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Pockets of susceptibility resulting from spatial or social heterogeneity in vac-
cine coverage can drive measles outbreaks, as cases imported into such
pockets are likely to cause further transmission and lead to large transmission
clusters. Characterizing the dynamics of transmission is essential for identify-
ing which individuals and regions might be most at risk. As data from
detailed contact-tracing investigations are not available in many settings, we
developed an R package called o2geosocial to reconstruct the transmission clus-
ters and the importation status of the cases from their age, location, genotype
and onset date. We compared our inferred cluster size distributions to 737
transmission clusters identified through detailed contact-tracing in the USA
between 2001 and 2016. We were able to reconstruct the importation status
of the cases and found good agreement between the inferred and reference
clusters. The results were improved when the contact-tracing investigations
were used to set the importation status before running the model. Spatial het-
erogeneity in vaccine coverage is difficult to measure directly. Our approach
was able to highlight areas with potential for local transmission using a mini-
mal number of variables and could be applied to assess the intensity of
ongoing transmission in a region.
1. Introduction
Establishing who infected whom during an outbreak can help inform the
design and evaluation of control measures [1–5]. Transmission links can be
reconstructed through contact-tracing investigations, whereby cases are asked
their movements and contacts during their infectious period. Given that con-
tact-tracing investigations are not always carried out due to the logistical
effort and cost involved, inference methods have been developed to use epide-
miological data to estimate the probability that a transmission event occurred
between any given pair of cases [6–12]. This makes it possible to establish prob-
abilistic transmission trees that link all observed cases. The ensemble of cases
belonging to the same transmission tree is called a transmission cluster.

Wallinga & Teunis [2] first developed a likelihood-based estimation
procedure to reconstruct probabilistic transmission trees from a given distri-
bution of generation times and observed symptom-onset dates of each case.
Since then, genomic, spatial or contact data have been used to supplement
the timing of symptoms, which helped identify determinants of transmission,
mixing behaviour, individual dispersion, evaluate control measures, anticipate
future developments of outbreaks and study viral evolutionary patterns
[5,8,9,13–17].
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Table 1. Table of notations of all variables and distributions defined in the
methods.

parameter symbol

onset date ti, tj
infection date Ti
age αi, αj
tree τj
genotype gi, gtj
region ri, rj
number of generations κji
spatial parameters a,b,c

conditional report ratio ρ

connectivity nrj ri
population mri , mrj

distance dri rj
parameter set θ

importation threshold λ

generation time distribution w(ti− tj)

latent period distribution f (ti− Ti)

age contact probability a(αi, αj)

genotype probability G(gi , gtj )

probability of missing generation p(κji|ρ)

spatial probability s(ri, rj| a, b)

log-likelihood of connection between i and j Lji(ti, tj, θ )

individual log-likelihood Li(ti , j, tj, θ )
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As sequencing of pathogens has become more common,
the use of such data to infer transmission trees has increased.
Methods developed to add genetic distance to a Wallinga–
Teunis algorithm, where cases with lower genetic distance
are more likely to be grouped in the same transmission
group, showed it substantially increased the accuracy of the
reconstructed transmission trees [8,18–21].

The utility of sequence data depends on the characteristics
of the pathogen [22,23]. Based on the highly variable 450
nucleotides region of the N gene (N-450) of the measles
virus genome, eight measles genotypes have been detected
since 2009 [24,25]; these genotype designations are helpful
in linking cases, as linked cases must be infected by a virus
of the same genotype [25]; however, the diversity of measles
genotypes is decreasing [26]. It has been suggested that
further sequencing the M-F non-coding region, or full
genome sequencing, could help identify measles virus trans-
mission trees, but so far, extended sequencing during measles
outbreaks has been scarce [27,28]. In addition, the evolution-
ary rate of measles virus is very low [29]; therefore, samples
from unrelated cases can be very close genetically and genetic
sequences from measles cases are not usually indicative of
direct transmission links [27,28].

As measles is highly infectious, under-immunized com-
munities (also called pockets of susceptibles) resulting from
local heterogeneity in vaccine coverage can lead to large,
long-lasting outbreaks [30–34]. Detecting these pockets of
susceptibles can be challenging, as historical local values of
coverage throughout a given country are rarely available.
The number of cases in the transmission trees resulting
from each importation during outbreaks, also called the clus-
ter size distribution, will depend both on individual factors
(e.g. age of the imported case which might affect contact pat-
terns) and community factors (e.g. the history of coverage in
the area) [35,36]. The size of a cluster can, therefore, reflect the
level of susceptibility of individuals directly and indirectly
connected to the imported case [37,38].

Here, we introduced a model combining age, location,
genotype and rash onset date of cases to reconstruct probabil-
istic transmission trees. We chose these features to make the
model applicable to a wide range of settings as they are
commonly reported and informative on transmission. We
wrote the R package o2geosocial to conduct inference on
individual-level data using this model. It is based on the
package outbreaker2 and is designed for outbreaks with par-
tial sampling of cases, or uninformative genetic sequences,
such as measles outbreaks [9,39]. We used the likelihood of
transmission links between different cases to estimate their
importation status. We compared the inferred importation
status and cluster size distribution to the transmission clus-
ters identified via contact tracing during measles outbreaks
in the USA between 2001 and 2016.
2. Methods
2.1. Presentation of the algorithm
Transmission trees are used to represent who infected whom
during an outbreak. They are directed acyclic graphs, where
nodes are the reported cases and edges show the connection
between them. The root of each transmission tree is an imported
case, i.e. a case who was infected in a different transmission set-
ting. The cases placed in the same transmission tree form a
transmission cluster. We estimated the number of cases per
cluster (cluster size distribution) and the importation status of
the cases from probabilistic transmission trees inferred using
routinely collected epidemiological variables.

We used a Metropolis–Hastings algorithm with Markov
chain Monte Carlo (MCMC) to classify a set of cases into a set
of transmission trees with associated probabilities quantified
using a Bayesian model to combine the epidemiological features
of the cases. At every iteration of the MCMC algorithm, we pro-
posed a new set of model parameters, infection dates and
connections between cases. These three elements formed a tree
proposal. We computed the ratio between the posterior prob-
ability of this proposal and the current posterior probability.
The posterior probability (up to a multiplicative constant which
would cancel out when calculating the ratio) was calculated
from the likelihood of the trees, and the prior probability of
the parameters. The log-likelihood of each tree was equal to the
sum of the log-likelihoods of each case. All the notations are
defined in table 1.
2.1.1. Likelihood function and parameter definition
In a tree proposal, each case iwasassignedan infector j andan infec-
tion date ti.We computed the log-likelihood of each case, Li(ti, j, tj, θ)
to calculate the likelihood of the tree. The log-likelihood of i was
split in two: (i) the log-probability density of observing the onset
date Ti if case i had been infected at time ti log( f(ti − Ti)) and (ii)
the log-likelihood of connection between i and j Lji(ti, tj, θ ), with
θ the parameter set of the model (2.1):

Li(ti, j, tj,u) ¼ log ( f (ti � Ti))þ L ji(ti, t j, u), ð2:1Þ
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The function f represents the distribution of the incubation period.
The log-likelihood of connection Lji was computed from five com-
ponents reflecting the age group, genotype, location, inferred date
of infection of cases i and j, and the report ratio (2.2). We allowed
for an indirect link between cases due to unreported individuals,
κji corresponds to the number of generations between i and j. If
κji= 1, j infected i, whereas if κji = 2, an unreported case infected
by j infected i, κji increases with the number of missing links
between i and j

L ji(ti , t j ,u) ¼ log ( pðk jijrÞ � w ðk jiÞ(ti � tj)� aðk jiÞ(ai,aj)

� G(gi, gtj )� sðk jiÞ(ri, rjj a, b)): ð2:2Þ

We calculated the temporal probability of transmission
between i and j from the number of days between ti and tj
and the distribution of the generation time of the disease
w(t). This probability was quantified by w(k ji)(ti � tj, k ji),
w(k ji) ¼ w�w� . . . �w, where * is the convolution operator applied
κji times. We used a geometric distribution p(κji|ρ) to quantify
the probability of observing κji missing generation between i
and j, given the conditional report ratio ρ. The conditional
report ratio quantifies the probability of missing generations
between two connected reported cases. Entire missing clusters,
cases infected after the last cases or cases infected before the
ancestor of a cluster would not interfere in the connection
between two cases and, therefore, would not affect the value of
the conditional report ratio. The conditional report ratio can be
higher than the overall report ratio of an outbreak. The ‘ancestor’
is the earliest identified case in a cluster.

a(αi, αj, κji) was defined as the probability of transmission
between age groups αi and αj. This probability corresponds to
the proportion of contacts to the age group αi that originated
from αj and can be deduced from studies such as POLYMOD
[36]. We defined G(gi, gtj ) as the probability of observing the
pathogen genotype gi in case i in the tree τj containing case j.
There can only be one measles virus genotype per transmission
tree, or cases with unreported genotype. The genotype gτj is
the genotype contained in the tree τj and is known if at least
one case in τj had a reported genotype

G(gi, gtj ) ¼
1 if gi unknown
1 if gtj unknown
1 if gi and gtj both known and gi ¼ gtj
0 otherwise

8>><
>>:

ð2:3Þ

In (2.3), if G(gi, gtj ) ¼ 0, then the connection between i and j is
impossible, and (2.1) and (2.2) are equal to log(0) =−∞.

s(ri, rj, κij) was defined as the probability of connection from
rj to ri, regions of residency of i and j (2.4). We used an exponen-
tial gravity model to quantify the connectivity of the different
geographical units [40]. This approach showed good perform-
ance at modelling short-distance commuting, and was easy to
parametrize [40–44]. In the simplest form of the exponential
gravity model, the number of connections between ri and rj is
proportional to the product of the origin population mrj , the des-
tination population mri and an exponential decrease of the
distance between ri and rj drjri : nrjri / e�a�drj ri �mb

rj �mc
ri , with

a, b and c parameters adjusting for the impact of distance and
population. From this definition, we deduced s(rj, ri), the spatial
probability of transmission from i to j

s(ri,rj) ¼
nrjriP
h nhri

¼
e�a�drjri � mb

rj �mc
riP

h e�a�dhri �mb
h �mc

ri

¼
e�a�drjri � mb

rjP
h e�a�dhri �mb

h

: ð2:4Þ
Only the parameters a and b were required to compute the
spatial probability of transmission. If ri = rj, then (2.4) becomes:
s(ri, rj) ¼ mb

ri=
P

h m
b
h. Other distributions than the exponential

decrease can be used in this framework if transmission follows
a different pattern.

The parameters ρ, a and bwere estimated. At each iteration of
the MCMC, the log-likelihood of the trees was equal to the sum
of all individual log-likelihoods Li from equation (2.1). The
log-posterior density of the proposed trees was calculated by
summing the overall log-likelihood of the trees and the log-priors
of the parameters.

2.1.2. Tree proposals
We used a Metropolis–Hastings algorithm with MCMC to
sample from the posterior distribution of parameters and trans-
mission trees. To do this, we developed a set of proposal tree
updates. These updates were accepted with acceptance prob-
ability as defined by the Metropolis–Hastings algorithm [45].
We used eight types of tree proposal to ensure good mixing.
Each proposal conserved the overall number of trees, with a
maximum of one unique genotype reported per tree.

Five of the proposals had already been implemented in the
outbreaker2 package and were adapted to this setting: (i) change
the number of generations between two cases; (ii) change the con-
ditional report ratio ρ; (iii) change the time of infection; (iv) change
the infector of a case (if the case is not the ancestor of a tree);
(v) swap infector–infectee (if none is the ancestor of a tree).

We added two proposals to change a and b, the spatial kernel
parameters. For each proposal, the probability of transmission
between every geographical unit was recalculated with the
new values. The distance matrix had to be computed for each
number of generations between cases, which considerably
slowed down the algorithm. As we could not use sequence
data, assessing whether a case was isolated or whether it was
connected to a reported infector with two missing generations
would be very challenging using our model alone. Therefore,
we limited the maximal number of missing generations to 1
when a or b were estimated (max(κji) = 2). Finally, the last propo-
sal was designed to change the ancestor of the tree while
conserving the overall number of trees (figure 1).

2.1.3. Inference of importation status and cluster
Unrelated measles cases stemming from different importations
and different regions can be part of the same dataset. Grouping
cases and excluding unrealistic transmission links reduces the
number of possible trees and speeds up the MCMC runs. To
do so, we listed each case’s potential infectors using three cri-
teria: (i) the potential infectors must be of the same genotype
as the case, or have unreported genotype, (ii) the location of
potential infectors must be less than γ km away from the case,
and (iii) the potential infectors must have been reported later
than δ days before the case. This threshold should be determined
from the maximum plausible generation time of the disease. The
spatial threshold γ should be defined according to the relevance
of long-distance transmissions. Cases with no potential infector
were considered as importations. Otherwise, they were grouped
together with (i) their potential infectors and (ii) cases with
common potential infectors.

After grouping the cases, we estimated their importation
status and the cluster size distribution using two runs of MCMC
(figure 2). The first run was shorter and aimed at removing the
most unlikely connections among each group, as they can reflect
unrealistic estimates for incubation periods or generation times
and corrupt the estimation of the date of infection. We defined a
reference threshold λ, whereby if the individual value of log-like-
lihood Li was worse than λ, then the connection between i and
their infector was considered unlikely. In Outbreaker2, λ was a
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Figure 1. Example of the change of ancestors. (a) The initial tree and (b) the new tree proposed after the movement. Initially, there are two ancestors (cases 1 and
2) in a group of nine cases. Cases 3 and 7 have different genotypes and cannot be part of the same tree, the genotypes of the other cases are not reported. The date
of infection is in increasing order (1 is the first case, 9 is the last). Therefore, 1 is the only potential infector for 2. One new ancestor was randomly drawn to conserve
the number of trees. In this example, 7 is the new ancestor (6 was the only other possibility). The ratio of the posterior densities of (a,b) were then used to
determine whether to accept or reject the proposal, according to the Metropolis–Hastings algorithm. This movement ensures good mixing of the potential ancestors
of the transmission clusters.
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relative value, defined from a quantile of the individual log-
likelihoods. In o2geosocial, λ can be a relative value or an absolute
value, chosen from the number of components of the likelihood.
For each sample saved from the short run, we computed the
number of unlikely connections n. If there was no iteration
where all connections were better than λ, min(n) new importations
were added to the initial tree for the long run (figure 2).

Finally, we ran a longMCMC chain and obtained samples from
the posterior distribution. After removing the burn-in period and
thinning the chain, we deleted the unlikely transmission links in
each iteration and identified transmission clusters. Therefore,
unlike the previous versions of outbreaker2, the number of importa-
tions in each sample canvaryand the individualprobabilityof being
an importation can be computed (figure 2).
2.2. Validation case study: measles outbreaks in the
USA between 2001 and 2016

2.2.1. Data
To evaluate the performance of the model, we inferred the trans-
mission clusters from a dataset that also included information on
whether measles cases were part of a cluster based on contact-
tracing investigations. Measles cases in the USA are reported
by healthcare providers and clinical laboratories to their corre-
sponding health department. Each case is investigated by local
and state health departments classified according to standard
case definitions [46], and linked into clusters epidemiologically
(e.g. by establishing a direct contact or a shared location between
cases, or when cases are part of a specific community where an
outbreak is occurring). Cases are considered internationally
imported if at least part of the exposure period (7–21 days
before rash onset) occurred outside the USA and rash occurred
within 21 days of entry into the USA, with no known exposure
to measles in the USA during the exposure period.

Confirmed measles cases are routinely reported by state
health departments to the CDC. A total of 2098 measles cases
were reported in the USA between January 2001 and December
2016. The number of annual cases did not exceed 700 cases
during this time period (figure 3; electronic supplementary
material, figure S1). The importation status, 5-year age group,
onset date, county and state of residence were fully reported
for 2077 cases. The 21 cases with missing data were discarded.
Twenty-five per cent of the cases were classified as importations.
Thirty-nine per cent of the cases had their genotype reported.
Among cases with complete data, 737 independent clusters,
containing 1–380 cases, were reconstructed through contact-
tracing investigations. Not every identified case could be linked
to an importation, and some transmission clusters contained
multiple imported cases (e.g. when related individuals travel
together to a foreign country and were infected there). Out of
the 737 reference clusters, 38 had several cases classified as
importations, 256 had none identified.
2.2.2. Model and parameters
The distributions and priors used in the studies are listed in
table 2. As no studies quantifying the probability of age-specific
contacts have been carried out in the USA, we used the estimates
from the POLYMOD study in the UK [36]. The incubation period
and the generation time of measles were taken from previous
studies [47–49]. We used the population centroid of each
county to compute the distance matrix [50]. We used a beta dis-
tribution as the prior of the conditional report ratio [8]. The mean
of the prior distribution was calculated using the number of clus-
ters whose first case was not classified as an imported case,
meaning the investigations were not able to trace back to the
first case imported. As there was no prior information on the
possible values of the spatial parameters a and b, we used uni-
form distributions between 0 and 5.

For pre-clustering of cases, we set the temporal threshold δ to
30 days, which is above the 97.5% upper quantile of the gener-
ation time with a missing generation. We were interested in
local transmission to describe the impact of an imported case
on a community. But we only had information on the county
of residency for each case. Counties are large geographical
units: the average county land area is 2911 km2 and the maxi-
mum values reach 50 000 km2. Therefore, we set the spatial
threshold γ to 100 km to exclude long-distance transmission,
while still allowing for cross-county transmission.

Finally, we tested several relative and absolute importation
thresholds λ. Absolute values were calculated from a factor k,
multiplied by the number of components in Li, excluding the
binary genetic component. Tested values were k = 0.05 (λ =
log(0.05)*5 =−15) and k = 0.1 (λ =−11). Connections were con-
sidered unlikely if the log-likelihood was worse than λ.
Relative values were quantiles of all recorded log-likelihoods in
the sampled trees (table 2).
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Figure 2. Estimating importation status and cluster size distributions in two MCMC runs. Step 1: initial tree obtained after pre-clustering, with the minimum
number of importations (here 2, as there are two reported genotypes). Step 2: samples from the first short run, with red lines showing connections worse
than the arbitrary threshold λ. Step 3: initial tree for the final run, with one more importation than in step 1, which corresponds to the minimum number
of unlikely transmissions at step 2. Step 4: samples from the long run. Step 5: final trees used to compute cluster size distribution and importation status of
each case. Case 7 is an importation in one-third of the final samples, whereas case 3 is an importation in all of them.
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2.2.3. Inference of importation status
Using the contact-tracing investigations,we considered three differ-
ent initial distributions of the importation status. In scenario 1, there
was no inference of the importation status of cases, and the first case
of each epidemiological cluster was classified as importation (ideal
importation). In scenario 2: there was no inference of the importa-
tion status of cases, and all cases identified as importation in the
contact-tracing investigations were classified as importations (epi-
demiological importation). Finally, in scenario 3, the importation
status of cases was inferred, using different thresholds λ, and
using no prior information on the importation status of cases or
the importation status from the contact-tracing investigations.

2.2.4. Inference of clusters
In order to compare the inferred and reference clusters, we calcu-
lated for each case i: (i) the proportion of cases from the same
reference cluster as i that were inferred with i (sensitivity) and
(ii) the proportion of cases in the same inferred cluster as i that
were part of the reference cluster (precision). These values
were calculated at every iteration, and the median values were
used to evaluate the fit obtained with different values of λ. We
also compared the inferred cluster size distribution to the refer-
ence data. The credibility intervals for each case are reported in
electronic supplementary material, figure S2.
3. Results
We clustered 2077 measles cases reported in the USA
between January 2001 and December 2016 using their onset
date, age groups, location and genotype. Using the contact-
tracing investigations, we considered three different initial
importation status distributions: (i) only the ancestors of
each epidemiological cluster (first case of each cluster) were
importations (ideal importation), (ii) all cases classified as
importation in the contact-tracing investigations were impor-
tations (epidemiological importation), (iii) no prior
information on importation status of cases. The importation
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Table 2. Values of parameters used to cluster cases declared in the USA.

parameter symbol distribution

incubation period f (t) gamma,

mean = 11.5, s.d. = 2.24

generation time w(t) normal,

mean = 11.7, s.d. = 2.0

conditional report ratio ρ prior: beta distribution,

mean = 0.65, s.d. = 0.15

spatial parameter 1 a prior: uniform distribution

spatial parameter 2 b prior: uniform distribution

spatial pre-clustering γ fixed: 100 km

temporal pre-clustering δ fixed: 30 days

importation threshold λ absolute:

5 × log 0.05 = –15

5 × log 0.1 = –11

relative:

5%
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status of the cases was, therefore, not probabilistically
inferred in scenarios 1 and 2. The length of the short prelimi-
nary run was 30 000 iterations and the main run was 70 000
iterations. For each run, the trace of the posterior distribution
shows the convergence of the algorithm (electronic
supplementary material, figure S3).

In scenario 1, we did not infer the importation status of
cases. The inferred cluster size distribution matched the con-
tact-tracing investigations (figure 4a); 98% of the reference
singletons were also isolated in the inferred cluster. For 94%
(95% credibility interval: 91–98%) of cases, the inferred cluster
had a sensitivity and precision above 75%, meaning more than
75% of the cases in the inferred cluster were in the reference
cluster, and more than 75% of the cases in the reference cluster
were in the inferred cluster (figure 4b). For 80% (78–93%) of
cases, the inferred clusters were a perfect match with the refer-
ence clusters. The cluster size distribution stratified by state
was similar to the contact-tracing investigations (electronic
supplementary material, figure S4). Therefore, when each
ancestor was considered as an importation, the inferred
clusters were very close to the reference ones.

In scenario 2, we used the importation status distribution
of cases reported in the contact-tracing investigations (539
importations). Pre-clustering highlighted 165 cases with no
potential infector, which were also classified as importations.
We observed discrepancies between the inferred cluster size
distribution and the reference one: among the 704 cases
inferred as importation, 61 (9%) were not importations in
the reference cluster. Furthermore, 94 cases were the ancestor
of a reference cluster and were not classified as importations
in the inferred clusters (13%). The overall cluster size distri-
bution matched the reference distribution, but 111 reference
singletons were inferred as part of transmission clusters
(figure 4a; electronic supplementary material, figure S5).
Although the precision of the inferred cluster was above
75% for 93% (88–93%) of the cases, 31% (6–39%) had a sensi-
tivity score below 0.5, meaning they were classified with less
than half of the cases from their reference clusters (figure 4c).
The discrepancies observed in this scenario are due to incon-
sistencies between the importation status distribution and the
clustering of cases in the contact-tracing investigations, as
reference clusters that gathered several importations were
split into different inferred clusters.

In scenario 3, we used different threshold λ to infer the
importation status of cases. We tested λ =−15, λ =−10 (absol-
ute value), and λ = 95th centile of all recorded log-likelhoods
(relative value). For each case i, if the log-likelihood Li was
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worse than λ, the connection between the case and its infector
was removed and the case was considered imported. Firstly,
using an absolute factor λ =−15, 586 (581–593) cases were
classified as importations, and 361 (355–369) of them
were singletons. These numbers are much lower than the refer-
ence dataset that contains 737 clusters, and 539 singletons
(figure 5a; electronic supplementary material, figure S6). How-
ever, very few cases inferred as importations or singletons
were not classified as such in the reference dataset (15
(10–22) misclassified importations, 4 (0–14) misclassified
singletons), and the cluster size distribution for clusters includ-
ing two cases and more was very similar to the reference one.
The precision of the reconstructed cluster was very high (above
75% for 88% (85–93%) of cases) (figure 5b). Overall, the algor-
ithm was not able to accurately identify importations and
singletons as the threshold was too low to eliminate some
unrealistic connections, but the inferred larger clusters
matched their reference counterparts.

We then observed the impact of increasing λ on the inferred
cluster size distribution. Runs obtained using an absolute
threshold with λ=−11 and 95% relative threshold yielded very
similar results. The number of cases inferred as importations
was higher than in previous runs, while all remaining links
showed good connection between cases. The number of impor-
tations was closer to the reference dataset, and the number of
singletons was greater than the reference. Nevertheless, 11%
(10–12%) of the inferred importations was not classified as
importation in the reference clusters. Furthermore, the number
of two-case chains was overestimated, and bigger clusters were
likely to be split because of the removal of weaker connections.
Therefore, increasing λ did not improve the cluster size distri-
bution, as many importations in the reference clusters were not
identified and the number of mismatches increased (electronic
supplementary material, figure S7).

Finally, we combined prior information and inference of
importation status to create a scenario where the importation
status of only a proportion of the cases is known, because of
disparities in the contact-tracing investigations. This scenario
is relevant for a dataset combining different outbreaks scat-
tered across a large area or a long period of time. Cases
considered as importations in the contact-tracing investi-
gations were set as importations, and we inferred the
importation status of the remaining cases. We used a low
threshold to remove the least likely transmission links
(λ =−15). Including prior information led to some misclassifi-
cation of importation status due to the inconsistencies between
the epidemiological importation status and the reference clus-
ters. As in scenario 2, some cases were classifiedwith only part
of their reference clusters because clusters with several impor-
tations were split into different clusters. Indeed, the sensitivity
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score of 34% (7–51%) of cases was below 0.5. Nevertheless, the
cluster size distribution observed in the simulationwas the clo-
sest to the reference clusters. Therewere 725 (719–731) clusters,
89% of importations were also ancestors of reference clusters
and the number of singletons matched the reference clusters
(figure 5a–c). The inferred clusters of 88% (86–94%) of the
cases had a precision score of 1, showing they were clustered
without any false positives. Despite discrepancies in several
states (Massachusetts, Ohio), the cluster size distribution stra-
tified by state showed good agreement with the reference
clusters (electronic supplementary material, figure S8).

The conditional report ratio in the transmission chains ρ
and the spatial parameters a and b was estimated in each
scenario. The parameter estimates did not depend on the
prior importation status distribution or the value of λ. ρ
was consistently estimated above 90%, showing a low
number of missing generations between cases (electronic sup-
plementary material, figure S9). High values of ρ show that
most of the reported cases could be connected without miss-
ing generations. This is not representative of the overall
report ratio, which is usually much lower [51].

There was little variation in the estimates of the spatial
parameters between the different scenarios. The population
parameter a was estimated between 0.6 and 1 for every scen-
ario, and the distance parameter bwas between 0.08 and 0.12.
In every scenario, more than 80% of the inferred transmission
were between cases distant of less than 10 km, and few long-
distance transmissions were recorded (50–100 km); hence,
although most of the reconstructed connections were
between cases from the same county, the algorithm was
able to identify clusters spreading over several counties or
states (electronic supplementary material, figure S10).

We highlighted the added value of including the spatial
distance between cases in the likelihood by comparing the
cluster size distribution inferred by selecting certain com-
ponents of Li (electronic supplementary material, figure
S11). The credibility intervals were much wider when the dis-
tance between cases is not part of the likelihood, and the
number of chains containing 2–10 cases was overestimated.
The important impact of the spatial component of likelihood
was also due to the widespread American territory, and could
be lower in a different setting.

We used the ratio of the number of importations over the
number of subsequent cases per state to evaluate the intensity
of transmission in each state between 2001 and 2016 (figure 6).
The maps obtained in scenario 1 (ideal scenario) or in scen-
ario 3 (estimation of importation, with epidemiological
importations and λ =−15) were very similar. We only
observed minor differences, for example, in South Dakota
and in Massachusetts, where the ratios were higher in scen-
ario 3. The highest ratio (31.8 in scenario 1) was observed
in Ohio, and is mostly due to a 383 case outbreak in 2014
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Figure 6. Ratio of the number of importations over the number of subsequent cases in each state in (a) scenario 1 (ideal importations) and (b) scenario 3 with
epidemiological importations and λ =−15. Grey states represent states that did not report any case.
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[32]. We observed major differences between the incidence
map (figure 2a) and the ratio per state. Indeed, although
403 cases were reported in California (highest number in
the USA), importations caused on average 1.32 subsequent
cases in scenario 1 (1.60 in scenario 3), showing a high
proportion of reported cases were inferred as importations.

Similarly, we used the inferred transmission chain to
compute the inferred reproduction number in each state.
According to the model, about 60% cases did not cause future
transmission, and about 5% caused more than five subsequent
cases (electronic supplementary material, figure S12). These
numbers were consistent in each run. The geographical distri-
bution of reproduction number was very similar to the
importation–subsequent cases ratio (electronic supplementary
material, figure S13).
4. Discussion
We developed the R package o2geosocial to classify measles
cases into transmission clusters and estimate their importation
status using routinely collected surveillance data (genotype,
age, onset date and location of the cases). As recently observed
during the 2018–2019measles outbreak inNewYork, delays in
childhood vaccination, local susceptibility and increased con-
tacts can lead to large outbreaks following importations
[52,53]. Therefore, we were interested in highlighting the
effect of imported cases on communities and we focused on
short distance transmission to identify areas where they
repeatedly caused subsequent transmission chains. Although
this is not predictive of future transmission, it highlights
communities with potential for large transmission clusters.

We compared the inferred transmission clusters to the con-
tact-tracing investigations of 2077 confirmed measles cases
reported in the USA between 2001 and 2016. We were able to
produce reliable estimates of known transmission clusters
using epidemiological featureswith only fewmisclassifications.
Estimating the importation status of cases without prior knowl-
edgewas challenging and caused uncertainty on the results.We
tested different threshold λ to eliminate unlikely transmissions,
and we were able to identify most of the imported cases.
Nevertheless, if several cases were imported in the same
region at a similar time, we could not find all of them without
discarding valid transmission events, and increasing the
number of false positives. When we used the importation
status as defined in the contact-tracing investigations without
probabilistic inference (scenarios 1 and 2), the reconstructed
clusters were similar to the reference ones. Results were also
conclusive when we combined prior information and importa-
tion inference. The reconstruction of transmission greatly
depends on the epidemiological investigations to identify
measles importations in a community.

We used the genotype to censor connections between
cases when it was reported, as there can be only one reported
genotype per transmission cluster. Using a simulated dataset
(toy_outbreak_long in o2geosocial), we explored the impact of
increasing the proportion of genotyped cases on clustering
and observed it could help identify the number of concurrent
transmission trees when multiple genotypes are co-circulat-
ing. Moreover, we introduced a spatial component to the
likelihood of connection between cases using an exponential
gravity model. Previous studies showed this model was able
to capture short-distance dynamics better than other gravity
models, and was easy to parametrize. Introducing the spatial
component greatly improved the precision and the sensitivity
of the reconstructed clusters (electronic supplementary
material, figure S11), and the parameter estimates were
robust in the different scenarios.

The final results on the clustering of the 2077 cases using
o2geosocial were obtained in 7 h for each run of 100 000 iter-
ations on a standard desktop computer (Intel Core i7,
3.20 GHz 6 cores), which is much faster than previous
implementations of outbreaker and outbreaker2. With the
addition of the pre-clustering step, whereby we reduced the
number of potential infectors for each case, the algorithm ran
faster. For smaller chains (50 000 iterations), 4 h were needed
to estimate the importation status and cluster the cases. The
code for the package and the analysis developed in this project
is shared on Github (https://github.com/alxsrobert/o2geoso-
cial and alxsrobert/datapaperMO), with an illustrative toy
dataset, and can be used to analyse recent outbreaks where
contact-tracing investigations were not carried out.

https://github.com/alxsrobert/o2geosocial
https://github.com/alxsrobert/o2geosocial
https://github.com/alxsrobert/o2geosocial
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Although the results obtained are promising, it should be
noted that the dynamics of measles transmission in the USA
are likely to be very specific to this location. Indeed, there were
less than 700 annual cases between 2001 and 2016. These cases
were scattered across a large area,whichmade the pre-clustering
of cases very efficient as we focused on short-distance trans-
mission. In smaller or more endemic settings, the number of
potential infectors per cases after the pre-clustering step might
be higher, which would increase the running time.

Furthermore, as the location of each case was deduced
from the population centroid of counties, we assumed that
the distance between cases from the same county was effec-
tively zero. American counties are large and widespread
geographical units that can include more than 1 million indi-
viduals. For future use of o2geosocial, more accurate
information on the location of cases could improve cluster
inference by identifying multiple importations in a given
county. Because cases are reported by the state of residency,
we had to ignore that cases may have been out of the
reported county or state during their incubation and infec-
tious period, which has been seen during some outbreaks,
such as the 2015 ‘Disney outbreak’ in California [54].

We did not include prior information on the local suscep-
tibility of the different areas affected in o2geosocial, and these
could be estimated using historical values of local coverage.
However, protocols to estimate local vaccination coverage
can differ in time and space and be difficult to compare, or
unavailable at the local level. Furthermore, these estimates
are cross-sectional in nature, and might not take into account
catch-up vaccination campaigns, or immunity induced by
previous outbreaks. Local seroprevalence surveys could
identify pockets of susceptibles, but they have not been
carried out on a subnational scale in most countries [55].

There has been no national quantitative analysis of age-
specific contact patterns carried out in the USA, so we
relied on a contact matrix between age groups available for
Great Britain from the POLYMOD study [36]. Nevertheless,
little variation in the contact rates between age groups has
been observed between European countries, and a previous
projection of the social contact matrix in the USA yielded
similar results [56]. POLYMOD data were probably the
most reliable source of information we could use to deduce
an estimate of the contact matrix in the USA.
5. Conclusion
Heterogeneity in immunity can cause large outbreaks in
countries with high national vaccine coverage, and identifying
potential foyers of transmission in post-elimination settings is
key for outbreak prevention and control. We have presented a
method for estimating the cluster size distribution of past
measles outbreaks from routinely collected surveillance data.
We found that adding prior knowledge on the importation
status of cases improved the inference of the transmission clus-
ters. Although the methodwas able to identify a proportion of
importations, epidemiological investigations on the history of
travel and exposure reduced uncertainty on the clustering of
cases. We believe these investigations are needed to produce
reliable estimates of past transmission clusters. In lieu of the
importation status, if multiple genotypes are co-circulating,
increasing the proportion of genotyped cases could help dis-
card potential connections and find imported cases. Even
with limited information, this method was able to infer
probabilistic transmission clusters in a fast and efficient way.
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