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Abstract

Background: Identifying immunogens that induce HIV-1-specific immune responses is a lengthy process that can
benefit from computational methods, which predict T-cell epitopes for various HLA types.

Methods: We tested the performance of the NetMHCpan4.0 computational neural network in re-identifying 93 T-
cell epitopes that had been previously independently mapped using the whole proteome IFN-y ELISPOT assays in 6
HLA class | typed Ugandan individuals infected with HIV-1 subtypes AT and D. To provide a benchmark we
compared the predictions for NetMHCpan4.0 to MHCflurry1.2.0 and NetCTL1.2.

Results: NetMHCpan4.0 performed best correctly predicting 88 of the 93 experimentally mapped epitopes for a set
length of 9-mer and matched HLA class | alleles. Receiver Operator Characteristic (ROC) analysis gave an area under
the curve (AUC) of 0.928. Setting NetMHCpan4.0 to predict 11-14mer length did not improve the prediction (37-79
of 93 peptides) with an inverse correlation between the number of predictions and length set. Late time point
peptides were significantly stronger binders than early peptides (Wilcoxon signed rank test: p = 0.0000005).
MHCflurry1.2.0 similarly predicted all but 2 of the peptides that NetMHCpan4.0 predicted and NetCTL1.2 predicted
only 14 of the 93 experimental peptides.

Conclusion: NetMHCpan4.0 class | epitope predictions covered 95% of the epitope responses identified in six HIV-1
infected individuals, and would have reduced the number of experimental confirmatory tests by > 80%. Algorithmic
epitope prediction in conjunction with HLA allele frequency information can cost-effectively assist immunogen
design through minimizing the experimental effort.

Keywords: HIV-1, Epitope mapping, T-cell, Artificial neural network, In-silico, NetMHCpan4.0.,, MHCflurry1.2.0 and
NetCTL1.2

Background

Computational algorithms are increasingly utilised in bio-
logical modelling and offer the potential to reduce the time
and expense of immunological assays. Computational algo-
rithms were initially demonstrated as useful tools for pre-
dicting potential epitopes that might elicit quality T-cell
responses [1, 2]. Computational algorithms that predict
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potential HLA binding T-cell epitopes can facilitate the de-
sign of vaccines capable of inducing T-cell immunity against
HIV-1. The high variability of HIV-1 and the extensive gen-
etic polymorphism of HLA molecules can be managed in
silico, allowing immunogen optimisation to increase breadth
and magnitude of T cell responses in respect of HLA allele
frequencies and circulating virus strains in different popula-
tions. Bioinformatics approaches were previously applied as
proof of concept for an HIV-1 peptide-based vaccine for the
env and gag genes [3] in cynomolgus macaques for a broad
spectrum of HIV-1 clades. Computational optimisation of
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immunogens facilitates the development of the multivalent
and mosaic vaccines [4] necessary to control recombinant
HIV-1 strains, an increasingly common occurrence in the
epidemic in Uganda [5]. Computational approaches aim to
identify optimal epitopes relevant to vaccine development
and are not isolated to HIV-1 only, but a wide range of
pathogens, including Ebola virus [6], therefore various statis-
tical validation approaches have been applied for evaluation
of these methods [7-10].

For HIV-1 vaccine design purposes an important con-
sideration for the suitability of a computational algo-
rithm is the breadth of discrete number of T-cell
epitopes it generates that could reach particular levels of
coverage [11] of circulating viruses. The higher the num-
ber of epitope variants the more the reduction in their
requirements to attain optimum coverage levels for any
epidemic. Previous data has shown that breadth of T-
cell response is associated to viral set point in chronic
HIV-1 infection [12—17]. In order to translate the com-
putational epitope prediction into vaccine design, the
number of discrete epitopes computationally generated
from particular HIV-1 proteins is an important metric
for further investigation [11].

A reliable pan-HLA-specific algorithm NetMHCpan4.0
[18-20] that has been improved by advances in HLA binding
data, covers 172 MHC class I molecules from human (HLA-
A, B, C, E), mouse (H-2), cattle (BoLA), primates (Patr,
Mamu, Gogo) and swine (SLA) [20, 21], and can also predict
binding to alleles devoid of experimental data basing on
similarity to known binders and non-binders [22, 23]. This is
an artificial neural network (ANN) algorithm for predictions
of 8-14aa and capable of predicting epitopes for other HLA
alleles using data for similar alleles by positional similarity of
residues in their binding motifs. NetMHCpan4.0 is consid-
ered to be the tool of choice for such predictions considering
the benchmarking done against other related tools [24].
Nevertheless to have a conclusive outcome of the computa-
tional performance we compared NetMHCpan4.0 to both
an older and recent tool, NetCTL1.2 [25-27] and
MHCAlurry1.2.0 [28] respectively. The binding of CTL
epitopes to MHC class I molecules is linear, anchor-
ing at residues 2 and 9; hence the interface between
ligand and CTL can be determined computationally
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[29]. Validation of such computational applications
can be done by comparing their predictions with suit-
able experimental data. Despite the paucity of data
validating the performance of computational methods
relative to wet laboratory experiments, a few have
documented them to achieve an area under the curve
AUC of over 90% [18, 19, 30, 31] by isolated experi-
mental data. We have not come across a wet experi-
ment that evaluated computational predictors to achieve a
robust AUC using a single set of wet laboratory experi-
mental data. The previously reported 90% AUC is largely
based on positional specific scoring algorithms (PSSM) for
the collective isolated experiments alongside probability
models used to establish affinity or binding scores. One
study that explored the reliability of in-silico approaches
in epitope prediction and its application for vaccine design
reported a meagre 22, 44%, and relatively higher 78%
match for three computational tools namely YFPEITHI,
CTLPRED and IEDB respectively [32]. Using experimental
epitope mapping data generated from 757 peptides tested
on cells of 6 early HIV-1 infected individuals at paired
time points, we show that NetMHCpan4.0 can be useful
for markedly reducing pooled peptide experiments as
demonstrated by the 95% experimental and computational
concordance.

Methods

Experimental binder data

The data used was from an independent study that did
not include this analysis in its objectives. Experimental
data of peptides previously mapped for HIV-1 epitope
recognition of 6 individuals for a separate study (Table 1)
at 2 time points each was used for comparison with the
computationally predicted binders. These were from a
Ugandan early HIV-1 serodiscordant couple cohort ap-
proved by the Uganda Virus Research Institute (UVRI),
Research and Ethics review board and the Uganda Na-
tional Council of Science and Technology (UNCST). All
participants provided informed consent. Six (6) partici-
pants whose experimental epitope recognition profile we
evaluated were early HIV-1 infections (Table 1), enrolled
under the following criteria: (i) detection of HIV-1 P24
antigen with a simultaneous negative HIV-1 antibody

Table 1 Participant characteristics, HIV-1 infecting clade, Fiebig stage and HLA class | haplotypes

Subject  Sex  Agerange (years)  HIV-1 subtype  Class-| HLA Early Time Fiebig Staging  Late Time
Point (Days) Point (Days)
91 M 31-40 A A*0201,%0301,8*5301,%5802;,Cw*0401,%0602 121 Vi 841
92 F 21-30 D A*0201,3002,8%4403,%1402Cw*0401,0802 52 Vi 743
94 M 51-60 A A*3402,%7401,8*4403,*5802;,Cw*0401,%0602 28 v 358
95 M 21-30 A A*2301,%7401,8*4403,¥1510,Cw*0401,¥1601 30 Vi 570
913 F 11-20 D A*0201,%3402,8%4501,*4701,Cw*0602,41601 61 Vi 21
914 F 21-30 D A*0101,*0201;8*0702,*4415,Cw*0407,%0702 31 v 181
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ELISA (2 participants) or documented HIV-1 sero-
negative test in the previous 12 months (4 participants);
(i) HAART naive (all). Early infection was determined
following the Fiebig Staging criteria [33] as described
elsewhere by Obuku A.E. et.al [34]..

The experimentally tested peptides totalled 757 (Fig. 1),
were 17aa long, overlapping by 11aa and spanning the HIV-
1 proteome consensus for subtypes Al and D. Cultured ELI-
SPOT assays using 200,000 cells/well as previously docu-
mented by Obuku AE. etal [34]. and ex-vivo IFN-y
ELISPOT assay using 100,000 cells/well were used for testing
peptide pools and epitope mapping respectively. Experimen-
tal positive pools were 3 times the background wells and at
least 600 spot forming units per million cells. “Deconvolute
This” software [35] was used to identify possible responding
individual peptides from the pools or where it was not pos-
sible all the peptides in a pool were tested as single peptides.

HLA typing

High resolution reference strand conformation analysis
HLA class I tissue typing for the early infected subjects
was done using methods described elsewhere [36].

HIV-1 subtyping

HIV-1 subtyping determination was performed on the
gag gene [37, 38] using Sanger method generated se-
quences. The sequences were input into the REGA HIV-
1 automated subtyping tool to determine the HIV-1
clade [39, 40].

Computation epitope prediction

HIV-1 subtypes Al and D consensus sequences were
used as inputs for the computational epitope
prediction. These peptide sequences were all for the
year 2004 downloaded from the Los Alamos database
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(hiv.lanl.gov/content/sequence/NEWALIGN/align.
html). The web version of NetMHCpan4.0 [19]
(http://www.cbs.dtu.dk/services/NetMHCpan/) was
configured to predict 9mer through 14mer epitopes for 22
HLA class I alleles (Table 1) that were expressed by the 6
HIV-1 infected donors. Linux version MHCflurryl.2.0 [28]
was used to predict 9mer epitopes and an earlier tool
NetCTL1.2 was also used to predict 9mer epitopes for the 22
HLA class I alleles expressed by the 6 study individuals. Perl
version 5.26.2 was used to extract the binders from all the
NetMHCpan4.0 predictions and also to compare the compu-
tational binders to the 93 mapped experimental 17aa pep-
tides for 9mer through 14mer hits using a sliding window.
An experimental peptide was considered a hit if any of the
computational 9mer through 14mer sequence was con-
tained in the 17 amino acid experimental peptide se-
quence as well as any of the HLA-A, B or C expressed by
the individual matched the NetMHCpan4.0 HLA class 1
type(s). If multiple computational epitope predictions
were contained in a single 17mer experimental peptide
they were counted as a single hit. These were determined
by a BLAST search of the computational binders against
the derivative experimental peptides to determine compu-
tational predictions from the same test peptide. The acces-
sion numbers of the sequences used to determine the
HIV-1 subtypes for 5 of the 6 study subjects are;
KT825896, KT825897, KT825898, KT825899, KT825900,
KT825901, KT825902, KT825903, KT825904, KT825905,
KT825906, KT825907, KT825908, KT825909, KT825910,
KT825911 and KT82512.

Data analysis

Statistics computations and plots were generated using
SPSS version 24.0.0.0. The NetMHCpan4.0 computa-
tional performance was evaluated using a confusion
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Fig. 1 ELISPOT peptide consort; the experimental peptide mapping data was generated by culture ELISPOT of multiple peptide pools tested in
duplicate wells per time point, followed by ex-vivo ELISPOT of potential candidate epitopes. To experimentally map a single time point required
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matrix to classify true positives, true negatives, false pos-
itives and false negatives that were used for the Receiver
Operator Characteristic (ROC) plot. The hit rate (sensi-
tivity) and false hit rate (specificity) of binder predictions
as determined by the NetMHCpan4.0 threshold of pep-
tides within the top 2% (with a score of 2 or less) were
calculated and the strength of the model was determined
by calculating the area under the curve, AUC of the
ROC plot [41-43]. Pearson’s correlation coefficient was
used to evaluate the relationship between the number of
epitopes with various HIV-1 genes. To evaluate if there
were any differences in the early versus late time point
peptides for the binding ranking of the experimentally
mapped peptides as predicted by the computational
score the Wilcoxon signed rank test was used. To evalu-
ate if HIV-1 subtypes Al and D affected the number of
computational predictions generated, Fisher Exact Test
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was used. To determine whether multiple computationally
predicted epitope sequences were derived from the same
experimental peptide sequence, a local blast database was
set up using Geneious version 9.0.5. Both HIV-1 clades
Al and D experimental consensus sequences were used
separately each as a reference sequence for the blast. The
computational peptide sequences were then aligned
against the consensuses to evaluate those derived from a
single 17 amino acid experimental peptide sequence.
Where an experimental peptide was predicted by multiple
or overlapping computational peptides, the average
NetMHCpan4.0 score was assigned as the computational
score for this peptide. This score was also used during the
generation of the ROC curve and the confusion matrix.
To compare the association between ELISPOT spot form-
ing units and NetMHCpan4.0 scores or MHCflurry1.2.0
affinities and also the association between the values for
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Fig. 2 NetMHCpan Binder Predictions. a Using our experimental peptide sequences as inputs into NetMHCpan4.0 to predict epitopes for 22 HLA
types represented in the 6 HIV-1 Infected people, a heatmap showing absolute counts of computationally predicted 9-mer binders against HIV-1
genes was constructed. The dendrogram shows the nearest similarity for the number of predicted counts across HLA types; b the length of the
HIV-1 protein sequence plotted against the absolute number of NetMHCpan4.0 predicted 9mer binders showing a positive correlation
(Spearman’s correlation coefficient, r, = 0.88). The number of distinct predictions is dependent on the length of the HIV-1 sequence; ¢ comparison
of HIV-1 clade A and D absolute number of NetMHCpan4.0 predicted 9mer binders per HIV-1 gene for the wet experiment test peptide
sequences. The algorithm predicted more binders for clade D than clade A
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Table 3 Peptides not predicted

Participant’s Participant’s
Identification ~ HLA Alleles

Experimental Peptide Sequence

E92 A*02:01
A*30:02
B*44:03
B*14:02
Cw*04:01
Cw*08:02

E95 A*23:01
A*7401
B*44:03
B*15:10
Cw*04:01
Cw*16:01

L913 A¥02:01
A*34:02
B*45:01
B*47:01
Cw*06:02
Cw*16:01

FKGPRKIIKCFNCGKEGHI

LVQNANPDCKSILRAL (both time points)
SKQKTQQAAADTGNSSKY

IYSLIEESQNQQEKNEQEL

Experimentally mapped peptides that were not predicted by NetMHCpan4.0
as binders. Participant’s identifiers beginning with E or L represent early or late
time sampling points respectively
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the 2 computational tools, Pearson’s correlation coefficient
was used.

Results

Number of experimental assays compared to
computationally guided prediction assay projections

To experimentally determine epitopes for 757 peptides
spanning the whole HIV-1 proteome for clades A and D
as well as both time points of the 6 individuals required
a total of 4230 test assay wells. For each test subject
these included 9 antigen proliferation wells, 384 culture
ELISPOT wells and an average of 164 epitope mapping
ELISPOT wells (Range; 148-186 test wells). Using the
22 HLA alleles represented in the study subjects we were
able to computationally predict 95% of the experimen-
tally mapped epitopes. This approach could have re-
duced the test assays by eliminating all the T-cell
antigen proliferation and culture ELISPOT steps total-
ling to 3258 assay wells (77%) and leaving only 972
(23%) epitope mapping assays required. Applying a pool-
ing strategy to the computational predictions similar to
that used in the experimental pooling where each pool
contained approximately 20 peptides with a coverage of
3 per peptide pool, the 923 potential peptides (95% of
experimental peptides for epitope mapping ELISPOT de-
rived from the 972 (23%) eligible epitope mapping pep-
tides) would make at most 46 pools. Consequently the
computational prediction approach could have reduced
the experimental assays by at least 80%.

Predicted Binders

300

250

- N
@ =]
o o

-
o
oS

Count per HLA Haplotype

50

Computational Prediction Set Length (mers)

Fig. 3 Computational epitope prediction. NetMHCpan4.0 set length plotted against the number of predicted binders per HLA type shows that
the number of predictions reduces as the input set length increases. The dotted line is the trend line, whereas the solid line is the line of best fit.
The core 9mer epitope sequence was similar across 9mer through 14mer set length except for one 14-mer peptide (hit 72 in Table 2)

12 13 14
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Table 4 Experimental and computational 9mer peptide confusion matrix

Experimental Positive Experimental Negative

Computational Positive
(21 epitope(s) contained in a single experimental peptide sequence)

Computational Negative

True Positive (88)
(Hits in table 2)

False Positive (37)

False Negative (5) True Negative (627)

The total number of peptides experimentally tested were 757 and these are broken down to show the fractions from both the experimental testing and

NetMHCpan4.0 computational predictions

Magnitude of epitope predictions are variable across HLA
alleles, HIV-1 proteins and clades
The input HIV-1 subtypes Al and D consensus whole
proteome sequences evaluated for potential 9, 10, 11, 12,
13 and 14-mer binders to the 22 HLA alleles represented
in the six patients, varied in the distribution of predicted
binders across HIV-1 genes and HLA alleles. All the pep-
tide hits predicted for 10 through 14-mer were also all
predicted in the 9-mer set except for two 14-mer peptides.
An expected positive correlation for HIV-1 protein length
with number of epitopes predicted was observed as illus-
trated by Spearman’s rank order correlation; r,=0.88
(Fig. 2, a and b). NetMHCpan4.0 predicted 95% (88/93)
(Table 2) of the experimentally mapped peptides as
binders and missed 5% (5 out of 93) (Table 3) for the 12-
time points of the 6 participants. MHCflurry predicted
91% (85/93) of the experimental peptides and had a lot of
similarity to NetMHCpan4.0 for the predicted HLA.
NetCTL was the least performing tool with only 15% (14/
93) predicted experimental peptides (Table 2).
Comparison of the various epitope prediction length set
showed that the 9mer setting was ideal for NetMHC-
pan4.0. The number of predictions were 88, 79, 55, 39, 39
and 37 hits out of 93 for 9, 10, 11, 12, 13 and 14-mer epi-
topes respectively. Increasing the prediction length from
9mer through 14mer resulted in a smaller number of pre-
dicted binders as illustrated in Fig. 3. Since we held the as-
sumption that our wet experimental data was the gold

standard we evaluated the sensitivity and specificity of
NetMHCpan4.0.The computational predictor had more
predicted binders than those determined by the experi-
mental mapping as presented in the confusion matrix in
Table 4. The experimental positive’s count also shown in
Table 2 under column “Hit No” shows the test peptide
count (1through 88) that contained the computational 9-
mer sequence. Multiple computational epitopes may be
contained in a single experimental peptide, as shown in
the column “NetMHCpan4.0 9-mer Epitope Prediction”
in Table 2. Overall HIV-1 Clade A 9-mer predictions were
fewer in number than clade D (Fig. 2, ¢) though the differ-
ence did not approach statistical significance.

Comparison of experimentally mapped epitopes with in-
silico prediction

The experimental peptide mapping data was derived from
a baseline time point corresponding to HIV-1 Fiebig
stages IV, V and VI (Table 1) and a later time point.
Ninety-three (n=93) epitopes were experimentally
mapped of which 12 were recognized at both baseline and
later time points, 34 only at baseline and 54 only at the
later time point. Comparison of the ranked computational
score for Netmhcpan4.0 binders of early (n=34) versus
later peptides showed that the later time point predictions
were stronger binders reaching statistical significance
(Wilcoxon signed rank p-value =0.0000005) (Fig. 4).
NetMHCpan4.0 ranked binders as those predicted to

Experimental Positive Peptide's Computational Ranking

2.007

1.50

1.007

.50 A

NetMHCpan4.0 score

p=5x107

1

.00 T
Early peptides

Time point

Late peptides

Fig. 4 Early versus Late Peptides. Experimentally mapped peptides at baseline (n=34) and at least 12 months later (n = 34) were compared using
the 9-mer computational NetMHCpan4.0 scores of the hits. The lower the computational score the stronger the predicted binding. Late peptides
were significantly stronger binders than early peptides (Wilcoxon signed rank test, p = 0.0000005)
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ROC Curve
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AUC =0.928

True Positive Rate (Sensitivity)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1 - Specificity)

Fig. 5 ROC plot. False versus true positive rate for all 9-mer and a
single 14-mer test peptides across the 22 test HLA class | types. The
diagonal line shows the random guess whereas the red curve shows
the observed experimentally mapped epitopes versus the
NetMHCpan4.0 expected predictions

be in the top 2% and assigned a score of 0.2 or
below. Any binder within the top 0.5% and assigned a
score of 0.05 or below was ranked as a strong binder.
Considering only the 9-mer computational predic-
tions, peptides that were derived from the same 17-
mer experimental peptide were determined by a
BLAST mapping to their derivative sequences. The
17-mer peptides were then classified into a confusion
matrix (Table 4) as true positives, false positives, true
negatives or false negatives. From the classification
the true positive rate (sensitivity) was plotted against
the false positive rate (1-specificity) using an ROC
curve and the AUC attained reached 0.928 (Fig. 5).
Only 9-mer length epitopes were considered in the
ROC analysis as increasing the length to 10-mer
through 14mer NetMHCpan4.0 predictions neither
raised the number of predicted binders nor improved
the hit rate as all their predictions contained the se-
quence already predicted in the 9-mer set except 1,
14-mer peptide (hit 72 in Table 2). Comparison of
the ELISPOT magnitude of response (spot forming
units) did not show any association to either
NetMHCpan4.0 scores or MHCflurryl.2.0 affinity
values. Similarly a comparison of the latter 2 compu-
tational predictors did not show any association be-
tween their assigned “affinity” values. NetMHCpan4.0
registered the highest concordance to the wet experi-
ments followed by MHCflurryl.2.0.
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Discussion

In this analysis we showed that the computational
method NetMHCpan4.0 predicted 95% of previously
experimentally mapped HIV-1 epitopes in 6 HIV-1
infected individuals expressing a total of 22 different
HLA class I alleles. In our IFN-y ELISPOT assays we
evaluated 757 17mer peptides overlapping by 11
amino acids and covering the whole HIV-1 subtype
Al and D consensus proteomes. Out of the 5 experi-
mentally determined epitopes missed by the algorithm
(Table 3), 4 were actually computationally predicted
as binders but were not included for lack of concord-
ance with the participant's HLA alleles. About one
third (37) of 125 total positive predictions were not
experimentally supported in our tests. These do not
necessarily represent false positives, as ELISPOT de-
tection depends on the frequency of specific T cells
in the participant’s repertoire, and we observed
changes in dominant T cell specificities within a given
participant between early and later time points after
HIV-1 infection. A formal ROC evaluation of the
score generated by NetMHCpan4.0 as a classifier for
peptides recognised/not recognised by PBMC in IFN-
g ELISPOT assays, produced an AUC of 0.928. Thus
experimental confirmatory tests cannot be dropped
altogether, however the NetMHCpan4.0 algorithm
could provide a considerable saving of time and re-
sources in verifying just the predicted epitopes.

As the participants had been enrolled in the acute/
early phase of HIV-1 infection and we had observed
intra-participant changes in epitope recognition between
early and late time points after infection, we compared
the binding scores of confirmed epitopes at these time
points and found a statistically significant change to-
wards recognition of higher binding peptides as the in-
fection entered the chronic phase. This might represent
better support of the T-cell response directed at more
stable HLA/peptide complexes as the infection pro-
gresses into chronicity.

The NetMHCpan4.0 algorithm, which is based on
binding affinity and integrates data on eluted naturally
processed ligands, reflected optimal HLA class I bind-
ing for 9-mers, producing a decreasing number of
predictions when the peptide size was increased from
9 to 11 amino acids. With a single exception, pre-
dicted binders between 11 and 14 amino acids in-
cluded at least one 9mer predicted to bind on its
own, suggesting a destabilizing effect of the extra
amino acids beyond the canonical HLA class I bind-
ing pockets at positions 2 and 9 could account for
fewer predictions.

Important limitations are the lack of predictions of
HLA class II restricted epitopes, which might have con-
tributed to a fraction of IFN-y ELISPOT responses.
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Approximately 5% of the computational predictions may
be false positives that only increase the size of planned
wet experiments and approximately 1% of true positives
may also be missed.

Conclusion

In this analysis, using NetMHCpan4.0, MHCflurry and
NetCTL to predict previously experimentally mapped epi-
topes, we demonstrate that the computational methods
reliably predict an acceptable portion of binder epitopes.
We recommend the use of such computational methods
to reduce the size of experiments required cost associated.
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