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RESEARCH NOTE

SOCRATES: an online tool leveraging 
a social contact data sharing initiative to assess 
mitigation strategies for COVID-19
Lander Willem1* , Thang Van Hoang2, Sebastian Funk3, Pietro Coletti2, Philippe Beutels1,4 and Niel Hens1,2

Abstract 

Objective: Establishing a social contact data sharing initiative and an interactive tool to assess mitigation strategies 
for COVID-19.

Results: We organized data sharing of published social contact surveys via online repositories and formatting guide-
lines. We analyzed this social contact data in terms of weighted social contact matrices, next generation matrices, 
relative incidence and R 0 . We incorporated location-specific physical distancing measures (e.g. school closure or at 
work) and capture their effect on transmission dynamics. All methods have been implemented in an online applica-
tion based on R Shiny and applied to COVID-19 with age-specific susceptibility and infectiousness. Using our online 
tool with the available social contact data, we illustrate that physical distancing could have a considerable impact on 
reducing transmission for COVID-19. The effect itself depends on assumptions made about disease-specific character-
istics and the choice of intervention(s).
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Introduction
Given the pandemic of SARS-CoV-2, which causes 
COVID-19 disease, it is of great importance to con-
sider intervention strategies to slow down SARS-CoV-2 
spread, and thus decrease surge capacity problems aris-
ing to health care provision and essential supplies [1, 2]. 
Physical distancing on a large scale, first at the epicenter 
of the outbreak in Wuhan, and later in other locations 
was shown to slow down SARS-CoV-2 spread (e.g. in 
Shanghai) [3].

Social contact surveys have proven to be an invaluable 
source of information about how people mix in the popu-
lation [4–6] and explained close contact infectious dis-
ease data well [7–9]. For example, adapted social mixing 

during the A(H1N1)v2009 pandemic was fundamental to 
reproduce the observed incidence patterns [10]. In terms 
of prevention strategies, social contact data from the 
POLYMOD project [5] have been used to quantify the 
impact of school closure on the spread of airborne infec-
tions [11]. This was done by comparing the basic repro-
duction number R 0 , or the average number of secondary 
infections caused by a single infectious individual in a 
completely susceptible population, derived from mixing 
patterns observed on weekends or during a holiday 
period with those derived from mixing patterns observed 
on weekdays.

In this research note, we highlight a social contact data 
sharing initiative and present an online tool to facilitate 
data access and analysis. Physical distancing measures 
can be mimicked with this tool by excluding the contri-
bution of mixing patterns at specific locations to inves-
tigate the impact on disease transmission and guide 
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policy makers. As a case study in light of COVID-19, we 
exploit our application to quantify the potential impact 
of school closure and physical distancing at work due 
to non-pharmaceutical interventions, a shift from com-
mon workplaces to teleworking at home or (temporary) 
unemployment.

Main text
Methods
Following a systematic literature review [4], correspond-
ing authors were contacted to share their data subject to 
ethical approvals and GDPR compliance. All data have 
been refactored according to guidelines we developed 
during a Social Contact Data Hackaton in 2017 as part of 
the TransMID project. Each survey is split into multiple 
files to capture participant, contact, survey day, house-
hold and time-use data. For each data type, there is one 
“common” file and one “extra” file in which more specific 
variables related to the survey are included. Each data set 
contains a dictionary to interpret the columns (see http://
www.socia lcont actda ta.org for more information).

To extrapolate survey data to the country level and 
obtain social contact rates on a weekly basis, we incorpo-
rate participant weights accounting for age and the num-
ber of observations during week (5/7) and weekend (2/7) 
days. We use the United Nation’s World Population Pros-
pects [12] as reference and constrain weights to a maxi-
mum of 3 to limit the influence of single participants. The 
social contact matrix mij can be estimated by:

where wd
it denotes the weight for participant t of age i who 

was surveyed on day type d ∈ { weekday , weekend } , yijt 
denotes the reported number of contacts made by par-
ticipant t of age i with someone of age j and Ti denotes 
all participants of age i. By nature, contacts are reciprocal 
and thus mijNi should be equal to mjiNj . To resolve differ-
ences in reporting, reciprocity can be imposed by:

with Ni and Nj the population size in age class i and j, 
respectively [13]. This reciprocal behavior might not be 
valid for specific contact types, e.g. contacts at work for 
retail workers are most likely not contacts at work for 
their customers.

Transmission dynamics can be represented by the 
next generation matrix G with elements gij that indicate 
the average number of secondary infections in age class 

(1)mij =

∑Ti
t=1 w

d
ityijt

∑Ti
t=1 w

d
it

,

(2)m
reciprocal
ij =

mijNi +mjiNj

2Ni
,

i through the introduction of a single infectious indi-
vidual of age class j into a fully susceptible population 
[14]. The next generation matrix is defined by:

with D the mean duration of infectiousness, M the con-
tact matrix and q a proportionality factor [9, 11]. The 
proportionality factor q combines several disease-specific 
characteristics that are related to susceptibility and infec-
tiousness. Equation 3 can be reformulated as:

where si denotes the susceptibility of age group i, kj the 
infectiousness of age group j and q̂ other disease-specific 
factors. The leading right eigenvector of G is proportional 
to the expected incidence by age and R 0 can be calculated 
as the dominant eigenvalue of G [5].

To evaluate intervention strategies, we focus on the 
relative impact of adjusted social contact patterns on R 0 
in line with the so-called social contact hypothesis [7] 
by cancelling disease specific features:

where indices a and b refer to the different conditions, 
and S and K account for age-specific susceptibility and 
infectiousness, respectively [11]. Physical distancing can 
be evaluated by the elimination or reduction of location-
specific subsets of the social contact data. Contacts 
reported at multiple locations are assigned to a single 
location in the following hierarchical order: home, work, 
school, transport, leisure and other locations. We simu-
late school closure by excluding all contacts reported at 
school. We evaluate physical distancing at work by apply-
ing a proportional reduction of the social contacts 
reported at work ( pdistancingworkplace ). To combine the effect of 
school closure and distancing at work, the social contact 
matrix M is calculated as:

We developed an interactive application to access and 
analyze social contact data based on R packages shiny 
[15] and socialmixr [16]. The user interface enables the 
selection of country-specific data, age categories, type of 
day, contact duration, intensity and gender. Using selec-
tion boxes, the user can opt to disable the assumption 
of reciprocity and participant weights. The user can also 
enable distancing strategies such as school closure or 

(3)G = DMq,

(4)gij = D ∗mij ∗ si ∗ kj ∗ q̂,

(5)
R0a

R0b
=

max(eigen(DMaq)

max(eigen(DMbq)
=

max(eigen(Ma ∗ S ∗ K ))

max(eigen(Mb ∗ S ∗ K ))
,

(6)

M = Mhome + (Mwork ∗ (1− p
distancing
workplace))

+ (Mschool ∗ 0)+Mtransport +Mleisure +Mother
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physical distancing at work, or include age-specific trans-
mission parameters.

The user interface contains a plot of the social contact 
matrix and the principal results of the social contact anal-
ysis: M, relative incidences, the reference demography, 
participant statistics info on the data sets. Relative R 0 and 
M ratios are printed if reactive strategies are selected.

As COVID-19 case study, we estimate the effect of 
school closure and physical distancing at work on disease 
transmission dynamics. In order to do this, we use 3 age 
classes: 0–18 years, 19–60 years and over 60 years of age. 
For each country, we calculate contact rates after exclud-
ing data from holiday periods. We capture transmission 
dynamics with 0%, 20%, 40% and 60% distancing at work, 
with and without school closure. As proof of concept, we 
include the scenario where children are less vulnerable 
compared to elderly [ si = kj = (0.5, 1, 1.5) ], instead of 
uniform susceptibility and infectiousness.

Results
The http://www.socia lcont actda ta.org initiative, sta-
tus 25th May 2020, includes data for Belgium, Finland, 
Germany, Italy, Luxembourg, Netherlands, Poland and 
the UK from POLYMOD [5], as well as data from other 
studies on social mixing in France [17], China [18], 
Hong Kong [19], Peru [20], UK [21], Russia [22], Zimba-
bwe [23], Vietnam [24], South Africa and Zambia [25]. 
All data are available on Zenodo [26–35] and can be 
retrieved within R using the socialmixr package.

The SOcial Contact RATES (Socrates) data tool [36, 37] 
enables quick and convenient generation of social con-
tact matrices, relevant for the spread of infectious dis-
eases. Figure 1 presents a screenshot of the user interface. 
The potential of using social contact patterns to simu-
late infectious disease transmission are endless, and we 
hope with this initiative to support data-driven modeling 
endeavors. The survey data from France and Zimbabwe 
contain multiple days per participant, hence we included 
only the first day for each participant to minimize the 
effect of reporting fatigue.

We demonstrate the effect of physical distancing at 
work and school closure on R 0 in Fig.  2. If we assume 
uniform susceptibility and infectiousness, we predict for 
most countries a 10% decrease in R 0 with workplace dis-
tancing of 60%. For Poland and Hong Kong, the reduc-
tion is slightly higher. The analysis for Peru shows little 
impact of workplace distancing since only few contacts 
were reported “at work”, whereas a substantial proportion 
of contacts was reported at the market or street. Cultural 

differences in how “at work” is understood should be 
considered when interpreting results. The data for Zim-
babwe contains also relatively few reported contacts at 
work, which translates into a limited impact of workplace 
distancing in our analysis. The estimated R 0 reduction 
due to school closure is more country-specific, e.g. 10% 
reduction for Belgium and Vietnam, but 20% for Italy, 
Luxembourg and France. If we assume that elderly are 
more vulnerable compared to children, as might be the 
case for COVID-19 [38], the impact of school closure 
decreases dramatically. The positive effect of physical dis-
tancing at work on R 0 remains the same or increases.

The predicted relative incidences, as presented in 
Fig.  3, highlight the impact of school closure compared 
to an increase in physical distancing at work by age. The 
relative incidence in people 18–60 years of age decreases 
with an increasing proportion of workplace distancing, 
which is of interest if this age group is more vulnerable 
compared to children. The relative incidence in the age 
group above 60 years of age increases in all situations 
compared to no intervention. This does not imply that 
the absolute number of cases in this age group would rise.

Limitations
Most survey designs were based on the POLYMOD 
survey though each survey had additional features and 
objectives which provide useful additional information. 
At the moment, we do not capture the full potential of 
each data set yet. Our case study elaborates on adapted 
school and work contacts and does not capture compen-
sation behavior due to not being at school or work. This 
might be valid for a pandemic situation but not for regu-
lar (school) holidays. Social distancing due to (pandemic) 
scares are also not included yet.

The current application contains a local version of 
each data set, with some additional data reformatting. 
Our aim is to enable a direct link to Zenodo reposito-
ries. Note that some social contact surveys are available 
on Zenodo but not (yet) included in Socrates. E.g., the 
data from China [18] contains grouped contacts, which 
require different methodology. We omitted data from 
the UK [21], Zambia and South Africa [23] from our case 
study because only infants or adults were recruited.

Note that we will continue to develop this open-source 
tool [37] and thus the input/output/plots/scenarios might 
change in future editions.

http://www.socialcontactdata.org
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Fig. 1 Screenshot of the online SOCRATES application [36]. The user interface enables the selection of country data in combination with temporal 
and contact features. The social contact matrix is shown on the right-hand side in addition to principal results and statistics. When users incorporate 
physical distancing at work or school closure, using the “Distancing” panel on the left-hand side, the R 0 ratio is added to the output (not shown)
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Fig. 2 Predicted R 0 ratio by country due to physical distancing at work and/or school closure. The impact on R 0 is shown with uniform susceptible 
and infectiousness parameters (1,1,1) and when children are less vulnerable compared to elderly (0.5,1,1.5). The age classes are 0–18 years, 19–60 
years and over 60 years of age. Distancing is incorporated by a reduction of location-specific social contacts
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Fig. 3 Predicted age-specific relative incidence by country with physical distancing at work and/or school closure. The analysis presented here 
does not account for age-specific vulnerability. Distancing is incorporated by a reduction of location-specific social contacts
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Abbreviation
Socrates: SOcial Contact RATES.
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