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Abstract 

Blood biomarkers have great potential to advance clinical care and accelerate trials in 

Alzheimer’s disease (AD). Plasma phospho-tau181 (p-tau181) is a promising blood 

biomarker however, it is unknown if levels increase in presymptomatic AD. Therefore, 

we investigated the timing of p-tau181 changes using 153 blood samples from 70 

individuals in a longitudinal study of familial AD (FAD). Plasma p-tau181 was 

measured, using an in-house Single molecule array assay. We compared p-tau181 

between symptomatic carriers, presymptomatic carriers, and non-carriers, adjusting 

for age and sex. We examined the relationship between p-tau181 and neurofilament 

light and estimated years to/from symptom onset (EYO), as well as years to/from 

actual onset in a symptomatic subgroup. Additionally, we studied associations 

between p-tau181 and clinical severity, as well testing for differences between genetic 

subgroups. Twenty-four were presymptomatic carriers (mean baseline EYO -9·6 

years) while 27 were non-carriers. Compared with non-carriers, plasma p-tau181 

concentration was higher in both symptomatic (p<0·001) and presymptomatic 

mutation carriers (p<0·001). Plasma p-tau181 showed considerable intra-individual 

variability but individual values discriminated symptomatic (AUC 0·93 [95% CI 

0·85−0·98]) and presymptomatic (EYO ≥ -7 years) (AUC 0·86 [95% CI 0·72−0·94]) 

carriers from non-carriers of the same age and sex.  From a fitted model there was 

evidence (p=0·050) that p-tau181 concentrations were higher in mutation carriers than 

non-carriers from 16 years prior to estimated symptom onset.  Our finding that plasma 

p-tau181 concentration is increased in symptomatic and presymptomatic FAD 

suggests potential utility as an easily accessible biomarker of AD pathology.  
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Introduction 

Historically, a definitive diagnosis of Alzheimer’s disease (AD) required 

histopathological confirmation of amyloid-β plaques and neurofibrillary tangles (NFT) 

comprised of hyperphosphorylated tau (1). Cerebrospinal fluid (CSF) biomarkers and 

positron emission tomography (PET) ligands for amyloid-β and tau have transformed 

this approach: facilitating a more secure diagnosis in clinical practice, in life and before 

dementia (2,3); improving screening for trials (4); and allowing earlier intervention (5).  

However, the invasiveness and cost of lumbar punctures and PET scans limits the 

availability of these biomarkers, especially in low-resource settings. 

Blood-based biomarkers have advantages of ease, cost, acceptability and potential 

global applicability (6,7). However, blood is a more challenging matrix than CSF with 

lower analyte concentrations, as well as extra-cerebral analyte production and 

metabolism. Despite these challenges huge progress has occurred. Plasma 

neurofilament light (NfL) is now recognised as a robust, albeit non-specific, biomarker 

of neuronal damage (6). More recently tau phosphorylated at threonine 181 (p-tau181) 

has emerged as a promising blood biomarker of amyloid pathology (8). However, the 

ability of plasma p-tau181 to detect AD presymptomatically, and when and how 

concentrations change over time and in relation to NfL are still unclear. 

 Familial AD (FAD), caused by mutations in Presenilin 1/2 (PSEN1/2) and Amyloid 

Precursor Protein (APP), is highly penetrant with a reasonably consistent age at 

symptom onset within families (9). FAD provides a unique opportunity to better 

understand disease pathophysiology by allowing biomarker changes to be studied 

from presymptomatic stages through to clinical decline.  
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Using a longitudinal cohort study of FAD we assessed plasma biomarker changes 

testing whether p-tau181 concentration is altered in mutation carriers relative to non-

carriers and if changes occur presymptomatically (10). We examined when changes 

in p-tau181 and NfL first discriminate between carriers and non-carriers. We examined 

the relationship between p-tau181 and clinical decline, and the influence of FAD 

genotype.  

Methods 

Study design and participants 

We studied 70 participants within a longitudinal study of FAD at the Dementia 

Research Centre, UCL between 2010 and 2019; cohort details have been described 

previously (10). Eligibility was either (i) a clinical diagnosis of FAD or (ii) an FAD 

affected parent. At enrolment 19 participants were symptomatic, with pathogenic 

mutations in PSEN1 or APP genes; 51 individuals were asymptomatic but at 50% risk 

of inheriting a mutation and thereby of developing symptoms at a similar age to their 

affected parent. 

 

Ethical approval was provided by the local Research Ethics Committee. Written 

informed consent was obtained from all participants or from a consultee if cognitive 

impairment precluded informed consent. 

 

Procedures 

FAD mutation status was determined using Sanger sequencing; results were provided 

only to statisticians, ensuring participants and clinicians assessing participants 

remained blind to mutation status. All individuals identified an informant who was 

interviewed separately for a collateral history. Estimated years from symptom onset 
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(EYO) was calculated by subtracting the age at which the participant’s affected parent 

first developed progressive cognitive symptoms from the participant’s age at blood 

sampling. 

 

Participants underwent a semi-structured health questionnaire (to rule out 

confounding illness) and a neurological examination. Participants were assessed 

using the mini mental state examination (MMSE) and the Clinical Dementia Rating 

(CDR) scale (11,12), which incorporates information from participant and informant on 

day-to-day cognition. Global CDR and CDR Sum of Boxes (CDR-SOB) scores were 

calculated. Individuals were defined as symptomatic if: i) cognitive decline was 

reported by participant and/or their informant; ii) the clinical impression was that the 

participant was experiencing progressive decline; iii) the global CDR was >0; and iv) 

an alternative cause of cognitive impairment was not identified. Neuropsychology tests 

performed included Recognition Memory (RMT) and Digit Symbol tests (13,14).  

 

P-tau181 and neurofilament light quantification in plasma 

Non-fasting plasma samples were collected throughout the day in 10ml 

ethylenediaminetetraacetic acid coated tubes. Samples were processed, aliquoted, 

and frozen at –80°C according to standardised procedures and shipped frozen to the 

Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg for 

analysis blinded to participants’ mutation status and clinical diagnosis. Samples from 

all time points were randomised and processed concurrently using the same kit and 

batch of reagents to maximise consistency. P-tau181 concentration was measured 

using an in-house Single molecule array (Simoa) method on the Simoa HD-1 

instrument (Quanterix, Billerica, MA, USA). The assay is based on a mouse 
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monoclonal antibody specific for the threonine-181 phosphorylation site (AT270, 

Invitrogen, Waltham, MA, USA ) coupled to paramagnetic beads, in combination with 

an N-terminal anti-tau mouse monoclonal antibody for detection, and full-length 

recombinant tau 441 phosphorylated in vitro by GSK-3β as the calibrator, described 

in detail elsewhere (15). Intra-assay coefficients of variation (CoV) of a high (17·9 

pg/mL) and a low (4·0 pg/mL) concentration quality control sample, each measured in 

duplicates at the start and end of each run, were below 10%. One result was identified 

as an unusually high (128 pg/mL) outlier and excluded, without knowledge of the 

individual’s mutation status.  Plasma NfL was measured using the commercially 

available Simoa NfL assay on the HD-1 instrument following the manufacturer’s 

instructions: intra-assay and inter-assay CoVs of high (51·2 pg/mL) and low (6·8 

pg/mL) quality control samples were < 7%.  

 

Statistical analysis 

Baseline (first visit) summary statistics and box plots of p-tau181 concentrations were 

separately produced for each group (symptomatic carriers, presymptomatic carriers, 

non-carriers). All other plots and analyses used data from all visits. Several 

participants exhibited large within-person changes in p-tau181 over short time 

intervals, making fitting mixed models problematic. Specifically, models for p-tau181 

with a random intercept (at actual or expected onset, depending on the model) and a 

(correlated) random slope either didn’t converge or converged with the estimated 

correlation between slope and intercept being unity. Instead, linear regression models 

with robust Huber-White standard errors that allowed for clustering within individuals 

and families were fitted to the repeated p-tau181 measures (16,17). Clusters 

comprised individuals from the same family and mutation group. P-tau181 was log-
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transformed so normality assumptions concerning residuals were not materially 

violated; estimated coefficients were back-transformed and expressed as 

multiplicative effects. Three initially presymptomatic individuals became symptomatic 

during follow-up, with their group membership changed accordingly. 

 

Age and sex adjusted differences in p-tau181 between groups were estimated, as 

were differences by genotype (PSEN1 vs APP, among all carriers) and by mutation 

position (pre- vs post-codon 200, among PSEN1 participants); these analyses were 

performed separately in presymptomatic and symptomatic carriers, the former models 

additionally adjusting for EYO, and the latter for actual years since symptom onset (as 

well as age and sex). For non-carriers only, models assessed associations between 

p-tau181 and, separately, age and sex. 

   

To investigate p-tau181’s ability to discriminate i) non-carriers from symptomatic 

carriers and ii) non-carriers from presymptomatic carriers within 7 years of expected 

symptom onset, age- and sex-adjusted receiver operating characteristic (ROC) curves 

were plotted and areas under the curve (AUC) calculated, with bias corrected 

bootstrapped 95% confidence intervals (1 000 replications, cluster resampling). 

 

The age and sex adjusted relationship between log p-tau181 and EYO was 

modelled. Given prior experience and earlier findings that CSF p-tau181 decreases 

after estimated age at symptom onset (18,19), we pre-specified the inclusion of 

mutation status and EYO, plus their interaction, as explanatory variables in the 

model, and additionally that we would investigate the inclusion of quadratic and cubic 

terms for EYO, plus their interaction with mutation status. In fact, there was no 
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evidence to include these terms. The estimated geometric mean longitudinal p-

tau181 concentration profiles for mutation carriers and non-carriers (and 95% 

confidence intervals) were plotted against EYO, standardised to a female aged 38·1 

years (mean age of non-carriers). The curvature of the fitted relationship is a 

consequence of the assumed linear relationship with log-transformed values, which 

is no longer linear after back-transformation. In order to estimate the timepoint at 

which there is evidence of divergence between carriers and non-carriers we 

calculated the estimated difference in geometric mean p-tau181 between carriers 

and non-carriers, after adjusting for age and sex, for integer values of EYO between 

–20 and 10 years. The point when this estimated difference was statistically 

significantly different from zero (p≤0·05) was interpreted cautiously as an indication 

of where there was evidence that the estimated trajectory of p-tau181 over EYO for 

mutation carriers diverged from non-carriers.  Separately, for participants with known 

symptom onset, p-tau181 was modelled as a function of years to/from onset, 

although here the p-value for the inclusion of a quadratic term was 0·057 and this 

was included. The modelled geometric mean longitudinal p-tau181 concentration 

profile (and its 95% confidence interval) for symptomatic carriers was plotted against 

actual years to/from onset, with the same age and sex standardisation as in the EYO 

graphs. In a sensitivity analysis we re-fitted this model omitting one participant with a 

large outlier value for known years to/from onset; the quadratic term was no longer 

statistically significant (p=0·264) but the estimated trajectory was similar. 

 

For comparison we modelled the age and sex adjusted relationship between log NfL 

and i) EYO and ii) actual years to/from onset for participants with known symptom 

onset. For the former analysis the quadratic term gave a p-value of 0·057, while for 
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the latter p-values for polynomial terms and their interactions with mutation status were 

far from 0·05, results consistent with earlier findings (18).       

 

Finally, to investigate the relationship between log-transformed p-tau181 and cognition 

over time, age and sex adjusted linear regression models were fitted with MMSE, 

CDR-SOB, Digit Symbol and RMT-average (separately) as predictors, using data from 

all visits, first in all mutation carriers and then separately for the symptomatic and 

presymptomatic groups with clusters comprising individuals from the same family; the 

models with Digit Symbol and RMT-average additionally adjusted for years in 

education. Bias corrected and accelerated bootstrapped 95% confidence intervals 

were computed here. 

 

All analyses used Stata v16. 

 

Results 

Baseline demographic and clinical characteristics are presented in Table 1. Fifty-one 

participants were asymptomatic (24 mutation carriers and 27 non-carriers). The mean 

age of the presymptomatic carriers, 37·2 years, was similar to the mean age of the 

control group, 38·1 years. Presymptomatic carriers were, as expected, younger than 

the symptomatic carrier group: the mean EYO of the presymptomatic carriers was -

9·6 years. There was no clinically relevant difference in MMSE score between non-

carriers and presymptomatic carriers. 

 

Adjusting for age at visit and sex, concentrations of p-tau181 were significantly higher 

in both symptomatic and presymptomatic carriers compared with non-carriers 
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(observed baseline data shown in Figure 1).  The estimated percentage difference in 

mean p-tau181 between symptomatic carriers and non-carriers was 204% higher 

(95% CI:115%, 330%, p<0·001), and 73% higher (95% CI:22%, 145%, p<0·001) 

between presymptomatic carriers and non-carriers. Additionally, p-tau181 

concentration was elevated in symptomatic compared to presymptomatic carriers 

(76% higher, 95% CI:20%, 158%, p<0·001). Within the control group a one-year 

increase in age was associated with a non-significant 0·6% increase in p-tau181 (95% 

CI:1·1% decrease, 2·4% increase; p=0·477). In this group there was no significant sex 

difference in p-tau181 with men having an estimated 19·2% higher concentration 

(95%CI:11·1% lower, 59·7% higher; p=0·224). 

ROC analyses of p-tau181 (Figure 2) showed the ability of individual measures of p-

tau181 to discriminate between symptomatic carriers and non-carriers of the same 

age and sex with an adjusted AUC of 0·93 (95% CI:0·85, 0·98); and discriminated 

between presymptomatic individuals within 7 years of estimated symptom onset and 

non-carriers of the same age and sex with an adjusted AUC of 0·86 (95% CI:0·72, 

0·94).  

The difference in mean p-tau181 concentrations between all mutation carriers and 

non-carriers estimated from our model was first significant (p=0·050) 16 years prior to 

estimated symptom onset (Figure 3a, supplementary Table 1S), after adjusting for age 

and sex. Plasma NfL levels in carriers began to diverge from non-carrier levels at a 

similar time, becoming statistically significant at EYO of -17 years (p=0·033) (Figure 

3b, supplementary Table 1S).  

For 24 mutation carriers, age at symptom onset was known; modelling p-tau181 and 

NfL changes in this group showed broadly consistent results with their respective EYO 
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models (Figure 3 c-d). We did not find any evidence of continuing progressive 

increases in p-tau181: directionally our analysis suggested deceleration on a 

logarithmic scale, although this was not formally statistically significant (p=0·057). 

For several participants, there were large within-person changes in p-tau181 

concentrations over relatively short time intervals; also seen, to a lesser extent, in NfL 

levels (Figure 3 e-f). 

An analysis including all mutation carriers and all visit data found evidence of an 

association between p-tau181 and each of CDR-SOB, MMSE and RMT-average 

(Table 2). However, when the presymptomatic group was analysed separately only 

the association between p-tau181 and RMT-average remained statistically significant. 

In contrast, p-tau181 in the symptomatic group showed a statistically significant 

association with CDR-SOB and no evidence of an association with RMT-average. 

Investigating an association with MMSE in symptomatic carriers resulted in a 

bootstrap 95% confidence interval with an upper limit that was close to, but just 

included, zero. There was no evidence of association between p-tau181 and the Digit 

Symbol in any mutation group.  

To analyse the influence of genotype and mutation position on p-tau181, symptomatic 

and presymptomatic carriers were analysed separately. In the presymptomatic group 

(details Table 2S Supplementary), after adjusting for age, sex and EYO, there was no 

significant difference in p-tau181 concentration between APP and PSEN1 mutation 

carriers (p=0·284), nor between PSEN1 individuals with mutations pre- and post-

codon 200 (p=0·844). Within the symptomatic group, after adjusting for age, sex and 

actual years since onset, there was no difference between APP and PSEN1 carriers 

(p=0·921). There was evidence (p=0·010) that symptomatic PSEN1 individuals with 
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mutations beyond codon 200 had higher p-tau181 concentrations (55% higher; 95% 

CI:13%, 113%) than those with mutations before codon 200 (Figure 1S 

supplementary).  

Discussion 

In this longitudinal study of FAD, we showed that plasma p-tau181 concentration was 

significantly increased in symptomatic and in presymptomatic mutation carriers 

compared to non-carriers. Additionally, the symptomatic group had higher p-tau181 

than the presymptomatic group suggesting that concentrations increase as the 

disease progresses across these stages.   

 

We found a divergence in plasma p-tau181 concentration prior to the onset of cognitive 

decline, with a significant difference between mutation carriers and non-carriers from 

16 years before estimated symptom onset. Changes in plasma NfL levels began at a 

similar time (EYO -17 years). The timing of these biomarker changes is in line with 

previous studies in FAD as well as being consistent with findings in sporadic AD where 

changes in plasma p-tau181 and NfL begin soon after changes in CSF amyloid- (18–

22).  

 

We found an association between plasma p-tau181 and global cognition in 

symptomatic carriers. This association was not seen presymptomatically, and this is 

perhaps expected given that these individuals include those many years from onset 

with little or no decline in CDR-SOB and MMSE scores (23,24). However, we did see 

a relationship between p-tau181 concentration and presymptomatic performance on 

a measure of memory function (RMT-average), suggesting that the p-tau181 levels 

reflect pathological changes with relevant cognitive consequences.  
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When actual age at onset data was used we did not find evidence of continuing 

progressive increases in p-tau181 throughout the symptomatic period.  This must be 

treated cautiously given the small numbers of symptomatic participants but it is 

consistent with previous CSF studies in sporadic and familial AD which report that p-

tau181 does not continue to increase after symptom onset (19,25,26). 

Elevated plasma p-tau181 concentrations distinguished symptomatic carriers from 

non-carriers with reasonable diagnostic accuracy (AUC >0·90). Studies in sporadic 

AD similarly found higher plasma p-tau181 concentrations in AD dementia suggesting 

this effect is not limited to FAD (8,27). P-tau181 increases may be relatively specific 

to AD as they have not been seen in frontotemporal dementia (28). In addition, we 

found that p-tau181 discriminated between presymptomatic carriers nearing symptom 

onset and non-carriers (AUC 0·86 [95% CI:0·72, 0·94]);  this accords with reports of 

elevated p-tau181 levels in blood in cognitively normal amyloid positive individuals (8).  

Taken together, these findings suggest plasma p-tau181 may prove to be an 

accessible marker of AD pathology with potential for widespread use even in low 

resource settings. Given global efforts to improve diagnosis in dementia this is needed 

now but will be even more important with the advent of disease modifying therapies.  

Symptomatic carriers had plasma p-tau181 concentrations on average about three 

times that of non-carriers with the presymptomatic group having a mean concentration 

between control and symptomatic groups, after adjusting for age and sex.  These are 

remarkable ratios given this is a blood-based assay. Nonetheless, the overlap 

between groups, allied to the variability in concentration within individuals, suggests 

that plasma p-tau181 may be most useful in combination with blood biomarkers of 
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amyloid, as seen in CSF where tau/amyloid- ratios proved most useful in clinical 

practice.  

We found plasma p-tau181 demonstrated considerable intra-individual variability; 

variability has previously been reported in NfL levels in the same cohort (18). It is 

unlikely that disease-related processes are solely responsible for these within-subject 

variations as changes were also seen in non-carriers. Timing of sampling may account 

for some volatility as intra-individual fluctuations have been shown in same-day CSF 

p-tau181 levels (29). Research is needed to understand and reduce intra-individual 

variability in plasma p-tau181 before it can be an effective screening measure.  

The timing of changes in plasma p-tau181 contrasts with the timing of changes 

reported with tau PET. A study of FAD found that tau PET standardised uptake value 

ratios increased at the time of symptom onset rather than before (30). Similarly, in 

sporadic AD, CSF p-tau181 changes preceded tau PET increases (31). This may be 

due to differences in sensitivity of the techniques or alternatively tau-PET and p-tau181 

changes may reflect different aspects of AD pathology. CSF and plasma p-tau181 

may represent an amyloid response; increased soluble tau release has been reported 

in the presence of amyloid pathology (32). The timing of p-tau181 changes in this 

study supports the concept of alterations in tau processing being related to, or 

synergistic with, changes in cerebral amyloid (24).  

In light of previously reported clinical, imaging and neuropathologic differences 

between APP and PSEN1 mutations carriers (10,33,34), we tested for the influence of 

genetic group on p-tau181 levels. After adjusting for age at visit, sex and disease 

stage, we did not find a difference in p-tau181 between APP and PSEN1 carriers, 

suggesting changes in p-tau181 are not gene-specific. We did find some evidence that 
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symptomatic PSEN1 post-codon 200 carriers had higher p-tau181 concentrations than 

pre-codon 200 carriers. Although it is important to avoid over-interpreting this finding 

in such small numbers, it is interesting to note that carriers with mutations after codon 

200 have more severe amyloid angiopathy and higher rates of neurofibrillary tangle 

accumulation (34,35). Heterogeneity in pathobiology may contribute to differences in 

p-tau181 concentration; further studies are, of course, needed.  

Our study has limitations. First, the sample size, due to the rarity of FAD mutations, 

was relatively small and replication, especially of sub-group analyses, is needed. 

Secondly, we used parental age at symptom onset to estimate timing of future 

cognitive decline in carriers. While this provides a reasonable estimate of future age 

at onset (9), it is not without error due both to variability in age at onset between family 

members and to imprecision in determining the time of cognitive decline in a 

preceding, now often deceased, generation (10). However, we did perform an analysis 

of mutation carriers for whom an actual age at onset was known. Reassuringly the 

results of this subgroup analysis are consistent with changes in plasma p-tau181 

occurring presymptomatically.  Thirdly, we did not use PET or CSF data to confirm 

diagnosis or subgroup cases by amyloid or tau status. However, FAD is a well 

characterised disease in terms of its pathological changes and the diagnosis in 

affected individuals is relatively secure (24,36). Finally, this study is retrospective; 

prospective studies are needed to assess diagnostic accuracy and to investigate the 

physiological and pathophysiological drivers of variability in biomarker concentration 

(37,38). It will also be important to examine the impact of different genetic modifiers 

and in particular APOE.  Studies in sporadic AD have shown that APOE4 is associated 

with higher CSF p-tau181 levels (39), however APOE has not been found to have a 

major impact on biomarker levels in FAD (19). The contribution of analytical factors 
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will be important to investigate, however are unlikely to account for all the variability 

seen here as all samples were analysed in the same laboratory using the same batch 

of reagents. Given the relative ease of acquiring blood samples these prospective 

studies are likely to follow soon.  

FAD provides a remarkable opportunity to examine and understand presymptomatic 

AD. The near 100% penetrance of these mutations and the lack of comorbidities or 

mixed pathology, means that biomarker changes can reliably be attributed to AD. Non-

carriers offer a suitable control group with much in common with mutation carriers in 

terms of environmental and social backgrounds and they and the researchers are blind 

to mutation status. Nonetheless, findings in FAD may not necessarily generalise to 

sporadic disease in older individuals. 

This paper provides insights into the timing of blood biomarker changes in AD. Plasma 

biomarkers may accelerate clinical trials however a greater understanding of variability 

is needed. Reliable and reproducible blood-based measures, including plasma p-

tau181, would transform clinical practice and research in dementia.   
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Figure Legends 
 

Figure 1: Box and whisker plots for observed baseline plasma p-tau181 concentration across 

the 3 groups. The measured unadjusted plasma p-tau181 concentrations at baseline are shown. 

Mutation carriers have been divided into those who are symptomatic and those who are 

presymptomatic. A box shows the median, and 25th and 75th percentiles; the whiskers extend to the 

largest value less than or equal to the upper quartile + 1.5 times the interquartile range, and the smallest 

value greater than or equal to the lower quartile - 1.5 times the interquartile range; values outside this 

range are shown individually. 

 

Figure 2: Age- and sex-adjusted receiver operating characteristic (ROC) curves 

2a Symptomatic mutation carriers versus non-carriers. 2b Presymptomatic mutation carriers within 7 

years of expected symptom onset versus non-carriers. Area under the curve (AUC) values are the 

probability that a randomly selected ‘case’ (here, a symptomatic mutation carrier or a presymptomatic 

carrier within 7 years of expected onset, respectively) is ranked as being at greater risk of being a ‘case’ 

than a randomly selected control of the same age and sex. 

 
 
Figure 3: Trajectory of plasma biomarkers against estimated and actual years to/from onset.  
 
Mutation carriers represented in red; non-carriers in black.  Modelled changes in geometric mean 

plasma p-tau181 (a) and plasma NfL (b), for a hypothetical female aged 38·1 years (the average age 

of non-carriers), against estimated years to/from onset. Modelled changes in geometric mean plasma 

p-tau181 (c) and plasma NfL (d) against actual years to/from symptom onset for a hypothetical female 

carrier aged 38·1. There were 24 symptomatic subjects where actual age at onset was known, 19 of 

whom were already symptomatic at time of first plasma sampling and five subjects who became 

symptomatic after their baseline sample; for three of these plasma sampling took place before and after 

symptom onset.  Dotted lines indicate 95% confidence intervals (a-d). Observed plasma p-tau181(e) 

and plasma NfL(e) concentrations against estimated years to/from symptom onset. To preserve blinding 

to genetic status of all observed values for timepoints more than 19 years before expected symptom 

onset and more than 10 years after expected symptom onset are shown in grey; some timepoints have 

been removed for at risk individuals who could be identified by their number of visits.  
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Table Legends 
 

Table 1: Baseline characteristics 

NA=not applicable. *Pearson Chi-squared test. **P-value for Kruskal-Wallis test across the three 

groups; post-hoc Dunn’s pairwise tests where appropriate.  

Symptomatic carriers were: older than presymptomatic carriers (p<0·001) and non-carriers (p<0·001); 

had lower MMSE than presymptomatic carriers (p<0·0001) and non-carriers (p<0·0001); had higher 

CDR Global and CDR SOB than presymptomatic carriers (both comparisons p<0·0001) and non-

carriers (both comparisons p<0·0001). 

‡ At baseline, symptomatic carriers had higher p-tau181 concentrations than presymptomatic carriers 

and non-carriers (p=0·005 and p<0·001, respectively); presymptomatic carriers had higher p-tau181 

concentration than non-carriers (p=0·004); unadjusted comparisons carried out using a linear 

regression of log-transformed p-tau181 concentrations on participant group, with robust standard 

errors.  

‡‡ At baseline, symptomatic carriers had higher NfL concentrations than presymptomatic carriers and 

non-carriers (p<0·001 for both comparisons); presymptomatic carriers had higher NfL concentration 

than non-carriers (p=0·001); unadjusted comparisons carried out using a linear regression of log-

transformed NfL concentrations on participant group, with robust standard errors.      

 1The 32 participants with only one visit are not included (11 non-carriers; 7 presymptomatic mutation 

carriers; 14 symptomatic mutation carriers).  

2 Thirty-one individuals only had NfL data for one visit. One ‘At risk’ participant did not have a 

sufficient volume sample for a baseline NfL measure but did have a baseline p-tau181 value; their 

group is not identified to preserve blinding to genetic status. 
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Table 2: Associations between p-tau181 plasma concentration and cognitive measures for 

mutation carriers 

Percentage (%) increase/decrease (95% CI) in p-tau181 for a one unit increase in the cognitive test 

score. All analyses adjust for age and sex; models for RMT-average and Digit Symbol additionally 

adjust for years of education.  

*Significant associations i.e. confidence intervals do not include zero. 

1 CDR SOB equal to zero for all but one observation in this group 

N: Number with data for the cognitive variable; MC: mutation carrier; SMC: symptomatic mutation 

carrier; PMC: presymptomatic mutation carrier 
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Table 1 

  
Table 1: Baseline characteristics (N=70) 

  

  
  

Non-carrier 
N=27 

Presymptomatic 
N=24 

Symptomatic 
N=19 

P-value 

Sex, n (%) 
   Men 

   Women 

  
11 (41%) 
16 (59%) 

  
13 (54%) 
11 (46%) 

  
12 (63%) 
  7 (37%) 

  
0·308 * 

Age, years (mean 
(SD)) 

38·1 (10·7) 37·2 (6·7) 50·7 (10·0) <0·001** 

EYO, years (mean 
(SD)) 

NA -9·6 (7·2) 4·5 (3·6) <0·001**   

MMSE (Median [IQR]) 
30 [30, 30]  

  
30 [29, 30] 

  
23 [16, 25] 

  
<0·001**  

CDR Global (Median 
[IQR] 

0 [0, 0] 
  

0 [0, 0] 
  

0·5 [0·5, 0·8] 
(3 missing values) 

<0·001** 

CDR SOB (Median 
[IQR]) 

0 [0, 0] 
  

0 [0, 0] 
  

3·5 [1·8, 4·3] 
(3 missing values) 

<0·001** 

Samples per 
participant (mean 

(SD)) 
2·2 (1·4) 2·5 (1·1) 1·7 (1·3) NA 

Interval1, years 
between p-tau181 

samples  
(mean (SD)) 

1·7 (1·1) 
 

1·6 (1·0) 
  

1·4 (1·0) NA 

Duration of follow-up, 
years (mean (SD)) 

2·0 (2·3) 2·5 (2·2) 1·1 (2·0) NA 

P-tau181 (pg/ml) 
(mean (SD)) 

9·7 (9·3)  16·9 (11·0)  23·7 (10·5) <0·0001‡ 

NfL (pg/ml) (mean 

(SD)) 2 
5·8 (2·0)  8·7 (3·5) 18·9 (10·1) <0·0001‡‡ 

 
  



Plasma phospho-tau181 in familial Alzheimer’s disease 

 25 

Table 2 
 

 
 

MMSE 
  

CDR SOB Digit Symbol RMT-average 

N 
MC: 43 

PMC: 24 
SMC: 19 

MC: 40 
PMC: 24 
SMC: 16 

MC: 30 
PMC: 20 
SMC: 10 

MC: 35 
PMC: 23 
SMC: 12 

All mutation 
carriers (MC) 

  

4·5% decrease  
(2·6% decrease, 
7·5% decrease)*  

16·2% increase  
(6·8% increase, 

27·6% increase)* 

0·7% decrease  
(1·7% decrease, 
 0·1% increase) 

3·1% decrease 
(6·5% decrease, 
0·8% decrease)* 

Presymptomatic 
(PMC) 

  

12·0% decrease  
(31·5% decrease, 

4·7% increase) 
Not applicable1 

0·1% decrease  
(1·6% decrease, 
 1·3% increase) 

3·4% decrease 
(12·8% decrease, 
0·02% decrease)* 

Symptomatic 
(SMC) 

  

1·6% decrease  
(3·2% decrease, 
0·2% increase)  

10·5% increase  
(4·5% increase, 

15·0% increase)* 

0·1% decrease  
(1·6% decrease, 
 1·3% increase) 

1·8% increase, 
(2·6% decrease, 
5·4% increase) 

 
 
Table 2: Associations between p-tau181 plasma concentration and cognitive measures for 

mutation carriers 

Percentage (%) increase/decrease (95% CI) in p-tau181 for a one unit increase in the cognitive test 

score. All analyses adjust for age and sex; models for RMT-average and Digit Symbol additionally 

adjust for years of education.  

*Significant associations i.e. confidence intervals do not include zero. 

1 CDR SOB equal to zero for all but one observation in this group 

N: Number with data for the cognitive variable; MC: mutation carrier; SMC: symptomatic mutation 

carrier; PMC: presymptomatic mutation carrier 


