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Abstract 

Objective: To examine an approach for selecting small sets of diagnosis codes with high prediction 

performance in large datasets of electronic medical records. 

Study Design and Setting: Modelling study using national hospital and mortality records for patients 

with myocardial infarction (n=200 119), hip fracture (n=169 646), or colorectal cancer surgery (n=56 

515) in England in 2015–17. One-year mortality was predicted from ICD-10 codes recorded for at 

least 0.5% of patients using logistic regression (‘full’ models). An approximation method was used to 

select fewer codes that explained at least 95% of variation in full model predictions (‘reduced’ 

models). 

Results: One-year mortality was 17.2% (34 520) after myocardial infarction, 27.2% (46 115) after hip 

fracture, and 9.3% (5273) after colorectal surgery. Full models included 202, 257, and 209 ICD-10 

codes in these populations. C-statistics for these models were 0.884 (95% CI 0.882, 0.886), 0.798 

(0.795, 0.800), 0.810 (0.804, 0.817). Reduced models included 18, 33, and 41 codes and had c-

statistics of 0.874 (95% CI 0.872, 0.876), 0.791 (0.788, 0.793), 0.807 (0.801, 0.813). Performance was 

also similar when measured using Brier scores. All models were well calibrated. 

Conclusion: Our approach selected small sets of diagnosis codes that predicted patient outcomes 

comparably to large, comprehensive sets of codes. 

Key words: Big data, electronic medical records, International Classification of Diseases, ICD-10, 

comorbidity, multimorbidity, prognosis, statistical models, variable selection 
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What is new? 

Key findings 

• Our approach selected small sets of diagnosis codes that predicted one-year mortality 

comparably to large, comprehensive sets of codes, in three clinical populations 

What this adds to what was known 

• A relatively small set of diagnosis codes may predict most variation in a given patient outcome 

in a given study and such a set can be selected using statistical methods 

What should change now? 

• This approach may be useful to many studies that need to develop a study-specific measure of 

comorbidity using a large dataset of electronic medical records  
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1. Introduction 

Electronic medical records are increasingly used for clinical, epidemiological, and healthcare 

research.1,2 They offer growing opportunities to study large, representative populations over long 

periods of time and often contain many diagnosis codes representing a wide range of clinical 

information.3 For example, the World Health Organization’s International Classification of Diseases 

(ICD), used in many datasets, includes over 10 000 codes for different health attributes.4 

Many studies use these diagnosis codes to model patients’ overall morbidity.5,6 Such models are 

applied widely, including in clinical prediction tools,7 in randomised trials to assess patient 

characteristics,8 and in observational studies to reduce confounding between treatment groups or 

healthcare providers.9 In the global context of population ageing and greater burdens of non-

communicable disease, models of morbidity are likely to be increasingly important.10,11 

Large numbers of diagnosis codes could be included in these models when the study population is 

also large, as is common in electronic medical record studies.12 Larger sets of codes may predict 

patient outcomes better.13 However, these sets will also be more difficult to interpret, present, and 

apply in future studies or clinical practice.14 Investigators therefore need to select a small set of codes 

that best balances model size and prediction performance.15 This is difficult, however, as the number 

of different sets that can be chosen from n codes equals 2n (230 ≈ 1 billion for example).16 

This highlights the potential value of a data modelling approach that includes large, comprehensive 

sets of codes but produces a final model that includes far fewer codes and predicts the study outcome 

to a similar extent.17 This model may then be small enough to easily interpret but still have close to 

maximum achievable performance. The existing literature has not investigated how this can be done 

in the context of electronic medical records and diagnosis codes. 

In this study, we aimed to examine such an approach by comparing the prediction performance of 

models including large, comprehensive sets of ICD codes with models including fewer codes. One-
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year mortality of three clinical populations was the modelling context, utilising linked national 

datasets of routine hospital and mortality data in England. 

2. Methods 

2.1 Study populations 

We analysed Hospital Episode Statistics Admitted Patient Care data—administrative data for all 

inpatient care funded by the National Health Service (NHS) in England.18 Each record relates to an 

‘episode’ of care under the same senior clinician and has 20 fields for ICD-10 codes4 relevant to that 

episode. The first field contains the primary diagnosis—the main condition treated. 

The study populations were patients admitted for acute myocardial infarction (MI), hip fracture (HF), 

or major surgery for colorectal cancer (CS). MI (I21-2219,20) and HF (S72.0-S72.221,22) patients were 

identified from the ICD-10 codes recorded as the primary diagnosis in the first episode of each 

admission. CS patients were identified from any episode with both a relevant primary diagnosis (ICD-

10: C18-20) and main procedure (OPCS-4: H04-11, H29, H33, X14).23-26 

These populations represent many admissions and vary in terms of clinical specialty, co-existing 

conditions, and mortality. We included MI and CS patients aged 18 years or older and HF patients 

aged 60 years or older22 whose admission was from January 1, 2015, to December 31, 2017. Only a 

patient’s earliest admission of two or more of the same type (MI, HF, CS) was included. 

2.2 Outcome 

The outcome was death up to and including 365 days after the date of admission (MI and HF) or 

procedure (CS). We used the official dates of death recorded in Office for National Statistics mortality 

data27 up to December 31, 2018. These records were linked to Hospital Episode Statistics based on 

each patient’s NHS number, date of birth, sex, and postcode.28 Approximately 95% of linked records 
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matched exactly on at least three of these variables; other records were linked allowing partial 

matches of dates of birth or using exact matches for two variables only.28 

Mortality is the outcome most often used to assess models of ICD codes in hospital settings.5,29 We 

analysed 365-day mortality as the other outcomes most often used—in-hospital and 30-day 

mortality—may be more strongly affected by the primary event than other conditions. Also, more 

deaths over a longer time span increased the effective sample size.30 

2.3 Predictors 

We defined a binary predictor for each ICD code that denoted whether it was recorded or not in each 

patient’s index episode or up to 365 days before. We analysed the first three characters of these codes 

(excluding fourth characters) as coding choices at this level will be less variable than with four 

characters.13 The first three characters define single conditions or other health-related attributes; 

fourth characters define sites, subtypes, and causes.4 Higher levels of the ICD coding system—the 22 

‘chapters’ and the ‘blocks’ of three-character codes—were not analysed, as these levels may be too 

broad to retain the predictive ability of the three-character codes. 

In each population, we excluded three-character codes recorded for less than 0.5% of patients in the 

365-day ‘look-back period’ as these codes were so rare that they were unlikely to improve model 

performance.31-33 We used a 365-day period, rather than only using codes from the index episode, as 

this improved model performance in some studies.5 

Patient age, sex, and socioeconomic status were also predictors, as is common when examining 

models of ICD codes.5,29 Socioeconomic status was measured by the national Index of Multiple 

Deprivation rank of each residential area (with 1000 to 3000 residents in each of 32 482 areas).34 We 

excluded patients with missing data (1.2%; 5346/431 626). 



7 

2.4 Model estimation 

We first estimated associations between the outcome and the full set of predictors as the maximum 

likelihood estimates from logistic regression (‘full’ model). We then developed a ‘reduced’ model that 

approximated this full model following the proposals of Harrell.17,35 

First in our approach, the predicted log-odds of the outcome for each patient was calculated from the 

coefficients of the full model. Second, an ordinary least squares regression model was fitted between 

these predictions and all predictors; the coefficients of this model were identical to those of the full 

model and R2 equalled one, by definition. Third, the ICD code predictor whose omission caused the 

smallest decrease in R2 (the ‘approximation R2’) was removed; this was repeated until all ICD code 

predictors had been removed. This process was based on the fast variable elimination methods of 

Lawless and Singhal,36 using the full model and Wald statistics for the submodels to select which 

variables to eliminate. As shown by Ambler, Brady, and Royston,15 when all predictors are 

uncorrelated and standardised the decrease in R2 from omission of a given predictor is proportional to 

its squared model coefficient. Fourth in our approach, the model with the fewest predictors and an 

approximation R2 equal to or greater than 95% was selected as the final model. This reduced model 

explained at least 95% of variation in predictions from the full model. 

We refer to models without any ICD codes as ‘baseline’ models (including only age, sex, and 

socioeconomic status). Modelling non-linear associations for age and socioeconomic status using 

restricted cubic splines did not improve the prediction performance of the baseline or full models, so 

all final results assume linear associations. We did not examine interactions, partly due to the 

difficulty in estimating them reliably when most ICD codes are infrequent. 

2.5 Model performance 

Overall model performance was measured using Brier scores.37 These scores equalled the mean of 

squared differences between predicted probabilities of death and observed outcomes. We scaled these 

scores from 0–100% (0% if non-informative and 100% if perfect).38 
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To assess discrimination, we calculated the c-statistic. This equalled the probability that a randomly 

chosen patient who died had a greater predicted probability of death than a randomly chosen patient 

who did not die.17 C-statistics equal one for perfect models and 0.5 for random predictions. To assess 

calibration, we calculated the integrated calibration index (ICI),39 calibration-in-the-large, and 

calibration slopes.40 ICI and calibration-in-the-large assess the calibration of predictions across their 

range and overall, respectively; perfect models have values of zero. Calibration slopes equal one in 

perfect models with smaller values indicating overfitting. 

We first calculated the above measures in the original data used to fit the regression models (‘apparent 

performance’). We then repeated all modelling steps in each of 500 bootstrap samples and, for each 

sample, calculated the performance of the resulting models in this sample and the original data; the 

difference in performance values between the bootstrap sample and original data defined the 

‘optimism’. Finally, an optimism-adjusted value of each performance measure was calculated as the 

apparent performance value minus the mean optimism.17,41,42 

To contextualise model performance, we compared the results to models based on the conditions of 

Charlson et al.43 and Elixhauser et al.44 which are those most often used to measure inpatient 

morbidity (see Appendix for further details).5,29 These models included the baseline predictors (age, 

sex, and socioeconomic status) and 17 or 31 binary predictors for the Charlson and Elixhauser 

conditions, respectively. 

2.6 Sensitivity analyses 

Five analyses tested the sensitivity of results to the methods. First, ICD codes recorded for less than 

1% of patients were excluded. Second, we defined predictors using the index episode only or a three-

year look-back period. Third, we fitted models including both the Charlson and Elixhauser conditions; 

for a condition included in both sets, the predictors were defined using the broadest ICD code 

definition from the two sets.45 Fourth, we grouped all ICD codes into 260 Clinical Classification 

Software (CCS) groups and replaced the ICD code predictors with binary predictors for these 
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groups.46 CCS groups are intended to aggregate ICD codes into a manageable number of clinically 

meaningful categories.47 Fifth, we assessed changes in coefficients from the full models when 

penalised maximum likelihood estimation was used.17,48,49 

We pre-specified the study methods in a published protocol and performed the main and sensitivity 

analyses as described in this protocol.50 Data management was done using Stata (version 15). R 

(version 3.5) was used for all statistical analysis. 

In response to a peer reviewer’s suggestion, we conducted an additional analysis that used three 

alternative approaches for selecting which ICD codes from the full models to include in the final 

models: backwards elimination using the Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC) and the least absolute shrinkage and selection operator (lasso).51,52 The 

lambda value of the lasso model was tuned using 5-fold cross-validation.53 

3. Results 

The percentage of patients who died within one year was 17.2% (34 520/200 119) after MI, 27.2% 

(46 115/169 646) after HF, and 9.3% (5273/56 515) after CS. 

Overall, 8445 unique four-character ICD codes and 1857 three-character codes were recorded. In each 

population, 202 to 257 three-character codes were recorded for at least 0.5% of patients and included 

in further analysis. The numbers of deaths per predictor variable were 168 (34 520/205; MI), 177 (46 

115/260; HF), and 25 (5273/212; CS). 

Most included ICD codes had low frequencies (Figure 1; Table A1 in the Appendix lists the 20 most 

frequent). The median number of codes included for each patient ranged from 6 to 9 across the 

populations. Correlations between codes were generally very low (Table 1). The maximum variance 

inflation factor for an ICD code predictor in any of the populations was 3.6. 
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In the original data, the full models (with a predictor for each ICD code) attained scaled Brier scores 

of 34.9% (MI), 23.1% (HF), and 18.5% (CS). Many codes were removed from these models without 

the explained variation (R2) in predictions decreasing below 95% (Figure 2). 

The reduced models included 18 (MI), 33 (HF), and 41 (CS) ICD codes. Overall, 61 unique codes 

were included, with 41 codes included in only one model (see Table A2). 

The corresponding scaled Brier scores were 32.2%, 21.9%, and 17.6%, which were only slightly 

lower than those for the full models. The c-statistics were also similar between the full and reduced 

models and indicated very good discrimination (c≥0.791 across all models). These measures were 

much lower when all ICD codes had been removed (Figure 2; Figure A1). 

The approximation R2, scaled Brier scores, and c-statistics at different numbers of ICD codes were 

highly correlated in each population (minimum Pearson’s r = 0.984), such that the shapes of 

relationships between these measures and the number of codes were similar. 

After adjusting these performance measures for optimism using bootstrapping, the values were 

similar, indicating minimal overfitting (Table 2, Figure 3). Values of the integrated calibration index 

and calibration-in-the-large were close to zero, implying that the models accurately predicted risks of 

death, on average, and the overall log-odds of death in each population (Table 2). All calibration 

slopes were only slightly less than the perfect value of 1 (minimum=0.961; 95% CI 0.935–0.987), 

indicating that model predictions were slightly too extreme (Figure A2). 

The codes included in the reduced models were reasonably stable across bootstrap samples: 13/18 

(MI), 27/33 (HF), and 28/41 (CS) codes were selected in ≥90% of samples (Figure A3). 

The full and reduced models consistently performed better than models based on the Charlson or 

Elixhauser conditions in each population, when all ICD codes were eligible for inclusion or when a 

restricted set was used (Figure A4). For example, the scaled Brier scores for the reduced, Charlson-
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based, and Elixhauser-based models in the MI population were 32.2%, 22.4%, and 23.7% (all codes) 

and 26.0%, 20.7%, and 22.0% (restricted codes); the score for the baseline model was 15.0%. 

3.1 Sensitivity analyses 

The sensitivity analyses did not identify an approach that performed better than that used in the main 

analysis (Table A3). For example, only including ICD codes with frequencies of at least 1% (versus 

0.5%) led to full models with slightly worse overall and discrimination performance in each 

population (maximum decreases in scaled Brier score: 2.2%; c-statistic: 0.011); these models included 

far fewer codes than when a 0.5% frequency threshold was used (130 versus 202 for MI, 177 versus 

257 for HF, and 147 versus 209 for CS). When penalisation was used, full model coefficients were 

very similar to those from the main analysis (Figure A5). 

Variable selection using AIC, BIC, and the lasso produced models with greater numbers of ICD codes 

than were included in the reduced models. The ranges of the number of codes included in the final 

models by each approach, across populations, were 85 to 169 (AIC), 51 to 99 (BIC) and 121 to 221 

(lasso). Model performance was similar to that of the full models (Table A4). 

4. Discussion 

In a large dataset of electronic medical records, our approach consistently selected small sets of ICD-

10 codes that performed comparably to large, comprehensive sets of codes. In each of the three 

populations, a relatively small set of codes explained at least 95% of variation in predictions from a 

much larger set of codes. Our approach therefore produced small models that had close to maximum 

achievable performance, very good discrimination, and were well calibrated. 

The ICD codes included in the final models varied between populations, which was expected given 

the different characteristics of these groups. Overall, 41 of the 61 codes included in the reduced 

models were only included for one population. This variation could be even greater across different 
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outcomes, settings, and datasets, which supports the view that the diagnosis codes included in 

morbidity models should be tailored to the study in which the model will be used.11,13 

The 95% R2 threshold used to define the reduced models worked well, though a lower value (such as 

90%) may be reasonable if the benefits of including fewer codes outweigh the costs of lower 

performance.15 The MI model included the fewest codes, partly because age, sex, and socioeconomic 

status better predicted the outcome in this population than in the other two groups. 

The models developed could be considered as models of patient morbidity, specifically ‘morbidity 

burden’ which includes the presence of multiple conditions, socio-demographic characteristics, and 

other health-related attributes.54 Some of the included ICD codes may also be relevant to frailty and 

disability.55 Our approach provides a general framework for selecting small sets of diagnosis codes to 

predict a particular outcome in a given study population and dataset. The codes included in the full 

model can be adapted to suit different morbidity constructs and clinical perspectives. 

4.1 Defining and selecting codes 

Harrell’s proposals regarding model approximation17,35 do not appear widely in the existing literature 

and were not mentioned in recent reviews of variable selection.56,57 This could be partly because 

related approaches may produce similar final models to more popular methods, based on P-values or 

AIC for example, in most study contexts.15,17 However, variable selection in large datasets using P-

values or AIC is unlikely to produce models with relatively few predictors, as even weak predictors 

will have small P-values.12 This is supported by the results of our analyses using AIC and BIC as the 

selection criteria and also applied to the lasso models. 

A strength of our approach is that users can trade between the number of predictors included in the 

final model and prediction performance by varying the approximation R2 threshold (which we set at 

95%). Investigators requiring smaller models, to improve the feasibility of use in clinical practice for 

example, can quantify reductions in performance from removing predictors (as in Figure 2). 
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This method can be used with binary, continuous, and time-to-event outcomes; incorporate non-linear 

and interaction terms; and retain penalisation applied to the full models.17 Variable selection methods 

that start with full models are preferred as they consider all correlations between predictors.58 

Subject knowledge should be used to help select the candidate ICD codes.12,17 Codes that are highly 

unlikely to have strong prognostic effects, are recorded unreliably, or are inappropriate in the study 

context should be excluded in advance. This may reduce the potential for model overfitting. Subject 

knowledge could also be used to pre-specify codes to force into the reduced model, such as those 

known to be important, and to assess the face validity of models. 

Our proposed approach is essential, however, because prior knowledge alone is unlikely to clearly 

indicate an exact set of codes that best balances the number of included codes and prediction 

performance, and related decision-making may be non-transparent and unreproducible. 

A general limitation of statistical variable selection methods is that the predictors included in the final 

model may vary between repeat samples of the data.12,17 This is most problematic when a study’s 

main interest is the estimated association between each individual predictor and the outcome (and its 

variability).59 We focused on developing reduced models with high prediction performance, such that 

low variability in performance of the models overall (as shown in Figure 3) was most relevant. 

4.2 Limitations of the study 

Our approach should be applied to other populations, outcomes, and datasets to assess whether it 

performs similarly well. We tested it in three varied inpatient populations, but other populations could 

have different case-mixes that affect our results. The prognostic effects of codes are also likely to 

differ between outcomes, such as mental health and physical outcomes.60 Variation in the recording of 

codes between datasets may also affect the results of our approach. 

Future research should examine how our approach should be used in smaller datasets. Using subject 

knowledge to exclude more codes from the full models is likely to be particularly important in smaller 
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samples, to avoid model overfitting.30 Shrinkage methods are not guaranteed to work well in any 

given study due to uncertainty in estimating shrinkage or penalty terms. Electronic medical records 

may often provide very large samples that exceed the minimum sizes required.3,30 

Given the large set of binary predictors defined by the ICD codes, and the potential for interactions 

between them, modelling approaches based on random forests or boosted trees may predict outcomes 

well. However, the low frequencies of most codes may mean that a given combination of codes is not 

recorded very often such that any interaction is estimated imprecisely. This may be improved by 

including broader levels of the hierarchical ICD coding system as predictors, but these levels may 

group codes associated with very different prognoses thus reducing the prediction value. The 

performance of these approaches could be examined in future research. 

4.3 Implications for research 

Many studies use diagnosis codes from electronic medical records to model patient morbidity. We 

have shown how small sets of codes can be selected that predict patient outcomes almost as well as 

much larger sets of codes. R code to apply our approach is given in the Appendix. 

In the global context of population ageing and greater burdens of non-communicable disease, patient 

morbidity is becoming more complex.61-63 At the same time, electronic medical records are increasing 

in volume and scope, presenting growing opportunities to better model this complexity.2 Further 

research should investigate how we can utilise these records to improve morbidity measures.  
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Table 1. Descriptive statistics for outcome and predictor variables 

 

Acute myocardial 

infarction Hip fracture 

Major colorectal 

cancer surgery 

Number of patients 200 119 169 646 56 515 

Number who died within 1 year (%) 34 520 (17.2) 46 115 (27.2) 5273 (9.3) 

Patient characteristics    

  Median age (IQR) 70 (58 to 80) 84 (77 to 89) 70 (62 to 78) 

  Male (versus female) (%) 132 162 (66.0) 48 622 (28.7) 32 004 (56.6) 

  Median socioeconomic status (IQR)* 4.8 (2.4 to 7.3) 5.4 (2.9 to 7.7) 5.7 (3.3 to 7.9) 

ICD-10 codes    

  Number of codes included† 202 257 209 

  Median frequencies (%) of codes (IQR) 1.6 (0.8 to 3.4) 1.8 (0.8 to 4.2) 1.6 (0.9 to 4.5) 

  Median number of codes per patient (IQR) 6 (4 to 10) 9 (6 to 14) 7 (4 to 11) 

  Median correlation between codes (IQR)‡ 0.02 (0.01 to 0.03) 0.01 (0.00 to 0.02) 0.01 (0.00 to 0.02) 

IQR=interquartile range. *Scaled such that the most deprived area of residence nationally had a value of 0 and the least 

deprived area had a value of 10. †Relative frequency of each three-character code was at least 0.5% in the given population. 

‡Median absolute values of Pearson correlation coefficients across all pairwise comparisons. 
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Table 2. Optimism-adjusted performance of the full and reduced models, as estimated from 500 

bootstrap samples (with 95% confidence intervals) 

  

Acute myocardial 

infarction Hip fracture 

Major colorectal 

cancer surgery 

Scaled Brier score (%)       

Full models* 34.6 (34.1 to 35.1) 22.8 (22.4 to 23.2) 17.1 (16.1 to 18.2) 

Reduced models† 32.1 (31.6 to 32.6) 21.8 (21.4 to 22.2) 16.8 (15.8 to 17.8) 

c-statistic       

Full models 0.884 (0.882 to 0.886) 0.798 (0.795 to 0.800) 0.810 (0.804 to 0.817) 

Reduced models 0.874 (0.872 to 0.876) 0.791 (0.788 to 0.793) 0.807 (0.801 to 0.813) 

Integrated calibration index       

Full models 0.012 (0.011 to 0.013) 0.015 (0.014 to 0.017) 0.007 (0.005 to 0.009) 

Reduced models 0.012 (0.011 to 0.013) 0.015 (0.013 to 0.016) 0.008 (0.006 to 0.009) 

Calibration-in-the-large       

Full models 0.000 (-0.015 to 0.015) 0.000 (-0.013 to 0.013) 0.001 (-0.032 to 0.034) 

Reduced models 0.032 (0.017 to 0.047) 0.013 (0.000 to 0.025) 0.025 (-0.008 to 0.058) 

Calibration slope       

Full models 0.993 (0.982 to 1.004) 0.989 (0.978 to 1.001) 0.961 (0.935 to 0.987) 

Reduced models 0.983 (0.972 to 0.994) 0.982 (0.970 to 0.993) 0.971 (0.946 to 0.997) 

*Number of ICD-10 codes in full models (in column order): 202, 257, 209. †Number of codes in reduced models: 18, 33, 41. 
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Figure 1. Relative frequencies of included ICD-10 codes, by population 
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Figure 2. Percentage of variation in full model predictions explained by models with fewer ICD-10 

codes (approximation R2), and related scaled Brier scores (B%) and c-statistics (c) 

 

 

The approximation R2 equals the percentage of variation explained in the predictions from the full model. In 

each population, the full model included all ICD-10 codes recorded for at least 0.5% of patients. The 

‘approximation’ models are the set of models with different numbers of codes removed from the full models. 

From the approximation models with an approximation R2 of at least 95%, the ‘reduced’ model is the one with 

the fewest ICD-10 codes. ‘Baseline’ models include only age, sex, and socioeconomic status as predictors. 
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Figure 3. Optimism-adjusted scaled Brier scores and c-statistics of the full, reduced, and baseline 

models, as estimated from 500 bootstrap samples (with 95% confidence intervals) 

 

Number of ICD-10 codes in full models (in column order): 202, 257, 209. Number of codes in reduced models: 

18, 33, 41. Baseline models included only age, sex, and socioeconomic status as predictors.
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Methods for models based on the Charlson or Elixhauser conditions 

An established list of ICD-10 codes1 was used to identify the Charlson and Elixhauser conditions in the one-year 

look-back period. We estimated associations between the outcome and the Charlson or Elixhauser conditions 

using logistic regression. A binary predictor was modelled for each condition rather than weighted summary 

measures, as fitted weights differ across studies. We first compared the performance of the resulting models to 

the full and reduced models when all ICD-10 codes were eligible for inclusion in the analysis. 

 

We repeated the comparison while excluding selected ICD-10 codes from patients’ index episodes. These codes 

related to (i) acute conditions that could have been complications occurring after admission, and (ii) processes of 

care. The codes were chosen from the sets of codes recorded for at least 0.5% of patients in each population. 

 
Codes excluded from index episodes  

A04 Other bacterial intestinal infections A09 Diarrhea and gastroenteritis of infectious origin 

A41 Other septicemia B37 Candidiasis 

B95 Streptococcus and staphylococcus as the cause of diseases 

classified to other chapters 

B96 Other specified bacterial agents as the cause of diseases 

classified to other chapters 

B98 Other specified infectious agents as the cause of diseases 

classified to other chapters 

E89 Postprocedural endocrine and metabolic disorders, not 

elsewhere classified 

F05 Delirium, not induced by alcohol and other psychoactive 

substances 

I20 Angina pectoris 

I21 Acute myocardial infarction I26 Pulmonary embolism 

I46 Cardiac arrest I47 Paroxysmal tachycardia 

I48 Atrial fibrillation and flutter I49 Other cardiac arrhythmias 

I50 Heart failure I80 Phlebitis and thrombophlebitis 

J18 Pneumonia, organism unspecified J22 Unspecified acute lower respiratory infection 

J69 Pneumonitis due to solids and liquids J81 Pulmonary edema 

J96 Respiratory failure, not elsewhere classified K29 Gastritis and duodenitis 

K65 Peritonitis K91 Postprocedural disorders of digestive system, not elsewhere 

classified 

L89 Decubitus ulcer N17 Acute renal failure 

N39 Other disorders of urinary system R41 Other symptoms and signs involving cognitive functions and 
awareness 

R57 Shock, not elsewhere classified S00 Superficial injury of head 

S01 Open wound of head S06 Intracranial injury 

S09 Other and unspecified injuries of head S22 Fracture of rib(s), sternum, and thoracic spine 

S32 Fracture of lumbar spine and pelvis S40 Superficial injury of shoulder and upper arm 

S42 Fracture of shoulder and upper arm S50 Superficial injury of forearm 

S51 Open wound of elbow and forearm S52 Fracture of forearm 

S60 Superficial injury of wrist and hand S61 Open wound of wrist and hand 

S62 Fracture at wrist and hand level S70 Superficial injury of hip and thigh 

S72 Fracture of femur S80 Superficial injury of lower leg 

S81 Open wound of lower leg S82 Fracture of lower leg, including ankle 

T81 Complications of procedures, not elsewhere classified T82 Complications of cardiac and vascular prosthetic devices, 

implants, and grafts 

T83 Complications of genitourinary prosthetic devices T84 Complications of internal orthopedic prosthetic devices 

W01 Fall on same level from slipping, tripping, and stumbling W03 Other fall on same level due to collision with another person 

W06 Fall involving bed W07 Fall involving chair 

W10 Fall on and from stairs and steps W18 Other fall on same level 

W19 Unspecified fall W22 Striking against or struck by other objects 

Y43 Adverse effects in therapeutic use, primarily systemic agents Y45 Adverse effects in therapeutic use, analgesics, antipyretics, 
and anti-inflammatory drugs 

Y60 Unintentional cut, puncture, perforation, or hemorrhage 

during surgical and medical care 

Y83 Surgical operation and other surgical procedures as the cause 

of abnormal reaction of the patient, or of later complication 

Y84 Other medical procedures as the cause of abnormal reaction 

of the patient, or of later complication 

Y95 Nosocomial condition 

Z02 Examination and encounter for administrative purposes Z08 Follow-up examination after treatment for malignancies 

Z09 Follow-up examination after treatment for conditions other 

than malignant neoplasms 

Z12 Special screening examination for neoplasms 

Z13 Special screening examination for other diseases Z22 Carrier of infectious diseases 

Z45 Adjustment and management of implanted device Z50 Care involving use of rehabilitation procedures 

Z53 Persons encountering services for procedures, not carried out Z75 Problems related to medical facilities and other health care 

Z95 Presence of cardiac and vascular implants and grafts Z96 Presence of other functional implants 

Z98 Other postsurgical states Z99 Dependence on enabling machines and devices 

1. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and 

ICD-10 administrative data. Med Care 2005;43:1130-9.
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Table A1. 20 most frequent ICD-10 codes by population 

  Acute myocardial infarction   Hip fracture   Major colorectal cancer surgery  

 Code Title % Code Title % Code Title % 

1 I25 Chronic ischemic heart disease 66.2 I10 Essential (primary) hypertension 57.8 I10 Essential (primary) hypertension 49.1 

2 I10 Essential (primary) hypertension 55.2 W19 Unspecified fall 37.8 Z86 Personal history of certain other diseases 29.6 

3 Z86 Personal history of certain other diseases 36.0 W01 
Fall on same level from slipping, tripping, 

and stumbling 
30.2 K57 Diverticular disease of intestine 25.7 

4 E78 
Disorders of lipoprotein metabolism and 
other lipidemias 

27.8 Z86 Personal history of certain other diseases 30.2 K63 Other diseases of intestine 24.6 

5 F17 
Mental and behavioural disorders due to use 

of tobacco 
24.9 R29 

Other symptoms and signs involving the 

nervous and musculoskeletal systems 
24.3 Z92 Personal history of medical treatment 23.8 

6 E11 Non-insulin-dependent diabetes mellitus 24.3 I48 Atrial fibrillation and flutter 23.0 D12 
Benign neoplasm of colon, rectum, anus, and 

anal canal 
19.9 

7 Z92 Personal history of medical treatment 23.7 Z92 Personal history of medical treatment 22.9 D50 Iron deficiency anaemia 18.0 

8 I50 Heart failure 22.3 N39 Other disorders of urinary system 18.7 C77 
Secondary and unspecified malignant 

neoplasm of lymph nodes 
17.6 

9 Z95 
Presence of cardiac and vascular implants and 

grafts 
20.3 I25 Chronic ischemic heart disease 17.7 E11 Non-insulin-dependent diabetes mellitus 16.3 

10 Z82 
Family history of certain disabilities and 
chronic diseases leading to disablement 

17.6 N18 Chronic renal failure 17.2 K66 Other disorders of peritoneum 14.8 

11 I20 Angina pectoris 17.0 M81 Osteoporosis without pathological fracture 17.1 D64 Other anaemias 14.5 

12 I48 Atrial fibrillation and flutter 16.7 W18 Other fall on same level 16.9 Z85 Personal history of malignant neoplasm 13.2 

13 I51 
Complications and ill-defined 

descriptions of heart disease 
12.8 F03 Unspecified dementia 16.5 Y83 

Surgical operation and other surgical 

procedures as cause of abnormal reaction 
13.1 

14 N18 Chronic renal failure 12.2 E11 Non-insulin-dependent diabetes mellitus 16.4 E78 
Disorders of lipoprotein metabolism and 

other lipidemias 
12.8 

15 J44 Other chronic obstructive pulmonary disease 10.4 N17 Acute renal failure 14.7 K56 
Paralytic ileus and intestinal obstruction 

without hernia 
12.7 

16 Z88 
Personal history of allergy to drugs, 

medicaments and biological substances 
10.2 J18 Pneumonia, organism unspecified 14.4 I48 Atrial fibrillation and flutter 11.9 

17 N17 Acute renal failure 10.2 J44 Other chronic obstructive pulmonary disease 14.0 I25 Chronic ischemic heart disease 11.5 

18 I44 Atrioventricular and left bundle-branch block 8.9 Z96 Presence of other functional implants 13.8 T81 
Complications of procedures, not elsewhere 
classified 

10.8 

19 J45 Asthma 8.3 D64 Other anaemias 13.5 K62 Other diseases of anus and rectum 10.6 

20 E66 Obesity 8.2 E78 
Disorders of lipoprotein metabolism and 

other lipidemias 
12.8 K44 Diaphragmatic hernia 10.5 
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Table A2. Reduced models developed in each population 

Acute myocardial infarction 

  

Model 

coefficient 

95% confidence 

interval 

Intercept* -2.49 -2.53 to -2.45 

Age (per 5-year increase) 0.39 0.38 to 0.40 

Male (versus female) 0.04 0.01 to 0.08 

Socioeconomic status (per decile increase in national rank; less deprived) -0.03 -0.04 to -0.03 

ICD-10 codes†     

I46 Cardiac arrest 1.99 1.94 to 2.05 

N17 Acute renal failure 0.67 0.63 to 0.71 

Z51 Other medical care (e.g. chemotherapy) 1.61 1.54 to 1.69 

I50 Heart failure 0.65 0.62 to 0.68 

R57 Shock, not elsewhere classified 1.89 1.81 to 1.98 

Z82 Family history of certain disabilities and chronic diseases leading to 
disablement -0.47 -0.53 to -0.41 

C78 Secondary malignant neoplasm of respiratory and digestive organs 2.46 2.28 to 2.63 

E87 Other disorders of fluid, electrolyte, and acid-base balance 0.53 0.48 to 0.58 

I25 Chronic ischemic heart disease -0.31 -0.34 to -0.28 

Z99 Dependence on enabling machines and devices, not elsewhere classified 0.92 0.83 to 1.01 

G93 Other disorders of brain 1.64 1.51 to 1.76 

J44 Other chronic obstructive pulmonary disease 0.42 0.38 to 0.46 

F03 Unspecified dementia 0.84 0.78 to 0.91 

C34 Malignant neoplasm of bronchus and lung 1.92 1.76 to 2.08 

E78 Disorders of lipoprotein metabolism and other lipidemias -0.33 -0.36 to -0.29 

E11 Non-insulin-dependent diabetes mellitus 0.26 0.23 to 0.30 

J18 Pneumonia, organism unspecified 0.46 0.42 to 0.51 

N18 Chronic renal failure 0.37 0.33 to 0.41 

*Predicted log-odds of death for 70-year old females with none of the included ICD-10 codes and who live in the most 

deprived area nationally. †In order of decreasing importance (top to bottom), based on the order in which codes were 

removed from the approximation models.  
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Hip fracture 

  

Model 

coefficient 

95% confidence 

interval 

Intercept* -2.82 -2.86 to -2.77 

Age (per 5-year increase) 0.35 0.34 to 0.36 

Male (versus female) 0.51 0.49 to 0.54 

Socioeconomic status (per decile increase in national rank; less deprived) -0.02 -0.02 to -0.01 

ICD-10 codes†     

Z51 Other medical care (e.g. chemotherapy) 1.35 1.29 to 1.42 

J18 Pneumonia, organism unspecified 0.38 0.35 to 0.42 

F03 Unspecified dementia 0.65 0.62 to 0.68 

I50 Heart failure 0.47 0.43 to 0.50 

C78 Secondary malignant neoplasm of respiratory and digestive organs 1.99 1.84 to 2.13 

I46 Cardiac arrest 2.40 2.23 to 2.56 

C34 Malignant neoplasm of bronchus and lung 1.63 1.50 to 1.76 

F01 Vascular dementia 0.66 0.61 to 0.71 

G30 Alzheimer's disease 0.57 0.53 to 0.61 

J44 Other chronic obstructive pulmonary disease 0.41 0.38 to 0.45 

W01 Fall on same level from slipping, tripping, and stumbling -0.25 -0.28 to -0.22 

N17 Acute renal failure 0.23 0.19 to 0.26 

C79 Secondary malignant neoplasm of other sites 1.48 1.35 to 1.60 

I48 Atrial fibrillation and flutter 0.30 0.28 to 0.33 

W10 Fall on and from stairs and steps -0.43 -0.50 to -0.37 

J96 Respiratory failure, not elsewhere classified 0.59 0.52 to 0.66 

L89 Decubitus ulcer 0.43 0.38 to 0.48 

J69 Pneumonitis due to solids and liquids 0.73 0.63 to 0.82 

N18 Chronic renal failure 0.28 0.24 to 0.31 

G20 Parkinson's disease 0.47 0.41 to 0.53 

Z96 Presence of other functional implants -0.26 -0.30 to -0.23 

W19 Unspecified fall 0.21 0.18 to 0.24 

E87 Other disorders of fluid, electrolyte, and acid-base balance 0.24 0.20 to 0.28 

E78 Disorders of lipoprotein metabolism and other lipidemias -0.21 -0.25 to -0.17 

Z99 Dependence on enabling machines and devices, not elsewhere classified 0.58 0.49 to 0.68 

R13 Dysphagia 0.46 0.38 to 0.54 

J90 Pleural effusion, not elsewhere classified 0.33 0.27 to 0.39 

I10 Essential (primary) hypertension -0.13 -0.16 to -0.11 

E86 Volume depletion 0.26 0.21 to 0.31 

J84 Other interstitial pulmonary diseases 0.59 0.48 to 0.70 

I21 Acute myocardial infarction 0.43 0.35 to 0.51 

Z50 Care involving use of rehabilitation procedures -0.24 -0.30 to -0.19 

A41 Other septicemia 0.33 0.27 to 0.40 

*Predicted log-odds of death for 70-year old females with none of the included ICD-10 codes and who live in the most 

deprived area nationally. †In order of decreasing importance (top to bottom), based on the order in which codes were 

removed from the approximation models.  
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Major surgery for colorectal cancer 

  
Model 

coefficient 

95% confidence 

interval 

Intercept* -2.92 -3.01 to -2.82 

Age (per 5-year increase) 0.20 0.19 to 0.22 

Male (versus female) -0.04 -0.11 to 0.02 

Socioeconomic status (per decile increase in national rank; less deprived) -0.04 -0.05 to -0.02 

ICD-10 codes†     

C78 Secondary malignant neoplasm of respiratory and digestive organs 1.70 1.62 to 1.78 

C77 Secondary and unspecified malignant neoplasm of lymph nodes 0.67 0.60 to 0.74 

I46 Cardiac arrest 3.09 2.80 to 3.37 

K65 Peritonitis 1.00 0.86 to 1.14 

D12 Benign neoplasm of colon, rectum, anus, and anal canal -0.49 -0.59 to -0.40 

N17 Acute renal failure 0.44 0.34 to 0.54 

E87 Other disorders of fluid, electrolyte, and acid-base balance 0.44 0.34 to 0.54 

Z51 Other medical care (e.g. chemotherapy) 0.71 0.60 to 0.83 

J18 Pneumonia, organism unspecified 0.34 0.24 to 0.45 

F17 Mental and behavioral disorders due to use of tobacco 0.41 0.31 to 0.51 

K62 Other diseases of anus and rectum -0.37 -0.49 to -0.24 

I48 Atrial fibrillation and flutter 0.39 0.30 to 0.48 

C79 Secondary malignant neoplasm of other sites 0.89 0.71 to 1.07 

Z12 Special screening examination for neoplasms -0.81 -1.24 to -0.39 

R10 Abdominal and pelvic pain 0.37 0.25 to 0.49 

A41 Other septicemia 0.49 0.36 to 0.63 

K55 Vascular disorders of intestine 0.85 0.65 to 1.05 

R59 Enlarged lymph nodes 0.75 0.55 to 0.96 

E66 Obesity -0.28 -0.41 to -0.15 

R18 Ascites 0.76 0.55 to 0.96 

K66 Other disorders of peritoneum -0.23 -0.32 to -0.13 

J96 Respiratory failure, not elsewhere classified 0.60 0.42 to 0.77 

R63 Symptoms and signs concerning food and fluid intake 0.37 0.24 to 0.51 

I50 Heart failure 0.39 0.26 to 0.53 

Z92 Personal history of medical treatment -0.19 -0.26 to -0.11 

R29 Other symptoms and signs involving the nervous and musculoskeletal systems 0.49 0.31 to 0.66 

L89 Decubitus ulcer 0.72 0.49 to 0.94 

J84 Other interstitial pulmonary diseases 0.93 0.64 to 1.23 

N18 Chronic renal failure 0.26 0.15 to 0.36 

J44 Other chronic obstructive pulmonary disease 0.27 0.16 to 0.37 

K57 Diverticular disease of intestine -0.15 -0.22 to -0.07 

Z08 Follow-up examination after treatment for malignant neoplasms -0.61 -1.00 to -0.22 

M13 Other arthritis -0.28 -0.45 to -0.11 

Z99 Dependence of enabling machines and devices, not elsewhere classified 0.72 0.41 to 1.03 

K51 Ulcerative colitis 0.48 0.21 to 0.75 

G20 Parkinson's disease 0.70 0.39 to 1.02 

N13 Obstructive and reflux uropathy 0.52 0.29 to 0.75 

Y83 Surgical operation and other surgical procedures as the cause of abnormal reaction -0.19 -0.28 to -0.09 

K56 Paralytic ileus and intestinal obstruction without hernia 0.16 0.08 to 0.25 

R41 Other symptoms and signs involving cognitive functions and awareness 0.39 0.21 to 0.57 

E78 Disorders of lipoprotein metabolism and other lipidemias -0.15 -0.25 to -0.06 

*Predicted log-odds of death for 70-year old females with none of the included ICD-10 codes and who live in the most 

deprived area nationally. †In order of decreasing importance (top to bottom), based on the order in which codes were 

removed from the approximation models. 
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Table A3. Apparent performance of models estimated in the sensitivity analyses 

  

Acute myocardial 

infarction Hip fracture 

Major colorectal 

cancer surgery 

Scaled Brier score (%)       

Frequency threshold of 1% 33.1 21.4 16.3 

Clinical Classification Software groups 32.8 20.7 15.1 

Look-back using index episode only 33.9 23.7 17.8 

Look-back period of 3 years 34.4 22.5 18.4 

Charlson and Elixhauser combined 24.5 17.8 8.7 

c-statistic       

Frequency threshold of 1% 0.878 0.790 0.808 

Clinical Classification Software groups 0.880 0.788 0.804 

Look-back using index episode only 0.878 0.799 0.808 

Look-back period of 3 years 0.884 0.798 0.820 

Charlson and Elixhauser combined 0.843 0.770 0.758 

Integrated calibration index       

Frequency threshold of 1% 0.012 0.016 0.007 

Clinical Classification Software groups 0.014 0.016 0.006 

Look-back using index episode only 0.010 0.012 0.008 

Look-back period of 3 years 0.013 0.016 0.008 

Charlson and Elixhauser combined 0.015 0.017 0.000 

All values of calibration-in-the-large and calibration slope equalled zero and one, respectively, by definition.  
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Table A4. Number of ICD codes included in the final models and performance measures, by modelling 

approach and population, in the original data 

 

Acute myocardial 

infarction Hip fracture 

Major colorectal 

cancer surgery 

Number of ICD codes    

Full models 202 257 209 

Reduced models 18 33 41 

Backwards elimination using AIC 137 169 85 

Backwards elimination using BIC 91 99 51 

Lasso 188 221 121 

Scaled Brier score (%)    

Full models 34.9 23.1 18.5 

Reduced models 32.2 21.9 17.6 

Backwards elimination using AIC 34.9 23.1 18.3 

Backwards elimination using BIC 34.8 22.8 17.9 

Lasso 34.9 23.1 18.2 

c-statistic    

Full models 0.885 0.800 0.819 

Reduced models 0.874 0.791 0.812 

Backwards elimination using AIC 0.885 0.799 0.818 

Backwards elimination using BIC 0.884 0.798 0.815 

Lasso 0.885 0.799 0.818 

AIC=Akaike Information Criterion. BIC=Bayesian Information Criterion. ICD=International Classification of Diseases.  
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Figure A1. Box plots of predictions from the full, reduced, and baseline models in the original data, by 

observed outcome status and population 

 

Boxes are drawn from the lower to upper quartile of predicted probabilities with a white horizontal line at the 

median value. Annotated values and white dots correspond to mean values. Whiskers are drawn to the most 

extreme predicted probabilities that are no more than 1.5 times the interquartile range from the box.  
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Figure A2. Optimism-adjusted calibration curves for the reduced models, by population, as estimated 

from loess smoothers in 500 bootstrap samples (shown with line of perfect calibration) 
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Figure A3. Consistency of ICD-10 codes included in the reduced models across 500 bootstrap samples 

 

Filled points relate to ICD-10 codes that were included in the reduced models in the original data; unfilled 

points relate to ICD-10 codes that were not included. Only the 100 most frequently included codes shown.  
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Figure A4. Comparison with the performance of models based on the Charlson or Elixhauser conditions, 

when all ICD-10 codes were eligible for inclusion (filled points) and when excluding selected codes 

(unfilled) 
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Figure A5. Scatter plots of coefficients estimated for the full models using the standard maximum 

likelihood (x-axis) and penalised maximum likelihood (y-axis) in each population 

 

The penalty factor was chosen to maximise a modified Akaike’s Information Criterion (AIC).  
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Code to implement the model approximation approach in R 

 

# Description of dataset -------------------------------------------------- 

 

 

# The data are stored in R as 'df_original' with class 'data.frame'. 

# The outcome variable is 'mort'. The predictors are 'age', 'sex', 

# 'imd', and a binary predictor for each included ICD-10 code. 

# The data frame is structured as: 

 

#    mort | age | sex |   imd | A04 | B37 | C34 | D47 | E03 | ...  

#   -------------------------------------------------------------- 

# 1     1 |  62 |   0 | 17980 |   0 |   1 |   0 |   0 |   0 | ...  

# 2     0 |  71 |   1 |  1284 |   0 |   0 |   0 |   0 |   0 | ... 

# 3     0 |  84 |   0 |  6421 |   0 |   0 |   1 |   1 |   0 | ... 

 

 

 

# Load required packages and functions ------------------------------------ 

 

 

library(rms) 

 

# The val.prob.ci function can be downloaded from: 

# www.clinicalpredictionmodels.org/doku.php?id=rcode_and_data:chapter15 

 

source('C:/val.prob.ci.June09.r') 

 

 

 

# Fit models and calculate apparent performance --------------------------- 

 

 

# Code adapted from: Harrell FE, Jr. Regression Modelling Strategies: 

# With Applications to Linear Models, Logistic and Ordinal Regression, 

# and Survival Analysis. 2nd ed. Cham: Springer; 2015. 

 

 

# fit logistic regression model with all predictors (full model) 

full_model <- lrm(mort ~ ., data = df_original, x = TRUE, y = TRUE, maxit = 1000) 

 

# store the predicted log-odds of outcome 

full_preds <- predict(full_model) 

 

# fit ordinary least squares regression model of predictions 

full_ols <- ols(full_preds ~ ., data = df_original[, -1], sigma = 1) 

 

# fit approximation models and calculate R-squared values 

approx_models <- fastbw(full_ols, aics = 1000000, type = "individual", force = c(1:3)) 

# last argument forces age, sex, and imd into all models 

 

# store predictors from smallest model with R-squared >= 0.95 

vars <- rev(names(approx_models$result[, "R2"][approx_models$result[, "R2"] < 0.95])) 

 

# fit model with these predictors (reduced model) 

formula <- as.formula(paste("full_preds", paste(c("age", "sex", "imd", vars), collapse = " + "), sep = " ~ ")) 

reduced_model <- ols(formula, data = df_original, x = TRUE) 
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# calculate correct standard errors for reduced model 

V <- vcov(full_model, regcoef.only = TRUE) 

X <- cbind('Intercept' = 1, full_model$x) 

x <- cbind('Intercept' = 1, reduced_model$x) 

w <- solve(t(x) %*% x, t(x)) %*% X 

v <- w %*% V %*% t(w) 

reduced_model$var <- v 

 

# create table of reduced model results 

results_table <- data.frame('Code' = names(reduced_model$coefficients), 'Coefficient' = 

reduced_model$coefficients, 'SE' = sqrt(diag(v))) 

results_table$lower_95CI <- results_table$Coefficient - (1.96 * results_table$SE) 

results_table$upper_95CI <- results_table$Coefficient + (1.96 * results_table$SE) 

 

# store the predicted log-odds of outcome from reduced model 

reduced_preds <- predict(reduced_model) 

 

# calculate apparent performance of full model 

full_app_perf <- val.prob.ci(plogis(full_preds), df_original$mort)[c('Brier scaled', 'C (ROC)', 'Eavg', 'Intercept', 

'Slope')] 

 

# calculate apparent performance of reduced model 

reduced_app_perf <- val.prob.ci(plogis(reduced_preds), df_original$mort)[c('Brier scaled', 'C (ROC)', 'Eavg', 

'Intercept', 'Slope')] 

 

 

 

# Adjust performance values for optimism ---------------------------------- 

 

 

# create boostrap function 

boot_function <- function(data, n_samples) { 

   

  results <- matrix(nrow = n_samples, ncol = 10) 

   

  for (i in 1:n_samples) { 

     

    # create bootstrap sample 

    df_sample <- data[sample(1:nrow(data), replace = TRUE), ] 

     

    # fit full and reduced models (as in original data) 

    full_model <- lrm(mort ~ ., data = df_sample, x = TRUE, y = TRUE, maxit = 1000) 

    full_preds <- predict(full_model) 

    full_ols <- ols(full_preds ~ ., data = df_sample[, -1], sigma = 1) 

    approx_models <- fastbw(full_ols, aics = 1000000, type = "individual", force = c(1:3)) 

    vars <- names(approx_models$result[, "R2"][approx_models$result[, "R2"] < 0.95]) 

    formula <- as.formula(paste("full_preds", paste(c("age", "sex", "imd", vars), collapse = " + "), sep = " ~ ")) 

    reduced_model <- ols(formula, data = df_sample) 

    reduced_preds <- predict(reduced_model) 

     

    # calculate apparent performance of full and reduced models 

    full_app_perf <- val.prob.ci(plogis(full_preds), df_sample$mort) 

    reduced_app_perf <- val.prob.ci(plogis(reduced_preds), df_sample$mort) 

     

    # calculate performance of full and reduced models in original data 

    full_test_perf <- val.prob.ci(predict(full_model, newdata = data, type = "fitted"), data$mort) 

    reduced_test_perf <- val.prob.ci(plogis(predict(reduced_model, newdata = data)), data$mort) 

     

    # store values of optimism in matrix 

    full_optimism <- full_app_perf - full_test_perf 
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    reduced_optimism <- reduced_app_perf - reduced_test_perf 

     

    # store optimism values in matrix 

    results[i, 1:5]  <- full_optimism[c('Brier scaled', 'C (ROC)', 'Eavg', 'Intercept', 'Slope')] 

    results[i, 6:10] <- reduced_optimism[c('Brier scaled', 'C (ROC)', 'Eavg', 'Intercept', 'Slope')] 

     

    print(i) 

     

  } 

   

  results <- as.data.frame(results) 

  colnames(results) <- c('full_Brier', 'full_c', 'full_ICI', 'full_CITL', 'full_slope', 

                         'reduced_Brier', 'reduced_c', 'reduced_ICI', 'reduced_CITL', 'reduced_slope') 

  return(results) 

   

} 

 

# calculate optimism in performance in each bootstrap sample 

optimism <- boot_function(data = df_original, n_samples = 500) 

 

# calculate mean optimism across bootstrap samples 

mean_optimism <- colMeans(optimism) 

 

# calculate optimism-adjusted performance values 

full_adj_perf <- full_app_perf - mean_optimism[1:5] 

reduced_adj_perf <- reduced_app_perf - mean_optimism[6:10] 
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