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Abstract 27 

Plasmodium falciparum in pregnancy is a major cause of adverse pregnancy outcomes. We 28 

combine performance estimates of standard rapid diagnostic tests (RDT) from trials of 29 

intermittent screening and treatment in pregnancy (ISTp) with modelling to assess whether 30 

screening at antenatal visits improves upon current intermittent preventative therapy with 31 

sulphadoxine-pyrimethamine (IPTp-SP). We estimate that RDTs in primigravidae at first antenatal 32 

visit are substantially more sensitive than in non-pregnant adults (OR=17.2, 95% Cr.I. 13.8-21.6), 33 

and that sensitivity declines in subsequent visits and with gravidity, likely driven by declining 34 

susceptibility to placental infection. Monthly ISTp with standard RDTs, even with highly effective 35 

drugs, is not superior to monthly IPTp-SP.  However, a hybrid strategy, recently adopted in 36 

Tanzania, combining testing and treatment at first visit with IPTp-SP may offer benefit, especially 37 

in areas with high-grade SP resistance.  Screening and treatment in the first trimester, when IPTp-38 

SP is contraindicated, could substantially improve pregnancy outcomes.   39 

Introduction 40 

Infection with P. falciparum malaria in pregnancy (MiP) is associated with a wide range of adverse 41 

pregnancy outcomes including maternal anaemia, low birthweight and neonatal death1. These 42 

adverse effects largely result from sequestration of the parasite within the placenta particularly in 43 
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women not exposed to P. falciparum in any previous pregnancy1. Despite declines in malaria 44 

transmission in many settings2, MiP risk remains high3. Approximately a third of all pregnancies 45 

(9.5m of 30.6m) occurring in areas of sustained transmission in 2015 were liable to be affected by 46 

malaria3. In the absence of pregnancy-specific protection, this could lead to 750,000 malaria-47 

attributable low birthweight deliveries in sub-Saharan Africa each year3. Observed increases in the 48 

average density of placental infection in areas where transmission has fallen suggest declining 49 

immunity will ensure MiP continues to represent a  pressing public health concern even if the 50 

current stall in reducing global malaria transmission is overcome4–6.  51 

Despite significant improvements in access to antenatal care (ANC) in the past decade, uptake of 52 

proven effective tools for MiP prevention has been slow. In areas where intermittent preventative 53 

therapy in pregnancy (IPTp) is recommended, 22% of women received the recommended three or 54 

more doses of intermittent preventative therapy in pregnancy (IPTp) in 20176. Moreover LLINs use is 55 

low in adolescents who are the most at risk of high-density placental infection3.  The emergence of 56 

parasite resistance to sulphadoxine-pyrimethamine (SP), the only drug currently recommended by 57 

the World Health Organisation (WHO) for IPTp, has led to attempts to find alternative strategies. 58 

One such alternative, intermittent screening and treatment in pregnancy (ISTp), has been evaluated 59 

in a number of countries7–10. Whilst, IPTp provides SP to all women at each visit without testing, ISTp 60 

involves testing of all pregnant women regardless of the presence of malaria symptoms (screening) 61 

with rapid diagnostic tests (RDTs) and treating test-positive women with highly efficacious 62 

artemisinin combination therapy (ACT). However, ISTp using the current generation of RDTs has not 63 

proven more effective than IPTp-SP11, and is therefore not recommended by WHO12.  64 

WHO has recommended further studies into alternative strategies involving routine screening for 65 

MiP12.  These include evaluating whether more sensitive RDTs could make ISTp a viable alternative 66 

and whether hybrid strategies, involving adding RDT-based screening to existing IPTp regimens, 67 

provide additional benefit13. One such hybrid approach is now national policy in Tanzania (where 68 

quintuple mutants are ubiquitous and highly resistant sextuple mutants have been identified in 69 

some areas): all women are tested for malaria parasites at the first ANC visit (booking) and provided 70 

with an ACT if test-positive or, starting in the second trimester, with SP if test-negative. All women 71 

then receive IPTp-SP at subsequent scheduled ANC visits14.  However, given the additional costs and 72 

complexities of such approaches, it is important to understand where, and the extent to which, they 73 

can provide greater protection from malaria during pregnancy than standard IPTp-SP regimens. 74 

The negative consequences of first trimester infection11,15, at which time the use of SP is contra-75 

indicated, and reassuring data regarding first trimester safety of ACTs 16 has resulted in increased 76 

interest in screen and treat approaches using ACTs for women attending ANC during the first 77 

trimester. A recent study from Benin tracking women prior to conception supports previous 78 

modelling17, which suggested that a high proportion of placental infections are likely to be caused by 79 

infections acquired prior to conception. Genotyping of infection showed that the densities of 80 

infection acquired prior to pregnancy, rather than declining over time, had substantially increased by 81 

the time the women attended ANC18.  82 

Trials assessing the impact of MiP interventions are expensive, and time-consuming, requiring up to 83 

2 years longitudinal follow-up. Moreover, large sample sizes are required to adequately measure 84 

effectiveness and cost-effectiveness as the key drivers of attributable burden are outcomes such as 85 



3 
 

pregnancy loss, low birthweight and neonatal mortality are increasingly rare in the context of clinical 86 

trials. Although not a substitute for clinical trials, modelling provides a means to explore the 87 

potential of multiple alternative interventions to guide prioritisation of research.  88 

A key determinant of the need for alternatives to IPTp-SP, the level of parasite resistance to SP and 89 

the associated decline in efficacy of IPT-SP19, varies across Africa. In much of West Africa, SP provides 90 

near perfect curative efficacy and a period of prophylaxis of approximately one month. In East 91 

Africa, where there is a very high prevalence of parasites harbouring K540E ‘quintuple’ SP resistance 92 

mutation, SP fails to clear approximately 20% of infections during pregnancy and provides limited 93 

prophylaxis20. Though there have been no efficacy studies in areas of high prevalence of the 94 

‘sextuple’ SP resistance mutation (an additional mutation at A581G on top of the quintuple), 95 

currently limited to specific foci in East Africa21, there are concerns that IPTp-SP effectiveness may 96 

be heavily compromised within these settings19.  97 

In this analysis, we combine data on the sensitivity of standard RDTs during pregnancy collected 98 

during ISTp trials with equivalent data from a review of RDT sensitivity outside of pregnancy22.  We 99 

then use modelling to estimate the impact of pregnancy on the detectability of infection using RDTs, 100 

incorporating the role of pregnancy-specific immunity in controlling parasite densities in the 101 

placental and peripheral blood. Finally, we incorporate these estimates within a model of the 102 

relationship between malaria transmission and effectiveness of IPTp-SP, incorporating the effects of 103 

SP resistance, to assess the potential for different strategies involving antenatal screening, either 104 

with current or more sensitive RDTs, to improve protection for pregnant women from MiP.  105 

Results 106 

Impact of pregnancy upon detectability of infection by RDT 107 

There have been four large-scale trials comparing ISTp with IPTp-SP, three of them had matched RDT 108 

(First Response Malaria pLDH/HRP2 Combo Test, Premier Medical Corporation, India) and PCR 109 

samples collected from 1,559 women based in 6 countries (Burkina Faso, The Gambia, Ghana, and 110 

Mali in West Africa and Kenya and Malawi in East Africa)8–10. West African studies recruited only 111 

women in their first and second pregnancy, whereas the studies in East Africa recruited women of all 112 

gravidities. In all studies women were enrolled in their first visit after 16 weeks gestation provided 113 

this visit was before 28 weeks, 30 weeks and 32 weeks in Malawi, Kenya and West Africa 114 

respectively. In three countries, infection by conventional RDT and PCR was measured throughout 115 

pregnancy: Ghana, Kenya and Malawi (in Burkina Faso, The Gambia and Malawi PCR was only 116 

measured at enrolment).  Both prevalence and detectability (measured by RDT sensitivity relative to 117 

PCR) were consistently higher at enrolment than at subsequent ANC visits, particularly in 118 

primigravidae (Figure 1).   119 

In all six countries, RDT sensitivity at enrolment, defined throughout this paper as the level of 120 

detection relative to PCR, showed a declining trend with gravidity (Figure 2a). Overall sensitivity in 121 

primigravidae was very high, with 88.9% [640/720, 86.4-91.1% 95% C.I.] of PCR positive infections 122 

detected by RDT, but showed substantial heterogeneity between sites ranging between 65.8% 123 

[27/41, 49.4-79.9% 95% C.I.] sensitivity in Bassé, The Gambia, the setting with lowest transmission 124 

(PCR prevalence in primigravidae: 13.4% [41/316, 9.8-17.8% 95% C.I.]), to close to that of PCR in 125 

Navrongo, Ghana (95.0% [192/202,91.1%-97.6% 95% C.I.]), where PCR prevalence was 65.8% 126 
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[202/307,60.2-71.1% 95% C.I.]. We also compared the sensitivity observed within primigravidae at 127 

enrolment against the RDT sensitivity in other non-pregnant populations from data obtained from a 128 

recent review22. Incorporating the relationship between transmission and RDT sensitivity from this 129 

analysis (Figure 2), we estimated that the odds of detecting a PCR positive infection with an RDT 130 

were substantially higher at enrolment in primigravidae than in asymptomatic non-pregnant 131 

individuals over 15 years old (Odds Ratio (OR) 17.2 [13.8-21.6 95% Cr.I.]) or asymptomatic children 132 

under 5 years of age (OR 3.8 [2.9-4.9 95% Cr.I.]).  133 

To obtain estimates of how acquisition of pregnancy-specific immunity influences detectability of 134 

infection with RDTs, we then used a previous model of the relationship between prevalence in the 135 

general population and cumulative exposure to MiP to account for likely patterns of prior exposure 136 

to infection during pregnancy by gravidity17. Our estimates suggest that the odds ratio for the 137 

pregnancy-related increase of detectability relative to non-pregnant adults, falls from 17.2 [13.8-138 

21.6 95% Cr.I.]) in primigravidae to 4.05 [3.14-5.16 95% Cr.I.] when a woman has experienced 139 

infection in one previous pregnancy and to 1.67 [1.22-2.34 95% Cr.I.] if she has experienced infection 140 

in two previous pregnancies. By the fourth infected pregnancy, our estimates of sensitivity in 141 

pregnancy are no longer distinguishable from those outside of pregnancy [Figure 2b].  142 

We used multivariable logistic regression to find the best-fitting predictors of RDT sensitivity at 143 

subsequent ANC visits, using random effects intercepts to account for unknown or unmeasured 144 

factors between sites. This suggested gravidity remains a significant factor at later visits (OR 0.87 145 

[0.78-0.96 95% C.I.] per additional previous pregnancy, p=0.005), as does the presence of infection 146 

at the preceding visit (OR 0.70 [0.53-0.92 95% C.I.]). Other potential variables explored that were not 147 

kept within the best fitting model as measured by Akaike Information Criterion (AIC), after 148 

accounting for gravidity and PCR status, included a measure of parasite density of this previous 149 

infection (patent (RDT positive) or sub-patent), the number of times a woman had been previously 150 

tested, or the number of previous ANC visits she had attended. Despite the exploration of these 151 

factors, there remained substantial unexplained between-site variation within this best-fitting model 152 

(p<0.0001).  153 

In addition to these factors, RDT sensitivity in pregnancy is also likely to depend upon maternal age. 154 

This factor was not included in our analysis as sufficient granularity was not available for the 155 

relationship with RDT sensitivity outside of pregnancy22. Given the correlation between age and 156 

gravidity, it is likely that some age-dependent effects have been attributed to pregnancy-specific 157 

immunity. However, our results, which found that RDT sensitivity in primigravidae is substantially 158 

higher than would be expected in children (Figure 2a), suggest the major determinants of the 159 

observed patterns are pregnancy- rather than age-specific.        160 

Dynamics of infection throughout pregnancy with ISTp 161 

We updated a previously model of the relationship between malaria transmission and exposure to 162 

malaria infection throughout pregnancy to incorporate the factors described above17. We then 163 

assessed the extent to which this model replicated patterns of PCR prevalence throughout 164 

pregnancy within the three trials which conducted PCR at each visit. This was done by restricting our 165 

analysis to women who received the modal number of screens in each trial (3 screens prior to 166 

delivery in Kenya and Ghana, and 4 screens in Malawi). We also assumed that these dynamics could 167 

be approximated by simulations with an initial screen occurring at the median gestational age at 168 
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which women could be enrolled into each trial (24 weeks in Kenya, 20 weeks in Ghana and 20 weeks 169 

in Malawi for women receiving 4 screens), with subsequent visits spaced regularly until delivery at 170 

40 weeks gestation.  171 

We calibrated the model to match the observed PCR prevalence in primigravidae at enrolment in 172 

each trial, whereupon the model captured (Figure 3) many of the observed dynamics of infection 173 

throughout the trials, namely:  174 

i) decreases in PCR prevalence at enrolment by gravidity: driven in the model by reduced prevalence 175 

at conception due to the acquisition of non-pregnancy specific immunity between pregnancies and 176 

improved clearance of parasitaemia during pregnancy related to pregnancy-specific immunity;  177 

ii) a large decline in prevalence in primigravidae between first and second screens: explained in the 178 

model by the higher proportion of women testing positive by RDTs at first screen and associated 179 

treatment and post-treatment prophylactic effect; 180 

 iii) diminishing impact upon prevalence with increasing gravidity: driven by reduced detectibility of 181 

infection by gravidity due to pregnancy-specific immunity acquired in previous pregnancies;  182 

iv) similar prevalence between tests from the second screen until delivery across all trials and 183 

gravidity categories: explained by the shorter window of exposure in which women can acquire new 184 

detectable infection (~20 weeks duration of gestation prior to first screen plus any residual infection 185 

acquired pre-conception versus ~4-8 gestation between screens ) and the correspondingly smaller 186 

proportion of women benefiting from any post-treatment prophylactic effect from second screen 187 

onwards.  188 

Alternatives to IPTp-SP involving screening with standard RDTs  189 

To capture differential effectiveness of IPTp-SP as a function of the accumulation of parasite 190 

resistance mutations we defined three resistance scenarios (summarised in Figure 4) as ‘low 191 

prevalence quintuple’ and ‘high prevalence quintuple’ SP resistance that map to those commonly 192 

observed in West and East Africa, along with a hypothetical scenario in which SP retains no 193 

antiparasitic activity, referred to as ‘high sextuple’ SP resistance areas. Within each scenario we 194 

compared six MiP prevention strategies: no intervention; IPTp-SP; ISTp; a hybrid approach (Hybrid-195 

SSTp) wherein women are screened at first visit during the second trimester, provided an ACT if test-196 

positive and SP if test-negative, then provided with IPTp-SP at subsequent visits; a second hybrid 197 

approach (Hybrid-ISTp) where women are tested at each ANC visit, provided an ACT whenever they 198 

test positive and SP otherwise (after the start of 2nd trimester); and IPTp with an ACT. For each 199 

scenario involving ACTs we considered two possible drug combinations: artemether-lumefantrine 200 

(AL), which provides prophylaxis for around 10 days, and dihydroartemisinin-piperaquine (DP) which 201 

we assume provides prophylaxis of similar longevity to SP in the absence of resistance (see Methods 202 

and Discussion).  203 

We compared scenarios in terms of two measures of exposure we consider likely to correspond to 204 

distinct sets of pathologies1:  205 

• The proportion of women left with uncleared infection post-enrolment (Figure 5), to 206 

capture impact upon pathologies associated with chronic placental infection such as 207 
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intrauterine growth restriction and LBW. To incorporate the interaction between infection 208 

detectability using RDT and immunity, these estimates are then weighted by estimates of 209 

the number of LBW these infections would cause if left untreated (Figure 5c).   210 

• The risk of new infection later in pregnancy (Figure 6),associated with a range of negative 211 

outcomes including preterm delivery, neonatal mortality and stillbirth23,24.  212 

Our results suggest that in low quintuple resistance areas, as in West Africa, where SP retains high 213 

efficacy and longevity, improving upon IPTp-SP strategies when delivered correctly, is likely to be 214 

challenging (Figure 4, a,d). The choice of ACT generally had limited impact upon prevalence when 215 

only provided to test-positive women(i.e. ISTp or hybrid strategies). However, hybrid strategies using 216 

AL resulted in higher infection prevalence than IPTp-SP between first and second visits, driven by the 217 

longer period of prophylaxis provided by SP20 than AL25 in areas of low quintuple resistance. This 218 

highlights the need to prioritise longer-lasting ACTs when screening for infection at scheduled ANC 219 

visits in order to ensure women are provided with at least equivalent protection to IPTp-SP.  220 

The ISTp trial in Malawi and Kenya were conducted in areas of high quintuple mutation SP 221 

resistance. Overall RDT sensitivity across all visits was 47% in these trials, meanwhile the risk that 222 

presumptive SP fails to clear existing infections is approximately 20% in these settings. Thus, it is 223 

unsurprising that our model incorporating these data suggests that IPTp-SP is more effective than 224 

ISTp in terms of cumulative exposure to infection during pregnancy measured by PCR((the 47% 225 

average risk of an untreated infection due to a false-negative RDT outweighs the approximately 20% 226 

risk of treatment failure with presumptive SP). However, accounting for higher sensitivity of RDTs 227 

earlier in pregnancy and in women with lower immunity, our results suggests that both IPTp-SP and 228 

ISTp have a large impact upon prevalence when compared to the counterfactual of no intervention 229 

(Figure 4, b,e). Moreover, our results suggest screening with RDTs early in the second trimester is 230 

effective at detecting the majority of early infections that would cause chronic intrauterine growth 231 

restriction leading to low birthweight if not treated (Figure 5).  232 

In Figure 4, b,c,e,f we show the effectiveness of IPTp with AL and DP.  Neither drug is currently 233 

recommended for this purpose. Both are predicted to show incremental effectiveness in preventing 234 

infection over SP in areas where resistance has reached high levels of quintuple mutation or above. 235 

However, the incremental impact of DP, the focus of several ongoing studies, is substantially higher 236 

than the shorter-lasting AL. However, until a suitable, more effective, alternative drug to SP for IPTp 237 

has been recommended, our results suggest a hybrid strategy could be more effective than IPTp-SP 238 

alone in areas of high quintuple resistance or above. It ensures that RDT-positive infections, which 239 

are the higher-density, potentially more severe, infections are treated with a highly effective ACT, 240 

for which the curative efficacy is higher than for SP. Meanwhile, in contrast to ISTp strategies, 241 

women testing negative (both truly and falsely) are still receive the same level of protection 242 

standard IPTp-SP (Figure 5).. Our model suggests that hybrid approaches at all scheduled IPTp visits, 243 

instead of just at the first visit, provides marginal incremental impact over the single screen-and-244 

treat hybrid strategy (Figures 4 and 6), whilst requiring substantially more resources due to repeated 245 

screening. 246 

Our simulations also suggest that in areas with high quintuple mutant resistance, IPTp using a long-247 

lasting drug such as DP would be considerably more effective than IPTp-SP or any alternative 248 

strategies involving screen-and-treat strategies in terms of their impact upon newly occurring 249 
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infections from the second trimester onwards (i.e. following the timing when the first dose of IPTp 250 

would be scheduled to occur) (Figure 6). 251 

Given the limited data on the incremental sensitivity for infection in pregnancy of new highly 252 

sensitive RDTs (hs-RDTs) 26 we do not model the impact of specific hs-RDTs. Instead, we explored the 253 

extent to which more highly sensitive tests than standard RDTs in general could potentially improve 254 

the incremental impact of the strategies considered above.  255 

For ISTp strategies, the added benefits of more sensitive RDTs may be small in high transmission 256 

areas if the bulk of adverse outcomes results from patent infections. Moreover, sub-patent 257 

infections missed by standard RDTs are more concentrated later in pregnancy when evidence for 258 

increased risk of adverse pregnancy outcome is not consistent (see discussion). Even in areas of high 259 

quintuple resistance, SP is likely to retain relatively high efficacy in clearing low-density infections 260 

missed by standard RDTs, resulting in >90% of infections being effectively cleared with a hybrid 261 

strategy using existing RDTs (Figure 5). As a result, we estimate the incremental effectiveness of 262 

more sensitive diagnostics within hybrid strategies would be limited.  263 

Potential value of screening in the first trimester 264 

Although a large proportion of infections are likely to have been sub-patent at the beginning of 265 

pregnancy, by the time primigravidae receive the first dose of IPTp-SP, the density of infection has 266 

increased to the extent that very few remain below the limit of detection of standard RDTs (Figure 267 

7a)18. Clearing these infections during any first trimester ANC visit  irrespective of the immediate 268 

density of the infection, is likely to have a large impact on the overall exposure to placental infection 269 

(Figure 7c). Moreover, (Figure 7b), such testing is predicted to have a large proportional impact on 270 

remaining exposure to placental infection in the presence of IPTp-SP (Figure 7c) which leaves the 271 

first trimester entirely unprotected.  272 

Our model suggests that a substantial number of infections acquired before or during the first 273 

trimester would lead to adverse outcomes if left untreated5. It also suggests that the impact of first 274 

trimester testing will depend strongly on gravidity, transmission, and the sensitivity of the test. The 275 

latter is likely to depend strongly upon poorly understood temporal dynamics of parasite replication 276 

in early pregnancy (Figure 7a). Moreover, it is difficult to assess the extent to which future IPTp-SP 277 

will modify the impact of these early infections upon birth outcome.  278 

Discussion 279 

By reanalysing malaria testing data from trials of ISTp we were able to generate the first quantitative 280 

estimates of the impact of pregnancy upon the detectability of infection using RDT.  These 281 

relationships provide more nuanced understanding as to the failure of ISTp to show incremental 282 

effectiveness compared to IPTp-SP in trials Our estimates suggest that infections missed by standard 283 

RDTs lead to a greater proportion of inadequately treated infected women than providing SP 284 

presumptively (i.e. the negative effects of misdiagnosed infections outweigh those of treatment and 285 

prophylaxis failures). However, in these settings our simulations suggest that both IPTp-SP and ISTp, 286 

whilst failing to provide optimal protection, effectively prevent the majority of infections when 287 

compared to women without any intervention.  288 
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This finding, that ISTp has substantial intrinsic impact relative to no intervention despite not being 289 

superior to IPTp, is supported by a recent meta-analysis of four trials comparing these two 290 

strategies: when pooled these studies show that babies born in the IPTp-SP arms had a 25g higher 291 

mean birthweight than in the ISTp arm (95% CI 7–44, p=0·0088, I² 0%, 8659 pregnancies)11. In 292 

absolute terms, this difference is small compared to the 79g (95% CI 13-145) seen with IPTp-SP when 293 

compared to placebo or passive case detection.. Consequently, ISTp , has potential advantages over 294 

current practice in some countries that do not deploy IPTp due to concerns about SP efficacy, or, 295 

if an adequate replacement drug for SP within IPTp regimens cannot be identified, if SP became 296 

completely ineffective due to further development of resistance in the future (Figure 4).  This might 297 

be the case if the ‘sextuple’ A581G resistance mutation, established in specific foci in East Africa, 298 

becomes more prevalent and widespread. 299 

There is not sufficient data to specifically include recently developed highly sensitive tests for HRP2 300 

within our analysis. However, our results suggest more highly sensitive diagnostics in general could 301 

improve ISTp strategies, and if sufficiently sensitive, could provide incremental effectiveness over 302 

IPTp-SP in terms of parasitological outcomes such as infection prevalence by PCR at delivery in areas 303 

of high quintuple mutation SP resistance. However, the clinical implications of any increased 304 

effectiveness to detect low-density infections, which are more common in multigravidae and later in 305 

pregnancy  remain to be determined. The association between low-density infection in the second 306 

trimester onwards and pregnancy outcome is not consistent27–31. However, as transmission falls, the 307 

density of peripheral and placental infection at delivery in multigravidae increases4, presumably 308 

reflecting a lower level of exposure to malaria during previous pregnancies. Of all trial sites, RDT 309 

sensitivity at enrolment in primigravidae was lowest In The Gambia, the trial site with the lowest 310 

transmission.. This may reflect lower density of infection prior to placental development, as the 311 

sensitivity of infection by RDT outside of pregnancy falls as transmission declines22,32. In these areas, 312 

more sensitive RDTs could substantially improve the ability of ISTp to detect and treat what would 313 

otherwise be long-lasting infections in women lacking pregnancy-specific antimalarial immunity. 314 

More data are required from studies measuring RDT sensitivity in pregnancy in areas of low 315 

transmission in order to assess this hypothesis.   316 

In areas with high prevalence of quintuple SP resistance, hybrid strategies show promise as a 317 

solution to offset the respective weaknesses of IPTp-SP and ISTp. A potential advantage of hybrid 318 

strategies over IPTp is that they prioritise the use of highly effective ACTs to those with the higher 319 

density infections early in pregnancy most likely to cause harm. Retaining IPTp-SP for women who 320 

test negative still receive the current standard of care and ensures that women with low-density 321 

sub-patent infections are not left untreated.. Standard RDTs perform well at the first antenatal visit 322 

in the second trimester, when prevalence and parasite densities are highest, largely offsetting the 323 

need for more sensitive diagnostics, at least whilst SP retains the majority of its curative efficacy 324 

(which is the case even in high quintuple resistant areas3,20). However, given the complexity of multi-325 

day ACT dosing regimens, the theoretical advantages (in terms of efficacy with 100% adherence) and 326 

real-life advantages(,accounting for adherence, need to be carefully considered to ensure that 327 

switching strategies does not lead to lower protection relative to IPTp-SP in practice.   328 

Hybrid strategies may only represent an interim solution if SP resistance continues to increase and 329 

SP effectiveness progressively declines19. Adding screening at first IPT-SP visit only alleviates some of 330 

the risk associated with these infections, and more effective chemoprevention with longer-lasting 331 
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drugs such as DP is likely required to provide larger incremental benefits to pregnancy 332 

outcome9,11,33,34. Two confirmatory trials of IPTp-DP are currently ongoing in Kenya, Malawi and 333 

Tanzania (clinicaltrials.gov NCT03208179 and NCT03009526). Estimates of SP prophylactic longevity 334 

outside of pregnancy suggest equivalent prophylactic longevity to DP (approximately one month)35 335 

in areas where the quintuple SP resistance mutation is largely However, there remains a dearth of 336 

data allowing the direct comparison of the effectiveness of the two drugs in pregnancy in such 337 

settings, limiting our ability to provide guidance on the relative merits of IPTp when SP resistance is 338 

low. Such data could also help to provide insight into the extent to which SP has impact upon non-339 

malarial causes of adverse pregnancy outcome which we do not capture in our analysis.  340 

Our analysis highlights that a high proportion of pregnant women are already infected prior to the 341 

second trimester, the earliest stage at which doses of IPTp-SP can be initiated.. A large proportion of 342 

these infections are likely to have been acquired early in pregnancy or prior to conception, as 343 

evidenced by genotyping pre-conception infecting parasites in Benin18 and the high prevalence of 344 

infection in women first attending ANC outside of the transmission season in seasonal settings 36. 345 

Our results support the findings from Benin in suggesting that in primigravidae, low-density 346 

infections at conception persist, multiply and sequester within the placenta at crucial stages of 347 

development18. Thus,  adding screening for malaria in the first trimester could have important 348 

benefits. This relies upon women being aware of their pregnancy and ANC provision and attendance 349 

during this period, though, first trimester ANC is a strong focus of updated 2016 WHO ANC 350 

guidelines37  which now recommends a first ANC visit prior to 12 weeks gestation, and the drive to 351 

improve ANC as part of the wider Sustainable Development Goals38.  352 

Estimating the impact of treating first trimester infections upon birth outcome, and the extent to 353 

which this depends upon subsequent IPTp uptake, is challenging as most studies measuring 354 

associations between early infection and birth outcome do so in the context that these infections 355 

are effectively treated upon detection. Some adverse pregnancy outcomes associated with first 356 

trimester infection, such as disruption of the development of aspects of placental vasculature, may 357 

be irreversible39, whereas for others, e.g. intrauterine growth restriction, IPTp-SP may allow recovery 358 

and catch-up growth later in pregnancy40. In the absence of randomised controlled trials of the 359 

impact of first-trimester screening, the findings that parasite densities are likely to be on the rise 360 

early in pregnancy, and the increasing data suggesting a negative impact of these infections upon 361 

placental and fetal development, even in the presence of IPTp-SP15,39, suggest there is no threshold 362 

level of parasitaemia under which women can be safely exposed during the first trimester. Providing 363 

presumptive antimalarial treatment or prophylaxis at this stage of pregnancy is challenging as ACTs 364 

are only recommended for case-management in the first trimester. However, the ability to identify 365 

women carrying infections at this stage by testing with a highly sensitive diagnostic test, and thus 366 

treat infections before they have the chance to multiply and sequester within the placenta, has the 367 

potential to provide substantial and lasting benefits to maternal, fetal, neonatal, and infant health.. 368 

The only published study assessing the performance of existing next-generation highly-sensitive 369 

RDTs during pregnancy detected a statistically insignificant higher number of PCR positive infections 370 

than conventional RDTs41. However, this study was conducted in an area of low transmission, with 371 

testing conducted throughout gestation and at delivery. Interpreting these results in terms of the 372 

value of such tests for first trimester screening  in areas of higher transmission is challenging. 373 
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The extent to which hybrid strategies would affect uptake of ANC-based interventions aimed 374 

towards preventing MiP (IPTp and ITNs) is unknown and will be a large determinant of the impact of 375 

such a shift in policy. Since adopting a single screen and treat hybrid approach as policy, the uptake 376 

of routine testing as an ANC-based intervention in Tanzania has been rapidly increasing, from 36.7% 377 

in 2014 to 88.8% in 201714. This uptake is particularly impressive in the history of scale-up of IPTp, 378 

both in Tanzania, where IPTp-SP became policy in 2001 but where only 56% of pregnant women 379 

received two or more doses of SP in 2017, and more generally across Africa6. Understanding 380 

whether this rate of uptake would be mirrored in other countries, and whether it leads to a higher 381 

proportion of ANC attendees receiving any malaria-specific intervention, will be key to 382 

understanding the overall role testing may have in improving the limited protection from malaria 383 

currently provided to pregnant women. 384 

This study has several limitations. The epidemiology of MiP is complex, particularly placental 385 

infection, which can only be reliably measured at delivery. As a result, and given the challenges 386 

associated with quantifying the attributable burden of multifactorial negative pregnancy outcomes 387 

such as LBW, preterm delivery, and fetal loss, we were not able to include direct estimates of the 388 

impact of these interventions upon many of the negative effects of malaria in pregnancy. Although 389 

we can estimate the impact of different strategies on the incidence of new infection, we could not 390 

quantify these effects on the burden of clinical malaria, neither could we quantify impact on 391 

prematurity and stillbirth, which are likely to depend upon timing during gestation and transmission 392 

intensity23. Our analysis does not include any consideration of optimal strategies to protect HIV-393 

infected pregnant women who currently receive daily cotrimoxazole, which provides sub-optimal 394 

protection from malaria42. Finally, we do not capture the potential value data from ANC-based 395 

screening to improve malaria surveillance43. 396 

In conclusion, our modelling suggests that screening and treatment with the current generation of 397 

RDTs would not provide incremental effectiveness relative to WHO’s existing IPTp-SP strategy, even 398 

in areas with high quintuple mutation SP resistance. However, screen-and-treat strategies may have 399 

incremental benefit if the effectiveness of IPTp-SP is reduced further by resistance, especially in 400 

areas with high prevalence of sextuple SP mutants. Our model suggests that hybrid strategies 401 

integrating g screening at the first antenatal visit into existing IPTp-SP regimens are potentially 402 

beneficial in areas with high prevalence quintuple mutation SP resistance. Moreover, screening 403 

women routinely for malaria in the first trimester and providing effective treatment could provide 404 

substantial benefit, particularly if suitable highly sensitive diagnostics for first trimester infection can 405 

be identified.  406 

Methods 407 

Estimating the effects of pregnancy on RDT performance within ANC 408 

We related the observed sensitivity of RDTs at enrolment in the ISTp trials to RDT sensitivity in the 409 

general population and the acquisition of pregnancy-specific immunity due to prior exposure to MiP 410 

according to the following function (see supplementary information for full details of models and 411 

model fitting): 412 

Odds(𝑆𝑖𝑗
𝑊) = Odds (𝑆𝐴(𝑥𝑗)) (1 +

𝛽

(1 + 𝑦𝑖𝑗/𝛿)
𝜈) . (1) 413 
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 414 

Here 𝑆𝐴(𝑥𝑗) – describes the probability, p, that a PCR positive infection in the general population is 415 

detected by RDT, following a function of overall PCR prevalence within the setting, 𝑥𝑗 .  Odds are 416 

related to probability 𝑝 by the general relationship Odds(𝑝) =
𝑝

1−𝑝
 . 417 

The sensitivity 𝑆𝑖𝑗
𝑊  represents the probability that a PCR-positive infection of a newly enrolled 418 

pregnant woman 𝑖 within site 𝑗 is detected by RDT.   The odds of detection in primigravidae are 419 

boosted by a constant 𝛽 relative to the equivalent odds for the probability of detecting infection by 420 

RDT outside of pregnancy.   This pregnancy-related boost in detectability, relative to adults in the 421 

general population, then decreases with increasing number of pregnancies in which a woman has 422 

previously been exposed to malaria, denoted 𝑦𝑖𝑗. This follows a Hill function with offset parameter 𝛿 423 

and power parameter 𝜈.  424 

Neither the sensitivity of RDTs outside of pregnancy nor the exposure history in previous 425 

pregnancies were available in the data. Instead, we relied on the following fitted relationship 426 

between RDT sensitivity and PCR prevalence obtained by Wu et al22:   427 

𝑆𝐴(𝑥𝑗) = [𝑥𝑗 (1 + exp (−(𝜇𝐴 ∗ Odds(𝑥𝑗) + 𝜎𝐴)))  ]
−1

, (2) 428 

 429 

where 𝜇𝐴 = 1.30 and 𝜎𝐴 = −1.38 are the best fitting parameters obtained by fitting this model to 430 

matched cross-sectional RDT and PCR samples in people aged over 15 (parameters obtained from 431 

fitting to matched RDT and PCR data from children under 5, young adults aged 5-15 and all-age 432 

surveys were also included within separate model fits for comparison)22. Working within a Bayesian 433 

framework we were then able to simultaneously fit this model and a previously developed model of 434 

the relationship between malaria transmission and exposure to MiP17 (see supplementary materials 435 

for full details) to the gravidity-specific patterns of RDT and PCR detection across each setting, 436 

accounting for uncertainty in 𝑦𝑖𝑗, the number of previous pregnancies during which each women 437 

would have been exposed to malaria. This provided inference on the parameters 𝛽, 𝛿 and 𝜈 438 

determining the impact of pregnancy upon detectability of infection using RDT. This model was 439 

fitted alongside models where the sensitivity of RDTs at enrolment were independent of either 440 

transmission intensity or gravidity, or independent of both, and compared using the Deviance 441 

Information Criterion (DIC) (see supplementary information for full details of model fitting).  442 

The probability of detecting infection at later ISTp visits was modelled as a separate logistic 443 

multivariable regression accounting for random effects between study sites. Gravidity, infection 444 

status of the previous test and overall throughout pregnancy, and the number of previous visits or 445 

tests were all included as potential predictors of RDT sensitivity. Model selection was carried out 446 

using AIC, and parameters of the best-fitting regression were included in the dynamical model (see 447 

supplementary information for a detailed description of this analysis).  448 

Modelling the impact of interventions upon parasite prevalence 449 
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We extended our existing model, linking transmission in the general population to the risk and 450 

burden of MiP and effectiveness of IPTp3 to incorporate our estimates of RDT sensitivity by gravidity 451 

and throughout pregnancy (see supplementary information for full details). The overall fit of this 452 

model was assessed by visually comparing PCR prevalence throughout pregnancy in the ISTp arm in 453 

each trial site, with data restricted to women with the modal number of visits in each site, with 95% 454 

uncertainty intervals of trajectories of PCR prevalence throughout pregnancy generated by the 455 

model using 1000 draws from the joint posterior distribution of 𝛽, 𝛿 and 𝜈 and from the parameters 456 

within the final regression model of RDT sensitivity after enrolment, with the model calibrated by 457 

varying EIR to match a draw from the 95% confidence interval PCR prevalence at enrolment in 458 

primigravidae in each site (see Figure 3). 459 

For all protocols involving the use of SP we considered three separate scenarios with respect to the 460 

resistance of Pf to the drug on the basis of the prevalence of the quintuple K540E resistance 461 

mutation and in vivo efficacy data: ‘Low quintuple resistance’ (K540E mutation prevalence < 15%), 462 

women are protected with almost no treatment failures over the period of a month (here we 463 

assume a Weibull-distributed period of protection which SP prevents over 50% of infections until 464 

mean period of prophylaxis of 28 days, reflecting the observation that reinfections following 465 

treatment in these areas appear to begin occurring around this duration post-treatment), ‘high 466 

quintuple resistance’ (K540E mutation prevalence > 85%) where the risk of infection recrudescence 467 

has been estimated to be 21.6% but re-infections appear to occur readily around a week after 468 

treatment, and an ‘intermediate quintuple resistance’ category (15%< K540E prevalence < 85%) 469 

where treatment fails to clear infection around 10% of the time and prophylaxis appears to last 470 

around two weeks20. There remains no efficacy data on the effects of the A581G sextuple mutation 471 

in pregnant women, but there is evidence to suggest that IPTp-SP efficacy may be severely 472 

compromised in settings with prevalence greater than 37%19. As a result, we also carried out 473 

simulations under the scenario that SP is provided but has no impact. In the absence of data, we 474 

assume that treatment failure occurs randomly with respect to gravidity, gestational time, or 475 

whether an infection is detectable by RDT. The ACTs AL and DP were also assumed to have near 476 

perfect efficacy in clearing ongoing parasitaemia. AL was assumed to have a mean prophylactic half-477 

life of 14, matching that estimated outside of pregnancy by Okell et al (13.8 days [range 10.2–22.8 478 

days])25. In the same analysis Okell et al estimated a prophylactic half-life of DP outside of pregnancy 479 

of 29.4 days [range 16.4–48.8 days]25, similar to our assumed duration of effectiveness of SP in areas 480 

of low quintuple resistance. As a result, in the absence of specific data comparing duration of 481 

effectiveness of SP and DP in pregnancy in areas of low quintuple resistance, we assumed the same 482 

prophylactic profile for both drugs and avoid drawing conclusions as to the relative merits of the two 483 

combinations in such settings.  484 

Estimates of the extent to which screening infection in the first trimester will prevent low-485 

birthweight are based upon a previous analysis looking at different models of the relationship 486 

between exposure to malaria and malaria-attributable LBWs, the best fitting of which involved a 487 

relationship depending upon the level of chronic placental infection during pregnancy which was 488 

modified by exposure to infection during previous pregnancy5. We make the conservative 489 

assumption that, prior to the beginning of the second trimester, variation in detectability of infection 490 

using RDT will be random with respect to gravidity. When estimating the proportion of LBW-causing 491 

infections detected by standard RDTs at first visit in the second trimester (e.g. Figure 5), we 492 

incorporate the dependence between both LBW risk and RDT sensitivity and pregnancy-specific 493 
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immunity (see Supplementary information for full details and parameter values of our model of 494 

malaria-attributable LBW). However, we again make a likely conservative assumption with respect to 495 

any advantage of RDT-based screening that, for a given level of pregnancy-specific immunity, there is 496 

no difference between RDT detectable and undetectable infection in terms of attributable LBW risk.  497 

As highlighted in the results, we are not able to estimate the potential impact that clearing infection 498 

later in pregnancy through IPTp-SP may have upon this risk. 499 

 WHO recommends IPTp is given at 13 weeks gestation then subsequently every 4 weeks37, however, 500 

to avoid presenting an over-optimised picture of interventions in pregnancy, we here model IPTp 501 

(and corresponding ISTp or hybrid) schedules of 3 or 4 contacts rather than monthly, which are more 502 

reflective of the number of ANC contacts that women generally have across Africa3. 503 
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 666 

Figure 1| Prevalence by and RDT and PCR during ISTp. Figure shows prevalence of RDT positive infection, confirmed by 667 
PCR, (height of darker bars) and the additional prevalence of RDT negative, PCR positive infection prevalence (height of 668 
lighter bars) at each ANC visit at which RDT testing was carried out during ISTp from enrolment to delivery by trial site. 669 
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 670 

Figure 2| Comparing RDT performance at enrolment in ISTp trials to outside of pregnancy. Figure shows (a) RDT 671 
sensitivity relative to PCR by gravidity across each of the six study countries (ordered by PCR prevalence in primigravidae), 672 
red dots and error bars show mean and 95% C.I. for RDT sensitivity within the trials.  For comparison, the estimated 673 
sensitivity in non-pregnant individuals (male or female) aged >15 years old (green dashed line) and for children under 5 674 
years old (blue dashed line) based upon the relationship between transmission and RDT sensitivity from Wu et al.22 are also 675 
shown. The red line and orange polygon show the mean and 95% Cr.I.s for the best fitting model incorporating a declining 676 
boost in detectability of infection with RDT dependent upon the level of exposure in previous pregnancy, (b) shows the 677 
fitted relationship (see Methods) from this model (blue line shows median and polygon 95% Cr.I.) of the odds ratio of 678 
detection at enrolment and non-pregnant individuals (male or female) aged >15 years old and (c) Yellow dots and line 679 
show the data and the fitted relationship between PCR and RDT prevalence in non-pregnant individuals (male or female) 680 
aged >15 years old from Wu et al22. Remaining colours show the estimated relationship between gravidity-specific PCR 681 
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prevalence and RDT prevalence from this model (lines) compared to the data (dots with horizontal and vertical bars 682 
showing 95% C.I. for PCR prevalence and RDT prevalence respectively).  683 

 684 

Figure 3| Comparison of simulated and observed dynamics of infection throughout trials of ISTp. Figure shows observed 685 
PCR prevalence throughout successive screens during pregnancy (dots with error bars representing 95% C.I.s). Pink areas 686 
show the 95% cr.I. for PCR prevalence throughout pregnancy in the absence of intervention. Red datapoints indicate 687 
observed prevalence at enrolment in primigravidae to which the model is calibrated for each trial, the remaining 688 
datapoints, marked in blue, represents dynamics the model aims to replicate, with sharp drops in prevalence 689 
corresponding to ISTp rounds. Blue areas show the 95% cr.I.s generated by the posterior distribution of the fitted model in 690 
each scenario (see supplementary information for full details) with blue lines representing the posterior median PCR 691 
prevalence. Note for the trial in Ghana only primi- and secundigravidae were recruited but the simulated output is still 692 
shown for completeness. 693 

 694 

Figure 4|Simulated Incremental benefit of alternative strategies to IPTp-SP by level of SP resistance. Simulations are for 695 
high transmission settings (EIR=100), top row shows peripheral PCR prevalence in primigravidae alone, bottom row 696 
averaged across all pregnant women. Left column, (a) and (d), represent areas with low quintuple SP mutation, centre, (b) 697 
and (e), with high quintuple mutation and right, (c) and (f), represents a scenario with sextuple resistance where SP is 698 
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assumed to no longer provide any protection. Simulations show the following strategies: no intervention (black lines), IPTp-699 
SP (yellow lines), ISTp –DP (orange lines), Hybrid-SSTp (light purple lines), Hybrid-ISTp (dark purple lines) and IPTp-DP (blue 700 
lines). In general, for scenarios involving ACTs, simulations with DP are shown. In select situations simulations with shorter-701 
acting AL are shown with dashed line. NB: In settings with low quintuple SP mutations, SP and DP are assumed to have 702 
equivalent efficacy so IPTp and hybrid strategies involving these drugs are indistinguishable when SP has no impact, ISTp 703 
and hybrid strategies using the same treatment drug are indistinguishable.  704 

 705 

Figure 5|The relative effectiveness of IPTp, ISTp and hybrid strategies in clearing early infection. (a) shows the 706 
percentage of primigravidae with ongoing parasitaemia following their first visit in 2nd trimester if they: receive no 707 
intervention (yellow dots), are screened with a standard RDT and treated with an ACT if positive (green dots), receive SP 708 
presumptively (light blue dots), are given an ACT if RDT+ and SP otherwise (hybrid strategy – dark blue dots). Error bars 709 
show 95% intervals based upon our uncertainty analysis for comparing the relative impact of intervention strategies (see 710 
methods), (b) shows the equivalent figure but in women of gravidities 3 and above. (c) shows the percentage of these early 711 
infections that would subsequently lead to LBW that are effectively treated based upon our modelled relationship between 712 
the detectability and severity of infection (NB: given these are ongoing infections this does not imply that treating these 713 
infections would necessarily avert all risk of LBW attributable to these infections- see Methods for full details).  714 

 715 

Figure 6| Impact of different strategies upon infection later in pregnancy in areas of high quintuple SP resistance. Figure 716 
shows the impact of different simulated strategies upon the incidence of new (defined as either symptomatic or 717 
asymptomatic blood-stage) infection following a first ANC visit in the second trimester at 20 weeks gestation in areas of 718 
low, moderate and high transmission (EIRs of 1,10 and 100). (a) shows the percentage of women who will experience any 719 
new infection in the second or third trimester (T2/3), (b) shows the average number of new infections occurring 720 
throughout T2/3. Each strategy is assumed to involve three scheduled ANC visits occurring at 20, 27 and 34 weeks, except 721 
for “Monthly DP” (darkest blue) which involves five visits spaced 30 days apart from 20 weeks onwards. A perfect test 722 
refers to a hypothetical diagnostic with perfect sensitivity and specificity for peripheral or placental infection. Error bars 723 
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show 95% intervals based upon our uncertainty analysis for comparing the relative impact of intervention strategies (see 724 
methods) 725 

 726 

Figure 7| Potential impact of routinely testing for malaria during the first trimester. (a) an illustration of the 727 
hypothesised mechanism by which the performance of standard RDTs are modified by gravidity. Women often experience 728 
chronic, asymptomatic parasitaemia outside of pregnancy which, as parasites are progressively cleared by the immune 729 
system, would eventually fall below the limit of detection of standard RDTs and be cleared if she had not conceived (grey 730 
line). If an asymptomatically infected woman becomes pregnant, and as her placenta develops so that maternal blood 731 
flows into the intervillous space (towards the end of the first trimester), the parasite undergoes antigenic switching, 732 
allowing it to bind to placental Chondroitin Sulphate A (CSA) receptors1, multiplying to higher densities in women who have 733 
never experienced placental infection, leading to more severe and, due to higher concentrations of HRP2, more detectable 734 
infections (purple line). In subsequent pregnancies women mount a specific, acquired immune response, leading to better 735 
controlled, lower density and less detectable infection (turquoise and blue lines). (b) shows a simulated example of the 736 
impact of testing and clearing infections at a first ANC visit at 10 weeks upon overall exposure to placental infection in 737 
primigravidae in a setting of EIR=10 (ongoing peripheral infections are assumed to begin sequestering from the end of the 738 
first trimester onwards), simulations reflect our uncertainty in the sensitivity of the RDT at this time point, ranging from 739 
26.8% (RDT sensitivity for asymptomatic infection in adults outside of pregnancy in such a setting based upon the 740 
relationship estimated in Wu et al.22) to 90% (the approximate sensitivity of standard RDTs at first visit in areas of high 741 
transmission in primigravidae in ISTp trials). (c) shows the proportional impact this screening would have upon the mean 742 
duration of placental infection either in the presence or absence of IPTp-SP (assuming low SP resistance) and by 743 
transmission intensity. (d) the impact upon the risk of LBW according to our model relationship between the duration and 744 

stage of placental infection and LBW5, two thirds of these bars are coloured transparently emphasising our uncertainty in 745 
impact of IPTp-SP in terms of promoting catch-up growth40.   746 
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