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Abstract

Tuberculosis (TB) remains a public health threat in low TB incidence countries, through a

combination of reactivated disease and onward transmission. Using surveillance data from

the United Kingdom (UK) and the Netherlands (NL), we demonstrate a simple and predict-

able relationship between the probability of observing a cluster and its size (the number of

cases with a single genotype). We demonstrate that the full range of observed cluster sizes

can be described using a modified branching process model with the individual reproduction

number following a Poisson lognormal distribution. We estimate that, on average, between

2010 and 2015, a TB case generated 0.41 (95% CrI 0.30,0.60) secondary cases in the UK,

and 0.24 (0.14,0.48) secondary cases in the NL. A majority of cases did not generate any

secondary cases. Recent transmission accounted for 39% (26%,60%) of UK cases and

23%(13%,37%) of NL cases. We predict that reducing UK transmission rates to those

observed in the NL would result in 538(266,818) fewer cases annually in the UK. In conclu-

sion, while TB in low incidence countries is strongly associated with reactivated infections,

we demonstrate that recent transmission remains sufficient to warrant policies aimed at lim-

iting local TB spread.

Author summary

Multiple tuberculosis (TB) cases infected with a single strain are known as a TB cluster. In

the United Kingdom (UK) for example, TB clusters vary in size from two cases up to over

200 cases. Previous work on cluster sizes demonstrated that highly infectious individuals
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influence cluster size, but the analysis did not include the largest clusters. Here, we show

that the chance of observing a cluster of a given size follows the same pattern in the UK

and the NL. Using a new mathematical description of how clusters are formed, we are

able to predict the chance of observing the full range of cluster sizes. Using the model, we

estimate how many cases are due to recent transmission and how many other cases each

case generates. Although we estimate that a minority of cases (39% (26%,60%) in the UK)

are due to recent in-country transmission, we find that reducing the onward transmission

in the UK to levels in the NL would result in 538 (266,818) fewer cases annually in the UK.

Introduction

Tuberculosis (TB) is a chronic infectious disease and a major global public health threat. In

2017, 10.0 million people developed TB and 1.6 million people died from TB worldwide[1]. In

many low TB incidence countries, a high proportion of cases occur in persons born abroad,

and control measures such as migrant screening have been introduced to limit imported infec-

tion and reduce treatment costs[2,3]. However, it is often not known whether foreign-born

individuals were exposed to TB before or after immigrating [4,5], which affects the impact of

such interventions.

Over the past 20 years, genotyping has informed our knowledge of how TB evolved, spread

around the world, and survives within hosts[6–8]. Unlike genotyping for other pathogens, TB

genotyping cannot always definitively identify who-infected-whom, as epidemiologically-

linked cases are often infected with genetically indistinguishable strains[9,10]. Furthermore,

cases infected by indistinguishable strains may be epidemiologically unrelated, due to infection

with a common strain[11]. Instead, genotyping is often used to rule out transmission, for

instance between household members infected with different strains[12,13]. In low incidence

countries, distinguishable strains are used to estimate the fraction of cases that are not due to

recent transmission, but due instead to the reactivation of existing infections or cases infected

elsewhere[14].

TB clusters are defined as multiple cases infected with a single genotype. Clusters are often

assumed to signify sustained recent transmission and factors such as pulmonary disease and

country-of-origin increase an individual’s risk of being part of a cluster[15]. For acute infec-

tions such as measles, the observation that clusters size distributions follow a power-law has

been used to indicate that the epidemiological process is at a critical point[16].

For TB, analysis of the distribution of cluster sizes has been used to estimate the genetic

mutation rate in a population[17] and infer the role of super-spreading individuals[18]. The

latter method was contingent on identifying transmission clusters (defined as clustered cases

occurring less than two years apart): alternative methods are required to apply this method

without a priori epidemiological knowledge of the likely index case. Furthermore, it is not

known how cluster generation differs between settings with potentially differing types of

migration and social contact patterns. Here, we propose and develop a method to estimate the

distribution in the number of secondary cases (the reproduction number) and the percentage

of cases that are due to recent (since 2010), within-country transmission from the information

in cluster size distributions for TB in the UK and the NL.
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Results

In the UK, data were available for the period between 2010 and 2015, and contained 23,646

genotyped cases and 12,503 unique genotypes. 9,802 (41.5%) cases were unique genotypes and

13,844 (58.5%) cases were in clusters containing two or more individuals.

On average, 70% (42%, 98%) of clustered cases involved pulmonary disease, compared to

53% of all cases (Fig 1A). Between 2010 and 2015, 73% of cases in the UK were non-UK born.

A lower proportion of those cases are diagnosed with pulmonary TB[19] (47%) compared to

UK-born cases (69%). Within a cluster, 64% (10%,95%) of cases are UK-born.

In the Netherlands (NL), data were available between 2004 and 2015 and contained 8,449

genotyped cases. 3,923 (46.4%) cases were unique genotypes and 4,526 (53.6%) cases were in

clusters of two or more. Limiting the analysis to cases diagnosed between 2010 and 2015 for t,

there were 3,841 genotyped cases: 2,026 (52.7%) cases had a unique genotype and 1,815

(47.3%) were in clusters of two or more. 67% of all cases involved pulmonary disease, whereas

within clusters, on average 70% (26%,100%) of cases were pulmonary (Fig 1B). As in the UK,

non-NL born cases make up the majority, 69%. A lower proportion of non-NL born cases

were diagnosed with pulmonary TB (63%) compared to NL-born cases (76%). Within a clus-

ter, 66% (33%,100%) of cases are non-NL born.

Modelling the distribution of cluster sizes

The distribution of cluster sizes in the UK and the NL were fitted to a power-law (KS statistics

0.013 and 0.007 respectively; p-values 0.63 and 0.07 respectively). The estimated exponent for

the UK was 2.4 (2.3, 2.6) with a minimum cluster size consistent with the power-law, xmin, of 3

(1,5). The estimated exponent for the NL was higher than the UK, 2.8 (2.7, 2.9), with a mini-

mum cluster size consistent with the power-law, xmin, of 1 (1, 1).

From the power-law model, we can predict that in the UK, 1 in 5 genotypes will occur twice

or more; 1 in 160 genotypes will occur twenty times or more; and 1 in 6,000 genotypes will

occur 200 times or more. In the NL, 1 in 6 genotypes will occur twice or more; 1 in 250 geno-

types will occur twenty times or more; and 1 in 8,500 genotypes will occur 200 times or more.

The cluster size distribution in the NL was captured by both branching models, where the

distribution of secondary cases follows either a negative binomial or a Poisson lognormal dis-

tribution (See Figs A-D in S1 Text for posterior distributions). Both models captured the num-

ber of unique genotypes and cluster sizes that occur only once (Fig 2, left, also section S1.2 in

S1 Text). Although a branching process with a negative binomial distribution of secondary

cases was able to capture the number of unique genotypes in the UK data, it systematically

underestimated the frequency of large clusters (Fig 2, right).

A Poisson lognormal model resulted in increased model uncertainty, but provided an

improved fit, and captured the entire distribution in the UK (Figs 2 and 3A) as well as still cap-

turing the NL data (Figs 2 and 3B).

The Poisson lognormal distribution for the number of secondary cases in the UK had log-

mean of -2.9 (-4.7, -1.5) and log-variance 2.0 (1.2, 2.8). In NL, between 2004 and 2015 the log-

mean was -2.9 (-5.0, -1.6) and log-variance 1.9 (1.0, 2.8). Restricting the analysis to cases

reported in NL between 2010 and 2015, decreased the log-mean to -3.4 (-6.7, -1.7) and slightly

increased the log-variance 1.9 (1.0, 3.4).

Cases due to recent transmission

From our models, we estimate that between 2010 and 2015, the percentage of cases due to

recent transmission in the UK was 39% (26%,60%); with 61% (40%, 74%) of cases due to

importation or reactivation. In the NL, we estimate that 23%(13%,37%) of cases are
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attributable to recent transmission, the remainder being due to importation or reactivation

(see section S1.3 and Figure G in S1 Text).

The effective reproduction number

The mean effective reproduction number is calculated from the Poisson lognormal distribu-

tion (Eq 1, Methods). For the UK, it was 0.41 (0.30, 0.60), suggesting that, on average,

Fig 1. The percentage of pulmonary cases in a cluster against cluster size for the UK (a) and the Netherlands (b). The percentage of foreign-born cases in a

cluster against cluster size for the UK (c) and the Netherlands (d). Dotted lines indicate the mean value for a cluster.

https://doi.org/10.1371/journal.pcbi.1007687.g001

PLOS COMPUTATIONAL BIOLOGY A model of tuberculosis clustering in low incidence countries

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007687 March 27, 2020 4 / 14

https://doi.org/10.1371/journal.pcbi.1007687.g001
https://doi.org/10.1371/journal.pcbi.1007687


Fig 2. The number of clusters of size 1 (i.e. unmatched cases) against the number of cluster sizes that appear exactly once. The coloured points are 1,000

model replicates selected from the posterior distributions for the branching process model with the distribution of secondary infections following either a

Poisson lognormal distribution (yellow triangles) or a negative binomial distribution (blue diamonds). The black points indicate the data values for the NL

(left) and the UK (right).

https://doi.org/10.1371/journal.pcbi.1007687.g002

Fig 3. The distribution of cluster sizes for the UK (a) and the NL (b) with the distribution of cluster sizes produced by 1,000 iterations of the Poisson-

lognormal model with parameters drawn from the posterior distributions.

https://doi.org/10.1371/journal.pcbi.1007687.g003
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transmission is not sustained (see section S1.4 and Figure H in S1 Text). Using Eq 2 (Meth-

ods), this means an average index case will generate 0.7 (0.4, 1.5) further cases. Furthermore,

using the model, we find that clusters with more than 10 cases have an average reproduction

number greater than 0.9.

In NL, the reproduction number using all data from 2004 to 2015 was 0.33 (0.22, 0.50) and

since 2010 this reduced to 0.25 (0.14, 0.48). Even considering onward transmission chains, an

average index case in the Netherlands generates 0.3 (0.16, 0.92) further cases.

The role of superspreaders and onward transmission

Fig 4 illustrates the distribution of secondary cases by infectee reproduction number. From the

UK data, we estimate that 84% (71%, 90%) of cases did not generate any secondary cases,

therefore current control measures are adequately preventing onward transmission in the

majority of cases. A further 10% (5%, 17%) of cases generated one secondary case only; they

generated 25% (11%, 42%) of cases infected in the UK (Fig 4). 0.47% (0.1%, 0.9%) of cases gen-

erated more than 10 secondary cases, and could be considered “superspreaders”. These super-

spreaders were responsible for 30% (4%, 62%) of secondary recently transmitted cases.

In NL between 2010 and 2015, 88% (77%, 96%) of cases did not generate any secondary

cases and 8% (3%, 17%) of cases generated one secondary case, resulting in 34% (9%, 61%) of

cases infected in NL. Superspreaders comprised 0.3% (0.02%, 0.8%) of all cases, and were

responsible for 19% (1%, 52%) of recently transmitted cases.

By scaling down the transmission parameters in the UK, we estimate that if the UK were

able to bring local transmission in line with the NL, they would be able to achieve a 17% (13%,

23%) reduction in incidence, equivalent to preventing 538 (266, 818) cases per year.

Discussion

Tuberculosis (TB) remains a public health concern in low-incidence countries. As the majority

of cases in low-incidence countries are foreign-born, impact of controlling recent transmission

on overall TB burden is not clear.

Here, we presented methods for exploring and interpreting the full distribution of TB clus-

ter sizes within a country in terms of recent transmission. Using data from the UK and NL, we

find that the vast majority of cases did not transmit the infection. Less than 1% of cases caused

more than 10 secondary cases and might be defined as “superspreaders”. Overall, the average

reproduction number is less than a half in both countries.

Superspreading, where a small proportion of cases generate a disproportionate number of

secondary cases, is a common feature of many infectious disease epidemics[20]. Where super-

spreading dominates dynamics, targeted interventions perform better than population-wide

measures, however identifying superspreaders can be challenging.

We estimate that onward transmission is substantially lower in the Netherlands than in the

UK. Our estimate of the average reproduction number is consistent with previous estimates in

low-incidence settings[21]. In particular, our estimate is in line with Borgdorff et al.’s estimates

that also allow multiple introductions per cluster [22–24], suggesting that this is an important

feature. Our estimate is lower than Ypma et al.’s estimate, which might be explained by the fact

that they allow for the possibility of mutations within a cluster. In the UK, Vynnycky and Fine

estimated that the effective reproduction number fell to well below one by 1990 [25]. We esti-

mate that the reproduction number is now around 0.4 in the UK, and that reducing this to

0.25, in line with the Netherlands, could prevent one in six UK cases. A comparison of trans-

mission, control measures and outcomes could elucidate the difference we observed between

the UK and the NL. These would include the efficiency of contact tracing in the UK[26] and
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the NL[27], household transmission[13], and different transmission rates between migrant

groups[22].

Whole Genome Sequencing (WGS) is increasingly being used for genotyping in high-

resource settings[28], having been introduced in 2018 in the NL and 2017 in the UK. In gen-

eral, WGS analysis (using a 12 nucleotide difference threshold [29]) results in smaller clusters

relative to MIRU-VNTR. However, because our method includes multiple independent

importations per cluster the overall results are likely to be consistent between typing methods.

Fig 4. The percentage of cases due to recent transmission against the reproduction number of the person who infected them. The point estimates

are the mean and the error bars are 95% credible intervals calculated using 10,000 parameter sets drawn from the posterior distribution of the model fit

to the UK and NL data between 2010 and 2015.

https://doi.org/10.1371/journal.pcbi.1007687.g004
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Applied to WGS data, our methods will provide an independent estimate of transmission,

once the pipeline for TB DNA sequencing has been standardised across countries, consensus

reached regarding the cut-off number of SNPs to be used for cluster definition[29] and multi-

ple years of data have accumulated. With sufficient data, WGS can be used to re-construct

transmission trees and directly estimate reproduction numbers[30]; however in many out-

breaks WGS alone is not sufficient, and needs to be combined with epidemiological data and

statistical inference[10].

The power of our method lies is the unification of clusters across multiple scales, and is

therefore robust to missing data. However, the approach we used does have limitations. Firstly,

the model did not include temporal or regional differences in transmission: these will be areas

for future development. Further, we assumed that clusters were fully observed. In reality, only

culture-confirmed cases can be genotyped and transmission within a cluster may be on-going.

In 2015, genotyped cases represented 60.1% of all cases in the UK and 67% of all cases in the

NL. The data are right-censored because clusters may not have run their full course; this will

apply particularly to strains that appeared for the first time towards the end of the datasets. An

inherent limitation of using a terminal branching process model is that we assume that trans-

mission is not sustained without importation from outside the UK/NL or reactivation of old

infections. The steady decline in incidence over the study periods suggests that this assumption

is reasonable on average, although transmission is most likely sustained in the largest clusters.

We did not capture the role of genetic mutation in generating new clusters, thereby potentially

underestimating the contribution of recent transmission.

In summary, we observed consistent properties between TB clusters, irrespective of size,

origin or country. We find that TB cluster sizes in low incidence countries can be captured by

a simple model of importation and transmission. This work will contribute to a more well-

developed understanding of TB transmission patterns in low incidence countries and how

genotyping can be used for epidemiological inference. Control policies, such as contact trac-

ing, aimed at limiting spread still have a role to play in eliminating TB in low-incidence

countries.

Methods

Data sources

UK data. The analysis was conducted using TB notifications collected through the

Enhanced Tuberculosis Surveillance (ETS) system in England and Wales and the Enhanced

Surveillance of Mycobacterial Infections (ESMI) system in Scotland. The following data for TB

notifications were used: year of notification (2010 to 2015 inclusive), country of birth, disease

type (pulmonary with or without extra-pulmonary or extra-pulmonary only), strain type (at

least 23 out of 24 loci mycobacterial interspersed repetitive unit-variable-number tandem

repeat (MIRU-VNTR) type), cluster name (assigned by a PHE naming tool based on strain

type) and whether a case was categorised as clustered (yes/no).

NL data. Data from the NL were extracted from the Netherlands Tuberculosis Register.

MIRU-VNTR typing has been systematically conducted in the NL since 2004. As for the UK

data, we extracted year of notification (2004–2015), country of birth, disease type (pulmonary

or extra-pulmonary), strain type 24 loci MIRU-VNTR type.

Defining clusters. Cluster size was defined as the number of cases with an indistinguish-

able MIRU-VNTR profile, where clusters of size 1 are cases with a unique 24 loci VNTR pro-

file. Cases with a single missing locus that matched 23 loci of another cluster were considered

part of that cluster[31]. Cluster sizes were binned logarithmically to retain the distribution

shape while minimising noise due to low numbers of large clusters[32].
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Statistical model. A feature of clusters size distributions in the UK and the NL, is that the

proportion of clusters greater than a given size declines linearly with cluster size in log-log

space. In order to characterise the distribution of clusters sizes across multiple scales, we fit a

power law function of the form P(x)~x−α to the cluster size distributions and assess the fit by

calculating an associated p-value[33]. Two parameters are estimated: xmin, the minimum clus-

ter size that is consistent with a power law, and α, the exponent of the power law. The two

parameters are estimated by minimising the Kolmogorov–Smirnov (KS) statistic, imple-

mented in the poweRlaw R package[34]. 95% confidence intervals and a p-value are calculated.

Within this framework, larger p-values indicate a better fit to the power law model than

smaller values–see [33].

Developing a mechanistic mathematical model. Although the power law function esti-

mated above provides a statistical description of the data, we were interested in finding a

mechanistic explanation for the distribution of cluster sizes.

In order to do this, we used a mortal branching process model[18,35] with importation of

infection to describe the process by which TB clusters are generated and evolve in low inci-

dence settings. The central premise behind the model is that every diagnosed case must have

been generated by one of two mechanisms, in a similar structure to household transmission

models[36]: A) infection was acquired abroad or before the observation period (referred to as

an imported or non-recent infection/reactivation) or B) the case was infected in the country

during the observation period (interpreted as recently transmitted infection). Assuming these

two mechanisms is broadly consistent with the data: in the UK, 81% of cases infected with a

unique genotype were born outside the UK, compared to 70% of clustered cases.

For each unique genotype X, we assume that the first case cannot be due to a recent trans-

mission event, i.e. it was either infected abroad or before routine genotyping. Each case i gen-

erates ri secondary cases infected with genotype X where ri is drawn from a probability

distribution. We did not differentiate pulmonary cases from extra-pulmonary cases, as there is

no evidence of a correlation in pulmonary status between infector and infectee and a previous

study of NL cluster sizes[18] found that including extra-pulmonary cases did not affect esti-

mates of the reproduction number.

In addition to recently transmitted cases, we assume that for each case i infected with

genotype X, an additional, independent case also infected with genotype X is diagnosed with

probability p. This process is repeated for every case in the cluster, i.e. C(X) times for a cluster

with C(X) cases. This results in a binomial distribution Bin(C(X),p).

Each of the recent and non-recent cases have the opportunity to generate further secondary

cases; this process is repeated until no new cases are generated. The branching process steps

are as follows:

1. Start with the index case of a new cluster. Create a list of cases, L containing a single case, L
= {1}, such that the number of cases, n = 1;

2. For each case i2L, draw the number of secondary cases produced by i, ri, from the relevant

distribution (Poisson lognormal or negative binomial) and add ri cases to the end of the

case list, such that n = n+ri;

3. Draw a random number between 0 and 1; if this is less than probability p, generate an

imported case and add it to the end of the case list, such that n = n+1;

In order to fit this model to cluster size data without further complexity, we impose the

assumption that the average number of secondary cases per case must be greater than or equal

to zero and less than one, 0�E(ri)<1, justified by the low and declining incidence in the two

countries.
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Distribution of secondary cases per individual. Previous analyses have modelled the

number of secondary cases per TB case using a negative binomial distribution [18,20], which

arises when the expected number of secondary cases per individual, λ, follows a Gamma distri-

bution, λ~Γ(k,θ), with dispersion parameter k and scaling parameter θ. The average number of

secondary cases per individual is given by R = kθ.

We compare the negative binomial model for the distribution of within-country secondary

cases with a Poisson-lognormal model. A Poisson-lognormal distribution is frequently used in

ecological literature as an alternative to a negative binomial to describe species abundance for

communities with many rare species[37]. It arises when the logarithm of the expected number

of secondary cases per individual, log(λ), follows a normal distribution with mean μ and vari-

ance σ, λ~logN(μ,σ). In a lognormal distribution, the average number of secondary cases per

individual is given by

R ¼ expðmþ s2=2Þ: ðEq 1Þ

As R<1, the total number of additional cases due to an average imported case is calculated as

the sum of a geometric series:

R=ð1 � RÞ: ðEq 2Þ

We define a “superspreader” as a TB case in the above model that generates more than ten

secondary cases. Using the model, we explore the impact of superspreaders by considering the

proportion of secondary cases generated by persons with different reproduction numbers.

We use the model to estimate the impact of reducing transmission within the UK to match

transmission within the Netherlands. We re-run the model with the estimated UK importation

rate but scale the log mean of the Poisson lognormal distribution by a factor mNL=mUK , where

mNL is the average mean of the log normal distribution estimated for the NL and mUK is the

average mean of the log normal distribution estimated for the UK. The number of cases is

totalled for the alternative scenario with lower transmission and compared to the total number

of cases under the UK fitted model.

Fraction of imported cases. We estimate the proportion of cases due to recent transmis-

sion by recording the number of cases infected via direct transmission and the number of

cases generated by importation during each simulation.

Model fit. In contrast to previous approaches that have used exact likelihood methods for

fitting cluster size models to data[18,35], we use Approximate Bayesian Computation (ABC)
[38,39]. In ABC, the likelihood is approximated by distance metrics based on summary statis-

tics derived from the data and a realisation of the model, therefore can naturally incorporate

the impact of sampling and importation. We use the Majoram MCMC search algorithm

implemented in the R package EasyABC[40].

We estimated three model parameters: two for the distribution of secondary cases (either

negative binomial or Poisson lognormal) and one for the importation rate. We assumed uni-

form prior distributions and imposed prior constraints that all parameters are greater than

zero and that the reproduction number is greater than or equal to 0 and less than one. The tar-

get summary statistics were the number of observed clusters of a given size, logarithmically

binned for a fixed number of bins. Using logarithmic binning attempts to compensate for the

larger number of data points for lower cluster sizes. For N bins, covering a range of cluster

sizes from 1 to Cmax, each bin is of length max(1,exp(n log Cmax/N)) for n = 1,. . .,Cmax. We

chose 50 bins, and the maximum cluster size was 300. For each set of proposal parameters, we

simulated the model and binned the resulting cluster sizes in the same way as the data. The
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distance between the model and the data was calculated using the Euclidean distance:

Xnbins

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDi � MiÞ
2

q

;

where Di is the number of observed clusters in the ith bin and Mi is the number of clusters in

the ith bin as predicted by the model.

We assessed model fit via two statistics: the proportion of clusters that are of size 1 (i.e.

unmatched cases) and the number of cluster sizes that appear exactly once–see reference [17]

for a further discussion of these quantities. Together, these two values capture characteristics

of TB cluster size distributions across multiple settings with a high proportion of unmatched

cases and larger clusters.

From the posterior distributions, we extracted the average number of secondary cases per

individual (R), the degree of dispersion and the proportion of cases that are due to recent,

within-country transmission. Unless otherwise stated, we report the mean from the posterior

distribution and 95% credible intervals in brackets, calculated as the 2.5th and 97.5th quantiles

of the posterior distributions.

Supporting information

S1 Text. Details of the models: S1.1) Posterior distributions for the model parameters; S1.2)

Comparison between the Poisson lognormal model and the negative binomial distribution

model fits for the UK and the NL; S1.3) Posterior distribution for the proportion of cases not

due to recent transmission; S1.4) Posterior distribution for the reproduction number in the

UK and the NL.

(PDF)

S1 Data. Number of clusters by size for the UK and the NL.

(CSV)

Acknowledgments

Thanks to Rolf Ypma for discussing his paper and early comparisons.

Author Contributions

Conceptualization: Ellen Brooks-Pollock, Leon Danon, Andrew M. T. Pollock, Maeve K.

Lalor.

Data curation: Hester Korthals Altes, Jennifer A. Davidson, Dick van Soolingen, Colin Camp-

bell, Maeve K. Lalor.

Formal analysis: Ellen Brooks-Pollock.

Funding acquisition: Ellen Brooks-Pollock.

Investigation: Ellen Brooks-Pollock, Hester Korthals Altes, Jennifer A. Davidson, Maeve K.

Lalor.

Methodology: Ellen Brooks-Pollock, Leon Danon, Hester Korthals Altes, Andrew M. T.

Pollock.

Software: Leon Danon.

Validation: Ellen Brooks-Pollock, Leon Danon, Hester Korthals Altes, Dick van Soolingen.

Visualization: Ellen Brooks-Pollock.

PLOS COMPUTATIONAL BIOLOGY A model of tuberculosis clustering in low incidence countries

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007687 March 27, 2020 11 / 14

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007687.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007687.s002
https://doi.org/10.1371/journal.pcbi.1007687


Writing – original draft: Ellen Brooks-Pollock.

Writing – review & editing: Ellen Brooks-Pollock, Leon Danon, Hester Korthals Altes, Jenni-

fer A. Davidson, Andrew M. T. Pollock, Dick van Soolingen, Colin Campbell, Maeve K.

Lalor.

References

1. WHO | Global tuberculosis report 2018. WHO. 2019. Available: https://www.who.int/tb/publications/

global_report/en/

2. Aldridge RW, Zenner D, White PJ, Williamson EJ, Muzyamba MC, Dhavan P, et al. Tuberculosis in

migrants moving from high-incidence to low-incidence countries: a population-based cohort study of

519 955 migrants screened before entry to England, Wales, and Northern Ireland. Lancet (London,

England). 2016; 388: 2510–2518. https://doi.org/10.1016/S0140-6736(16)31008-X

3. Kamper-Jørgensen Z, Andersen AB, Kok-Jensen A, Kamper-Jørgensen M, Bygbjerg IC, Andersen PH,

et al. Migrant tuberculosis: the extent of transmission in a low burden country. BMC Infect Dis. 2012; 12:

60. https://doi.org/10.1186/1471-2334-12-60 PMID: 22423983

4. Lillebaek T, Andersen AB, Bauer J, Dirksen A, Glismann S, de Haas P, et al. Risk of Mycobacterium

tuberculosis transmission in a low-incidence country due to immigration from high-incidence areas. J

Clin Microbiol. 2001; 39: 855–61. https://doi.org/10.1128/JCM.39.3.855-861.2001 PMID: 11230395

5. Stucki D, Ballif M, Egger M, Furrer H, Altpeter E, Battegay M, et al. Standard Genotyping Overestimates

Transmission of Mycobacterium tuberculosis among Immigrants in a Low-Incidence Country. J Clin

Microbiol. 2016; 54: 1862–70. https://doi.org/10.1128/JCM.00126-16 PMID: 27194683

6. Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci.

2012; 367: 850–9. https://doi.org/10.1098/rstb.2011.0316 PMID: 22312052

7. van Soolingen D, Borgdorff MW, de Haas PEW, Sebek MMGG, Veen J, Dessens M, et al. Molecular

Epidemiology of Tuberculosis in the Netherlands: A Nationwide Study from 1993 through 1997. J Infect

Dis. 1999; 180: 726–736. https://doi.org/10.1086/314930 PMID: 10438361

8. Nebenzahl-Guimaraes H, Verhagen LM, Borgdorff MW, van Soolingen D. Transmission and progres-

sion to disease of mycobacterium tuberculosis phylogenetic lineages in the Netherlands. J Clin Micro-

biol. 2015; 53: 3264–3271. https://doi.org/10.1128/JCM.01370-15 PMID: 26224845

9. Packer S, Green C, Brooks-Pollock E, Chaintarli K, Harrison S, Beck CR. Social network analysis and

whole genome sequencing in a cohort study to investigate TB transmission in an educational setting.

BMC Infect Dis. 2019; 19: 154. https://doi.org/10.1186/s12879-019-3734-8 PMID: 30760211

10. Didelot X, Gardy J, Colijn C. Bayesian Inference of Infectious Disease Transmission from Whole-

Genome Sequence Data. Mol Biol Evol. 2014; 31: 1869–1879. https://doi.org/10.1093/molbev/msu121

PMID: 24714079

11. Davidson JA, Thomas HL, Maguire H, Brown T, Burkitt A, MacDonald N, et al. Understanding Tubercu-

losis Transmission in the United Kingdom: Findings from 6 Years of Mycobacterial Interspersed Repeti-

tive Unit-Variable Number Tandem Repeats Strain Typing, 2010–2015. Am J Epidemiol. 2018; 187:

2233–2242. https://doi.org/10.1093/aje/kwy119 PMID: 29878041

12. Verver S, Warren RM, Munch Z, Richardson M, van der Spuy GD, Borgdorff MW, et al. Proportion of

tuberculosis transmission that takes place in households in a high-incidence area. Lancet. 2004; 363:

212–214. https://doi.org/10.1016/S0140-6736(03)15332-9 PMID: 14738796

13. Lalor MK, Anderson LF, Hamblion EL, Burkitt A, Davidson JA, Maguire H, et al. Recent household

transmission of tuberculosis in England, 2010–2012: retrospective national cohort study combining epi-

demiological and molecular strain typing data. BMC Med. 2017; 15: 105. https://doi.org/10.1186/

s12916-017-0864-y PMID: 28606177

14. Hamblion EL, Le Menach A, Anderson LF, Lalor MK, Brown T, Abubakar I, et al. Recent TB transmis-

sion, clustering and predictors of large clusters in London, 2010–2012: results from first 3 years of uni-

versal MIRU-VNTR strain typing. Thorax. 2016; 71: 749–56. https://doi.org/10.1136/thoraxjnl-2014-

206608 PMID: 27417280

15. Fok A, Numata Y, Schulzer M, FitzGerald MJ. Risk factors for clustering of tuberculosis cases: A sys-

tematic review of population-based molecular epidemiology studies. International Journal of Tuberculo-

sis and Lung Disease. 2008. pp. 480–492. PMID: 18419882

16. Rhodes CJ, Anderson RM. Power laws governing epidemics in isolated populations. Nature. 1996. pp.

600–602. https://doi.org/10.1038/381600a0 PMID: 8637594

PLOS COMPUTATIONAL BIOLOGY A model of tuberculosis clustering in low incidence countries

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007687 March 27, 2020 12 / 14

https://www.who.int/tb/publications/global_report/en/
https://www.who.int/tb/publications/global_report/en/
https://doi.org/10.1016/S0140-6736(16)31008-X
https://doi.org/10.1186/1471-2334-12-60
http://www.ncbi.nlm.nih.gov/pubmed/22423983
https://doi.org/10.1128/JCM.39.3.855-861.2001
http://www.ncbi.nlm.nih.gov/pubmed/11230395
https://doi.org/10.1128/JCM.00126-16
http://www.ncbi.nlm.nih.gov/pubmed/27194683
https://doi.org/10.1098/rstb.2011.0316
http://www.ncbi.nlm.nih.gov/pubmed/22312052
https://doi.org/10.1086/314930
http://www.ncbi.nlm.nih.gov/pubmed/10438361
https://doi.org/10.1128/JCM.01370-15
http://www.ncbi.nlm.nih.gov/pubmed/26224845
https://doi.org/10.1186/s12879-019-3734-8
http://www.ncbi.nlm.nih.gov/pubmed/30760211
https://doi.org/10.1093/molbev/msu121
http://www.ncbi.nlm.nih.gov/pubmed/24714079
https://doi.org/10.1093/aje/kwy119
http://www.ncbi.nlm.nih.gov/pubmed/29878041
https://doi.org/10.1016/S0140-6736(03)15332-9
http://www.ncbi.nlm.nih.gov/pubmed/14738796
https://doi.org/10.1186/s12916-017-0864-y
https://doi.org/10.1186/s12916-017-0864-y
http://www.ncbi.nlm.nih.gov/pubmed/28606177
https://doi.org/10.1136/thoraxjnl-2014-206608
https://doi.org/10.1136/thoraxjnl-2014-206608
http://www.ncbi.nlm.nih.gov/pubmed/27417280
http://www.ncbi.nlm.nih.gov/pubmed/18419882
https://doi.org/10.1038/381600a0
http://www.ncbi.nlm.nih.gov/pubmed/8637594
https://doi.org/10.1371/journal.pcbi.1007687


17. Luciani F, Francis AR, Tanaka MM. Interpreting genotype cluster sizes of Mycobacterium tuberculosis

isolates typed with IS6110 and spoligotyping. Infect Genet Evol. 2008; 8: 182–190. https://doi.org/10.

1016/j.meegid.2007.12.004 PMID: 18243064

18. Ypma RJF, Altes HK, van Soolingen D, Wallinga J, van Ballegooijen WM. A Sign of Superspreading in

Tuberculosis. Epidemiology. 2013; 24: 395–400. https://doi.org/10.1097/EDE.0b013e3182878e19

PMID: 23446314

19. Public Health England. Tuberculosis in England: 2019 report. 2019.

20. Lloyd-Smith JOO, Schreiber SJJ, Kopp PEE, Getz WMM. Superspreading and the effect of individual

variation on disease emergence. Nature. 2005; 438: 355–9. https://doi.org/10.1038/nature04153 PMID:

16292310

21. Ma Y, Horsburgh CR, White LF, Jenkins HE. Quantifying TB transmission: a systematic review of repro-

duction number and serial interval estimates for tuberculosis. Epidemiol Infect. 2018; 146: 1478–1494.

https://doi.org/10.1017/S0950268818001760 PMID: 29970199

22. Borgdorff MW, Nagelkerke N, van Soolingen D, de Haas PEW, Veen J, van Embden JDA. Analysis of

Tuberculosis Transmission between Nationalities in the Netherlands in the Period 1993–1995 Using

DNA Fingerprinting. Am J Epidemiol. 1998; 147: 187–195. https://doi.org/10.1093/oxfordjournals.aje.

a009433 PMID: 9457010

23. Borgdorff MW, van der Werf MJ, de Haas PEW, Kremer K, van Soolingen D. Tuberculosis Elimination

in the Netherlands. Emerg Infect Dis. 2005; 11: 597–602. https://doi.org/10.3201/eid1104.041103

PMID: 15829200

24. Borgdorff MW, Van Den Hof S, Kremer K, Verhagen L, Kalisvaart N, Erkens C, et al. Progress towards

tuberculosis elimination: Secular trend, immigration and transmission. Eur Respir J. 2010; 36: 339–347.

https://doi.org/10.1183/09031936.00155409 PMID: 19996188

25. Vynnycky E, Fine PE. The long-term dynamics of tuberculosis and other diseases with long serial inter-

vals: implications of and for changing reproduction numbers. Epidemiol Infect. 1998; 121: 309–24.

Available: http://www.ncbi.nlm.nih.gov/pubmed/9825782 https://doi.org/10.1017/s0950268898001113

PMID: 9825782

26. Cavany SM, Sumner T, Vynnycky E, Flach C, White RG, Thomas HL, et al. An evaluation of tuberculo-

sis contact investigations against national standards. Thorax. 2017; 72: 736–745. https://doi.org/10.

1136/thoraxjnl-2016-209677 PMID: 28389598

27. Mulder C, van Deutekom H, Huisman EM, Meijer-Veldman W, Erkens CGM, van Rest J, et al. Coverage

and yield of tuberculosis contact investigations in the Netherlands. Int J Tuberc Lung Dis. 2011; 15:

1630–1637. https://doi.org/10.5588/ijtld.11.0027 PMID: 22118170

28. Cabibbe AM, Walker TM, Niemann S, Cirillo DM. Whole Genome Sequencing of Mycobacterium tuber-

culosis. Eur Respir J. 2018; 1801163. https://doi.org/10.1183/13993003.01163-2018 PMID: 30209198

29. Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to

delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect

Dis. 2013; 13: 137–46. https://doi.org/10.1016/S1473-3099(12)70277-3 PMID: 23158499
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