Spatial regression and spillover effects in cluster randomized trials with count outcomes.

Karim Anaya-Izquierdo ORCID logo ; Neal Alexander ORCID logo ; (2020) Spatial regression and spillover effects in cluster randomized trials with count outcomes. BIOMETRICS, 77 (2). pp. 490-505. ISSN 0006-341X DOI: 10.1111/biom.13316
Copy

This paper describes methodology for analyzing data from cluster randomized trials with count outcomes, taking indirect effects as well spatial effects into account. Indirect effects are modeled using a novel application of a measure of depth within the intervention arm. Both direct and indirect effects can be estimated accurately even when the proposed model is misspecified. We use spatial regression models with Gaussian random effects, where the individual outcomes have distributions overdispersed with respect to the Poisson, and the corresponding direct and indirect effects have a marginal interpretation. To avoid spatial confounding, we use orthogonal regression, in which random effects represent spatial dependence using a homoscedastic and dimensionally reduced modification of the intrinsic conditional autoregression model. We illustrate the methodology using spatial data from a pair-matched cluster randomized trial against the dengue mosquito vector Aedes aegypti, done in Trujillo, Venezuela.


picture_as_pdf
biom.13316.pdf
subject
Published Version
Available under Creative Commons: Attribution 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads