR-famil 

13 4 Rv187

7 

N 2 2.5 3 ispE;Rv1482c-

fabG1;pncA;rpoB;embB 

Uncharacterized MFS-type 

transporter, similar to many antibiotic 

and drug efflux proteins 

11 1 fadE1 N 1 1 1 NA Probable acyl-CoA dehydrogenase 

11 5 pepE N 1 2 2 hycE-

Rv0088;mce1D;argS;Rv1507c 

Probable dipeptidase 
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11 1 Rv192

2 

N 1 1 1 NA Probable conserved lipoprotein, 

possibly peptidase similar to many 

peptidases 

10 1 cysE N 1 1 1 NA Serine acetyltransferase- catalyzes the 

acetylation of serine by acetyl-CoA to 

produce O-acetylserine (OAS) 

10 1 dppB N 1 1 1 NA Probable dipeptide-transport integral 

membrane protein ABC-transporter 

(see citation below), similar to many 

peptide permeases  

10 1 lppC N 1 1 1 NA Putative lipoprotein LppC- probably 

involved in bacterial recognition and 

uptake by its host 



 220 

10 1 lppF N 1 1 1 NA Probable conserved lipoprotein 

10 1 mbtI N 1 1 1 NA Salicylate synthase- involved in the 

incorporation of salicylate into the 

virulence-conferring salicylate-based 

siderophore mycobactin 

10 1 moaA

1 

N 1 1 1 NA GTP 3',8-cyclase 1- catalyzes the 

cyclization of GTP to (8S)-3',8-cyclo-

7,8- dihydroguanosine 5'-triphosphate 

10 1 rpiB N 1 1 1 NA Ribose-5-phosphate isomerase B- 

catalyzes the interconversion of 

ribulose-5-P and ribose-5-P 

10 1 Rv045

8 

N 1 1 1 NA Probable aldehyde dehydrogenase 
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10 1 Rv058

4 

N 1 1 1 NA Uncharacterized glycosidase, possible 

conserved exported protein 

10 1 Rv374

0c 

N 1 1 1 NA Putative diacyglycerol O-

acyltransferase 

10 1 Rv374

2c-ctpJ 

N 1 1 1 NA Possible oxidoreductase, probably 

combines with product of 

downstream ORF MTV025.090c to 

form a functional monooxygenase; 

Probable cation-transporting P-type 

ATPase 

9 1 aceE N 1 1 1 NA Pyruvate dehydrogenase E1 

component 

9 1 AS172 N 1 1 1 NA Putative small regulatory RNA 
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6 

9 2 cyp14

1-

Rv312

2 

N 2 2 2 Rv1482c-fabG1;carB Putative cytochrome P450 141; 

Hypothetical unknown protein 

9 1 dgt-

Rv234

5 

N 1 1 1 NA Deoxyguanosinetriphosphate 

triphosphohydrolase-like protein;  

Probable dgt, deoxyguanosine 

triphosphate triphosphohydrolase, 

9 1 eccCb

1-PE35 

N 1 1 1 NA ESX-1 secretion system protein - 

EccCb1 may link the cytosolic 

components of the system with the 

membrane components; PE family 



 223 

immunomodulator- plays a major role 

in RD1-associated pathogenesis, and 

may contribute to the establishment 

and maintenance of M.tuberculosis 

infection. Together with PPE68, 

stimulates the secretion of IL-10 and 

MCP-1 from human macrophages, via 

the interaction with human Toll-like 

receptor 2 (TLR2) 

9 1 mce1B N 1 1 1 NA Mce-family protein 

9 3 Rv030

2 

N 1 2 2 Rv1507c;gmhB Probable transcription regulatory 

protein, TetR family 

9 1 Rv052 N 1 1 1 NA Probable conserved transmembrane 
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8 protein 

9 1 Rv271

7c 

N 1 1 1 NA UPF0678 fatty acid-binding protein-

like protein, may play a role in the 

intracellular transport of hydrophobic 

ligands 

9 1 Rv368

6c 

N 1 1 1 NA Uncharacterized protein 

8 6 accD4 N 3 4 5 vapB35-mce3R;ispE;Rv0792c-

Rv0793;betP-Rv0918;Rv3115-

moeB2;Rv3190A-

Rv3191c;ponA1 

Probable accD4,propionyl-CoA 

carboxylase beta chain 4 

8 1 lprI N 1 1 1 NA Lipoprotein- strongly binds and 

inhibits lysozyme, may help bacteria 
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survive in lysozyme-producing host 

cells 

8 1 moaR1

-PPE49 

N 1 1 1 NA Transcriptional regulatory protein- 

acts as a positive transcriptional 

regulator of the molybdopterin 

biosynthesis moa1 locus, promoting 

the expression of the moaA1B1C1D1 

genes. Binds directly to the moaA1 

promoter; Uncharacterized PPE family 

protein  

8 5 Rv156

6c-

Rv156

N 2 3 4 rpoA;Rv0145;Rv1507A-

Rv1508c;ppsC;Rv1823;Rv057

5c;hycE-Rv0088 

Possible Inv protein; Probable 

membrane protein 
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7c 

8 1 Rv163

2c-

uvrB 

N 1 1 1 NA Uncharacterized protein; UvrABC 

system protein B- the UvrABC repair 

system catalyzes the recognition and 

processing of DNA lesions 

8 1 Rv363

9c 

N 1 1 1 NA Uncharacterized protein 

8 1 snoP N 1 1 1 NA Pyridoxal 5'-phosphate synthase 

subunit- catalyzes the hydrolysis of 

glutamine to glutamate and ammonia 

as part of the biosynthesis of pyridoxal 

5'-phosphate. The resulting ammonia 

molecule is channeled to the active 
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site of PdxS 

7 1 ftsH N 1 1 1 NA ATP-dependent zinc metalloprotease 

FtsH; Acts as a processive, ATP-

dependent zinc metallopeptidase for 

both cytoplasmic and membrane 

proteins. Plays a role in the quality 

control of integral membrane proteins 

7 1 katG-

furA 

N 1 1 1 NA Catalase-peroxidase; Bifunctional 

enzyme with both catalase and broad- 

spectrum peroxidase activity, oxidizing 

various electron donors including 

NADP(H). Protects M.tuberculosis 
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against toxic reactive oxygen species 

(ROS) including hydrogen peroxide as 

well as organic peroxides and thus 

contributes to its survival within host 

macrophages by countering the 

phagocyte oxidative burst; 

Transcriptional regulator- represses 

transcription of the catalase-

peroxidase gene katG and its own 

transcription by binding to the 

promoter region in a redox-dependent 

manner 

7 1 lldD1- N 1 1 1 NA Putative mycofactocin system 
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Rv069

5 

heme/flavin oxidoreductase MftD; 

Putative mycofactocin system 

creatinine amidohydrolase family 

protein  

7 1 Rv014

0 

N 1 1 1 NA Conserved protein 

7 1 Rv030

8 

N 1 1 1 NA Probable conserved integral 

membrane protein, with C-terminus 

highly similar to C-terminus of other 

integral membrane proteins or 

phosphatases  

7 1 Rv093

9 

N 1 1 1 NA Possible bifunctional enzyme, 

including 2-hydroxyhepta-2,4-diene-
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1,7-dioate isomerase activity, and 

cyclase/dehydrase activity 

7 1 Rv223

0c 

N 1 1 1 NA GTP cyclohydrolase 1 type 2 homolog; 

6 1 Rv028

1 

N 1 1 1 NA Putative S-adenosyl-L-methionine-

dependent methyltransferase 

6 1 Rv136

6 

N 1 1 1 NA Uncharacterized protein Rv1366; 

Rv1366, (MTCY02B10.30), len: 273 aa. 

Hypothetical unknown protein 

6 1 Rv201

3 

N 1 1 1 NA Transposase 

6 1 Rv302

3c 

N 1 1 1 NA Probable IS1081 transposase 
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5 1 frr-

pyrH 

N 1 1 1 NA Ribosome-recycling factor- 

responsible for the release of 

ribosomes from messenger RNA at the 

termination of protein biosynthesis. 

May increase the efficiency of 

translation by recycling ribosomes 

from one round of translation to 

another; Uridylate kinase- catalyzes 

the reversible phosphorylation of 

UMP to UDP 

5 1 PE_PG

RS45-

Rv261

N 1 1 1 NA PE-PGRS family protein PE_PGRS45; 

Conserved protein 
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6 

5 1 Rv153

4-

Rv153

5 

N 1 1 1 NA Probable transcriptional regulator; 

Uncharacterized protein 

4 2 Rv365

6c 

N 1 1.5 2 lysX Uncharacterized protein 

3 1 Rv232

4-

Rv232

5c 

N 1 1 1 NA  Probable transcriptional regulatory 

protein; Uncharacterized protein 

1 1 cyp13

8 

N 1 1 1 NA Putative cytochrome P450 138 



 233 

1 1 dhaA N 5 5 5 Rv1507A-

Rv1508c;Rv0575c;hycE-

Rv0088;Rv1823 

Haloalkane dehalogenase 3- catalyzes 

hydrolytic cleavage of carbon-halogen 

bonds in halogenated aliphatic 

compounds 

1 1 espB N 1 1 1 NA ESX-1 secretion-associated protein- 

required for host-cell death and may 

support an EsxA- independent 

virulence function. Secreted processed 

form of EspB binds to phosphatidic 

acid and phosphatidylserine. Inhibits 

IFN-gamma-induced autophagy in 

murine macrophages 
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1 1 fadE28 N 2 2 2 Rv2434c Acyl-CoA dehydrogenase- involved in 

the third cycle of side chain 

dehydrogenation in the beta-oxidation 

of cholesterol catabolism. May play an 

important role for the initial 

macrophage invasion, possibly in 

response to the acidification of 

phagosome. It contributes partly to 

the virulence by increasing the 

efficiency of beta-oxidation. 

1 1 mmaA

2-

mmaA

N 1 1 1 NA Cyclopropane mycolic acid synthase. 

Cyclopropanated mycolic acids are key 

factors participating in cell envelope 
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1 permeability, host immunomodulation 

and persistence; Mycolic acid 

methyltransferase 

1 1 PE16 N 1 1 1 NA Member of the Mycobacterium 

tuberculosis PE family of proteins 

1 1 pks16-

pth 

N 2 2 2 hycE-Rv0088 Putative ligase; Peptidyl-tRNA 

hydrolase- the natural substrate for 

this enzyme may be peptidyl- tRNAs 

which drop off the ribosome during 

protein synthesis; Belongs to the PTH 

family 

1 1 rskA N 2 2 2 Rv1482c-fabG1 An anti-sigma factor for 

extracytoplasmic function (ECF) sigma 
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factor SigK. ECF sigma factors are held 

in an inactive form by an anti-sigma 

factor until released by regulated 

intramembrane proteolysis (RIP) 

1 1 Rv005

2 

N 1 1 1 NA Conserved protein 

1 1 Rv074

0-

Rv074

1 

N 1 1 1 NA Uncharacterized protein; Probable 

transposase 

1 1 Rv118

8 

N 1 1 1 NA Probable proline dehydrogenase 

1 1 Rv305 N 1 1 1 NA Probable oxidoreductase, probably 
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7c short-chain alcohol 

dehydrogenase/reductase 
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Table 3 

Locus table for lineage 4 

Freq-

uency 

Macro 

Frequen-

cy 

Locus 

Name 

Known Min. 

Rule 

Length 

Median 

Rule 

Length 

Max. 

Rule 

Length 

Companions Function 

226 67 fadD3

0 

N 1 3 5 fpg;Rv1313c;Rv3415c-

whiB3;Rv3179;glnD;gyrB;PE23;cmr-

Rv1676;lppC;Rv2075c-

Rv2076c;vapB34;Rv3915;Rv3415c;et

hA-

ethR;Rv0158;glnA3;fbiC;Rv2024c-

Rv2025c;drrA;Rv1353c;vapC25;Rv20

59;PE_PGRS42;Rv3736;Rv3848;Rv11

Long-chain-fatty-acid--AMP 

ligase- catalyzes the activation of 

long-chain fatty acids as acyl-

adenylates 
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35A;hsp-

nirB;Rv1979c;Rv2464c;smc;PE_PGRS

30 

192 63 rpoB Y 1 3 4 pncA;rpsL;Rv3217c-

Rv3218;rrs;katG;embB;Rv2644c-

valT;eccE2;plsB1;PPE19;Rv0123-

PE_PGRS2;cobK;Rv3263;mctB;PPE61

-PPE62;mcr7;embC-

embA;inhA;PE23;Rv1482c-fabG1 

DNA-directed RNA polymerase 

subunit beta-DNA-dependent 

RNA polymerase catalyzes the 

transcription of DNA into RNA 

using the four ribonucleoside 

triphosphates as substrates 

166 77 Rv205

9 

N 1 3 5 Rv3848;ethA-

ethR;Rv1353c;fpg;fbiC;Rv0158;PE_P

GRS32;vapC25;Rv2024c-

Rv2025c;Rv1313c;Rv3915;Rv3415c;v

Uncharacterized protein 
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apB34;Rv1979c;Rv3415c-

whiB3;PE23;Rv2464c;PE_PGRS42;gln

A3;lppC;Rv1135A;fadD30 

152 60 embB Y 2 3 5 Rv1482c-fabG1;Rv2644c-

valT;rpsL;Rv3263;rpoB;plsB1;rrs;Rv2

074;katG;PPE19;Rv0123-

PE_PGRS2;pncA;cobK;Rv3217c-

Rv3218;mctB;mcr7;inhA;fpg;embC-

embA 

Probable arabinosyltransferase 

B 

134 62 PE_PG

RS42 

N 1 3 5 Rv2024c-

Rv2025c;Rv1353c;gyrB;Rv3736;drrA;

glnD;PE_PGRS30;Rv0158;lppC;Rv341

5c-whiB3;fbiC;fpg;Rv1313c;Rv2075c-

PE-PGRS family protein 
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Rv2076c;glnA3;Rv0258c;vapC25;Rv2

464c;Rv3848;Rv2059;vapB34;Rv391

5;Rv3510c;Rv1135A;Rv0308-

Rv0309;fadD30;ethA-

ethR;Rv3910;Rv3415c 

130 45 katG Y 2 3 5 Rv0123-PE_PGRS2;PPE19;Rv3217c-

Rv3218;rpoB;rpsL;embB;eccE2;cobK;

Rv2644c-valT;fpg;Rv1889c-

Rv1890c;Rv1482c-

fabG1;Rv2464c;plsB1;mcr7;rrs;embC

-embA;Rv3263;PE23;pncA 

Catalase-peroxidase- protects 

M.tuberculosis against toxic 

reactive oxygen species (ROS) 

including hydrogen peroxide as 

well as organic peroxides and 

thus contributes to its survival 

within host macrophages by 

countering the phagocyte 
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oxidative burst 

125 58 Rv015

8 

N 1 3 5 PE23;Rv2059;fpg;fbiC;Rv2464c;glnA3

;Rv3910;vapC25;Rv1313c;Rv1353c;R

v3736;Rv2024c-

Rv2025c;lppC;vapB34;Rv3848;PE_PG

RS42;fadD30;ethA-ethR;Rv2075c-

Rv2076c;Rv3415c-

whiB3;PE_PGRS32;drrA 

Probable transcriptional 

regulatory protein (Possibly 

TetR-family) 

125 62 vapB3

4 

N 1 3 5 Rv3848;Rv3415c-

whiB3;PE23;Rv2024c-

Rv2025c;PE_PGRS32;pncA;lppC;drrA

;Rv1353c;panB-

Putative antitoxin VapB34- 

antitoxin component of a 

possible type II toxin- antitoxin 

(TA) system 
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Rv2226;vapC25;Rv2059;fadD30;gyrB

;Rv0158;gca-gmhA;fbiC;glnD;ethA-

ethR;Rv3915;PE_PGRS42;glnA3;Rv11

35A;Rv3179;fpg;Rv2028c;Rv3510c;R

v3736;Rv3415c 

124 46 ethA-

ethR 

Y 1 3 4 Rv3848;Rv2059;glnA3;drrA;Rv3915;g

lnD;PE_PGRS32;vapC25;lppC;Rv3736

;fadD30;Rv0158;hsp-

nirB;vapB34;Rv2075c-

Rv2076c;Rv3415c-

whiB3;Rv3510c;Rv1313c;fbiC;PE_PG

RS42;Rv1353c;Rv2024c-

Rv2025c;PE23;Rv3415c 

FAD-containing monooxygenase; 

HTH-type transcriptional 

regulator involved in the 

repression of the 

monooxygenase EthA which is 

responsible of the formation of 

the active metabolite of 

ethionamide (ETH) 
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124 58 glnA3 N 1 3 5 ethA-

ethR;Rv3910;Rv0158;vapC25;Rv1313

c;Rv3415c-

whiB3;Rv1353c;PE_PGRS32;fadD30;f

biC;PE_PGRS42;fpg;Rv3736;Rv2075c

-Rv2076c;Rv2059;vapB34;Rv2024c-

Rv2025c;Rv3848;lppC;Rv2464c;Rv19

79c;PE23 

Probable glutamine synthetase 

class I 

122 64 Rv341

5c-

whiB3 

N 1 3 5 fadD30;Rv3179;glnD;vapB34;Rv1979

c;Rv3736;Rv3915;hsp-nirB;cmr-

Rv1676;fpg;lppC;PE_PGRS42;fbiC;gln

A3;Rv1353c;PE_PGRS32;PE23;Rv205

9;vapC25;Rv2075c-Rv2076c;ethA-

Uncharacterized protein; Redox- 

and pH-responsive 

transcriptional regulator, leads 

to respiratory alterations and 

bioenergetic deficiencies that 
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ethR;Rv3910;Rv2464c;smc;Rv1313c;

Rv2024c-

Rv2025c;Rv0158;Rv2028c;Rv1135A;

Rv0326;gyrB;Rv3848;drrA;Rv3415c 

negatively impact virulence 

106 39 rrs Y 2 3 4 Rv0123-PE_PGRS2;rpoB;Rv3217c-

Rv3218;PE23;plsB1;embB;Rv2074;rp

sL;mctB;pncA;embC-

embA;cobK;PPE19;Rv2644c-

valT;Rv1482c-fabG1;katG;Rv3263 

Ribosomal RNA 16S 

105 27 pncA Y 1 3 5 rpoB;rpsL;PE_PGRS32;vapB34;rrs;em

bB;embC-embA;Rv3217c-

Rv3218;Rv2644c-

valT;mctB;cobK;inhA;Rv1482c-

Nicotinamidase/pyrazinamidase- 

catalyzes the deamidation of 

nicotinamide (NAM) into 

nicotinate 
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fabG1;mmpL12-

Rv1523;PPE19;PE23;katG 

105 59 Rv135

3c 

N 1 3 5 PE_PGRS42;Rv2024c-

Rv2025c;Rv2059;PE23;Rv1313c;PE_P

GRS32;lppC;Rv3848;vapB34;Rv0158;

Rv3736;vapC25;glnA3;Rv3415c-

whiB3;fbiC;fpg;Rv2464c;Rv1979c;fad

D30;ethA-ethR 

Probable transcriptional 

regulatory protein, belongs to 

the TetR/AcrR family of 

transcriptional regulators 

91 19 Rv341

5c 

N 1 2 3 Rv3510c;Rv2059;fadD30;Rv3915;Rv3

113-Rv3114;Rv2024c-

Rv2025c;PE_PGRS30;lppC;Rv1135A;

mkl-vapC6;PE23;hsp-

nirB;fpg;Rv1313c;Rv3415c-

Uncharacterized protein 
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whiB3;drrA;PE_PGRS42;ethA-

ethR;vapB34 

88 28 Rv148

2c-

fabG1 

Y 1 3 3 embB;Rv2644c-valT;Rv3263;Rv0123-

PE_PGRS2;Rv3217c-

Rv3218;katG;Rv2464c;rrs;PPE19;rpsL

;pncA;mmpL12-

Rv1523;plsB1;PE23;inhA;embC-

embA;rpoB 

Uncharacterized protein; 3-

oxoacyl-[acyl-carrier-protein] 

reductase FabG1- catalyzes the 

NADPH-dependent reduction of 

beta- ketoacyl-ACP substrates to 

beta-hydroxyacyl-ACP products, 

the first reductive step in the 

elongation cycle of fatty acid 

biosynthesis 

83 44 lppC N 1 3 5 Rv1353c;vapB34;drrA;Rv3848;Rv131

3c;fadD30;Rv2075c-

Putative lipoprotein, probably 

involved in bacterial recognition 
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Rv2076c;PE_PGRS32;vapC25;ethA-

ethR;Rv3415c-

whiB3;fpg;Rv0158;PE_PGRS42;PE23;

Rv0258c;Rv2024c-

Rv2025c;fbiC;parE1;Rv2059;glnA3;R

v2464c;Rv3415c 

and uptake by its host 

81 45 Rv202

4c-

Rv202

5c 

N 2 3 5 PE_PGRS42;Rv1353c;PE23;Rv1313c;

PE_PGRS32;vapB34;Rv2059;fpg;Rv0

158;Rv3736;drrA;fbiC;lppC;vapC25;R

v2464c;Rv3415c;fadD30;glnA3;Rv34

15c-whiB3;Rv1979c;gyrB;ethA-ethR 

Uncharacterized protein; 

Probable cation efflux system 

protein 

79 37 fbiC N 1 3 5 Rv2059;fpg;Rv0158;Rv2024c-

Rv2025c;gca-

FO synthase 
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gmhA;vapB34;Rv3415c-

whiB3;PE_PGRS42;vapC25;fadD30;gl

nA3;PE_PGRS32;Rv1353c;Rv3910;lp

pC;Rv2075c-Rv2076c;ethA-

ethR;Rv0326;Rv1979c 

76 39 Rv384

8 

N 1 3 5 Rv2059;ethA-ethR;vapB34;Rv0021c-

whiB5;Rv1353c;lppC;Rv0158;vapC25

;Rv1979c;PE23;PE_PGRS32;PE_PGRS

42;glnA3;fpg;Rv3915;fadD30;Rv3736

;Rv3415c-whiB3;Rv3910;Rv1313c 

Probable conserved 

transmembrane protein 

71 31 PE23 N 1 2 4 Rv0158;Rv1353c;Rv2024c-

Rv2025c;fadD30;gyrB;vapB34;rrs;gca

-

Uncharacterized PE family 

protein 
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gmhA;Rv2464c;PE_PGRS32;Rv3415c-

whiB3;lppC;Rv2059;fpg;Rv3848;Rv37

36;hsp-nirB;ethA-

ethR;glnA3;Rv1482c-

fabG1;Rv3415c;katG;rpoB;pncA 

70 39 fpg N 1 3 4 Rv2059;fbiC;fadD30;Rv0158;glnD;Rv

2464c;Rv3736;Rv2024c-

Rv2025c;Rv3415c-

whiB3;lppC;Rv1313c;PE_PGRS42;gln

A3;Rv1353c;PE23;Rv3910;katG;Rv26

44c-

valT;gyrB;Rv3915;Rv3179;PE_PGRS3

2;Rv3848;vapB34;Rv1979c;embB;Rv

Formamidopyrimidine-DNA 

glycosylase 1, involved in base 

excision repair of DNA damaged 

by oxidation or by mutagenic 

agents 
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3415c 

68 37 Rv373

6 

N 1 3 5 Rv1979c;Rv3415c-

whiB3;Rv3915;glnD;hsp-

nirB;fpg;Rv2464c;Rv0158;Rv1353c;d

rrA;Rv2024c-

Rv2025c;PE_PGRS42;Rv3179;Rv1135

A;Rv0696;ethA-

ethR;Rv1313c;Rv2075c-

Rv2076c;glnA3;gyrB;fadD30;Rv3848;

PE23;vapB34 

Transcriptional regulatory 

protein (Probably AraC/XylS-

family) 

67 29 PPE19 N 2 3 5 katG;Rv0123-

PE_PGRS2;embB;Rv2644c-

valT;rpoB;plsB1;rrs;Rv1482c-

Uncharacterized PPE family 

protein 
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fabG1;Rv3217c-

Rv3218;Rv3263;pncA 

66 32 Rv207

5c-

Rv207

6c 

N 1 3 4 hsp-

nirB;Rv2219;Rv0681;lppC;fadD30;Rv

3736;Rv1313c;PE_PGRS42;glnD;ethA

-ethR;Rv3415c-

whiB3;gyrB;Rv1135A;glnA3;fbiC;Rv3

179;Rv0158;Rv3915;Rv0696 

Uncharacterized protein; 

Uncharacterized protein 

66 33 Rv391

5 

N 1 3 4 Rv1313c;ethA-

ethR;Rv1979c;Rv3736;Rv3415c-

whiB3;PE_PGRS32;Rv2059;fadD30;R

v3415c;vapB34;gyrB;fpg;PE_PGRS42;

glnD;Rv3179;Rv1135A;Rv2075c-

N-acetylmuramoyl-L-alanine 

amidase CwlM- cell-wall 

hydrolase that hydrolyzes the 

amide bond between N-

acetylmuramic acid and L-
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Rv2076c;Rv3848 alanine in cell-wall glycopeptides 

65 36 vapC2

5 

N 2 3 5 PE_PGRS32;Rv2059;glnA3;Rv0158;R

v1313c;Rv1353c;vapB34;lppC;ethA-

ethR;Rv3848;fbiC;Rv3415c-

whiB3;Rv2464c;Rv2024c-

Rv2025c;PE_PGRS42;fadD30;Rv1979

c;Rv0326 

Ribonuclease VapC25- toxic 

component of a type II toxin-

antitoxin (TA) system. An RNase 

(By similarity) 

64 34 Rv131

3c 

N 1 3 4 fadD30;Rv3915;Rv1353c;PE_PGRS32

;Rv2024c-

Rv2025c;Rv2059;vapC25;glnA3;Rv01

58;lppC;fpg;Rv3736;Rv2075c-

Rv2076c;PE_PGRS42;glnD;drrA;ethA

Probable transposase for 

insertion sequence element 

IS1557 
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-ethR;Rv3415c-

whiB3;Rv1135A;Rv3848;Rv3415c 

58 29 Rv012

3-

PE_PG

RS2 

N 2 3 5 rrs;katG;PPE19;mctB;rpoB;embB;Rv1

482c-fabG1;Rv3217c-

Rv3218;Rv3263;cobK;Rv1889c-

Rv1890c;plsB1;Rv2644c-valT;rpsL 

Uncharacterized protein; 

Member of the Mycobacterium 

tuberculosis PE family, PGRS 

subfamily of gly-rich proteins 

56 28 glnD N 1 3 4 fpg;fadD30;Rv3415c-

whiB3;Rv3736;Rv2464c;PE_PGRS32;

Rv3179;hsp-nirB;ethA-

ethR;PE_PGRS42;PE_PGRS30;Rv131

3c;Rv2075c-

Rv2076c;smc;vapB34;Rv1979c;Rv39

15 

Bifunctional 

uridylyltransferase/uridylyl-

removing enzyme- modifies, by 

uridylylation and 

deuridylylation, the PII 

regulatory protein (GlnB), in 

response to the nitrogen status 
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of the cell that GlnD senses 

through the glutamine level 

56 33 PE_PG

RS32 

N 1 3 5 Rv2059;vapC25;Rv1353c;Rv1313c;Rv

2024c-

Rv2025c;Rv2464c;glnD;Rv3179;vapB

34;pncA;Rv3915;lppC;ethA-

ethR;PE23;glnA3;Rv3415c-

whiB3;fbiC;Rv3848;fpg;Rv0158;Rv03

26 

PE-PGRS family protein  

56 24 plsB1 N 2 3 5 embB;rrs;Rv2074;rpsL;rpoB;PPE19;c

obK;Rv0123-PE_PGRS2;Rv2644c-

valT;Rv3217c-Rv3218;katG;Rv1482c-

fabG1 

Putative acyltransferase 
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55 22 Rv113

5A 

N 1 2 3 Rv3736;Rv0696;Rv2075c-

Rv2076c;Rv2464c;Rv3179;Rv2059;va

pB34;Rv3915;PE_PGRS42;fadD30;Rv

3415c-

whiB3;PE_PGRS30;Rv1313c;gyrB;Rv3

415c 

Possible acetyl-CoA 

acetyltransferase (possible gene 

fragment) 

36 25 Rv264

4c-

valT 

N 2 3 5 Rv1482c-

fabG1;embB;rpoB;PPE19;katG;fpg;R

v0123-

PE_PGRS2;plsB1;cobK;Rv3217c-

Rv3218;mctB;pncA;rrs 

Uncharacterized protein;  tRNA-

Val, anticodon cac 

35 16 drrA Y 1 2 4 ethA-

ethR;lppC;vapB34;Rv3736;Rv2024c-

Doxorubicin resistance ATP-

binding protein- part of the ABC 
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Rv2025c;PE_PGRS42;inhA-

hemZ;Rv1313c;typA-

lpqW;fadD30;Rv3179;Rv3415c-

whiB3;Rv0158;gyrB;Rv3415c 

transporter complex DrrABC 

involved in doxorubicin 

resistance.  

35 13 Rv326

3 

N 2 3 4 embB;Rv1482c-fabG1;rpoB;Rv0123-

PE_PGRS2;rrs;katG;PPE19 

Probable DNA methylase 

34 18 gyrB Y 1 3 4 PE_PGRS42;fadD30;PE23;vapB34;sm

c;Rv3915;Rv2075c-

Rv2076c;fpg;Rv1979c;Rv3736;hsp-

nirB;Rv2024c-Rv2025c;Rv3415c-

whiB3;Rv1135A;drrA 

DNA gyrase subunit B 

34 18 Rv197

9c 

N 2 3 4 Rv3736;Rv3415c-

whiB3;Rv3915;Rv2059;Rv3848;glnD;

Uncharacterized transporter, 

probable amino-acid or 
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Rv1353c;gyrB;Rv2024c-

Rv2025c;vapC25;fpg;fadD30;glnA3;f

biC 

metabolite transport protein 

34 18 Rv321

7c-

Rv321

8 

N 2 3 5 rpoB;rrs;katG;Rv0123-

PE_PGRS2;Rv1482c-

fabG1;cobK;Rv2644c-

valT;embB;mctB;pncA;plsB1;PPE19 

Probable conserved integral 

membrane protein; Conserved 

protein 

33 13 hsp-

nirB 

N 1 2 4 Rv2075c-Rv2076c;Rv3736;Rv3415c-

whiB3;glnD;ethA-

ethR;gyrB;PE23;fadD30;PE_PGRS30;

Rv1945-lppG;Rv3415c 

heat-stress-induced ribosome-

binding protein A; Probable 

nitrite reductase [NAD(P)H] 

large subunit 

29 19 Rv246

4c 

N 1 3 5 PE_PGRS32;glnD;Rv3179;Rv0158;fpg

;Rv3736;gca-

Endonuclease 8 1- involved in 

base excision repair of DNA 
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gmhA;PE23;vapC25;Rv2024c-

Rv2025c;PE_PGRS42;Rv3415c-

whiB3;Rv2059;Rv1353c;Rv1135A;gln

A3;lppC;Rv1482c-fabG1;katG;fadD30 

damaged by oxidation or by 

mutagenic agents 

27 15 Rv317

9 

N 1 3 4 fadD30;Rv3415c-

whiB3;Rv2464c;PE_PGRS32;glnD;Rv3

736;Rv1135A;Rv2075c-

Rv2076c;fpg;Rv3915;vapB34;drrA 

Conserved protein 

25 15 rpsL Y 1 2 4 rpoB;pncA;embB;katG;plsB1;rrs;cob

K;Rv0123-PE_PGRS2;Rv1482c-fabG1 

30S ribosomal protein S12- with 

S4 and S5 plays an important 

role in translational accuracy 

23 7 embC-

embA 

Y 1 2 3 pncA;rrs;katG;rpoB;embB;Rv1482c-

fabG1 

Probable arabinosyltransferase 

C; Probable 
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arabinosyltransferase A 

18 13 cobK N 2 3 4 rpoB;katG;rpsL;plsB1;embB;Rv3217c

-Rv3218;rrs;Rv0123-

PE_PGRS2;Rv2644c-valT;mctB;pncA 

Precorrin-6A reductase- 

catalyzes the reduction of the 

macrocycle of precorrin- 6X into 

precorrin-6Y 

15 6 inhA Y 1 2 2 mmpL12-

Rv1523;pncA;embB;Rv1482c-

fabG1;rpoB 

Enoyl-ACP reductase of the type 

II fatty acid syntase (FAS-II) 

system, catalyzes the NADH-

dependent reduction of the 

double bond of 2-trans-enoyl-

[acyl-carrier protein], an 

essential step in the fatty acid 

elongation cycle of the FAS-II 
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pathway 

12 1 fadE1

5-

PE_PG

RS29 

N 1 1 1 NA Probable acyl-CoA 

dehydrogenase; PE-PGRS family 

protein 

12 6 Rv351

0c 

N 1 2 2 Rv3415c;ethA-ethR;mkl-

vapC6;PE_PGRS42;vapB34 

Conserved protein 

11 1 hisG N 1 1 1 NA ATP phosphoribosyltransferase 

11 1 mfd N 1 1 1 NA Transcription-repair-coupling 

factor- couples transcription and 

DNA repair by recognizing RNA 
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polymerase (RNAP) stalled at 

DNA lesions 

11 1 Rv213

6c 

N 1 1 1 NA Undecaprenyl-diphosphatase- 

catalyzes the dephosphorylation 

of undecaprenyl diphosphate 

(UPP). Confers resistance to 

bacitracin 

11 1 Rv363

2-

Rv363

3 

N 1 1 1 NA Possible conserved membrane 

protein; Conserved protein 

10 1 echA2 N 1 1 1 NA Enoyl-CoA hydratase EchA2  

10 1 gabD1 N 1 1 1 NA Succinate-semialdehyde 
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dehydrogenase 

10 6 mctB N 2 3 5 Rv0123-

PE_PGRS2;rrs;rpoB;cobK;Rv3217c-

Rv3218;Rv2644c-valT;embB;pncA 

Copper transporter- pore-

forming protein, which is 

involved in efflux of copper 

across the outer membrane. 

Essential for copper resistance 

and maintenance of a low 

intracellular copper 

concentration 

10 1 mpt64 N 1 1 1 NA Immunogenic protein 

10 6 PE_PG

RS30 

N 1 2 3 PE_PGRS42;glnD;Rv3415c;Rv1135A;

hsp-nirB;Rv1945-lppG;fadD30 

PE-PGRS family protein- 

mediates suppression of 

proinflammatory immune 
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response in macrophages via 

modulation of host cytokine 

response 

10 1 pirG N 1 1 1 NA Exported repetitive protein- 

surface-exposed protein 

required for multiplication and 

intracellular growth 

10 1 PPE66 N 1 1 1 NA Uncharacterized PPE family 

protein PPE66 

10 1 ppk2 N 1 1 1 NA Polyphosphate:GDP 

phosphotransferase- uses 

inorganic polyphosphate (polyP) 

as a donor to convert GDP to 
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GTP and modulates nucleotide 

triphosphate synthesis catalyzed 

by the nucleoside diphosphate 

kinase (Ndk) in favor of GTP 

production over CTP or UTP 

10 1 Rv111

2 

N 1 1 1 NA Ribosome-binding ATPase, YchF- 

ATPase that binds to both the 

70S ribosome and the 50S 

ribosomal subunit in a 

nucleotide-independent manner 

10 1 Rv112

8c-

Rv112

N 1 1 1 NA Uncharacterized protein; HTH-

type transcriptional regulator 

PrpR- plays a key role in 
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9c regulating expression of 

enzymes involved in the 

catabolism of short chain fatty 

acids (SCFA)  

10 1 Rv200

5c 

N 1 1 1 NA Universal stress protein family 

protein, predicted possible 

vaccine candidate 

10 1 Rv243

4c 

N 1 1 1 NA Probable conserved 

transmembrane protein 

10 1 Rv381

8 

N 1 1 1 NA Putative Rieske 2Fe-2S iron-

sulfur protein 

9 1 plsC N 1 1 1 NA Possible transmembrane 

phospholipid biosynthesis 
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bifunctional enzyme 

9 1 Rv034

9 

N 1 1 1 NA Uncharacterized protein 

9 1 Rv044

3 

N 1 1 1 NA Conserved protein 

9 1 Rv058

5c 

N 1 1 1 NA Probable conserved integral 

membrane protein 

9 1 Rv186

8 

N 1 1 1 NA Uncharacterized protein 

9 1 Rv255

4c 

N 1 1 1 NA Putative pre-16S rRNA nuclease- 

could be a nuclease involved in 

processing of the 5'-end of pre-

16S rRNA 
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9 5 smc N 1 2 3 gyrB;glnD;Rv3415c-whiB3;fadD30 Chromosome partition protein 

Smc- required for chromosome 

condensation and partitioning 

9 1 ureG N 1 1 1 NA Urease accessory protein UreG- 

facilitates the functional 

incorporation of the urease 

nickel metallocenter 

8 1 adhA N 1 1 1 NA Probable adhA,alcohol 

dehydrogenase 

8 1 aspS N 1 1 1 NA Aspartyl-tRNA synthetase with 

relaxed tRNA specificity since it 

is able to aspartylate not only its 

cognate tRNA(Asp) but also 
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tRNA(Asn) 

8 1 PE6-

Rv033

6 

N 1 1 1 NA Member of the Mycobacterium 

tuberculosis PE family; 

Conserved 13E12 repeat family 

protein 

8 1 vapC1

-icd2 

N 1 1 1 NA Ribonuclease- toxic component 

of a type II toxin-antitoxin (TA) 

system; Isocitrate 

dehydrogenase 

8 1 vapC2

9 

N 1 1 1 NA Ribonuclease VapC29- toxic 

component of a type II toxin-

antitoxin (TA) system 

7 1 fadD2 N 1 1 1 NA Putative fatty-acid--CoA ligase  
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1 

7 1 mbtB N 1 1 1 NA Phenyloxazoline synthase, 

involved in the initial steps of 

the mycobactin biosynthetic 

pathway 

7 3 mkl-

vapC6 

N 1 2 2 Rv3510c;Rv3415c Probable ribonucleotide 

transport ATP-binding protein; 

Toxic component of a type II 

type II toxin-antitoxin (TA) 

system, an RNase 

7 1 mscL N 1 1 1 NA Large-conductance 

mechanosensitive channel- 

channel that opens in response 
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to stretch forces in the 

membrane lipid bilayer 

7 1 Rv010

6 

N 1 1 1 NA Uncharacterized protein 

7 1 Rv045

8 

N 1 1 1 NA  Probable aldehyde 

dehydrogenase 

7 1 Rv177

1 

N 1 1 1 NA L-gulono-1,4-lactone 

dehydrogenase 

7 1 Rv299

0c 

N 1 1 1 NA Uncharacterized protein 

7 1 Rv376

8-

Rv376

N 1 1 1 NA Uncharacterized protein; 

Uncharacterized protein 
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9 

7 1 Rv384

0 

N 1 1 1 NA  Possible transcriptional 

regulator, highly similar in part 

to PSR proteins (penicillin 

binding protein repressors) 

7 5 Rv391

0 

N 2 3 5 glnA3;Rv0158;fbiC;Rv3415c-

whiB3;fpg;PE_PGRS42;Rv3848 

Probable peptidoglycan 

biosynthesis protein MviN 

5 4 gca-

gmhA 

N 1 2.5 3 Rv2464c;PE23;vapB34;fbiC Possible GDP-mannose 4,6-

dehydratase; Phosphoheptose 

isomerase 

4 1 lysS N 1 1 1 NA Lysine--tRNA ligase 1 

4 1 Rv372

2c 

N 1 1 1 NA Conserved protein 
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3 2 mmpL

12-

Rv152

3 

N 2 2.5 3 inhA;Rv1482c-fabG1;pncA Probable conserved 

transmembrane transport 

protein; Probable 

methyltransferase 

3 2 Rv069

6 

N 3 3 3 Rv1135A;Rv3736;Rv2075c-Rv2076c Putative mycofactocin 

biosynthesis glycosyltransferase, 

MftF 

2 2 mcr7 N 2 2.5 3 embB;rpoB;katG Putative small regulatory RNA 

2 2 Rv202

8c 

N 1 2 3 vapB34;Rv3415c-whiB3 Universal stress protein family 

protein 

1 1 cmr-

Rv167

6 

N 3 3 3 fadD30;Rv3415c-whiB3 HTH-type transcriptional 

regulator- positively regulates 

the expression of at least 
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groEL2; Uncharacterized protein 

1 1 eccE2 N 3 3 3 katG;rpoB ESX-2 secretion system protein  

1 1 ethA Y 1 1 1 NA FAD-containing monooxygenase  

1 1 glnQ N 1 1 1 NA Probable glutamine-transport 

ATP-binding protein ABC 

transporter 

1 1 inhA-

hemZ 

N 2 2 2 drrA Enoyl-ACP reductase of the type 

II fatty acid syntase (FAS-II) 

system, catalyzes the NADH-

dependent reduction of the 

double bond of 2-trans-enoyl-

[acyl-carrier protein], an 

essential step in the fatty acid 
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elongation cycle of the FAS-II 

pathway; Ferrochelatase- 

involved in the biosynthesis of 

heme 

1 1 lipR N 1 1 1 NA Putative acetyl-hydrolase- 

required for maintaining the 

appropriate mycolic acid 

composition and permeability of 

the envelope on its exposure to 

acidic pH 

1 1 lpqG-

hpt 

N 1 1 1 NA Probable conserved lipoprotein; 

hypoxanthine-guanine 

phosphoribosyltransferase 
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1 1 lytB2-

Rv111

1c 

N 1 1 1 NA 4-hydroxy-3-methylbut-2-enyl 

diphosphate reductase 2- 

catalyzes the conversion of 1-

hydroxy-2-methyl-2-(E)- butenyl 

4-diphosphate (HMBPP) into a 

mixture of isopentenyl 

diphosphate (IPP) and 

dimethylallyl diphosphate 

(DMAPP); Conserved 

hypothetical protein 

1 1 panB-

Rv222

6 

N 2 2 2 vapB34 3-methyl-2-oxobutanoate 

hydroxymethyltransferase- 

catalyzes the reversible reaction 
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in which hydroxymethyl group 

from 5,10-

methylenetetrahydrofolate is 

transferred onto alpha-

ketoisovalerate to form 

ketopantoate; Conserved 

protein 

1 1 parE1 N 2 2 2 lppC  Toxic component of a type II 

toxin-antitoxin (TA) system 

1 1 phoR N 1 1 1 NA Possible two component system 

response phosphate sensor 

kinase membrane-associated 

1 1 PPE61 N 2 2 2 rpoB Uncharacterized PPE family 
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-

PPE62 

protein; Member of the 

Mycobacterium tuberculosis PPE 

protein family 

1 1 psd-

moeA

2 

N 1 1 1 NA Phosphatidylserine 

decarboxylase proenzyme- 

catalyzes the formation of 

phosphatidylethanolamine 

(PtdEtn) from 

phosphatidylserine (PtdSer); 

Molybdopterin 

molybdenumtransferase 2- 

catalyzes the insertion of 

molybdate into adenylated 
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molybdopterin with the 

concomitant release of AMP 

1 1 rpoC-

Rv066

9c 

N 1 1 1 NA DNA-directed RNA polymerase 

subunit beta- DNA-dependent 

RNA polymerase catalyzes the 

transcription of DNA into RNA 

using the four ribonucleoside 

triphosphates as substrates; 

Neutral ceramidase- catalyzes 

the cleavage of the N-acyl 

linkage of the ceramides (Cers) 

to yield sphingosine (Sph) and 
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free fatty acid 

1 1 Rv002

1c-

whiB5 

N 2 2 2 Rv3848 Uncharacterized protein; 

Transcriptional regulator- a 

transcription factor that is 

probably redox- responsive, 

probably plays a role in 

immunomodulation and 

reactivation after chronic 

infection. Its induction results in 

transcription of a number of 
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genes including sigM, and the 

genes for 2 type VII secretion 

systems ESX-2 and ESX-4 

1 1 Rv019

3c-

Rv019

4 

N 1 1 1 NA Uncharacterized protein; 

Multidrug efflux ATP-

binding/permease protein- 

overexpression in M. smegmatis 

increases resistance to 

erythromycin, ampicillin, 

novobiocin and vancomycin. It 

also reduces accumulation of 

ethidium bromide in the cell. 
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1 1 Rv025

8c 

N 3 3 3 lppC;PE_PGRS42 Uncharacterized protein 

1 1 Rv030

8-

Rv030

9 

N 2 2 2 PE_PGRS42 Probable conserved integral 

membrane protein 

1 1 Rv032

6 

N 5 5 5 PE_PGRS32;vapC25;fbiC;Rv3415c-

whiB3 

Uncharacterized protein 

1 1 Rv062

8c 

N 1 1 1 NA Uncharacterized protein 

1 1 Rv068

1 

N 3 3 3 Rv2075c-Rv2076c;Rv2219 Probable transcriptional 

regulatory protein (Possibly 

TetR-family) 
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1 1 Rv087

0c-

cspB 

N 1 1 1 NA Possible conserved integral 

membrane protein; Probable 

cold shock-like protein B 

1 1 Rv143

5c-

gap 

N 1 1 1 NA Probable conserved Pro-, Gly-, 

Val-rich secreted protein; 

Glyceraldehyde-3-phosphate 

dehydrogenase- catalyzes the 

oxidative phosphorylation of 

glyceraldehyde 3-phosphate 

(G3P) to 1,3-

bisphosphoglycerate (BPG) using 

the cofactor NAD 

1 1 Rv188 N 3 3 3 Rv0123-PE_PGRS2;katG Uncharacterized protein; 
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9c-

Rv189

0c 

Uncharacterized protein 

1 1 Rv194

5-

lppG 

N 3 3 3 hsp-nirB;PE_PGRS30 Uncharacterized protein; 

Possible conserved lipoprotein 

1 1 Rv207

4 

N 4 4 4 plsB1;embB;rrs F420H(2)-dependent biliverdin 

reductase- catalyzes the 

F420H(2)-dependent reduction 

of biliverdin-IXalpha at C10 

position, leading to bilirubin-

IXalpha, a potent antioxidant. As 

biliverdin-IXalpha is produced in 
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high amounts in macrophages 

infected with M.tuberculosis, its 

reduction by Rv2074 may play a 

role in protecting mycobacteria 

against oxidative stress, aiding 

the persistence of 

M.tuberculosis infection 

1 1 Rv212

9c 

N 1 1 1 NA Probable oxidoreductase 

1 1 Rv221

9 

N 3 3 3 Rv2075c-Rv2076c;Rv0681 Uncharacterized protein 

1 1 Rv261

6 

N 1 1 1 NA Conserved protein 
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1 1 Rv263

3c 

N 1 1 1 NA Uncharacterized protein 

1 1 Rv280

9 

N 1 1 1 NA Uncharacterized protein 

1 1 Rv311

3-

Rv311

4 

N 2 2 2 Rv3415c Possible phosphatase; 

Conserved hypothetical protein 

1 1 typA-

lpqW 

N 2 2 2 drrA GTP-binding translation 

elongation factor; Probable 

monoacyl phosphatidylinositol 

tetramannoside-binding protein 
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Supplementary Table 1 

Phenotype Frequencies by lineage 

 

Lineage Drug-resistant MDR Pan-

Susceptible 

XDR 

2 469 1546 1399 155 

4 934 1601 5664 153 
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Chapter 6: 
 Discussion and Conclusions 
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Discussion 

The work in this thesis has utilised three distinct analysis technologies to explore 

the relationship between the Mtb genome and the development of drug resistance. 

Due to the clonal nature and distinct lineages of Mtb, I hypothesised that the 

specific genomic background would influence the specific mutations that develop in 

response to therapy; and that as a result, lineage specific GWAS, or LCS techniques 

would be more revealing of the genetic causes of resistance (and spread) than 

traditional approaches. Thus, my work provides; methodological insights regarding 

the GWAS, phyC and LCS methodologies, biological insights gained through their 

application, and implications for surveillance, diagnosis and treatment of 

tuberculosis and beyond.  

 

Methodological Insights 

Differences in the loci identified between each methodology demonstrates the 

complementarity between GWAS, phyC and LCS; there is utility in each approach 

(see Chapters 2-5). PhyC relies on independent evolution events and, as expected, 

appears more suited to highly diverse Mtb genomic datasets, considering all 

lineages together (see Chapter 2). On the other hand, GWAS is better able to 

identify lineage-specific associations with drug resistance (see Chapters 2 and 3). In 

such cases, there may be a higher relative importance of transmission than multiple 

independent evolution events. This might be expected when variants are highly 

transmissible; hence, GWAS may be a powerful tool in identifying variants 
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associated with highly transmissible resistant strains, as further indicated in 

Chapter 3. It is feasible that high transmissibility could coevolve with drug 

resistance. This is because more transmissible strains would likely experience more 

drug therapy and thus greater selection for resistance (see Chapter 3).  

It is less clear how LCS deals with structure in Mtb populations, as LCS takes an 

evolutionary approach to machine learning and thus a less structured approach to 

lineage diversity that may not be enhanced by controlling for lineage. Despite this, 

the importance of lineage background is revealed by its identification of lineage 

specific loci (see Chapters 4 and 5).   

While both phyC and GWAS approaches identify single variants or loci associated 

with a phenotype, LCS can identify patterns of one or more loci predictive of 

phenotype. This means LCS has the potential to discover epistatic relationships 

where GWAS and phyC do not (see Chapters 4 and 5). 

Here GWAS and phyC have been applied to both loci and genomic variants (SNPs 

and short indels) (see Chapters 2 and 3); conversely, due to computational 

intensity, LCS was applied only to locus-based genomic variants. The ability of LCS 

to make predictions from such lower resolution locus-based data may be due to the 

power increase resulting from simultaneous consideration of multiple loci (see 

Chapters 4 and 5). It is important to consider whether use of a binary locus-type, 

reference or non-reference, could introduce biases into LCS. For example, loci with 

a greater length may be generally more likely to have a non-synonymous mutation, 

and some loci may be able to withstand more non-synonymous variation with little 

effect on protein function. However, as computing power increases and there is 
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further algorithmic development, it would be interesting to apply LCS to SNP-level 

data. 

More generally, it is important to note that all three methodologies currently rely 

on mapping to a reference and thus introduce biases. This means that structural 

variation in the Mtb genome may be overlooked. 

All three methodologies could lead to predictions of resistance phenotype from 

Mtb genome. For GWAS and phyC this may be through variant discovery to inform 

a database of predictive variants within a predictor tool [1–8], whilst for LCS 

prediction is an inherent part of the algorithm and can be performed without the 

requirement of running the full learning algorithm [9]. 

 

Biological Insights 

The success of lineage-specific GWAS highlights potential differences in the 

genomics of drug resistance between lineages (see Chapters 2 and 3). Whilst some 

variants were identified by lineage-combined approaches, others were identified in 

only one lineage (see Chapters 2 and 3). Differences in evolutionary trajectory 

between lineages are compatible with recent evolution, since lineage divergence, 

as would be expected to result from selection pressures arising due to the 

introduction of antibiotics. Lineages 1 and 3 have the smallest sample sizes in the 

data analysed here, new larger datasets for these lineages could provide further 

insight here. 

Chapter 3 highlights the complexity of XDR Mtb, revealing a number of novel 

variants associated with the XDR phenotype. The application of LCS to XDR Mtb in 

Chapter 5 further delves into this complexity. Perhaps the ability of LCS to achieve 
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high accuracy of XDR prediction is due to its ability to deal with such complexity 

(see Chapter 5). Future work is required to determine the importance of selection 

compared to genetic drift in linking the loci identified to resistance phenotypes; 

nonetheless identifying such variants present in clinical XDR TB populations could 

inform public health response strategies (see Chapter 3). 

Loci identified in Chapter 2-5 warrant further investigation to unearth more detail 

on how they might functionally relate to resistance and transmission or fitness in 

general, especially those that lack knowledge at present. This demonstrates the 

utility of the GWAS, phyC and LCS methodologies in creating a more targeted 

approach to hypothesis generation for wet lab studies. 

 

Implications for Surveillance, Treatment and Diagnosis 

The GWAS, phyC and LCS as presented here (see Chapters 2-5) could have 

important implications for surveillance; as these approaches could be deployed to 

understand new clonal spreads of TB disease. As new whole genome sequence data 

is generated, it can be analysed to see if there are new genetic factors that are 

driving these outbreaks. This could be automated and facilitated through online 

Mtb monitoring systems that would enable precision public health, facilitating 

better allocation of resources and design of research strategies.  

In addition, the findings from the work presented can be used to improve the 

current online tools (such as TB-profiler) to give more accurate drug resistance 

predictions. 

However, it is important to consider feasibility of such proposals in light of growing 

Mtb genomic datasets and changing phenotypic methods [10]. For example, phyC 
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becomes increasingly difficult as datasets grow, due to limitations on phylogenetic 

tree construction. This indicates a need for new methods for tree construction or 

sampling of isolates from which to build trees. Similarly, as dataset size increases 

LCS may take longer to run. 

Furthermore, there are implications for diagnosis and treatment. Accurate 

prediction of resistance status from whole genome sequence can allow better 

selection of therapy regimens for individual patients without the need to wait for 

drugs susceptibility testing which can be lengthy. Moreover, an improved 

understanding of the biological mechanisms of resistance present in global Mtb 

populations could inform drug design.  

 

Future Avenues of Work 

There are a number of future avenues that could follow from this work. For 

example, the application of methodologies used here to new Mtb datasets; for 

example, using new genome sequencing methodologies such as long read methods  

[11], using datasets exploring within patient Mtb genomic diversity and exploring 

new phenotypes such as latent TB or further exploring drug resistance through MIC 

values. 
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Conclusions 

GWAS, phyC and LCS are complementary methodologies that can each provide 

insight into the genomic basis of drug resistance in Mtb and the prediction of drug 

resistance from the Mtb genome. This work proposes a number of loci as 

candidates for further study, that may be involved in drug resistance or in particular 

facilitate spread of drug resistant strains. This has important implications for 

surveillance, diagnosis and treatment of tuberculosis. 
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