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ABSTRACT 
Background 
[bookmark: _Hlk39192091]The continuing impact of pneumococcal conjugate vaccines (PCVs) in regions with high pneumococcal transmission is threatened by the persistence of vaccine serotypes (VT) and the emergence of non-vaccine serotypes (NVT).  
Methods
[bookmark: _Hlk39184635]In 2016, we conducted a cross-sectional carriage survey (CSS5) in a community where PCV7 was first introduced in 2006 during a cluster randomised trial conducted before nationwide introduction of PCV7 (2009) and PCV13 (2011). We estimated the prevalence of PCV13 VT and NVT by age and compared these to earlier surveys before (CSS0), during (CSS1-3), and after the trial but before PCV13 (CSS4). Genomic analysis was conducted for the non-typeable pneumococci. 
Results 
[bookmark: _Hlk39184837]The prevalence of PCV13 VT carriage decreased during the 10 years between CSS0 and CSS5 across all age groups (67·6% to 13·5%, p<0.001; 59·8% to 14·4%, p<0.001; 43·1% to 17·9%, p<0.001; and 24·0% to 5·1%, p<0.001 in <2, 2-4, 5-14 and  ≥15 years respectively). However, there was no difference between CSS4 and CSS5 in children ≥2 years and adults (children < 2 years, no data). The prevalence of PCV13 NVT increased between CSS0 and CSS5 for children <2 years but decreased in older children and adults.  
[bookmark: _Hlk39193487]In CSS5, serotypes 3, 6A and 19F were the most common VT and non-typeable isolates, the most common NVT. Among non-typeable isolates, 73·0% lost the ability to express a capsule. Of these, 70·8% were from a VT background.
Conclusions 
The decrease in PCV13 VT that has occurred since the introduction of PCV13 appears to have plateaued. Significant carriage of these serotypes remains in all age groups. 



INTRODUCTION 
The introduction of pneumococcal conjugate vaccines (PCV) has led to a dramatic decline in the burden of pneumococcal disease with the annual number of pneumococcal deaths among HIV uninfected children <5 years estimated to have decreased worldwide from about 600,000 to 294,000 between 2000 and 2015. However, the disease burden in Africa and Asia remains high and approximately 50% of all pneumococcal deaths in 2015 occurred in these two continents [1]. 
PCV introduction has been supported by Gavi, the Vaccine Alliance, in over fifty low- and middle-income countries (LMIC). As the Gross National Income per capita of these countries increases they are expected to transition from Gavi support to self-financing [2]. Therefore, evaluating the overall impact of vaccine introduction is crucial during the transition phase. Unfortunately, many of these countries do not have robust disease surveillance systems for invasive pneumococcal disease (IPD) and may therefore, need to rely on carriage studies to monitor the persistence of vaccine serotype (VT) [3, 4], and anticipate emerging serotypes [5] and capsular switching [6, 7] in the post vaccine era. Countries with both IPD surveillance and carriage studies have  the potential to provide a better understanding of  community transmission [8]. 
The Gambia is one of the few African countries where several carriage surveys have been conducted before and after the introduction of PCVs [6, 7, 9, 10]. Six pneumococcal cross-sectional carriage surveys (CSS) were conducted in rural villages, before any PCV, during a cluster-randomized trial (CRT) and subsequently after nationwide PCV introduction. These villages have experienced higher vaccine pressure than elsewhere in Africa and may therefore indicate long-term impact of PCV in the region.  
We report data from the most recent carriage survey conducted in 2016, five years after nationwide PCV13 introduction and compare the findings with the surveys in the preceding 10 years. In addition, we provide a molecular characterisation of the non-typeable pneumococci that were isolated during the last survey. 
METHODS 
Study area 
The pneumococcal CSSs were conducted in 21 rural villages in the Western region of the Gambia (Figure S1). The country has two seasons: a long dry season from November- May and a rainy season from June- October (annual rainfall 1200mm) [11]. The prevalence of malaria was 16% in 2012 [12] and the prevalence of HIV among adults 15- 49 years was 1·6% (1·3-2·0) in 2017 [13]. 
PCV introduction– Cluster randomised trial and Expanded Program of Immunization (EPI)
Between 2006 and 2008 a CRT was conducted in which all individuals >2.5 years received either one dose of PCV7 (11 intervention villages) or one dose of Meningococcal C vaccine (10 control villages). Children ≤ 2.5 years and children born during the trial period received 1 to 3 doses of PCV7 irrespective of trial arm [10]. 
In August 2009, The Gambia introduced PCV7 into the EPI. The vaccine was given at 2, 3 and 4 months of age without a catch-up campaign. In May 2011, PCV7 was replaced by PCV13 following the same schedule. National immunization coverage as reported by WHO for three doses of PCV was 99% in 2010, and 95% in 2016 in children 12-23 months of age [14]. 
Cross-sectional surveys 
CSS0 to CSS4 - The baseline survey (CSS0) was conducted between 2003 and 2004 [9] (Figure S2). This survey was followed by three surveys (CSS1-3) conducted during the PCV7 CRT (2006-2008), and a subsequent survey (CSS4) in 2010. 
CSS5- In 2016, we conducted an additional survey (CSS5) and collected 2,500 nasopharyngeal swabs (NPS) from all children <5 years of age, one in two children 5-14 years and one in four adults ≥15 years of age. 
Population sampling scheme
Although the sampling scheme was designed to be similar across surveys, there were a number of differences: 1) children <2 years of age were only swabbed in  CSS0 and CSS5 and not in the other surveys as all children in this age group received PCV7 during the CRT [10]; 2) fewer samples were included in CSS3 because samples collected after a national trachoma control program  in the study area were excluded [15];  3) five out of the 21 villages did not consent to participate in CSS4. As in the past, these villages were excluded from the analysis of CSS1-4, i.e. all surveys conducted during the CRT [15]; 4) CSS2 was conducted exclusively during the rainy season whereas the other surveys were conducted in the dry season (Table 1). 
Sample handling
NPS were collected using a calcium alginate swab following WHO guidelines [16]. The samples were placed in skim milk-tryptone-glucose-glycerol medium and transported to the laboratory for storage at -70 °C.
Isolation and serotyping of Streptococcus pneumoniae 
The stored NPS were thawed and vortexed, after which a 50µl (10µl for CSS1-4 [15]) aliquot was plated directly onto a gentamicin blood agar (CM0331 Oxoid, UK + 5% sheep blood) plate for isolation of S. pneumoniae. As in the previous surveys, two to three morphologically different colonies were selected and screened for optochin susceptibility, and all isolated pneumococci were serotyped using a latex agglutination test [Statens Serum Institute, Denmark] [17]. 
Statistical analysis 
For each survey, we estimated the overall prevalence of pneumococcal carriage, the prevalence of PCV7 VT  carriage (serotypes 4, 6B, 9V, 14, 18C, 19F and 23F),  PCV13 VT  (PCV7 serotypes + 1, 3, 5, 6A, 7F and 19A), and  PCV13 NVT (non-PCV13 serotypes including the non-typeable isolates). The prevalence estimates were calculated for each of the age groups used in the stratified sampling (<2, 2-4, 5-14 and ≥15 years), and the overall prevalence was estimated by weighting according to age-specific sampling proportions. We used Poisson regression with robust standard errors to estimate prevalence ratios [baseline (CSS0) versus CSS5 and, CSS4 versus CSS5] adjusted for study arm of the trial, age, use of antibiotics, gender and month the swab was taken.  In a supplementary analysis to allow for temporal changes in overall carriage unrelated to vaccination, we estimated the proportion of PCV13 VT among carriers (see supplementary information). All analyses were done using Stata 14 (Statacorp 2014, College Station, TX). 
Whole Genome Sequencing of non-typeable pneumococci 
All non-typeable isolates from CSS5 phenotypically re-typed and confirmed non-typeable were sent to the Sanger Institute for sequencing. Isolates were speciated using kraken [18]. All pneumococcal isolates were assigned to the Global Pneumococcal Sequence Clusters (GPSC) [19, 20]. MLST was assigned using mlst Seeman [21]. The capsular polysaccharide synthesis locus (cps) was typed using SeroBA [22]. Raw data were assembled as described previously [23]. If an intact cps was detected the SeroBA top capsular hit was taken to be the ancestral serotype. An isolate with a non-typeable cps and an ST or GPSC known to belong to the classically non-typeable lineage, was classified as classically non-typeable. Otherwise, if the cps was un-typeable or had a classically non-typeable cps then the mash distance between it and all isolates in a reference genome set was determined [24]. The reference set consisted of one representative of each serotype and ST combination in the GPS dataset of Gladstone et al (2,807/13,454) [19]. The isolate with the smallest mash distance was used to infer the ancestral serotype. Independent loss events were defined as unique combinations of GPSC, and cps and predicted ancestral serotype, excluding the classically non-typeable lineages. Within GPSC9 there were 36 non-typeables isolates. These isolates were mapped and the 57 GPSC9 isolates in the reference genome set were mapped against the completed genome S. pneumoniae G54 (CP001015; a member of GPSC9). Gubbins was used to identify recombination and the resultant tree was used to determine if the 36 non-typeable isolates shared a common ancestor and to count independent capsular losses [25]. 
Ethical approval
Written informed consent was obtained from adults and parents/guardians of children ≤16 years. For children >12 and ≤16 years assent was also obtained. All surveys were approved by the joint MRCG Gambia Government ethics committee. 
RESULTS 
Study profile 
There was a high level of compliance in the surveys [9]. In CSS5 only 166/2666 (6.2%) individuals declined to participate.  A total of 7,464 NPS were collected during the six surveys (Figure S2). The proportion of individuals in the different age strata varied slightly between surveys (Table 1).
Trends in nasopharyngeal pneumococcal carriage
Overall 
In CSS5, the weighted estimate of pneumococcal carriage prevalence was 46·5% (44·3%-48·7%). The highest prevalence was among children <2 years of age (88.4%) and the lowest was among individuals ≥15 years of age (30·1%). There was a decrease in overall carriage between CSS0 and CSS5 in each age group, except for the <2 years age group.  Age-specific carriage prevalence remained the same between CSS4 and CSS5 (Table 2).  
 PCV13 VT
PCV13VT carriers were found in all but one of the study villages in CSS5 (Table S1), and across the study population as a whole the weighted estimate of PCV13 VT carriage was 10·2% (95% CI 9·1%-11·5%). PCV13 VT carriage was highest among children 5-14 years (17·9%) and lowest among individuals ≥15 years (5·1%) [Table 2]. Between CSS0 and CSS5, PCV13 VT carriage decreased in all age groups (Figure 1). The decrease occurred both in PCV7 serotypes and serotypes included in PCV13 but not in PCV7 (Figure 2). Furthermore, the proportion of PCV13 VT carriers among all carriers also decreased over this period (Table 3).  Between CSS4 and CSS5 PCV13 VT carriage remained constant in all age groups (no data available for children <2 years), as did the proportion of PCV13 carriers.  
 PCV13 NVT 
The weighted prevalence of PCV13 NVT in CSS5 was 36·8% (95% CI 34·8% - 38·9%). Between CSS0 and CSS5, PCV13 NVT prevalence increased in children <2 years of age (from 31.7% to 75.3%) A non-significant increase was seen in children 2-4 years of age (from 40.2% to 65.7%) [Table 2]. The prevalence remained constant in children 5-14 years (45·2% versus 43·8%) and decreased among individuals ≥15 years from 37·3% to 25·2% (p<0·001). Between CSS4 and CSS5 PCV13 NVT prevalence remained constant in all age groups. 
Specific PCV13 VT  
Serotype 3, 6A, and 19F were the most common PCV13 serotypes in CSS5 (2·4%, 1·9% and 1·8% respectively) representing almost 2/3 of all PCV13 VT (Table 4). Between CSS4 and CSS5 no PCV13 VT decreased, except for 9A which decreased from 2·7% to 0·7% (p<0·001).  
Specific PCV13 NVT 
Non-typeables, which accounted for 10·5% of all NVT, were the most prevalent NVT in CSS5, followed by serotypes 34 and 15B. The non-typeable pneumococci and 34 and 15B increased in prevalence between CSS4 and CSS5 (Table 4 and Figure 3).  
Genomic analysis of the non-typeable pneumococci (CSS5 only) 
Out of the 121 non-typeable isolates from CSS5, 113 (93·4%) were whole genome sequenced (Figure 4). After quality control, 89 confirmed non-typeable pneumococcal isolates were available for analysis. Twenty-four (27·9%, 24/89) were of the classical non-typeable lineage and sixty-five (73·0%, 65/89) were of an encapsulated pneumococcal lineage but had lost their ability to express a capsule. Among the latter, 18 isolates had a full-length cps despite having no detectable capsule, and of these 7/18 had a VT cps. A further 31 isolates had acquired a locus typically found in classically non-typeable isolates and 16 isolates had a cps that could not be typed. 
The genomic analysis indicated that 46/65 (70·8%) non-typable isolates from encapsulated pneumococcal lineages originally expressed VTs. The proportion of isolates that had lost the ability to express VT capsules was more than 3-fold higher than the proportion of VTs in the phenotypically typeable isolates in CSS5 (313/1437=21·5%, p<0·001). 
The 65 isolates that had lost their capsule represented 20 independent capsule losses. Thirty-six of the 65 (55·4%) were from GPSC9, a lineage that typically expresses serotype 14 and encompasses clonal complex CC63. We determined from the phylogenetic structure of the lineage that the 36non-typeable isolates represented 3 independent loss events. Among the GPSC9 isolates, 27/36 were determined to be descendants from a single capsular loss event-1, six from capsular loss event-2 and three from capsular loss event-3 (Figure 5 & https://microreact.org/project/TPxm5z4eE ).
DISCUSSION 
[bookmark: _Hlk7557394]In this study, we described pneumococcal carriage in an African population that has been under high vaccine pressure since 2006. PCV13 VT and PCV7 VT carriage rates initially declined after PCV introduction, but more recently appear to have stabilised. We also observed serotype replacement in young children, driven in part by an increase non-typeable pneumococci, particularly those that have lost VT capsule production. 
The high VT prevalence in children is in keeping with data from our previous study conducted in an urban area in The Gambia which reported 11% PCV13 VT prevalence in infants five years after PCV13 introduction [7]. It is also consistent with data from other LMIC countries. For example, the prevalence of PCV13 VT was 17% in children 1-4 years  in Malawi three years post-PCV13 [26], the prevalence of PCV10 VT was 23.4% and 8.8% among children <5 years in Mozambique and Kenya, three and five years post-PCV10  respectively [27, 28]. In contrast to LMICa, estimates from HIC are considerably lower. Studies in England, Belgium and France have reported prevalence of VT in children <5 years ranging between 1-5% within five years post-PCV13 [29-31].  Such difference between LMIC and HIC countries has several possible explanations. First, community and household transmission is higher in LMIC than HIC, particularly among children who are the major source of transmission [32]. Second, differences in vaccine schedule: a 2+1 schedule is used in most HIC whereas a 3+0 is used in most LMIC. A notable difference is South Africa, the only country in SSA to use 2+1 schedule, has a low prevalence of PCV13VT (<5%), despite having high rates of HIV infection [33]. Finally, coverage of PCV is lower and catch up campaigns are less common in LMIC [34].  
The PCV13 serotypes 3, 6A and 19F were frequently isolated in the most recent survey. These serotypes are associated with invasive disease in The Gambia in the post PCV era [35]. Serotype 19F was also common in a recent   among  PCV13 vaccinated children and their parents in the UK, however, 6A was not isolated in the UK survey [3]. The persistence of these serotypes in The Gambia may be due to waning of indirect protection and their continued circulation among older children. 
Previously  in The Gambia we showed that serotype 19A decreased in infants and mothers [7] after the introduction of PCV13. In this study we also saw its decrease in all age groups. A similar reduction was observed in the UK though, as in The Gambia, the serotype  continues to circulate there [3]. 
As in other studies, we observed an increase in NVT among children <5 years of age [3, 6, 26, 36, 37]. Emerging serotypes in carriage would be expected to result in replacement disease, though data from Gambian IPD surveillance are inconclusive because of the small number of cases. [35]. 
The large increase in non-typeable pneumococci across all age groups is consistent with findings from a recent ‘peri-urban’ study in The Gambia [7].  Genomic analysis of IPD data from South Africa in 2003- 2013 showed that the non-typeable pneumococci were a rare cause of IPD [38], as in The Gambia, and they were excluded from the analysis [35]. Nonetheless we recommend surveillance programmes continue to monitor non-typeable serotypes in case they do become more invasive. 
Genomic analysis showed that the classically non-typeable lineage accounted for less than a third of the non-typeable isolates. The majority of non-typeable isolates were determined to be from encapsulated lineages that had lost their ability to express a VT capsule. Isolates from encapsulated lineages that had lost the ability to express a NVT capsule were less common. However, investigation of the number of independent capsule loss events, showed that an equal number of these events removed the ability to produce a VT or a NVT capsule. It therefore appears that the descendants of VT strains that have lost their capsule are more successful than NVT strains that have lost their capsule, possibly due to escape vaccine pressure. As non-typeable isolates rarely cause disease this is a favorable outcome of serotype replacement, though it may allow antibiotic resistance associated with VT lineages to be maintained [38]. 
Over half of the non-typeable isolates from encapsulated lineages were from a single clonal background: GPSC9. Multiple independent VT losses were observed in GPSC9 indicating pressure for this lineage to lose the serotype 14 capsule. Descendants of capsule loss event A within GPSC9 were also observed in a previous Gambian study, [7] suggesting that this non-typeable component of GPSC9 has established itself in The Gambia. Serotype 14 losses in GPSC9 were also observed in  Nepal suggesting this may not be a local phenomenon [39]. Though a subset of isolates in CSS5 and our previous study [7], had intact cps, such isolates may be capable of low level or variable expression of capsule. As these isolates were rare in CSS5 and more often had a NVT cps it suggests that undetected expression is not driving the rise in non-typeables. 
A strength of our analysis is that it compares data from six surveys conducted using similar methodologies over a period of 10 years. However, despite using similar methodologies there are some potential sources of bias. First, CSS1-CSS3 were conducted during a CRT when there may have been greater access to antibiotics and better health care, which may have decreased carriage rates. Second, the surveys were not all conducted during the same time of year. Due to a modest impact of season on pneumococcal carriage [40], we would expect carriage to be slightly higher in CSS2 and possibly CSS4 relative to the other surveys. Third, we are unable to see any trend in carriage among children <2 years between CSS4 and CSS5, the age group that are vaccinated in routine programmes. Finally, the use of 50µl instead of 10µl as in previous surveys may have led to increased carriage in CSS5. To account for these potential confounding effects, we conducted a supplementary analysis which showed that the change in proportion of PCV13 VT carriers among all carriers (VT + NVT) were consistent with the results of overall PCV13 VT prevalence, thereby strengthening our conclusions. 
In conclusion, our data suggest that PCV13 VT carriage is likely to remain high in LMIC even after significant PCV vaccine pressure. Furthermore, our genomic analysis revealed that PCV13 VT is higher than indicated by routine serotyping methods. Alternative vaccine schedules or an additional booster dose are potential strategies for reducing VT carriage, but studies are needed to determine which approach works best and is cost effective in LMICs. Further surveys are necessary to confirm the high VT carriage post PCV introduction and to identify risk factors for VT carriage among PCV vaccinated children. 
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Summary 
After 10 years of high vaccine-pressure, in an African setting, PCV13 VT and PCV7 VT carriage has plateaued. These VT were still circulating among all age groups. We observed serotype replacement in young children due mainly to increase non-typeable pneumococci.  
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 Tables & Figures  
Figure 1: Pneumococcal carriage of (a) any serotype, (b) PCV13 serotypes (VT) and (c) serotypes not included in PCV13 (NVT). 
[image: ]
Note: Children < 2 years of age were not swabbed in CSS1-4 


Figure 2: Pneumococcal carriage of serotypes included in PCV7 (panel A) and those included in PCV13 but not in PCV7 (panel B) 
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Note: Children < 2 years of age were not swabbed in CSS1-4 
 









Figure 3: Pneumococcal carriage of the most common vaccine type serotypes (3, 6A, 19A) and non-typeable pneumococci.
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Note: Children < 2 years of age were not swabbed in CSS1-4 









Figure 4: Sample processing flow for the non-typeable pneumococci (CSS5) 

*5 samples with known serotypes were mistakenly retyped 




Figure 5: Phylogenetic tree showing capsular polysaccharide synthesis loss event in our study compared to other studies 
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Table 1 Characteristics of the surveys and participants 
	
	CSS0
	CSS1
	CSS2
	CSS3
	CSS4
	CSS5
	p-value a

	Year 
	2003-2004
	2006-2007
	2007
	2008
	2010
	2016
	

	Month
	Dec-May 
	Nov -Mar 
	Jul-Sep
	Mar- Jun 
	Sep - Oct 
	Oct-Dec 
	

	Season 
	Dry
	Early Dry
	Rainy 
	Late Dry/
Early Rainy 
	Late Rainy/     Early Dry 
	Early Dry 
	

	Survey part of CRT
	No
	Yes
	Yes
	Yes
	No
	No
	

	Routine PCV 
Introduction status
	Pre-any PCV introduction
	Pre-Routine PCV
	Pre-Routine PCV 
	Pre-Routine PCV
	1-year post 
PCV7
	5-years post
PCV13 
	

	PCV coverage  
(Routine/CRT)
	0%
	 85%
	92%
	87%
	95%
	95%
	

	Total NPS
	1,902
	933
	956
	361
	812
	2500
	

	Age
	n (%)
	n (%)
	n (%)
	n (%)
	n (%)
	
	

	<2
	278(14·6)
	
	
	
	
	275(11·0)
	<0·001 b

	2-4
	169(8·9)
	123(13·2)
	118(12·3)
	59(16·3)
	200(24·6)
	507(20·3)
	

	5-14
	571(30·0)
	339(36·3)
	344(36·0)
	193(53·5)
	214(26·4)
	907(36·3)
	

	≥ 15
	884(46·5)
	471(50·5)
	494(51·7)
	109(30·2)
	398(49·0)
	811(32·4)
	

	Gender c 
	
	
	
	
	
	
	

	Male 
	935(49·2)
	437(46·8)
	460(48·1)
	174(48·2)
	417(51·4)
	1144(45·8)
	0·081

	Female 
	967(50·8)
	496(53·2)
	496(51·9)
	187(51·8)
	395(48·6)
	1352(54·2)
	

	Antibiotic d, e f
	
	
	
	
	
	
	

	No 
	32(88·9)
	
	
	
	
	283(96·0)
	0·06

	Yes
	4(11·1)
	
	
	
	
	11(4·0) 
	


 a Chi-square test, 
 b comparison excluding < 2 years of age also give p-value <0.001,
 c 4 missing gender in CSS5, 
 d antibiotic data available for children <2 years in CSS0 [36 children only] and CCS5 [274 children], 
 e comparison between years limited to <2 years
CRT- cluster randomised trial- coverage in control arm < 10% during CSS1, 2 & 3. 
Coverage data source (routine - https://www.who.int/immunization/monitoring_surveillance/data/gmb.pdf & CRT -https://doi.org/10.1371/journal.pmed.1001107.s002) 

[bookmark: _Hlk536175357]Table 2 Prevalence of pneumococcal carriage by age group 
	
	CSS0*
(%)
	CSS4
(%)
	CSS5*
(%)
	RR1 
CSS0 vs CSS5
	p-value
	RR1adj 
	p-value
	RR2  
CSS4 vs CSS5
	p-value
	RR2adj 
	p-value

	All ages* 

	Any 
	74·1
	
	46·5
	[bookmark: _Hlk10459393]0·68 (0·65, 0·73)
	<0·001
	0·76 (0·68, 0·86)
	<0·001
	
	
	
	

	PCV7
	22.3
	
	5·1
	0·27 (0·22, 0·33)
	<0·001
	0·41 (0·28, 0·59)
	<0·001
	
	
	
	

	PCV13
	37.2
	
	10·2
	0·32 (0·28, 0·37)
	<0·001
	0·40 (0·31, 0·51)
	<0·001
	
	
	
	

	PCV13-7
	17·1
	
	5·3
	0·36 (0·29, 0·44)
	<0·001
	0·37 (0·26, 0·52)
	<0·001
	
	
	
	

	PCV13 NVT
	40.4
	
	36·8
	0·95 (0·87, 1·03)
	<0·001
	0·99 (0·83, 1·19)
	0·954
	
	
	
	

	NT
	2·7
	
	4·6
	1·61 (1·12, 2·30)
	<0·001
	1·61 (1·12, 2·30)
	0.009
	
	
	
	

	< 2 years¶

	Any 
	93·5
	
	88·4
	0·94 (0·90,1·00)
	0·038
	0·98 (0·88, 1·10)
	0·784
	
	
	
	

	PCV7
	44·2
	
	8·7
	0·20 (0·13,0·30)
	<0·001
	0·29 (0·17, 0·51)
	<0·001
	
	
	
	

	PCV13
	67·6
	
	13·5
	0·20 (0·15,0·27)
	<0·001
	0·26 (0·18, 0·39)
	<0·001
	
	
	
	

	PCV13-7
	27·7
	
	4·7
	0·17 (0·10,0·30)
	<0·001
	0·22 (0·10, 0·48)
	<0·001
	
	
	
	

	PCV13 NVT
	31·7
	
	75·3
	2·38 (1·97, 2·86)
	<0·001
	1·99 (1·43, 2·77)
	<0·001
	
	
	
	

	NT
	0·7
	
	3·6
	5·05 (1·12, 22·89)
	0·021
	5·05 (1·12, 22·89)
	0·036
	
	
	
	

	2-4 years

	Any 
	89·3
	67·0
	79·3
	0·89 (0·83, 0·95)
	0·003
	0·85 (0·74, 0·96)
	0·012
	1·18 (1·06, 1·32)
	0·001
	1·09 (0·91, 1·30)
	0·350

	PCV7
	42·0
	6·5
	8·9
	0·21 (0·15, 0·29)
	<0·001
	0·27 (0·15, 0·48)
	<0·001
	1·37 (0·75, 2·48)
	0·362
	1·30 (0·46, 3·74)
	0·620

	PCV13
	59·8
	17·5
	14·4
	0·24 (0·19, 0·31)
	<0·001
	0·29 (0·19, 0·45)
	<0·001
	0·82 (0·57, 1·19)
	0·299
	0·84 (0·42, 1·67)
	0·623

	PCV13-7
	23·1
	11·5
	5·5
	0·24 (0·15, 0·38)
	<0·001
	0·27 (0·12, 0·58)
	0·001
	0·48 (0·28, 0·81)
	0·009
	0·50 (0·18, 1·36)
	0·173

	PCV13 NVT
	40·2
	52·0
	65·7
	1·63 (1·34,1·98)
	<0·001
	1·39 (0·94, 2·05)
	0·094
	1·26 (1·09 ,1·46)
	0·001
	1·13 (0·89, 1·43)
	0·311

	NT
	0·6
	3·5
	5·7
	9·67 (1·32,70·53)
	0·002
	9·67 (1·32, 70·53)
	0·025
	1·63 (0·73, 3·67)
	0·26
	1·63 (0·73, 3·67)
	0·234

	5-14 years

	Any 
	84·1
	39·3
	60·4
	0·72 (0·67,0·77)
	<0·001
	0·75 (0·64, 0·88)
	<0·001
	1·54(1·29,1·83)
	<0·001
	1·35 (1·05, 1·75)
	0·071

	PCV7
	25·7
	3·7
	8·0
	0·31 (0·24,0·41)
	<0·001
	0·50 (0·32, 0·85)
	<0·001
	2·15(1·05,4·40)
	0·027
	1·99 (0·71, 5·56)
	0·188

	PCV13
	43·1
	15·0
	17·9
	0·41 (0·35,0·49)
	<0·001
	0·55 (0·37 ,0·80)
	0·002
	1·19(0·84,1·69)
	0·366
	1·31 (0·74, 2·32)
	0·357

	PCV13-7
	20·5
	11·2
	10·1
	0·50 (0·38,0·64)
	<0·001
	0·55 (0·30, 1·00)
	0·049
	0·90(0·59,1·38)
	0·619
	1·03 (0·48, 2·24)
	0·931

	PCV13 NVT
	45·2
	25·2
	43·8
	0·97 (0·86, 1·09)
	0·628
	0·88 (0·68, 1·15)
	0·353
	1·73 (1·36, 2·21)
	<0·001
	1·40 (0·99, 1·98)
	0·057

	NT
	2·8
	2·3
	5·4
	1·93 (1·11, 3·36)
	0·019
	1·93 (1·11, 3·36)
	0·020
	2·31 (0·93, 5·74)
	0·074
	2·31 (0·93, 5·74)
	0·071

	≥15 years

	Any 
	61.5
	17·6
	30·1
	0·50 (0·45, 0·57)
	<0·001
	0·61 (0·50, 0·76)
	<0·001
	1·71 (1·35, 2·17)
	<0·001
	1·36 (0·91, 2·04)
	0·139

	PCV7
	13·5
	0·3
	2·5
	0·18 (0·11, 0·29)
	<0·001
	0·31 (0·14, 0·67)
	0·003
	9·82 (1·32, 72·93)
	0·004
	7·52 (0·48, 117·30)
	0·150

	[bookmark: _Hlk33531416]PCV13
	24·6
	2·5
	5·1
	0·21 (0·15, 0·29)
	<0·001
	0·27 (0·17, 0·44)
	<0·001
	2·01 (1·02, 3·98)
	0·047
	2·99 (0·94, 9·57)
	0·064

	PCV13-7
	11·9
	2·3
	2·6
	0·23 (0·14, 0·36)
	<0·001
	0·22 (0·12, 0·43)
	<0·001
	1·15 (0·53, 2·48)
	0·845
	2·84 (0·62, 13·09)
	0·180

	PCV13 NVT
	38.5
	15·3
	25·2
	0·67 (0·58, 0·78)
	<0·001
	0·78 (0·59, 1·03)
	0·078
	1·64 (1·27, 2·13)
	<0·001
	1·15 (0·73, 1·81)
	0·543

	NT
	3·2
	3·0
	4·1
	1·28 (0·78, 2·11)
	0·361
	1·28 (0·78, 2·11)
	0·321
	1·35 (0·70, 2·59)
	0·421
	1·35 (0·70, 2·59)
	0·366


[bookmark: _Hlk33532921]RR Risk Ratio, 
RR1adj (CSS0 vs CSS5) and RR2adj (CSS4 vs CSS5) adjusted for study arm of the cluster randomised trial, gender, and month of swabbing, 
NT non-typeable pneumococci, 
PCV13-7 serotypes present in PCV13 but not in PCV7, 
* weighted prevalence calculated for CSS0 and CSS5 using age-specific sampling probabilities, 
# weighted prevalence calculated for CSS0 but not CSS5, 
¶ children <2 years were only surveyed in CSS0 and CSS5. 













Table 3 Prevalence of PCV13 VT among pneumococcal carriers 
	Age 
	CSS0
	CSS4
	CSS5
	RR1 
	p-value
	RR1adj
	p-value
	RR2  
	p-value
	RR2adj
	p-value

	(years)
	(%)
	(%)
	(%)
	CSS0 vs CSS5
	
	
	
	CSS4 vs CSS5
	
	
	

	<2¶
	72.3
	 
	15.2
	0.21 (0.16, 0.29)
	<0.001
	0.26 (0.18, 0.39)
	<0.001
	 
	 
	 
	 

	2-4 
	66.9
	26.1
	18.2
	0.27 (0.21, 0.34)
	<0.001
	0.34 (0.22, 0.51)
	<0.001
	0.70 (0.49, 0.99)
	0.062
	1.10 (0.81, 2.38
	0.811

	5-14
	51.2
	38.1
	29.4
	0.57 (0.49, 0.67)
	<0.001
	0.71 (0.49, 1.04)
	0.082
	0.77 (0.57, 1.04)
	0.126
	0.85 (0.45, 1.61)
	0.626

	≥15
	40.2
	14.3
	16.8
	0.42 (0.31, 0.56)
	<0.001
	0.41 (0.26, 0.64)
	<0.001
	1.18 (0.62, 2.23)
	0.715
	3.28 (0.75, 14.4)
	0.115


RR Risk Ratio, 
RR1adj (CSS0 vs CSS5) and RR2adj (CSS4 vs CSS5) adjusted for study arm of the cluster randomised trial, gender, and month of swabbing, 
¶ Children < 2 years were only surveyed in CSS0 and CSS5. 





Table 4 Nasopharyngeal carriage of specific serotypes (all ages)
	Serotype
	CSS0*
(%)
	CSS4
(%)
	CSS5*
(%)
	RR1 
CSS0 vs CSS5
	p-value
	RR1adj
	p-value
	RR2
CSS4 vs CSS5 
	p-value
	RR2adj
	p-value

	PCV7 VT 

	4
	3·3
	0·1
	0·4
	0·12 (0·05, 0·26)
	<0·001
	0·12 (0·05, 0·26)
	<0·001
	2·92 (0·37, 23·05)
	0·467
	2·92 (0·37, 23·05)
	0·309

	6B 
	4·1
	0·1
	0·1
	0·04 (0·01, 0·13)
	<0·001
	0·04 (0·01, 0·13)
	<0·001
	0·97 (0·10, 9·36)
	1·000
	0·97 (0·10, 9·36)
	0·982

	9V 
	3·7
	0
	0·8
	0·28 (0·17, 0·48)
	<0·001
	0·28 (0·17, 0·48)
	<0·001
	na
	0·002
	na
	<0·001

	14 
	1.9
	1·0
	0·7
	0·47 (0·27, 0·82)
	0·001
	0·47 (0·27, 0·82)
	0·008
	1·02 (0·46, 2·24)
	1·000
	1·02 (0·46, 2·24)
	0·971

	18C 
	2·6
	0·1
	0·4
	0·18 (0·08, 0·39)
	<0·001
	0·18 (0·08, 0·39)
	<0·001
	3·25 (0·42, 25·34)
	0·313
	3·25 (0·42, 25·34)
	0·261

	19F 
	3.3
	0·9
	1·8
	0·66 (0·46, 0·96)
	0·008
	0·66 (0·46, 0·96)
	0·030
	3·02 (1·39, 6·55)
	0·002
	3·02 (1·39, 6·55)
	0·005

	23F 
	4·4
	0·5
	0·8
	0·23 (0·15, 0·38)
	<0·001
	0·23 (0·15, 0·38)
	<0·001
	2·27 (0·80, 6·46)
	0·147
	2·27 (0·80, 6·46)
	0·123

	PCV13 VT (not included in PCV7 VT)

	1
	0·5
	0·1
	0·1
	0·19 (0·05, 0·76)
	0·038
	0·19 (0·05, 0·76)
	0·019
	0·97 (0·10, 9·36)
	1·000
	0·97 (0·10, 9·36)
	0·982

	3
	8.7
	1·5
	2·4
	0·30 (0·22, 0·42)
	<0·001
	0·30 (0·22, 0·42)
	<0·001
	1·62 (0·88, 3·00)
	0·129
	1·62 (0·88, 3·00)
	0·122

	5
	0·4
	0
	0·1
	0·27 (0·05, 1·38)
	0·083
	0·27 (0·05, 1·38)
	0·116
	na
	1·000
	na
	,0·001

	6A
	4.7
	2·5
	1·9
	0·47 (0·33, 0·67)
	<0·001
	0·47 (0·33, 0·67)
	<0·001
	0·97 (0·59, 1·61)
	0·896
	0·97 (0·59, 1·61)
	0·919

	7F
	0·5
	0·4
	0·4
	1·15 (0·42, 3.17)
	<0.001
	1·15 (0·42, 3.17)
	0·784
	1·08 (0·30, 3·93)
	1·000
	1·08 (0·30, 3·93)
	0·904

	19A
	2.6
	2·7
	0·7
	0·37 (0·22, 0·64)
	<0·001
	0·37 (0·22, 0·64)
	<0·001
	0·37 (0·21, 0·65)
	0·001
	0·37 (0·21, 0·65)
	0·001

	PCV13 NVT

	[bookmark: _Hlk20209579]10A
	1·1
	1·4
	1·4
	1·35 (0·76, 2·41)
	0·118
	1·35 (0·76, 2·41)
	0·311
	1·21 (0·63, 2·34)
	0·630
	1·21 (0·63, 2·34)
	0·571

	13
	1·1
	0·9
	2·7
	2·42 (1·41, 4·15)
	<0·001
	2·42 (1·41, 4·15)
	0·001
	3·25 (1·50, 7·04)
	0·001
	3·25 (1·50, 7·04)
	0·003

	15B
	1·6
	1·2
	2·0
	1·47 (0.94, 2·30)
	0·007
	1·47 (0.94, 2·30)
	0·091
	2·70 (1·41, 5·17)
	0·001
	2·70 (1·41, 5·17)
	0·003

	16
	2·4
	0
	1·8
	0·89 (0·57, 1·41)
	0·395
	0·89 (0·57, 1·41)
	0·632
	na
	<0·001
	na
	na

	19C
	0·3
	0·5
	0·0
	na
	0·035
	na
	na
	na
	0·004
	na
	na

	21
	1·8
	2·2
	1·2
	0·70 (0·42, 1·16)
	<0.001
	0·70 (0·42, 1·16)
	0·170
	0·78 (0·45, 1·34)
	0·368
	0·78 (0·45, 1·34)
	0·361

	34
	2.1
	1·2
	3·3
	1.76 (1·17, 2.64)
	<0·001
	1.76 (1·17, 2.64)
	0.007
	3·80 (2·00, 7·21)
	<0·001
	3·80 (2·00, 7·21)
	<0·001

	35B
	2·3
	2·1
	2·2
	1·26 (0·81, 1·94)
	0·559
	1·26 (0·81, 1·94)
	0·304
	1·26 (0·74, 2·14)
	0·44
	1·26 (0·74, 2·14)
	0·389

	NT
	2·7
	3·0
	4·6
	1·61 (1·12, 2·30)
	<0·001
	1·16 (1·12, 2·30)
	0.009
	1·64 (1·06, 2·52)
	0·023
	1·64 (1·06, 2·52)
	0·025


RR Risk Ratio, 
RR1adj (CSS0 vs CSS5) and RR2adj (CSS4 vs CSS5) adjusted for study arm of the cluster randomised trial, antibiotic use one month prior to swabbing, age, gender, and month of swabbing, 
NT non-typeable pneumococci, 
na - not applicable,
* weighted prevalence in CSS0 and CSS5 calculated using age-specific sampling probabilities 
Children < 2 years were only surveyed in CSS0 and CSS5.
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