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Endothelial dysregulation is central to the pathogenesis of
acute Plasmodium falciparum infection. It has been assumed
that this dysregulation resolves rapidly after treatment, but
this return to normality has been neither demonstrated nor
quantified. We therefore measured a panel of plasma endo-
thelial markers acutely and in convalescence in Malawian
children with uncomplicated or cerebral malaria. Evidence
of persistent endothelial activation and inflammation, indi-
cated by increased plasma levels of soluble intracellular adhe-
sion molecule 1, angiopoetin 2, and C-reactive protein, were
observed at 1 month follow-up visits. These vascular changes
may represent a previously unrecognized contributor to
ongoing malaria-associated morbidity and mortality.
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Plasmodium falciparum causes approximately 300 million clin-
ical episodes of malaria every year, mainly in sub–Saharan
Africa [1]. In hyperendemic regions, children may receive >1

infective bite per day and experience repeated clinical episodes
[2]. Although acute infection is directly responsible for 750 000
deaths [3], it is increasingly apparent that there is an additional
indirect burden of mortality. Several studies have shown that
reducing malaria transmission in a population may be followed
by all-cause childhood mortality reductions as high as 70%, a
greater effect on mortality than can be attributed to reducing
parasitemic febrile illness alone [2, 4, 5]. The cause of this addi-
tional burden remains uncertain. Given the alteration in vascu-
lar endothelial function during acute malaria pathogenesis, 1
plausible mechanism is that endothelial dysfunction persists
beyond the acute febrile episode and influences the risk or
outcome of reinfection or other diseases.

We postulated that malaria infection induces persistent alter-
ation in endothelial activation. We tested this using a panel of
plasma endothelial markers linked to key endothelial functions:
soluble ICAM-1 (sICAM-1) and sE-selectin for endothelial ac-
tivation; angiopoetin 2 (Ang2) for angiogenesis and endothelial
quiescence; C-reactive protein (CRP) for inflammation; pro-
thrombin fragment F1 + 2 for a procoagulant state; and soluble
thrombomodulin (sTM) for endothelial damage.

METHODS

Recruitment took place at the Queen Elizabeth Central Hospi-
tal, Blantyre, Malawi between January 2010 and June 2011.
Children aged 1–12 years were recruited into 1 of 4 clinical cat-
egories: (1) cerebral malaria (CM) cases, who fulfilled World
Health Organization (WHO) diagnostic criteria [6] and had at
least 1 feature of malarial retinopathy [7]; (2) children with un-
complicated malaria (UM); (3) children with aparasitemic mild
febrile illness (MF); and (4) aparasitemic healthy controls
(HC), recruited from well children attending elective surgery.
Children were included in the UM and MF groups if they had
an axillary temperature >37.5°C and no features of organ com-
promise as indicated by WHO criteria [6]. Parasitemia was
screened for on admission and in follow-up visits using a com-
bined P. falciparum histidine rich protein and pan-malarial
lactate dehydrogenase rapid diagnostic test kit, and in patients
in whom both parameters were positive, parasitemia was con-
firmed on blood smear. In all patient groups, children were
excluded if they had evidence of meningitis or severe malnutri-
tion, had WHO stage 4 human immunodeficiency virus infec-
tion, or were on antiretroviral therapy. Informed consent was
given by the parent or legal guardian of all children enrolled in
the study. The study was approved by the College of Medicine
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Research Ethics Committee in Malawi (No. P.02/10/860) and
by the Liverpool School of Tropical Medicine ethical board in
the United Kingdom (No. 09.74).

CM patients were managed on a pediatric high-dependency
unit according to established protocols. They were treated with
intravenous quinine for a minimum of 3 doses, until either 2
consecutive negative malaria blood films or until they could tol-
erate oral medication. They were then given a 3-day course of
oral lumefantrine-artemether according to national treatment
guidelines. UM patients were treated with a 3-day course of
oral lumefantrine-artemether, and MF patients were given
treatment as deemed clinically appropriate by the local clinical
team. Patients were excluded from further analysis if they had
fever or were parasitemic on the day of follow-up.

Citrated plasma samples were taken at presentation and at 1
week and 1 month follow-up visits, and plasma was stored at
−80°C until required. sICAM-1, sE-Selectin, sTM, CRP, and
Ang2 concentrationswere determinedusing commercial enzyme-
-linked immunosorbent assay kits and F1 + 2 using the Enzyg-
nost F1 + 2 micro kit.

Statistical analysis was performed using Stata version 11 and
Prism version 5.0 software. Skewed data were log-transformed,
and differences between groups were compared by 1-way analy-
sis of variance, with the Tukey honestly significant difference
test to adjust for multiple comparisons. All tests were 2-tailed,
and significance was set at the 5% level.

RESULTS

Eighty-eight children with MF, 84 children with UM, 18 chil-
dren with CM, and 36 HC children were recruited (see
Table 1). Approximately 50% of these were followed-up to day
28 (Supplementary Figure 1).

At enrollment (day 0), sICAM-1, Ang2, CRP, and sE-selectin
concentrations were significantly higher in all febrile groups
when compared with the HC group; sTM was raised in UM
and CM patients, and F1 + 2 was raised in CM patients
(Table 1, Figure 1, and Supplementary Figure 2). At 7 days
postenrollment, CRP and Ang2 remained significantly raised in
all groups when compared with the HC group. ICAM-1 re-
mained raised in UM and CM patients and E-selectin, and
F1 + 2 remained raised in CM patients only. At 28 days posten-
rollment, ICAM-1 and Ang2 remained significantly raised in
MF and UM patients. CRP was significantly raised in CM pa-
tients only.

DISCUSSION

The endothelial lining of blood vessels has a critical role in the
regulation of blood flow, permeability, coagulation, inflamma-
tion, and innate and adaptive immunity [8]. A key determinant

of endothelial function is the repertoire of surface receptors ex-
pressed, and these phenotypes are highly specific for the vascu-
lar beds of different organs [8]. Disruption of this surface
receptor phenotype is critical in the pathogenesis of many dis-
eases, including bacterial sepsis, cardiovascular disease, inflam-
matory bowel disease, and malaria [9, 10]. In acute P.
falciparum malaria, cytokine- and parasite-mediated alteration
of endothelial phenotype leads to endothelial dysfunction and a
procoagulant state [10, 11]. In turn, the upregulation of several
inducible endothelial surface receptors, including E-selectin
and ICAM-1, facilitates the cytoadherence of P. falciparum–in-
fected red blood cells (iRBCs) [10], a key component of the
pathogenesis of CM [12]. It has been assumed that after each
infection following iRBC elimination these perturbations
resolve quickly and completely, with the endothelium rapidly
returning to its predisease state. Here we show that endothelial
activation and systemic inflammation persist after iRBCs are
cleared from the circulation. This was most pronounced in CM,
where CRP remained raised 22-fold higher at 28-day follow-up
when compared with the HC group. However, significant in-
flammation and endothelial activation was also detectible in
UM, with CRP remaining 13-fold above that of the HC group
at 7-day follow-up and ICAM-1 and Ang2 remaining raised
until the 28-day follow-up. This persistence cannot be ex-
plained by the half-lives of these factors, because, for example,
CRP and Ang2 have half-lives of 19 hours [13] and 18 hours
[14], respectively.

Persistent endothelial activation was not specific to malaria.
In agreement with prior studies indicating persistent endotheli-
al activation after other common infections [15], there was also
endothelial activation in the group with mild nonmalarial in-
fections. Nonetheless, the long-term effect of malaria might be
anticipated to be particularly important in hyperendemic coun-
tries such as Malawi, where the frequency of repeated malaria
infections may be sufficient to prevent return to baseline before
the next infection (malarial or otherwise). Thus children who
live in areas of high malaria transmission may be in a constant-
ly deregulated endothelial state. This may influence outcome
for patients in several different ways. First, subacute impair-
ment of endothelial barrier function, as indicated here by in-
creased Ang2, may increase invasion of bacteria or viruses into
the blood stream. This mechanism has been proposed to
explain the causal association between incidence of malaria and
bacteremia shown using epidemiological modeling in Kenya
[5]. Second, because endothelial activation is implicated in the
pathogenesis of a number of infections, including malaria and
bacterial sepsis, acquiring a subsequent infection while the en-
dothelium remains activated may have an endothelial priming
effect, increasing the vascular dysfunction and thus the severity
of disease. Specifically, because parasites that bind ICAM-1
have been shown to be associated with CM [12], the residual
ICAM-1 upregulation, indicated by raised sICAM-1 here, may
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select for parasite variants associated with higher incidence of
CM. Finally, in the long term, chronic endothelial activation
and inflammation may contribute to the endothelial changes
that cause cardiovascular disease [15, 16]. In industrialized
countries, the number of infectious episodes of common infec-
tions a person has accrued over their lifetime—their “pathogen
burden”—has been implicated in risk of myocardial infarction
in a dose–response fashion and is a better predictor of cardio-
vascular risk than any particular pathogen [15]. This indicates
that although each individual infection may only cause a small
residual insult to the vasculature, over multiple infectious

episodes this may accumulate to cause severe pathology. Given
the very high frequency of new malaria infections in many
parts of sub–Saharan Africa, malaria may contribute substan-
tially to this pathogen burden—even if the effect from each
infectious episode is small. Although there is a paucity of epide-
miological studies investigating the etiology of cardiovascular
diseases in sub–Saharan Africa, these diseases are a significant
cause of morbidity and mortality [17]. As a higher proportion of
the population survives into and past middle age, their preva-
lence rates are likely to increase. Large epidemiological studies to
identify the specific risk factors in Africans are needed, and our

Table 1. Clinical Characteristics and Soluble Plasma Markers in Children With Cerebral Malaria, Uncomplicated Malaria, and Mild
Febrile Illness and in Healthy Controls

Characteristic
Healthy Controls

(n = 36)
Mild Febrile Illness

(n = 88)
Uncomplicated
Malaria (n = 84)

Cerebral Malaria
(n = 18)

Age, years, mean (95% CIa) 4.6 (3.7–5.7) 3.2 (2.8–3.6)* 4.7 (4.1–5.3) 4.1 (3.3–5.2)
Female sex, No. (%) 13 (36) 35 (40) 47 (56) 8 (44)

Clinical parameters on day 0, mean (95% CI)

Axillary temperature 36.6 (36.5–36.7) 38.4 (38.2–38.5)*** 38.5 (38.4–38.7)*** 39.0 (38.5–39.6)***
Heart rate, beats/minutes 109 (104–114) 127 (119–135)*** 130 (124–137)*** 145 (129–163)***

Systolic blood pressure, mmHg 107 (101–113) 114 (110–117)* 113 (110–117)* 97 (92–102)**

Respiratory rate, breaths/minutes 28 (26–30) 30 (29–31) 28 (27–29) 46 (42–51)***
Glucose, mmol/L 5.0 (4.8–5.2) 5.1 (4.9–5.3) 5.7 (5.4–6.0)** 5.6 (4.6–6.9)*

Lactate, mmol/L 1.8 (1.7–2.0) 1.7 (1.6–1.9) 2.3 (2.1–2.5) 5.2 (3.9–6.9)***

Hemoglobin, g/L 10.4 (9.9–11.0) 10.7 (10.3–11.1) 9.0 (8.6–9.4)** 6.1 (5.4–7.0)***
Platelets, ×109/L 380 (347–416) 300 (267–338)* 110 (93–131)*** 31 (21–46)***

Parasitemia, parasites ×103/µL 0 0 20 (9.9–40) 68 (27–171)

HIVb positive, No. (%) 0 (0) 4 (4.8) 3 (3.5) 2 (11.1)
sICAM-1, pg/mL day 0 198 (160–247) 316 (295–339)*** 464 (295–505)*** 624 (377–1033)***

sICAM-1, pg/mL day 7 (. . .) 258 (235–282) 343 (299–394)*** 478 (364–626)***

sICAM-1 ,pg/mL day 28 (. . .) 269 (242–299)* 277 (251–304)** 291 (201–421)
sE-selectin, pg/mL day 0 68 (57–82) 122 (105–142)*** 147 (130–160)*** 205 (158–266)***

sE-selectin, pg/mL day 7 (. . .) 76 (66–87) 79 (68–91) 109 (77–154)*

sE-selectin, pg/mL day 28 (. . .) 79 (68–92) 82 (74–91) 93 (64–135)
Ang2, pg/mL day 0 232 (207–261) 382 (339–431)*** 579 (523–641)*** 1536 (1190–1982)***

Ang2, pg/mL day 7 (. . .) 383 (333–440)*** 442 (389–502)*** 548 (401–749)***

Ang2, pg/mL day 28 (. . .) 311 (275–350)** 320 (285–359)** 307 (213–443)
sTM, pg/mL day 0 4.7 (4.2–5.2) 4.5 (4.2–4.9) 6.0 (5.4–6.5)* 9.1 (7.5–11.1)***

sTM, pg/mL day 7 (. . .) 4.7 (4.3–5.1) 5.0 (4.4–5.6) 5.6 (4.3–7.2)

sTM, pg/mL day 28 (. . .) 5.2 (4.8–5.6) 4.6 (4.1–5.3) 4.1 (3.4–5.1)
CRP, mg/mL enrollment 0.41 (.23–.74) 26.7 (20–35)*** 75 (61–92)*** 149 (111–199)***

CRP, mg/mL day 7 (. . .) 3.0 (2.0–4.4)*** 5.3 (4.2–6.7)*** 16.0 (8.3–32)***
CRP, mg/mL day 28 (. . .) 0.62 (.37–1.0) 0.73 (.48–1.1) 12.7 (3.1–52)***

F1 + 2 , pg/mL day 0 176 (140–220) 142 (120–167) 219 (180–268) 376 (245–577)*

F1 + 2 , pg/mL day 7 (. . .) 176 (135–229) 220 (186–260) 500 (279–898)***
F1 + 2 , pg/mL day 28 (. . .) 174 (138–221) 142 (111–182) 180 (105–310)

For each variable, differences between healthy controls and other patient groups were examined using a Fisher’s exact test (categorical variables) or 1-way analysis
of variance (continuous variables) with the Tukey honestly significant difference test to adjust for multiple comparisons. Comparisons were not made for
parasitemia or HIV. Abbreviations: Ang2, angiopoetin 2; CI, confidence interval; CRP, C-reactive protein; HIV, human immunodeficiency virus; sICAM-1, soluble
intercellular adhesion molecule 1; sTM, soluble thrombomodulin. *P < .05, **P < .01, ***P < .001.
a All mean values are geometric means and their 95% confidence intervals.
b HIV was tested for using rapid testing.

612 • JID 2014:209 (15 February) • BRIEF REPORT



data indicate that malaria should be considered within these
future studies.

There are several limitations to this study. First, loss to
follow-up of 50% of the patients in each of the groups may have
led to bias. Children with UM who attended follow-up had a
significantly higher CRP on admission than those who did not

attend follow-up (followed-up: mean, 137 mg/mL, 95% confi-
dence interval [CI], 107–166 mg/mL; not followed-up, mean =
71 mg/mL, 95% CI, 50–93 mg/mL; P≤ .01), which might indi-
cate that sicker patients were more likely to return to follow-up,
leading to an overestimation of the strength of difference with
the HC group. However, comparison of all clinical variables

Figure 1. Plasma markers at admission and at follow-up in Malawian children with malaria, nonmalarial febrile illness, and cerebral malaria compared
with healthy controls. Levels of soluble intercellular adhesion molecule 1, C-reactive protein, and angiopoetin 2 were measured by enzyme-linked immuno-
sorbent assay at admission and at 7 day and 28 day follow-up visits in 84 children with uncomplicated malaria, 88 children with nonmalarial febrile
illness, and 18 children with cerebral malaria. Results are compared with 36 Malawian healthy controls who were well children at the hospital for elective
surgical procedures. Horizontal lines indicate geometric means, and bars indicate 95% confidence intervals. Numbers below data labels of the x-axis are
the number of children in each group at each time point. Comparison was performed with a 1-way analysis of variance with the Tukey honestly significant
difference test to adjust for multiple comparisons. Asterisks (*) indicate a statistically significant difference in comparison with the healthy controls:
*P≤ .05; **P≤ .01 ***P≤ .001. Abbreviations: Ang2, angiopoetin 2; CM, cerebral malaria; CRP, C-reactive protein; HC, healthy control; MF, nonmalarial
febrile illness; sICAM-1, soluble intercellular adhesion moleculre 1; UM, uncomplicated malaria.
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and all biomarkers among all patients who were followed-up
until 28 days with those who were lost to follow-up or excluded
did not indicate a systematic bias (data not shown). Second, al-
though the panel of plasma markers used are well validated as
indicators of endothelial activation [9], only Ang2 and E-selec-
tin are exclusively produced by the endothelium. In Indonesian
adults with malaria, high Ang2 levels predicted impaired endo-
thelial function, measured by endothelial-dependent vasodi-
latation [18]. In that population, these arterial tonometric
measurements improved to within normal range by 14 days. It
would be interesting to evaluate tonometry in African children
to examine whether the raised Ang2 levels at 28 days here are
associated with a persistently abnormal vasodilation response.
Third, because it was not possible to measure preinfection
levels of the biomarkers and we were not able to follow-up this
cohort long-term, we have not proven that malaria causes the
higher levels of biomarkers described at 28 day follow-up. It is
possible, although we think unlikely, that instead patients in the
febrile groups had preexisting higher baseline biomarker levels.
Finally, because we studied children with symptomatic disease
it remains unclear whether there is endothelial activation
induced by parasitemia that is not associated with febrile
illness, which would have important implications given the fre-
quency of asymptomatic malaria infections.

Further research is needed to clarify the extent and duration
of the endothelial perturbations described here and their rele-
vance in other malaria-prevalent countrie and to ascertain
whether burden of malaria infection is independently associ-
ated with adverse outcomes due to endothelial dysfunction in
the short or long term. If such studies confirm a chronic effect
of repeated vascular insults by malaria infection, that would
have important implications: influencing the priority of pre-
venting malaria and indicating a need to target interventions
to older children and adults in addition to the young children
who die from acute illness. A further consideration is the use
of adjunctive therapies to prevent residual endothelial effects
in individuals with severe malaria or a high burden of infec-
tion. A candidate is statins, which have endothelial protective,
anti-inflammatory, and anticoagulant effects and prevent
cardiovascular disease even in those without hyperlipidemia
[16]. In malaria, statins reduce endothelial activation in vitro
and reduce neurodevelopmental sequelae after experimental
CM in mice [19]. Short courses of statins during acute illness
and convalescence could be targeted to individuals with
severe disease.

In conclusion, we demonstrate that in uncomplicated and
severe malaria significant endothelial activation and inflamma-
tion persists for at least 1 month after elimination of iRBCs.
Given the huge burden of repeated infection with malaria, this
endothelial activation may represent a significant and previous-
ly neglected contribution to long-term health that warrants
further evaluation for treatment and prevention strategies.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org/). Supplementary materials consist of
data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages regarding
errors should be addressed to the author.

Notes

Acknowledgments. For assistance with the study, we wish to thank Eric
Borgstein (Queen Elizabeth Hospital, Blantyre, Malawi); Grace Matimati,
Patricia Phula, Simon Ewing, and the Paediatric Research Ward clinical
team (Wellcome Trust Clinical Research Programme and Blantyre Malaria
Project), and the Department of Paediatrics and Child Health (Queen Eliza-
beth Hospital, Blantyre, Malawi).
Financial support. This work was supported by a Clinical PhD Fellow-

ship from The Wellcome Trust, United Kingdom (88758 to C. A. M.); and
by a grant from the NIH (5R01AI034969-14 to T. E. T.). The Malawi-Liver-
pool-Wellcome Clinical Research Programme is supported by core funding
from The Wellcome Trust.
Potential conflicts of interest. All authors: No reported conflicts.
All authors have submitted the ICMJE Form for Disclosure of Potential

Conflicts of Interest. Conflicts that the editors consider relevant to the
content of the manuscript have been disclosed.

References

1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distri-
bution of clinical episodes of Plasmodium falciparum malaria. Nature
2005; 434:214–7.

2. Snow RW, Marsh K. The consequences of reducing transmission of
Plasmodium falciparum in Africa. Adv Parasitol 2002; 52:235–64.

3. Murray CJ, Rosenfeld LC, Lim SS, et al. Global malaria mortality between
1980 and 2010: a systematic analysis. Lancet 2012; 379:413–31.

4. Bhattarai A, Ali AS, Kachur SP, et al. Impact of artemisinin-based com-
bination therapy and insecticide-treated nets on malaria burden in
Zanzibar. PLoS Med 2007; 4:e309.

5. Scott JA, Berkley JA, Mwangi I, et al. Relation between falciparum
malaria and bacteraemia in Kenyan children: a population-based, case-
control study and a longitudinal study. Lancet 2011; 378:1316–23.

6. World Health Organization. WHO Expert Committee on Malaria.
World Health Organ Tech Rep Ser 2000; 892:i–v, 1–74.

7. Taylor TE, Fu WJ, Carr RA, et al. Differentiating the pathologies of cere-
bral malaria by postmortem parasite counts. Nat Med 2004; 10:143–5.

8. Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect
Med 2012; 2:a006429.

9. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atheroscle-
rosis. Atherosclerosis 2003; 170:191–203.

10. Moxon CA, Grau GE, Craig AG. Malaria: modification of the red blood
cell and consequences in the human host. Br J Haematol 2011; 154:670–9.

11. Moxon CA, Wassmer SC, Milner DA Jr, et al. Loss of endothelial protein
C receptors links coagulation and inflammation to parasite sequestration
in cerebral malaria in African children. Blood 2013; 122:842–51.

12. Ochola LB, Siddondo BR, Ocholla H, et al. Specific receptor usage in
Plasmodium falciparum cytoadherence is associated with disease
outcome. PLoS One 2011; 6:e14741.

13. Vigushin DM, Pepys MB, Hawkins PN. Metabolic and scintigraphic
studies of radioiodinated human C-reactive protein in health and
disease. J Clin Invest 1993; 91:1351–7.

14. Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoie-
tin-2 is stored in and rapidly released upon stimulation from endotheli-
al cell Weibel-Palade bodies. Blood 2004; 103:4150–6.

15. Zhu J, Nieto FJ, Horne BD, Anderson JL, Muhlestein JB, Epstein SE.
Prospective study of pathogen burden and risk of myocardial infarction
or death. Circulation 2001; 103:45–51.

614 • JID 2014:209 (15 February) • BRIEF REPORT

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jit419/-/DC1
http://jid.oxfordjournals.org/
http://jid.oxfordjournals.org/
http://jid.oxfordjournals.org/


16. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vas-
cular events in men and women with elevated C-reactive protein. N
Engl J Med 2008; 359:2195–207.

17. Dalal S, Beunza JJ, Volmink J, et al. Non-communicable diseases in
sub-Saharan Africa: what we know now. Int J Epidemiol 2011; 40:
885–901.

18. Yeo TW, Lampah DA, Gitawati R, et al. Angiopoietin-2 is associated with
decreased endothelial nitric oxide and poor clinical outcome in severe fal-
ciparummalaria. Proc Natl Acad Sci U S A 2008; 105:17097–102.

19. Reis PA, Estato V, da Silva TI, et al. Statins decrease neuroinflammation
and prevent cognitive impairment after cerebral malaria. PLoS Pathog
2012; 8:e1003099.

BRIEF REPORT • JID 2014:209 (15 February) • 615



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


