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ABSTRACT
Metacyclogenesis is one of the most important processes in the life cycle of Trypanosoma cruzi. In this 
stage, noninfective epimastigotes become infective metacyclic trypomastigotes. However, the tran
scriptomic changes that occur during this transformation remain uncertain. Illumina RNA-sequencing 
of epimastigotes and metacyclic trypomastigotes belonging to T. cruzi DTU I was undertaken. 
Sequencing reads were aligned and mapped against the reference genome, differentially expressed 
genes between the two life cycle stages were identified, and metabolic pathways were reconstructed. 
Gene expression differed significantly between epimastigotes and metacyclic trypomastigotes. The 
cellular pathways that were mostly downregulated during metacyclogenesis involved glucose energy 
metabolism (glycolysis, pyruvate metabolism, the Krebs cycle, and oxidative phosphorylation), amino 
acid metabolism, and DNA replication. By contrast, the processes where an increase in gene expres
sion was observed included those related to autophagy (particularly Atg7 and Atg8 transcripts), 
corroborating its importance during metacyclogenesis, endocytosis, by an increase in the expression 
of the AP-2 complex subunit alpha, protein processing in the endoplasmic reticulum and meiosis. 
Study findings indicate that in T. cruzi metacyclic trypomastigotes, metabolic processes are decreased, 
and expression of genes involved in specific cell cycle processes is increased to facilitate transforma
tion to this infective stage.
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Introduction

Trypanosoma cruzi is a protozoan parasite that causes 
Chagas disease and is a serious public health problem 
in the Americas [1]. T. cruzi has a complex life cycle 
that alternates between triatomine insects and mamma
lian hosts, such as humans [2]. The parasite adopts four 
morphological forms that allows it to adapt to different 
microenvironmental stresses experienced during dis
tinct life cycle stages [3].

The T. cruzi life cycle in mammals begins when meta
cyclic trypomastigotes (MTs), an infectious form, present 
in the vector’s feces reach peripheral blood through the 
skin wound caused by the triatomine during a blood meal 
and infect mononuclear cells, such as monocytes. In 
mononuclear cells, MTs differentiate into amastigotes, 
which are non-mobile replicative forms that undergo 
multiple rounds of division until finally transforming 
into cell-derived trypomastigotes (CDTs). The latter 
lyses the cells and migrate to infect other cells or tissues 
for which they have a high tropism [2,3]. The T. cruzi life 
cycle in insects begins when a triatomine bug ingests 

blood from mammals with CDTs circulating in the per
ipheral blood, which then differentiate into noninfective 
replicative epimastigotes (EPs). When the EPs reach the 
insect’s midgut, they continue migrating through the 
intestine, undergoing multiple rounds of replication 
until finally reaching the rectal ampulla, where they trans
form into MTs [2,3]. Metacyclogenesis is the process by 
which noninfective EPs transform into infectious MTs. 
Although some of the events carried out during metacy
clogenesis remain unclear, the main stimulus is exposure 
of EPs to a poor nutritional environment that is rich in 
redox stress, leading to increased adenylate cyclase activ
ity and consequent rise of intracellular cAMP levels in the 
parasite [4,5].

Metacyclogenesis is one of the most important and 
essential steps in the T. cruzi life cycle, in which a set of 
morphological, transcriptomic, proteomic, and metabolic 
changes allows the parasite to prepare for successful infec
tion [6]. The most relevant morphological changes 
include modifying the position and shape of the nucleus 
and kinetoplast, which are associated with increased het
erochromatin, followed by lengthening of the flagellum 
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and elongation of the cytoplasm [7]. During this process, 
the proteome and phosphoproteome regulate proteins 
involved in transcription process, transialidases, mucin- 
associated surface proteins (MASPs), and dispersed gene 
family 1 (DGF-1) proteins, 12–24 hours after adhesion of 
EPs to the vector’s rectal cuticle [8]. Increased expression 
of mutagenic proteins has also been reported, including 
gp82s, calpain, and cruzipain, which are all involved in 
MT infectivity [9,10]. Regarding metabolic changes, 
increased proteolysis and metabolism, in response to 
redox stress, has been observed; these processes strongly 
influence metacyclogenesis and autophagy regulation 
[4,11–13].

Two previous studies have been carried out to under
stand genetic expression in EPs and MTs. The first of 
these performed by Minning et al., using microarrays, 
demonstrated an abundance of mRNA related to the 
morphological stage of T. cruzi during its life cycle, find
ing in MTs an upregulation of transcripts encoding tran
sialidases and in EPs an increase in the expression of 
genes that participate in the histidine-to-glutamate path
way [14]. By comparison, analyses performed by Smircich 
et al., using SOLiD RNA-seq, confirmed the variation in 
expression profiles between EPs and MTs, characterized 
by an increase in the expression of genes mainly related to 
virulence (transialidases) [15]. To date, RNA-seq has been 
used to evaluate gene expression in EPs, amastigotes, and 
CDTs. Transcriptome remodeling occurs in these three 
morphological forms, with EPs characterized by highly 
expressed genes associated with energy metabolism, 
CDTs with evasion of the host immune system and 
membrane proteins, and amastigotes with genes involved 
in regulating the cell cycle [16]. These findings highlight 
the importance of modifying RNA expression profiles 
among different morphological forms of T. cruzi, 
enabling the parasite to adapt to the microenvironments 
it is exposed to during its life cycle [14,16]. In addition, 
transcriptomic analysis of EPs during growth curves has 
shown that during late-stage stationary phase, in response 
to nutritional stress, overall transcriptional expression 
decreases, while pre-adaptive upregulation of transiali
dases, nuclear-associated genes and those involved in 
flagellum processing occurs to enable transformation to 
the metacyclic form [17]. However, in this study, the EP 
and MT stages were not separated; thus, the authors could 
not determine which parasite stage contributed particular 
transcripts [17]. Other studies have focused on the rela
tionship between transcriptomics of both the host cell and 
parasite, as well as virulence genes and remodeling during 
infection; however, these studies have thus far excluded 
the MT transcriptome [18–22].

Metacyclogenesis comprises a set of essential 
changes during the T. cruzi life cycle, which are crucial 

to facilitate the infection process and survival of the 
parasite outside the vector, as well as potentially con
tribute to differential virulence between strains. To 
date, there is still a paucity of information regarding 
the modifications the T. cruzi transcriptome undergoes 
during metacyclogenesis. Therefore, this study was con
ducted to evaluate the gene expression profiles of 
Trypanosoma cruzi I during metacyclogenesis in vitro.

Results

Metacyclogenesis curve

The MT concentration increased from day 1 post- 
culture in the three replicates evaluated, with an aver
age concentration of 2.9 × 108 trypomastigotes/mL. The 
highest MT concentration corresponded to an average 
of 5.35 × 108 trypomastigotes/mL on day 7 post- 
culture; however, from day 7 onwards, the number of 
MTs decreased until reaching an average MT concen
tration of 1.75 × 108 trypomastigotes/mL after 10 days 
post-infection (Figure S1). Analysis of data normality 
for the three biological replicates indicated a normal 
distribution. Thus, an analysis of variance (ANOVA) 
was performed, followed by multiple comparisons, 
which showed a difference between replicates. An 
ANOVA was performed to determine the first day of 
metacyclogenesis, which corresponded with day 4 post- 
culture (Figure S1).

Gene expression profiles of epimastigotes and 
metacyclic trypomastigotes

RNA-sequencing of the eight transcriptomes included 
in this study generated an average of 56,997,358.81 and 
21,980,185.92 sequencing reads (standard deviations of 
6,350,528.951 and 1,377,905.656) for MTs and EPs, 
respectively. The results for each of the treatments 
and replicates are available in Table S1. The differen
tially expressed genes (DEGs) showed no statistically 
significant differences between the MT biological repli
cates (Figure S2B). However, we detected 18 DEGs 
corresponding to EPs, which differed among biological 
replicates. These genes were eliminated from the ana
lysis to avoid bias when comparing the MT and EP 
profiles (Figure S2A). The DEGs differed significantly 
in MTs when compared with EPs; 250 DEGs were 
downregulated, and 251 were upregulated for the inter
sect between cufflinks and DESeq2 (Figure 1, Table S2). 
A heatmap showing the 50 genes that were the most 
down- and upregulated, and their respective logfold 
changes, is shown in Figure S3.
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Gene ontology analysis
A total of 209 ontological terms were downregulated 
and 164 upregulated in MTs compared to EPs. The 
ontology that represented the highest number of 
down- and upregulated terms was related to mole
cular functions (65% and 58%, respectively), fol
lowed by biological processes, which had a greater 
proportion of downregulated genes (38%) compared 
to upregulated (33%), and finally, cellular compo
nents, with six terms downregulated and 11 upregu
lated (Figure 2, Table S3). Considering the 
importance of cellular processes throughout the 
T. cruzi life cycle and of course in metacyclogenesis 
and based on the objective of this study, we con
tinued to describe in greater depth the cellular pro
cesses identified. The ontological term that grouped 
the largest number of downregulated genes 

corresponded to oxidation-reduction process 
(n = 15), followed by proteolysis (n = 9), and cell 
redox homeostasis, cellular amino acid metabolic 
process and transmembrane transport (with three 
genes each). By comparison, the proportion of upre
gulated genes with related ontological terms was 
lower, with proteolysis being the term that grouped 
the largest number of genes (n = 6), followed by cell 
adhesion (n = 5) and oxidation-reduction process 
(4) (Figure 2).

Metabolic pathway reconstruction

From the GO terms, we selected the FASTA files and 
reconstructed the metabolic pathways, corresponding 
to the most down- and upregulated genes.

Figure 1. Gene expression of epimastigotes and metacyclic trypomastigotes. Volcano matrix to compare differentially expressed 
genes (DEGs) between metacyclic trypomastigotes (MTs) and epimastigotes (EPs), indicating the total number of down- and 
upregulated DEGs in metacyclic trypomastigotes.
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Glucose energy processes
In MTs, six genes were downregulated for glycolysis, 
including the enzymes phosphoglucomutase (EC 
5.4.2.2-TcSYL_0046700), glucokinase (EC 2.7.1.2), glycer
aldehyde-3-phosphate dehydrogenase (EC 1.2.1.12-TcSYL 
_0011690), pyruvate dehydrogenase E2 component dihy
drolipoamide acetyltransferase (EC 2.3.1.12-TcSYL 
_00734), aldehyde dehydrogenase (NAD+) (EC 
1.2.1.3-TcSYL_0140060), and alcohol dehydrogenase 1/7 
(EC 1.1.1.1). In addition, aldose 1-epimerase (EC 
5.1.3.3-TcSYL_0172170) and 2,3-bisphosphoglycerate- 
independent phosphoglycerate mutase (EC 5.4.2.12- 
TcSYL_0108730) were upregulated (Figure 3).

Glucose degradation produces pyruvate via the glycolytic 
pathway. Three genes were upregulated in pyruvate metabo
lism, with malate dehydrogenase (oxaloacetate- 
decarboxylating) (EC 1.1.1.38-TcSYL_0047970) exclusively 
related to pyruvate metabolism (Figure 3). Pyruvate metabo
lism allows acetyl-CoA formation, which is necessary for 
Krebs cycle progression; two genes involved in pyruvate 
metabolism/Krebs cycle were downregulated, pyruvate dehy
drogenase E2 component (dihydrolipoamide acetyltransfer
ase) (EC:2.3.1.12-TcSYL_0073490) and dihydrolipoamide 
dehydrogenase (EC:1.8.1.4-TcSYL_0111890), and two genes 
involved in the pyruvate metabolism/Krebs cycle were upre
gulated, fumarate hydratase, class I (EC 4.2.1.2-T40S), and 
malate dehydrogenase (EC 1.1.1.37) (Figure 3)

Amino acid metabolism
Next, we evaluated the differential metabolism of 
amino acids in MTs.

For alanine, aspartate, and glutamate metabolism, three 
genes were downregulated and one was upregulated. The 
downregulated genes corresponded to alanine transami
nase (EC 2.6.1.2-TcSYL_0178360), glutamate dehydrogen
ase (NADP+) (EC 1.4.1.4-TcSYL_0074000) and 
1-pyrroline-5-carboxylate dehydrogenase (EC 1.2.1.88- 
TcSYL_0001430); aspartate aminotransferase, cytoplasmic 
(EC: 2.6.1.1-TcSYL_0131200) was upregulated.

For glycine, serine and threonine metabolism, three 
genes were downregulated: glycine hydroxymethyltransfer
ase (EC: 2.1.2.1 – TcSYL_0027590), dihydrolipoamide 
dehydrogenase (EC: 1.8.1.4-TcSYL_0111890) and glycine 
C-acetyltransferase (EC: 2.3. 1.29-TcSYL_0103590); and 
one upregulated: 2,3-bisphosphoglycerate-independent 
phosphoglycerate mutase (EC: 5.4.2.12- TcSYL_0108730). 
For tyrosine metabolism, tyrosine aminotransferase 
(EC:2.6.1.5-TcSYL_0012630), alcohol dehydrogenase 1/7 
(EC:1.1.1.1), and 4-hydroxy-2-oxoheptanedioate aldolase 
(EC:4.1.2.52- TcSYL_0019630) were downregulated and 
aspartate aminotransferase, cytoplasmic (EC:2.6.1.1- 
TcSYL_0131200) was upregulated.

Regarding cysteine and methionine metabolism, three 
genes were downregulated; 5ʹ-methylthioadenosine phos
phorylase (EC 2.4.2.28-TcSYL_0163070) is expressed only 

Figure 2. Gene ontology terms. (a) Gene ontology terms corresponding to the 15 most down and upregulated biological process 
from differential expressed genes obtained when were compared metacyclic trypomastigotes with epimastigotes; The ontological 
terms for the downregulated genes are in green and the ontological terms for the upregulated genes in pink. (b) Total proportions 
of ontology terms downregulated (upper) and upregulated (lower).

972 L. CRUZ-SAAVEDRA ET AL.



in the metabolism of cysteine and methionine, and 
S-adenosylmethionine synthetase (EC 
2.5.1.6-TcSYL_0140680), and tyrosine aminotransferase 
(2.6.1.5-TcSYL_0012630) are also related to other meta
bolic pathways. In addition, three genes were upregulated: 
aspartate aminotransferase, cytoplasmic (EC 
2.6.1.1-TcSYL_0131200), thiosulfate/3-mercaptopyruvate 
sulfurtransferase (EC:2.8.1.1 2.8.1.2-TcSYL_0079450) and 
malate dehydrogenase (K00026).

Finally, down- and upregulated genes related to 
valine, leucine, and isoleucine degradation were 
increased. Two downregulated genes were dihydroli
poamide dehydrogenase (EC 1.8.1.4-TcSYL_0111890) 
and 2-oxoisovalerate dehydrogenase E2 component 
(dihydrolipoyl transacylase) (EC 2.3.1.168-TcSYL 
_0062200); only one gene expressed in this pathway 
was upregulated: 3-methylcrotonyl-CoA carboxylase 
alpha subunit (EC 6.4.1.4-TcSYL_0057610).

Cellular processes
Consistent with the morphological modifications that 
T. cruzi undergoes during metacyclogenesis, three 
genes related to regulation of the actin cytoskeleton 
were upregulated: phosphatidylinositol-4,5-bispho
sphate 3-kinase catalytic subunit alpha/beta/delta (EC: 
2.7.1.153 – TcSYL_0025520), actin-related protein 2/3 

complex, subunit 5, and serine/threonine-protein phos
phatase PP1 catalytic subunit (EC: 3.1.3.16-TcSYL 
_0044050). Endocytosis-related genes were also 
increased in expression, with two genes upregulated 
from this process: AP-2 complex subunit alpha 
(TcSYL_0201950) and ARP 2/3 actin-related protein 
2/3 complex, subunit 1A/1. Likewise, protein proces
sing in the endoplasmic reticulum was upregulated 
(protein transport protein SEC61 subunit alpha, calre
ticulin (TcSYL_0030690), and DnaJ homolog subfamily 
A member 1). Previous studies have demonstrated the 
importance of autophagy activation as a stimulus for 
metacyclogenesis, and the presence of the autophagy 
protein TcAtg8 that triggers metacyclogenesis under 
conditions of nutritional depression [13]. In this 
study, two genes in this process were upregulated: 
ubiquitin-like modifier-activating enzyme Atg7 
(TcSYL_0008790) and GABA (A) receptor-associated 
protein Atg8 (TcSYL_0079440) (Figure 4).

DNA processes
Two RNA-encoding proteins involved in DNA replica
tion were downregulated, corresponding to proliferat
ing cell nuclear antigen (PCNA-TcSYL_0064140) and 
replication C subunit 3/5 (TcSYL_0116350); cell cycle 
cyclin-dependent kinase regulatory subunit CKS1 

Figure 3. Glucose energy processes. Differentially expressed genes (DEGs) in Metacyclic trypomastigotes in comparison with 
epimastigotes in the metabolism of glycolysis, pyruvate, and the Krebs cycle (downregulated genes in green and upregulated genes 
in pink).
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(TcSYL_0112190) and MDR1 cohesin complex subunit 
SCC1 (TcSYL_0162370) were also downregulated. Two 
genes were upregulated which are involved in meiosis, 
adenylate cyclase (Cyr1) (TcSYL_0107750) and serine/ 
threonine-protein phosphatase PP1 catalytic subunit 
(Glc7); however, these genes are not specific to this 
process and participate in other metabolic pathways 
(TcSYL_0044050).

Discussion

T. cruzi presents a peculiar transcriptional control, 
where polycistron mRNAs that include genes that are 
not necessarily related, are transcribed by RNA 

polymerase II. mRNA maturation involves a process 
of trans-splicing, with gene expression being regulated 
at a posttranscriptional level [23]. This complex process 
suggests the need to unveil the transcriptomic features 
of this parasite in terms of understanding its biology 
per se.

One of the most important processes in the life 
cycle of T. cruzi is metacyclogenesis. This process 
allows the parasite to acquire all necessary metabolic 
and structural features to differentiate from 
a noninfective (EPs) to an infective stage (MTs) and 
overcome the harsh environmental changes the para
site faces throughout its life cycle [6]. Previous studies 
have evaluated how starvation, redox stress, proteome 

Figure 4. Autophagy process. Upregulated DEGs in autophagy (in red). The cysteine protease Atg4 cuts the arginine residue in the 
C-terminal part of Atg8, and immediately Atg8 is transferred to Atg7 and Atg3, and finally to the substrate phosphatidylethano
lamine (PE); this complex (Atg8-PE) is part of the autophagosome membrane components.
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modifications, the phosphoproteome, and expression 
of proteins involved in virulence, are the main stimuli 
in inducing metacyclogenesis [4–6,10,12]. This study 
was conducted to evaluate transcriptome remodeling 
in MTs with respect to EPs using RNA-seq. The MT 
transcriptome differed significantly from the EP tran
scriptome, results that have previously been observed 
using microarrays and SOLiD RNA-seq [14,15]. This 
was expected because of the morphological and bio
chemical differences exhibited by MTs, including the 
modified shape of the nucleus and kinetoplast, 
changes in chromatin compaction, repositioning of 
the flagellum–kinetoplast complex, decreases in reser
vosome size and an increase in specific proteins 
related to virulence and infective capacity [7,22].

We found that one of the most affected metabolic path
ways in MTs was energy metabolism from glucose, in which 
we identified downregulated genes in glycolysis, pyruvate 
metabolism, the Krebs cycle, and oxidative phosphorylation. 
These genes are likely downregulated because of the different 
nutritional requirements of MTs. This observation was ver
ified by comparing EP transcriptomes in logarithmic phase 
and EPs in stationary phase, which indicated that regulation 
of these processes influences the parasite’s adaptation to 
microenvironments under nutritional stress (Figure 3) 
[4,11]. In T. cruzi, glycosomes are organelles that have the 
enzymatic content of different metabolic pathways, thus 
allowing compartmentalization of different processes [24]. 
Previous studies in T. brucei have shown a decrease in the 
glycolytic pathway glycosomes in the infective form of the 
parasite in the vector, allowing the parasite a rapid regulation 
of the metabolism in response to low glucose environments 
[13]. An increase in the number of down-regulated genes in 
MTs, the infective form of T. cruzi present in the vector, is 
consistent with these findings; however, the presence of 
genes coding for fumarate hydratase, class I and malate 
dehydrogenase up-regulated in MTs, both enzymes being 
involved in the glycolytic branch and active as a consequence 
of a decrease in pyruvate synthesis, which would possibly 
explain the down-regulation of pyruvate hydrogenase 
observed in MTs [25]. The activation of the glycolytic arm 
and its relationship with the decrease in pyruvate has already 
been previously documented in T. cruzi CDTs in response to 
the presence of a cell matrix, the results observed here could 
infer the presence of these regulatory processes in other 
stages of T. cruzi but future mechanistic studies must be 
conducted to fulfill this hypothesis [26].

Amino acids play important roles in the parasite lifecycle, 
including in processes related to survival, death, differentia
tion, and evasion of the host immune system [27]. One 
characteristic of the MT transcriptome was decreased 
amino acid metabolism, which may be a consequence of 
starvation faced by the parasite. In addition, the activation of 

amino acid catabolism as an energy and carbon source has 
been demonstrated in epimastigotes in the stationary phase, 
allowing this metabolic plasticity to adapt to the nutritional 
conditions it faces [11]. Triatomine artificial urine medium is 
used in some studies to initiate metacyclogenesis in vitro and 
is supplemented with amino acids such as proline, glutamate, 
and aspartate, equally present at the distal portion of the 
triatomine’s [28]. Previous studies have shown the impor
tance of L-proline in energy metabolism during metacyclo
genesis in addition to its role during oxidative stress and 
against other different abiotic and biotic stresses [29]. This 
may indicate that during this phase of the T. cruzi life cycle, 
although these amino acids are not synthesized, the parasite 
can use previously synthesized reserves. Future Analysis of 
the amino acid composition during metacyclogenesis and in 
mature MTs could shed light on amino acid regulation 
during these stages of the T. cruzi life cycle [30]. In contrast, 
upregulation of the genes involved in synthesizing methio
nine and cysteine showed a variable expression. Studies of 
trypanosomatids, such as Trypanosoma brucei brucei and 
Crithidia fasciculata, have shown that these parasites can 
recycle methionine from methylthioadenosine, a product 
derived from the polyamine synthetic pathway found in EP 
reservosomes in T. cruzi, which may explain its availability in 
MTs [31,32].

Autophagy allows T. cruzi to withstand nutritional 
stress during metacyclogenesis and amastigogenesis 
[13,33,34]. The autophagy process involves (Atg)- 
related proteins and begins when the cysteine protease 
Atg4 cuts the arginine residue in the C-terminal part of 
Atg8, and immediately, the protein Atg8 is transferred 
to Atg7 and later to Atg3, to finally be transferred to 
the substrate phosphatidylethanolamine (PE). This 
complex (Atg8-PE) is a principal part of the autopha
gosome membrane components, making Atg8 one of 
the best autophagy markers [13]. We found two upre
gulated genes involved in autophagy, including Atg7 
(Figure 4). One upregulated gene was Atg7. Although 
this gene has not been previously studied in T. cruzi, it 
functions by interrupting autophagy in the bloodstream 
stages of Trypanosoma brucei; thus, it is possible that 
Atg7 fulfills a similar function in T. cruzi MTs. The 
presence of both Atg7 and Atg8 confirms the impor
tance of autophagy during metacyclogenesis, future 
studies should conduct longer sequential RNA-seq ana
lyses to further investigate how autophagy is exploited 
by MTs and characterize the autophagy-related genes 
that are expressed (Figure 4) [13,35].

Endocytosis in T. cruzi is restricted to two specialized 
invaginations around the base of the flagellum; these are 
the flagellar pocket membrane and the cytostome, the 
latter being present only in the replicative forms of the 
parasite (EPs and AMs) [36]. In this study, upregulated 
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genes included AP-2 complex subunit alpha (AP-2), 
a clathrin-associated protein. Within this gene family, 
AP-1 decreases the proliferation and differentiation of 
EP into MTs, while AP-3 is essential for T. brucei growth 
and virulence [37]. Previous studies evaluated AP-2 
expression in EPs and CDTs of T. cruzi; thus, we verified 
the ID TcSYL_0201950 that codes for this protein in our 
dataset (Table S2). We observed that although EPs express 
this protein, its expression is greater in MTs [38,39]. To 
what extent the increased expression of this protein can 
confer certain properties to MTs remains unknown, but 
these results suggest that MT expression levels are regu
lated to modify an entire metabolic pathway. Endocytosis, 
in addition to being an important process in regulating 
the parasite’s nutritional requirements, may play a role in 
regulating the transport of proteins involved in other MT 
functions such as virulence; these proteins may be pre
viously synthesized and carried to the membrane by 
endocytosis and vacuole-linked transport.

A recent genomics study of T. cruzi reported meiotic 
sex as a mechanism of genetic exchange; however, the 
ability for recombination in T. cruzi has been heavily 
debated over the past few decades, and the population 
of this parasite has been mainly characterized as clonal 
[40–44]. MT transcriptome analysis demonstrated the 
presence of two upregulated genes associated with 
meiosis, and bioinformatics studies of the sequenced 
genomes have demonstrated that 40–60% of the 
human/yeast signaling pathway involved in meiosis in 
trypanosomatids, such as Leishmania and 
Trypanosoma, is conserved [42]. This is the first study 
where the expression of genes related to meiosis in 
some stage of T. cruzi has been demonstrated, despite 
this, the genes found may participate in other cellular 
processes, which is why there is no absolute certainty of 
activating the meiotic process during metacyclogenesis 
[45]. Despite this, the absence of other specific meiotic 
proteins could be related to the time at which the RNA 
was extracted from the MTs (4 days); daily monitoring 
of gene expression for additional days could provide 
more information about this cellular process. 
Intriguingly, the first report of genetic exchange in 
T. cruzi showed that this biological process occurs in 
CDTs in Vero cells, suggesting the presence of meiosis- 
related proteins during some parts of the T. cruzi life 
cycle [46]. One of the upregulated genes was the ade
nylate cyclase (Cyr1), which induces the production of 
cAMP in response to redox stress; in vitro analyses have 
shown an increase in the levels of this enzyme during 
metacyclogenesis. Furthermore, the receptor-type ade
nylate cyclase putative gene has been reported to be 
upregulated in mature MTs, which together suggests 
the importance of this enzyme in metacyclogenesis 

[4,14]. Future studies should examine the transcrip
tome of the entire T. cruzi life cycle to determine 
which stage has the capacity for recombination and to 
determine the true recombination mechanism(s) used 
by T. cruzi. This particular analysis was conducted on 
TcI (T. cruzi I) strains, and other DTUs (Discrete typ
ing units) and their capacity for recombination should 
also be considered.

Materials and methods

Parasite culture and metacyclogenesis curve

EPs of the T. cruzi strain MHOM/CO/04/MG 
(T. cruzi I) were cultured in liver infusion tryptose 
medium (LIT) supplemented with 10% fetal bovine 
serum at 26°C. We followed a previously described 
protocol to construct metacyclogenesis curves [47]. 
In summary, three biological replicates were used, 
and 1 × 108 EP/mL in the logarithmic phase were 
cultured in LIT medium supplemented with 10% fetal 
bovine serum. The parasites were quantified by 
counting in a Neubauer chamber daily for 10 days, 
and this process was repeated three times. Slides of 
the parasites were stained with 10% Giemsa and 
observed under optical microscopy to visually iden
tify EP and MT forms. Three hundred parasites were 
classified as EP or MT based on the locations of the 
nucleus and kinetoplast and on the elongated flagel
lum in MTs. Three hundred cells were counted per 
sample. The results were tabulated in Excel over 
10 days.

Determining the first day of metacyclogenesis and 
statistical analysis

To determine the beginning of metacyclogenesis, we 
obtained the daily MT concentration from the total 
parasite concentration and the percentage of trypomas
tigotes observed on the Giemsa-stained slides. We used 
three replicates to determine the concentration of try
pomastigotes in the sample. A Shapiro–Wilk test was 
performed to observe normality for the MT data. 
A Kruskal–Wallis test followed by Dunn’s multiple 
comparison test were used to determine the first day 
of metacyclogenesis, which corresponded to the day on 
which the MT number was significantly increased. 
Graphs were constructed based on the number of 
MTs and EPs per day. Statistical analyses were per
formed and graphs were constructed using GraphPad 
Prism, version 7.4 (GraphPad Software Inc., La Jolla, 
CA, USA).
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Purification of MTs and RNA extraction

EP/MT cultures in LIT medium were selected on the 
previously calculated first day of metacyclogenesis to 
purify the MTs; the parasites were washed twice with 
1X phosphate-buffered saline (PBS); then, resin- 
exchange sepharose-DEAE chromatography was per
formed following the protocol described by Cruz- 
Saavedra et al. 2017 [47]. The eluate containing trypo
mastigotes was obtained, then washed again with 1X 
PBS, and RNA was extracted using the RNeasy Plus 
Mini Kit (Qiagen, Düsseldorf, Germany) following the 
manufacturer’s protocols. RNA quality and quantity 
was evaluated using three parameters: integrity by 2% 
agarose gel electrophoresis, 1 mg/mL concentration 
using NanoDrop™ 2000/2000 c spectrophotometers 
(Thermo Fisher Scientific Inc., CA, USA) and purity 
using indexes 260/280 and 230/260, which each were 
~2.0. To compare gene expression profiles from the 
MTs against the EPs, we extracted RNA from the 
logarithmic phase for EPs from a culture in LIT, 
which was washed twice with PBS; then, the aforemen
tioned RNA extraction protocol was followed.

Preparation of the libraries and RNA sequencing

Extracted RNA was sent to Novogene Bioinformatics 
Technology Co., Ltd., Beijing, China, to construct the 
libraries and for sequencing using the Illumina HiSeq 
X-TEN platform. As an initial step, prior to library 
preparation, the commercial company verified the 
RNA quality using an agarose gel and Qubit analysis; 
only samples that passed these quality controls were 
included in the sequencing run. To construct the 
libraries, the extracted RNA was enriched using oligo- 
beads (dT), and rRNA was removed using a Ribo-Zero 
kit (Illumina, California, United states). Finally, RNA 
was randomly fragmented using a fragmentation buffer. 
The cDNA was produced using a strand-specific 
TrueSeq RNA-seq Library Prep kit (Illumina, 
California, United states), following the supplier’s 
instructions. RNA libraries were prepared with an 
insert size of 350 bp. The size of each read was 
2 × 150 bp. Read quality was analyzed using FastQC 
software (https://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc), which considered 10 parameters, 
including per base sequence quality, per sequence GC 
content, and Kmer content. In order to improve the 
quality of the reads, Novogene performed filtering of 
low-quality reads to remove those that had adapters, 
reads containing N > 10% (N represents a base that 
cannot be determined), and those with low-quality 
scores (Qscore ≤5). Finally, FastQC analysis was 

performed again using the previously mentioned para
meters based on the filtered reads. Two biological repli
cates and two technical replicates were included per 
experiment.

Mapping and differential expression analysis

Eight paired-end samples, corresponding to two biolo
gical replicates and two technical replicates per stage 
were individually aligned using TopHat – v2.1.0 ver
sion, which uses bowtie as an alignment engine but has 
the ability to recognize splicing sites. TopHat was run 
using default parameters, and the FASTA file of the 
reference genome of Trypanosoma cruzi Sylvio X10-1 
version 43, available in EupathDB, was obtained to 
assemble the samples [48,49]. Differential expression 
analysis was performed using two methods: cufflinks 
and HTseq/DESeq2. The bam files obtained from the 
TopHat assembly were used for mapping in Cufflinks, 
the gff annotation file of the T. cruzi reference genome, 
Sylvio X10-1 – 43 version, also available in EupathDB, 
was used to obtain the location of genes in the reference 
genome. Next, the cuffmerge tool under the “g” and “s” 
options was used to join files, including those to com
pare the replicates for each stage (EPs and MTs) and 
between stages. Finally, differentially expressed genes 
(DEGs) were identified using the cuffdiff tool, includ
ing the parameters “-p”, “L”, and “u.” Fragments per 
kilobase of exon per million fragments mapped 
(FPKM) was used to normalize the expression, the 
p-value was calculated from the log2 fold change 
obtained, and finally, the value was obtained from the 
correction of the p-value. Genes that presented 
a q-value <0.05 were considered statistically significant 
[3,49]. Regarding the second methodology used, the 
Python Toolbox HTseq-count tool was used to trans
form genetic depth information into a count of read
ings by gene overlapping using the gff annotation file of 
the T. cruzi reference genome, Sylvio X10-1-43 version; 
.txt output files were obtained for each replicate for 
each stage (EPs and MTs) [50]. The DESeq 
Bioconductor package version 1.26.0 was used to deter
mine DEGs, data normalization was performed using 
the median of ratios method, and the default para
meters were followed; transcripts with a log2 fold 
change >2 and that presented a statistically significant 
differential expression (padj = <0.05) were selected 
[51]. DEGs identified by Cufflinks and DESeq2 were 
classified as downregulated or upregulated. Outputs of 
both methodologies were compared and selected gene 
IDs, identified with both tools, were submitted to the 
virtual tool Venny 2.1, and taken forward for analy
sis [52].
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Gene ontology and pathway reconstruction

The gene IDs for down- and upregulated DEGs, 
obtained from both Cufflink and DESeq2, were sub
mitted to the EupathDB TriTrip online tool in two 
different lists to obtain the gene ontology (GO) terms 
for enrichment analysis [53,54]. To reconstruct protein 
pathways, a FASTA output file was obtained from the 
IDs of the down- and upregulated DEGs submitted to 
EupathDB with protein-coding sequences. Each gene 
FASTA file was subjected to the KEGG Automatic 
Annotation Server (KAAS) tool, selecting the homology 
search algorithm GHOSTX and the GENES dataset for 
kinetoplasts available in the manually curated KEGG 
GENES database [55,56]. The html file obtained was 
analyzed under the “Pathway” map option to search the 
pathways that presented a greater KEGG orthology 
from the DEGs. This tool allowed maps for each differ
entially regulated pathway to be predicted [55]. KAAS 
annotates genes by comparing them against the cured 
KEGG bases using algorithms such as BLAST or 
GHOSTX; the results are grouped according to the 
metabolic pathways in which they are activated allow
ing them to be visualized graphically. The Biorender 
tool was used (https://biorender.com/) to reconstruct 
the autophagy metabolic pathway.

Conclusions

In conclusion, transcriptomic gene expression differed 
significantly between T. cruzi EPs and MTs. In MTs 
processes related to ATP production from glucose were 
downregulated, including pathways for glycolysis, pyru
vate metabolism, and the Krebs cycle, likely in response 
to increased nutritional stress. Changes to the microen
vironmental composition may act as a stimulus for 
increased endocytosis in T. cruzi in response to nutrient 
deprivation, which in turn promotes endocytosis to 
transport virulence-related proteins in MTs, such as 
Gp82 and Gp90. In addition, during metacyclogenesis, 
energy deficiency leads to a decrease in amino acid meta
bolism, which may be compensated by increased avail
ability of reservosomes, to provide these amino acids and 
essential proteins for MTs. Autophagy-related genes are 
also upregulated, while those involved in DNA replica
tion are downregulated, to facilitate transformation to 
a nonreplicative form. Future studies should also con
sider parasitic genetic diversity (DTUs); improved under
standing of DNA editing throughout the T. cruzi lifecycle 
will be pivotal for the development of novel drugs and 
potential vaccines to reduce the current burden of 
Chagas disease.
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