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• Joint soil and crop sampling was under-
taken across Amhara Region, Ethiopia.

• Statistical modelling of the resulting
data incorporated extensive covariates.

• Spatial predictions were made of grain
selenium concentration.

• These predictions, and their uncer-
tainties, are presented as maps.

• The maps show the probability that
grain provides adequate dietary Se.
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Grain and soil were sampled across a large part of Amhara, Ethiopia in a studymotivated by prior evidence of se-
lenium (Se) deficiency in the Region's population. The grain samples (teff, Eragrostis tef, and wheat, Triticum
aestivum) were analysed for concentration of Se and the soils were analysed for various properties, including
Se concentration measured in different extractants. Predictive models for concentration of Se in the respective
grainswere developed, and the predicted values, alongwith observed concentrations in the two grainswere rep-
resented by a multivariate linear mixed model in which selected covariates, derived from remote sensor obser-
vations and a digital elevation model, were included as fixed effects. In all modelling steps the selection of
ark).

. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.139231&domain=pdf
https://doi.org/10.1016/j.scitotenv.2020.139231
mailto:murray.lark@nottingham.ac.uk
https://doi.org/10.1016/j.scitotenv.2020.139231
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 D. Gashu et al. / Science of the Total Environment 733 (2020) 139231
Keywords:
Selenium
Micronutrients
Hidden hunger
Teff
Wheat
Geostatistics
predictors was done using false discovery rate control, to avoid over-fitting, and using an α-investment proce-
dure to maximize the statistical power to detect significant relationships by ordering the tests in a sequence
based on scientific understanding of the underlying processes likely to control Se concentration in grain. Cross-
validation indicated that uncertainties in the empirical best linear unbiased predictions of the Se concentration
in both grains were well-characterized by the prediction error variances obtained from the model. The predic-
tions were displayed as maps, and their uncertainty was characterized by computing the probability that the
true concentration of Se in grain would be such that a standard serving would not provide the recommended
daily allowance of Se. The spatial variation of grain Se was substantial, concentrations in wheat and teff differed
but showed the same broad spatial pattern. Such information could be used to target effective interventions to
address Se deficiency, and the general procedure used for mapping could be applied to other micronutrients
and crops in similar settings.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Mineral micronutrient deficiencies (MNDs) are widespread in sub-
Saharan Africa (SSA), especially among women and children (Joy
et al., 2014; Kumssa et al., 2015; Schmidhuber et al., 2018; Smith
et al., 2016). These deficiencies, sometimes called ‘hidden hunger’, are
a critical obstacle to the United Nations' second Sustainable Develop-
ment Goal (SDG2, ‘Zero Hunger’), to ‘achieve food security and im-
proved nutrition’ by 2030 (Gödecke et al., 2018).

There are multiple and complex causes of MNDs, including poor di-
etary intake and bioavailability as well as nutrient losses due to factors
such as infection (Caulfield et al., 2006). In SSA many mineral MNDs
arise from restricted soil-to-crop transfer of micronutrients, due to soil
conditions, exacerbated by poor dietary diversity including a paucity
of animal-source foods (Hurst et al., 2013; Joy et al., 2014, 2015;
Manzeke et al., 2019; Phiri et al., 2019).

There are various interventions available to addressMNDs, including
biofortification through crop breeding. There have been notable suc-
cesses by HarvestPlus and the Consultative Group for International Ag-
ricultural Research (CGIAR) to develop staple cropswith increased grain
concentration of iron (Fe) in SSA, and zinc (Zn) in South Asia (Gregory
et al., 2017; Khokhar et al., 2018; Velu et al., 2012). However, the allevi-
ation of multiple mineral MNDs in SSA is likely to require combined ap-
proaches including dietary diversification, food fortification, and the use
ofmicronutrient-enriched fertilisers (agronomic biofortification). There
are precedents for using Se containing fertilisers at national scale in
Finland, where Se agronomic biofortification has been continually
used in crop production since 1984 (Chilimba et al., 2012).

Effective intervention to addressMNDs requires reliable information
to support decision making at national and subnational scales. Such in-
formation is relatively scarce in SSA. Little is known about how soil-to-
crop transfers of minerals and intake of minerals into food systems
vary spatially, and there is a lack of reliable biomarkers of micronutrient
status to identify where particular micronutrients are in deficit and
where they are adequate. It has been shown that considerable efficien-
cies could be achieved if particular interventions were targeted and tai-
lored to local conditions (Vosti et al., 2015), and so this lack of
information limits the ability of policy makers to design effective
responses.

Some of the richest disaggregated data for Se in SSA are found in
Ethiopia and Malawi although even these data are relatively sparse. In
both countries the variation of population nutrient status can be attrib-
uted in part to local soil conditions, and to other landscape and socio-
economic factors (Gashu et al., 2016a, 2016b; Hurst et al., 2013; Phiri
et al., 2019, 2020). In Malawi, Phiri et al. (2019, 2020) showed marked
spatial national-scale variation in the Se status of women of reproduc-
tive age, and the spatial patterns were consistent with previous surveys
of the Se concentration in soil and maize grain (Chilimba et al., 2011),
and with smaller cross-sectional studies of Se intake and status (Hurst
et al., 2013).
Comparable information on the spatial variation of Se status among
theEthiopian population, and contributing factors, have not yet been re-
ported at national scale. The overall prevalence of Se deficiency is likely
to be large. For example, Gashu et al. (2016a) identified widespread Se
deficiency, based on a large-scale survey of the serum Se status of chil-
dren in the Amhara Region (east Gojjam and west Gojjam, south and
north Wollo, north Gonder and Waghera Districts). Approximately
55% of these were deficient. They hypothesized that Se deficiency risks
were linked to soil and/or landscape features (Gashu et al., 2016a). Re-
liable data on the Se status of soils and crops in Ethiopia, and elsewhere
in SSA, are lacking (Ligowe et al., 2020). Sillanpää and Jansson (1992)
reported the Se status of 126 soils and co-located plants (wheat or
maize) in Ethiopia. However, their sampling was not designed to pro-
vide spatial coverage, and did not include the important staple crop
teff. Sillanpää and Jansson (1992) concluded that the Se status of
crops in Ethiopiawas generally satisfactory but that localized deficiency
may exist. Ligowe et al. (2020) re-analysed these data. Topsoil Se con-
centration, following acid ammonium acetate-EDTA universal extrac-
tion, ranged from b5–32 μg L−1, and there was no evidence for
relationships between concentrations of Se in soil and concentrations
in maize or wheat. In summary, there is evidence for Se deficiency in
parts of Amhara Region, and preliminary evidence of variation in Se
concentration in soil, but further focussed sampling is necessary to un-
derstand this variation, and its possible relationship to Se concentration
in crops. On the basis of the results of Gashu et al. (2016a), who show
that there are substantial rates of Se deficiency among children in Am-
hara Region, this is an appropriate area in which to undertake such a
study.

The objective of the study reported here was to examine evidence
for the spatial variation of Se concentration in cereal staple crops across
part of the Amhara Region of Ethiopia. In particularwewished to exam-
ine how field surveys of crop and soil, along with additional spatial in-
formation, could be used to make reliable spatial predictions of Se
concentration in grain, with attached measures of uncertainty. Our hy-
pothesis was that at least some of the observed variation in Se status
of grain can be accounted for by the effects of variation in soil properties,
and so that soil information can be used, along with direct measure-
ments of Se in grain, to make better spatial predictions of grain Se con-
centration than could otherwise be produced. Such maps could provide
a basis for understanding patterns of Se deficiency in the population,
and for identifying areas where such deficiencies might be expected,
and where particular interventions might be most appropriate because
of the poor local Se status of staple crops. From previous dietary data
analyses (Gashu et al., 2016b), teff (Eragrostis tef) and wheat (Triticum
aestivum) are the two dominant cereal crops in this region. Teff was
the most widely-consumed cereal, eaten by 76% of children in the pre-
vious 24 h. We therefore focus in this study on mapping the concentra-
tion of Se in teff and in wheat grain.

Thismapping task is a substantial challenge for several reasons. First,
data on grain Se status, even in a focussed survey, are inevitably sparse,
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Fig. 1. Schematic diagram showing the linearmixedmodel used in this study and the steps
to set up the dependent and independent variables. Note that themodel as set out here is
for prediction of Se concentration in teff.

Table 2
Sequence of predictors for grain Se concentration (both soil properties and environmental
covariates) for testing with α-investment.

Order Soil Property Environmental covariate

1 SeNit Downscaled mean annual
precipitation

2 SePho Downscaled mean annual
temperature

3 SeTMAH Slope
4 pH Topographic index
5 Sum of oxalate-extractable Fe, Al and

Mn oxides
Enhanced vegetation index

6 SNit MODIS Band 7
7 STMAH MODIS Band 1
8 IPho MODIS Band 2
9 SOC MODIS Band 4
10 Oxalate extractable P
11 PBI

The subscripts Nit, Pho and TMAH denote the soluble (nitrate extraction), exchangeable
(phosphate extraction) and organic (TMAH extraction) fractions in all cases, as described
in section 2.3.2. SOC denotes soil organic carbon, and PBI phosphorus buffer index. Envi-
ronmental covariates are described in section 2.4.

3D. Gashu et al. / Science of the Total Environment 733 (2020) 139231
and there is likely to be considerable variation in these data at multiple
scales. Second, while soil properties can bemeasured at any sample site,
grain Se can only be measured from sites where that particular grain
was growing. We therefore have a mixture of collocated observations
of soil properties and the target grain, and non-collocated observations
of soil properties and the non-target grain. Covariates, including re-
motely sensed data, may help the process of spatial prediction, but we
require robust methods to select appropriate covariates for any predic-
tion task. Finally, the predictions that are made have inevitable uncer-
tainty. If they are to be useful then we must be able to quantify this
uncertainty and to communicate it appropriately to the relevant stake-
holders. Given these considerations we decided to use the spatial linear
mixedmodel (LMM) for the analysis and prediction of data on grain Se,
soil properties and associated covariates (Cressie, 1993). Specifically we
considered a multivariate version of the model (Marchant and Lark,
2007) which allows us to combine collocated and non-collocated data.
The empirical best linear unbiased prediction (E-BLUP), based on the
fitted model, has an associated prediction error distribution, and on
the basis of this wewere able to quantify uncertainties in the prediction
relative to threshold concentrations of interest, and to use strategies to
communicate this uncertainty which have been used elsewhere (Lark
et al., 2014, 2019; Mastrandrea et al., 2010).
Table 1
Summary statistics of soil properties proposed as predictors of grain Se concentration.

Variable Original units

Units Mean Median Standard Skewn

deviation
SeNit μ g kg−1 2.54 2.02 1.63 1.86
SePho μ g kg−1 5.46 5.11 2.34 1.09
SeTMAH μ g kg−1 272.86 277.62 145.52 0.30
pH 6.74 6.84 0.92 −0.14
Total oxides mg kg−1 13,469.61 13,149.13 5623.90 0.55
SNit mg kg−1 37.86 40.14 11.02 −0.62
STMAH mg kg−1 5.79 4.75 4.04 2.14
IPho μ g kg−1 181.53 134.33 132.16 1.15
SOC % 1.46 1.48 0.64 0.46
Oxalate P mg kg−1 574.50 351.85 609.34 1.97
PBI 45.88 41.11 27.49 1.68

The subscripts Nit, Pho andTMAHdenote the soluble (nitrate extraction), exchangeable (phosph
2.3.2. SOC denotes soil organic carbon, and PBI phosphorus buffer index.
⁎ Natural logarithms in all cases.
2. Materials and methods

2.1. Sampling

The objective of field sampling was to support spatial prediction of
grain Se concentration. To this end it was neither necessary nor desir-
able to sample independently and at random. The objective was to ob-
tain samples that gave reasonable spatial coverage over the target
sample frame, with a proportion of sample points at a short distance
from the basic sample set to support the estimation of a spatial LMM
(Lark and Marchant, 2018). The sample frame was defined in terms of
the objectives and constraints of the task. First, the sample frame was
constrained to sites within Amhara Region where the probability that
the land was in agricultural use equalled or exceeded 0.9. This was
based on predictions produced on a 500-m grid by the AfSIS project
(Walsh et al., 2019) using a combination of interpretation of high-
resolution satellite imagery by trained observers and machine learning
methods applied to multiple covariates derived from remote sensor
data and digital elevation models (AfSIS, 2015). The mapped probabili-
ties of cropping used here are shown in Fig. S1 of the supplementary
material. Second, the frame was constrained to include only those
sites from a 500-m grid, that fell within 2.5 km of a known road. A
map indicating nodes on a 500-m grid (with the same origin as the ag-
ricultural land use grid) which met this requirement was prepared. In-
formation on the distribution of roads was taken from OpenStreetMap
(OpenStreetMap contributors, 2017). It is acknowledged that this
log⁎-transformed

ess Mean Median Standard Skewness Transformed?

deviation
0.77 0.71 0.55 0.41 Y
1.61 1.63 0.44 −0.34 Y
5.43 5.63 0.66 −0.75 N

N
9.42 9.48 0.44 −0.21 N
3.58 3.69 0.36 −1.24 N
1.56 1.56 0.63 −0.24 Y
4.94 4.90 0.75 −0.13 Y
0.27 0.39 0.51 −0.75 N
5.85 5.91 1.14 −0.65 Y
3.66 3.72 0.59 −0.25 Y

ate extraction) and organic (TMAHextraction) fractions in all cases, as described in section
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Fig. 2. Ordered tests for site (soil) variable selection, teff grain Se. The sequence of
predictors is as given in Table 2. The graph at the top (a) shows the α-wealth over the se-
quenceof tests and the lower graph (b) shows thep-values for successive tests (open sym-
bols) and the corresponding threshold values with marginal false discovery rate control.
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constraint introduces a possible bias into predictions made at sites out-
side the defined sample frame, and the predictions must be interpreted
with it in mind. However, without such a constraint it would not have
been possible to visit all sample sites across the region of interest in
the time available.

Having defined the sampling frame, a total of 475 sample locations
were selected with every 500-m grid node within the sampling frame
allocated an equal prior inclusion probability. This was done using the
lcube package from the BalancedSampling library for the R platform
(R Core Team, 2017; Grafström and Lisic, 2016). This implements the
cube method of Deville and Tillé (2004), which allows one to sample
honouring specified inclusion probabilities while aiming for balance
and spread with respect to specified covariates. In this case sample
siteswere selected for spatial balance,which entails that themean coor-
dinates of sample sites are close to the mean coordinates of all points in
Table 3
Fitted models for soil properties and grain Se concentration in teff and wheat. The symbols use

Predictand Predictor and coefficient

β0 β1 β2 β

Teff Se
Null model

Soil SeNit Soil SePho p
−2.820 0.924 −0.221 0

Wheat Se
Null model

Soil SeTMAH pH
−6.66 −0.001 0.546
the sample frame) and spatial spread (which ensures that the observa-
tions are spread out rather than clusteredwith respect to spatial coordi-
nates), see Grafström and Schelin (2014). Once these sites were chosen
a subset of 25was selected, again to achieve spatial spread. Each of these
25 sites were earmarked for a second field sample site at a nearby loca-
tion (see next section). As stated above, the inclusion of these extra
close-paired sites was done to support estimation of parameters of the
spatial LMM, following Lark and Marchant (2018).

2.2. Field sampling

Samplingwas done by teams who undertook initial training to stan-
dardize procedures. Each team aimed to visit around 5 sample sites per
day. The day's sample sites were uploaded onto a tablet PC and a GPS
device as a waypoint list. They were also printed on a paper map. The
team would navigate to the target sampling point using the paper
map, and then using the GPS over the last few kilometres. At the sample
site the team would find the nearest field with a mature cereal crop
within a 1-km radius, and would request permission to sample from
the farmer. If a field with a standingmature cereal crop was not present
then the teamwould talkwith local farmers to identify a fieldwhere the
crop had recently been harvested. If permission could be obtained to
sample both this field and the stored grain which had been harvested
from it, then the field would be selected. If this procedure failed then
the teamwould look further than 1 km from the target site for an alter-
native. If one could not be found then the target site was abandoned. In
practice it was possible in all cases to sample a standing crop, grain from
field stacks or, in a few cases, grain which had been moved from the
field to a store.

Samples were taken from a 100-m2 (0.01-ha) circular plot in the se-
lected field. This was centred as close as possible to the middle of the
field unless this appeared unrepresentative with respect to disease or
crop damage. Five sub-sample sites were located, the first at the centre
of the plot. Two sub-sample points were selected at locations on a line
through the plot centre along the crop rows, and two on a line orthogo-
nal to the first through the plot centre (see Fig. S2 in the supplementary
material). Note that these four sub-sample points lie on the circumfer-
ences of 25-m2, 50-m2, 75-m2 and 100-m2 subplots with a common
centre where the first sub-sample was collected. The central sampling
location was fixed between crop rows, and the ‘long’ axis of the sample
array (with sample locations at 5.64 and 4.89m)was oriented in the di-
rection of crop rowswith the ‘short axis’ perpendicular to the crop rows
(see Fig. S2 in the Supplementary Material).

A single soil subsample was collected at each of the five sub-sample
points with a Dutch auger with a flight of length 150 mm and diameter
50mm. The teamswere trained to take care to insert the auger vertically
and to the precise depth of oneflight. Any plantmaterial adhering to the
augerwas carefully removed, and thefive sub-samples stored in a single
bag.

Crop samples were taken close to each augering position. A grain
sub-sample was collected at each site, taking care to avoid any
d for soil variables are as in Tables 1 and 2.

R
^2

adj
κ τ2 σ2 ϕ

3 β4

0.5 0.664 1.052 133.77
H Soil IPho
.316 −0.496 0.58 0.5 0.500 0.223 30.63

0.5 0.562 0.816 16.00

0.27 0.5 0.596 0.407 11.53
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Fig. 3. Plot of grain Se concentration predictedwith amodel for (a) teff and (b) wheat for all observations at all sites, against themeasured grain Se concentration at the site. In each plot a
solid symbol represents a site where the observed grain concentration is for the same crop species for which the model was fitted – e.g. an observed teff grain Se concentration and
predicted teff grain Se concentration at the site in (a); and an open symbol represents a site where the observed grain Se concentration is for the species other than the one for which
the mode was fitted – e.g. an observed wheat grain Sec concentration and the predicted teff grain concentration for that site in (a).
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contamination of the grainwith soil. If the cropwas in field stacks then a
sub-sample, comprising five heads of grain, was taken from each avail-
able stack, takingmaterial from the centre of the stack tominimize con-
tamination by dust and soil.

At sample sites earmarked for a second ‘close-pair’ sample a dupli-
cate field was identified where possible. Ideally this was within 500 m
of the primary sample site, but a close-pair site could lie within
100–1000 m of the primary site. If such a site could not be found, then
an attemptwasmade to find a close-pair site at the next sample location
not already earmarked for a close-pair.

Photographs of sample bags and the sample site were recorded for
quality assurance along with site GPS locations.

The distribution of sample points is shown on a map of Ethiopia in
Fig. S3 in the supplementary material.

2.3. Sample preparation and laboratory analysis

2.3.1. Sample preparation
The soil samples were oven-dried in their sample bags at 40∘C for 24

or 48 h depending on themoisture content of the soil. Preparation took
place in a soil laboratory to avoid cross-contamination with grain sam-
ples in which concentrations are smaller. Any fresh plant material was
removed from each sample which was then disaggregated and sieved
to pass 2 mm. This material was then coned and quartered to produce
sub sample splits. One such 150-g subsample was poured into a self-
seal bag, labelled and shipped to the UK for analysis in the laboratories
at Rothamsted Research and University of Nottingham as described
below.

Grain samples were air-dried in their sample bags. All preparation
was done away from sources of contamination by soil or by dust. Each
sample was then ground in a coffee grinder which was wiped clean be-
fore use and after each sample with a non-abrasive cloth. A 20-g sub-
sample of the ground material was then bagged and labelled for
shipping to the University of Nottingham.
2.3.2. Laboratory analysis
Crop samples were analysed for elemental composition by induc-

tively coupled plasma mass spectrometry (ICP-MS) following
microwave-assisted acid digestion in Primar PlusTM grade HNO3 as de-
scribed by Kumssa et al. (2017).

A soil sequential fractionation procedure was adapted fromMathers
et al. (2017) and Shetaya et al. (2012) to provide three fractions of Si, S,
Se and I nominally identified as ‘Soluble’ (0.01 M KNO3), ‘Adsorbed’
(0.016 M KH2PO4) and ‘Organic’ (10% TMAH). Analysis was by ICP-MS
(Thermo Fisher iCAP Q) in H2 cell mode (Si and Se) or He cell mode
with kinetic energy discrimination (I and S).

Soil pH was measured with a Jenway 3540 m, with a temperature-
compensated combination pH electrode, where the soil:water suspen-
sion ratio was 1:2.5, with 60 min equilibrating time.

Acid oxalate extractable Fe, Al, Mn and P were extracted with a
mixed solution of ammonium oxalate and oxalic acid at a soil: solution
ratio of 1:100 (Schwertman, 1964). Samples were shaken in the dark
(4 h, 20∘C) using a reciprocal shaker, filtered then acidified and analysed
by inductively coupled plasma optical emission spectrometry (ICP-OES;
Perkin Elmer Life and Analytical, Shelton, USA).

Total carbon was determined by dry combustion (Tiessen et al.,
1981) using a Leco TruMac CN Combustion analyser and Inorganic C
by Inorganic Carbon Analyser- Skalar Primacs (Skalar Analytical BV,
Breda, Netherlands).
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Available phosphorus (POlsen) was extracted by the sodium bicar-
bonate method as described by Olsen et al. (1954). Phosphorus in the
bicarbonate solution was determined by the phospho‑molybdenum
blue method on the Skalar SANPLUS System (continuous colorimetric
flow analysis).

The phosphorus buffer index, a measure of the soil's ability to fix
phosphorus, (PBI) was measured with the method of Rayment and
Lyons (2011). A single addition of phosphorus (KH2PO4 in 0.1 M
CaCl2) at 1000mg P kg−1 was added to the soil at a 1:10 soil to solution
ratio. The soil solution was shaken, filtered and then analysed with a
Skalar San++ Colorimetric, Continuous Flow Analyser. The PBI index
calculation was performed following Rayment and Lyons (2011) using
Table 4
Fittedmodels for covariates and grain Se concentration in teff andwheat. The covariates are des
of marginal false discovery rate, but is included for comparison.

Predictand Predictor and coefficient

β0 β1 β2

Teff Se
Null model

Precipitation Mean annual
temperature

−4.227 −0.001 0.016
Wheat Se

Null model
EVI MODIS Band 7

−0.435 −0.0005 −0.0014
the equation

PBI ¼ Ps þ 4:59POlsen

0:41Pc
; ð1Þ

where Ps is the P sorbed (mg P kg−1 soil) and Pc is the final solution P
concentration (mg P L−1).

2.4. Exhaustive covariates

In addition to the measurements of Se concentration in grain and
soil, and associated soil properties, at each sample site, we made use
of several environmental covariates, forwhich values could be extracted
at sample sites and which were known at all points on a grid across the
study area for spatial mapping. These were the CHELSA downscaled
mean annual temperature and precipitation (Karger et al., 2017a,
2017b), the Enhanced Vegetation Index (EVI) derived from the MODIS
remote sensor platform (Justice et al., 1997), the original reflectance
data from the MODIS satellite in Bands 1, 2, 3 and 7, slope derived
from the 30-s resolution MERIT Digital Elevation Model (DEM) of
Yamazaki et al. (2017) and topographic index derived from the same
DEM, a measure of the tendency for water to accumulate at a site due
to surface flow. The values for these covariates were extracted from
the grid cells including all the soil–crop sampling sites described in
sections 2.1 and 2.2 above.

2.5. Statistical analysis

2.5.1. The spatial linear mixed model and the associated spatial predictor
The objective of this analysis is to obtain spatial predictions of the Se

concentration in grain in the dominant crops (wheat and teff) across the
study region. To do this we use a spatial multivariate linear mixed
model (LMM). In this presentation we assume that the target grain for
mapping is teff, but the same approach was used to map Se concentra-
tion inwheat grain. In the LMMmeasured Se concentration in teff grain,
the concentration inwheat grain and a site-specific prediction of Se con-
centration in the target grain frommeasured soil properties are treated
as jointly spatially correlated random variables, they are the vectors of
variables y1 (Se concentration in teff grain), y2 (Se concentration in
wheat grain) and y3 (predicted concentration) in the following expres-
sion:

y1

y2

y3

2
66664

3
77775

¼ X

τ1
τ2
τ3

2
66664

3
77775
þ

η1

η2

η3

2
66664

3
77775
þ

ε1
ε2
ε3

2
66664

3
77775
: ð2Þ
cribed in section 2.4. NB Themodel presented for wheatwas not selected under the control

R
^2

adj
κ τ2 σ2 ϕ

β3 β4

0.5 0.664 1.052 133.77
Slope

0.073 0.49 0.5 0.568 0.310 47.02

0.5 0.562 0.816 16.00

0.18 0.5 0.559 0.565 14.76
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On the right-side of this equation, the matrix X contains covariates
(the variables referred to in section 2.4), the terms τ1, τ2, τ3 are
sets of regression coefficients which can be used to predict the expected
values of the variables from the covariates. The two remaining sets of
terms are random variables, whichmodel the variation in themeasured
variables unexplained by the covariates. The first set, η1, η2, η3 are spa-
tially correlated random effects, which show spatial dependence and
Table 5
Linear mixed model parameters.

(a) With selected covariates for Se concentration in teff grain.

Dependent variable Fixed effect

Fixed effects parameters
Teff Se Constant

Precipitation (long-range)
Wheat Se Constant
Predicted teff Se Constant

Temperature
Precipitation
(long-range)

Random effects parameters
κ
ϕ

Nugget variances Teff Se
Wheat Se
Predicted Teff Se

Correlated variances Teff Se
Wheat Se
Predicted teff Se

Correlation matrices (linear model of coregionalization with grain Se concentration and p

Teff Se

Nugget
Teff Se 1.00
Wheat Se 0.00
Predicted teff Se 0.43

Spatially correlated
Teff Se 1.00
Wheat Se 0.44
Predicted teff Se 0.52

(b) With selected covariates for Se concentration in teff grain.

Dependent variable Fixed effect

Fixed effects parameters
Teff Se Constant
Wheat Se Constant
Predicted wheat Se Constant

Random effects parameters
κ
ϕ

Nugget variances Teff Se
Wheat Se
Predicted wheat Se

Correlated variances Teff Se
Wheat Se
Predicted wheat Se

Correlation matrices (linear model of coregionalization with grain Se concentration and p

Teff Se

Nugget
Teff Se 1.00
Wheat Se 0.00
Predicted wheat Se 0.19

Spatially correlated
Teff Se 1.00
Wheat Se 0.64
Predicted wheat Se 0.53
are also mutually correlated (representing, for example, correlation be-
tween concentrations of Se in grain of teff and wheat). The second set,ε1, ε2, ε3, are spatially uncorrelated random effects, butmay bemutu-
ally correlated, representing that variation which occurs at finer spatial
scales than is resolved by sampling.

A fuller account of this spatial multivariate LMM is given by
Marchant et al. (2009) and by Orton et al. (2014) and more details are
Coefficient Standard error

1.64 0.94
−0.0037 0.0008
−3.54 0.23
−2.61 0.94
0.0088 0.0026
−0.0014 0.0005

2.0
14.92
0.62
0.92
0.21
0.39
0.54
0.25

redicted teff Se concentration)

Wheat Se Predicted Teff Se

1.00
0.20 1.00

1.00
0.42 1.00

Coefficient Standard error
Teff Se

−2.66 0.29
−3.14 0.34
−3.26 0.17

0.5
49.29
0.63
0.73
0.08
0.69
0.89
0.27

redicted wheat Se concentration)

Wheat Se Predicted Wheat Se

1.00
0.14 1.00

1.00
0.80 1.00



8 D. Gashu et al. / Science of the Total Environment 733 (2020) 139231
in section S.1 of the Supplementary Materials to this paper. Parameters
of the model, specifically the variances of the random effects, and pa-
rameters which describe the spatial dependence of the spatially corre-
lated random effects, are estimated by maximum likelihood (ML) or
residual maximum likelihood (REML) as described in S.1. The fixed ef-
fects coefficients can then be estimated by a generalized least-squares
procedure. Predictions of the primary variable (e.g. Se concentration at
teff grain) can then be computed at unsampled sites where only the
values of the covariates are known. These predictions are known as
the empirical best linear unbiased predictor (E-BLUP), and have an asso-
ciated prediction error variance (PEV) which quantifies their uncer-
tainty. What makes this approach powerful for our task is that wheat
grain Se concentration (when teff grain Se concentration is the target
variable for prediction), and the soil observations at sites where no
teff was sampled can contribute to the prediction of Se concentration
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Fig. 5. Autovariograms
in teff grain by a cokriging process, in so far as the variables are found
to be mutually spatially correlated.

2.5.2. Implementing the model
The implementation of the spatial LMM is summarized in Fig. 1. It

entails a combination of the LMM with a variable selection procedure.
This is summarized below.

To make the assumption that the random terms in the LMM were
normally distributed, the grain Se concentrations were transformed to
natural logarithms. Summary statistics were also computed for the soil
properties measured at sample sites (Table 1), and those showing pro-
nounced skewness were also transformed to natural logarithms.

The first modelling step was to generate the third variable, y3, in the
multivariate set, which is predicted Se concentration in the grain of in-
terest (teff in this example), derived from soil data. This can be
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computed for every sample site including those where teff was not ob-
served. This prediction was obtained from a linear mixed model in
which soil properties were included as fixed effects. To select soil prop-
erties for prediction of grain Se concentration we fitted by maximum
likelihood (ML) an initial ‘null’ model to sample data in which the
only fixed effect for the target grain concentration was a constant
mean. We then added soil properties as fixed effects to the model
one-by-one, (based on a pre-determined sequence, discussed below)
at each step using a log-likelihood ratio test (Section S.2 in the Supple-
mentary Material). If the null hypothesis was rejected then the soil
property was retained in the model and the process was repeated, con-
sidering the next-listed predictor.

This sequential procedure comprises multiple hypothesis testing
which we addressed by controlling the False Discovery Rate (FDR) at
0.05 (Benjamini and Hochberg, 1995). To maintain statistical power,
we used the α-investmentmethod of Foster and Stine (2008), as imple-
mentedby Lark (2017). This requires that the tests are conducted in an a
priori order under which the least plausible null hypotheses (i.e. effects
thoughtmost likely to be significant) are tested first. This initial process
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Fig. 6. Cross-validation plots
of orderingmust be donewithout reference to the data on grain Se con-
centration. However, we did examine correlations among the soil prop-
erties themselves, because one reason to rank a predictor low in the
order is if it is substantially correlatedwith a predictor already included,
and so is unlikely to addmuch additional information. The orderingwas
decided through discussion with soil chemists and crop nutritionists on
the project team. At this stage we also considered the uncertainty in the
determination of soil properties, as judged from detection limits. It
should be noted that the validity of the resultingmodel, and the success
of false discovery rate control do not depend on the ordering, which
serves simply to improve the probability of detection of a valid predictor
given the use of FDR control to avoid over-fitting.

The same variable selection procedure was then used to select the
covariates used for prediction, which appear in the matrix X in Eq. [2]
and Fig. 1. This resulted in a set of candidate environmental covariates
for the final LMM. However, it was recognized that such covariates
may show spatial variation at nested spatial scales, and it is not neces-
sarily the case that the variation at all scales is predictive of the soil
property of interest. For this reason the selected covariates were all
Residual /log mg kg−1

F
re

qu
en

cy

−2 −1 0 1 2 3

0
5

10
15

20
25

30

(b)

0.7 0.8 0.9 1.0 1.1 1.2

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

Ordinary Kriging Variance

C
o−

K
rig

in
g 

V
ar

ia
nc

e

(d)

(CoK) for teff Se LMCR.



Table 6
Cross-validation results for final predictive models, and ordinary kriging for comparison.

Predictand Predictor Mean SSPEa Median SSPEb

Teff Se OKc 1.00 0.35
LMCR– 1.09 0.47
E-BLUPd

Wheat Se OK 1.01 0.41
LMCR– 1.00 0.36
E-BLUP

a Standardized square prediction error.
b The 95% confidence interval for the Teff set is {0.28,0.63} and for the wheat set it is

{0.26,0.65}.
c The ordinary kriging predictor.
d The empirical best linear unbiased predictor conditional on the multivariate linear

mixed model.
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subject to factorial kriging analysis (Matheron, 1982) which decom-
poses a spatial variable into additive components at different spatial
scale, see section S.3 in the SupplementaryMaterial. The selected covar-
iates were substituted with their factorial kriging components in the
LMM, and those components were retained only if their standardized
coefficients fell outside the interval [−2,2].

2.5.3. Model validation
We used a cross-validation procedure to evaluate the PEVs of the E-

BLUP. To do this, the E-BLUP of grain Se concentration at each location,
and its PEV, were computed in turn afterfirst deleting themeasurement
of grain and the predicted grain Se concentration at that site. The cross-
validation prediction therefore depended only on the grain Se concen-
tration (both crops) observed at neighbouring sites, and the values of
the selected environmental covariates (and factorial kriging compo-
nents of these) at the sample site. The cross validation procedure was
also done using ordinary kriging for prediction from the observations
on the Se concentration in grain in the target crop only. The median
standardized squared prediction errors were then examined and com-
pared with the 95% confidence interval for the statistic assuming valid
PEVs (see supplementary material section S.4; Lark, 2009).



Fig. 8.Median unbiased prediction of Se concentration in teff grain across the study region.
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2.5.4. Mapping
The cross-validatedmodelswere then used, alongwith the observed

grain Se concentrations, predictions at all sample sites and the environ-
mental covariates to compute the E-BLUP of Se grain concentration for
teff and for wheat, separately, on the regular grid of locations at which
the environmental covariates were recorded. In addition to the
Fig. 9. Probability that Se concentratio
prediction at each location we used the E-BLUP PEV to compute the
probability, assuming normal prediction errors, that the grain Se con-
centration fell below 0.183 mg kg−1, the concentration such that a
300-g daily intake of the grain would provide the recommended daily
allowance (RDA) for adults of 55 μg day−1 Se (Institute of Medicine of
the National Academies, 2002).
n in wheat grain b0.183 mg kg−1.



Fig. 11. Median unbiased prediction of Se concentration in wheat grain across the study region.

Fig. 10. Probability that Se concentration in teff grain b0.183 mg kg−1 using a verbal scale of calibrated phrases from Mastrandrea et al. (2010).
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Fig. 13. Probability that Se concentration in wheat grain b0.183 mg kg−1 using a verbal scale of calibrated phrases from Mastrandrea et al. (2010).

Fig. 12. Probability that Se concentration in wheat grain b0.183 mg kg−1.
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3. Results

3.1. Summary statistics, orderings of predictors and variable selection

The basic summary statistics of soil properties (Table 1) showed that
several were markedly positively skewed. Those for which the skew-
ness coefficient exceeded 1 were transformed to natural logarithms.

The selected order for testing soil properties for prediction of grain
Se concentration at a site is shown in Table 2. The rationale for the or-
dering is summarized in Section S.5 of the Supplementary Material.
The process of variable selection for prediction of teff grain Se concen-
tration from soil properties, based upon this ordering, is shown in
Fig. 2. The solid symbols in Fig. 2(b) show the threshold p-value for
the sequential testing procedure for FDR control, and the open symbols
show the p-values obtained. On this basiswe can see that Soluble Se (ni-
trate extraction), Exchangeable Se (phosphate extraction), soil pH and
Exchangeable I (phosphate extraction) were selected as predictors in
the case of teff. The comparable plot for wheat grain teff is shown in
Fig. S4 in the supplementary material, where Organic Se (TMAH extrac-
tion) and soil pHwere selected because their p-values in the sequential
fitting fell below the threshold for FDR control. The parameters for these
fittedmodels, alongwith the null model in each case (fixed effect a con-
stant mean only) are presented in Table 3.

The predicted concentrations of Se in teff grain were then computed
for each site from the soil information. They are plotted in Fig. 3
(a) against the measured Se concentration in grain at each site. The
solid symbols correspond to sites where the observed grain was teff,
and so these points give a visual impression of the goodness of fit of
the model fitted with FDR control. The open symbols correspond to
the sites where the observed grain was wheat. Conversely Fig. 3
(b) shows a plot of the predicted Se concentrations in wheat grain at
each site against the observed Se concentration in grain at each site,
with solid symbols at sites where the observed grain was wheat, and
open symbols where it was teff.

For those sites wherewheatwas grown, the predicted Se concentra-
tion for teff grain with the same model is plotted against the observed
wheat Se concentration. The comparable plot for predicted Se concen-
tration in wheat grain is shown in Fig. 3 (b), where the solid symbols
are used for the observed concentrations in wheat grain and the open
symbols.

The selected order of environmental covariates for spatial prediction
of Se concentration in grain is shown in Table 2. The rationale for this or-
dering is summarized in section S.6 of the Supplementary Material.

Fig. 4 shows the output of the sequential testing of predictors for teff
grain Se concentration from among the environmental covariates.
Downscaled mean annual precipitation and temperature and slope,
the first three covariates in the sequence, were selected because their
p-values were below the threshold for FDR control with α-investment.
The comparable results for wheat grain are shown in Fig. S5 in the sup-
plementary material. The plot shows that the p-values for none of the
covariates was smaller than the corresponding threshold, so none
were selected. The model parameters for both grains are presented in
Table 4.

3.2. Linear mixed model fitting and cross-validation

For the LMMtopredict teff Se concentration, the smoothness param-
eter, κ, of the spatially correlated random effects was set at a value of 2.0
based on the profile likelihood for a model with all predictors included
(Fig. S6 in the supplementary material). The environmental covariates,
slope and mean annual temperature were decomposed into short-
range and long-range components by factorial kriging. In the initial
fitting of the model the standardized coefficient for the short-range
components of these variableswere small, and theywere dropped, indi-
cating that the evidence for a relationship between these variables and
teff grain Se concentration at the variable selection stage arose from the
long-range variability of these variables. The fitted model parameters
for the final LMM for each variable, including the correlation matrices
for the random components, are shown in Table 5(a,b). These tables in-
clude the correlations between the random components in the respec-
tive models, both the spatially correlated random effects (η1,η2,η3)
and the uncorrelated or ‘nugget’ components,(ε1, ε2, ε3). Note that,
for the spatially correlated components, there aremoderate correlations
between the random effects for wheat and teff Se, and between the ob-
served grain Se concentration and that predicted from soil properties.
Fig. 5 shows the empirical variograms for the marginal residuals of Se
concentration in teff and wheat grain and the predicted concentration
in teff grain from soil data (all on a log-scale) in the fitted LMM, with
the corresponding variogram models from the parameters of the
LMM. Note that the models are not fitted to the empirical variograms
as such, and that differences are expected due to both the bias in the
empirical variogram in the presence of a non-constant fixed effect
(Cressie, 1993) and the constraints of the multivariate LMM (Webster
and Oliver, 2007). In the case of the LMM for prediction of wheat
grain Se concentration a smaller value of κ, 0.5, was selected (Fig. S7
in the supplementary material), the empirical variogram and fitted
LMCR for the random component of the model are shown in Fig. S8 in
the supplementary material.

The distributions of cross-validation errors for prediction of grain Se
by ordinary kriging are shown in Figs. S9 and S10 of the supplementary
material. The cross-validation errors for the E-BLUP from the multivari-
ate LMM results are shown in Figs. 6 and 7. The assumption of normal
prediction errors appears to be plausible, and the summaries of the
standardized squared prediction errors in Table 6, support the validity
of the models. The plots of the prediction error variances for the two
predictions (Fig. 6(d) and 7(d)) show the advantages of incorporating
the covariates and the coregionalized variables into the model through
the reduction of the kriging variance.

3.3. Spatial predictions of Se concentration in grain

Fig. 8 shows the spatial predictions of teff Se concentration across
the study area. There are clear trends,with larger concentrations in gen-
eral in the east of the region, and some marked variations over shorter
distances, consistent with the variograms in Fig. 5. Fig. 9 shows that,
overmost of the region, the probability that grain Se concentration is in-
sufficient to provide the RDA of Se from a 300-g intake is large. The in-
terpretation of these probabilities is facilitated by representing them
on a scale which represents the probability in terms of the calibrated
verbal phrases of Mastrandrea et al. (2010) in Fig. 10. The maps for
wheat Se concentration (Figs. 11–13) show comparable spatial patterns,
which is not surprising, given the moderate correlation between the
spatially correlated random effects for Se concentration in the two
grains reported in Table 5(a) and (b).

4. Discussion and conclusions

This study shows how joint sampling of soil and grain, with an ap-
propriate sampling design and model-based statistical analysis, allows
us to examine the spatial variation of cereal composition with respect
to micronutrient concentration over large regions and to represent it
as a map. We are not aware of any previous study that has shown the
spatial variation of a key determinant of a population's micronutrient
supply with comparable spatial resolution.

It appears that the risk of Se deficiency, resulting froma diet inwhich
wheat or teff is a staple, is largest in the west of Amhara Region. There
are differences between the crops, however, with wheat less likely to
provide sufficient Se intake than teff across the whole area. In small
parts of the east of the study area it is judged ‘unlikely’ that a 300-g
daily intake of teff would fail to provide the RDA of Se. Such spatial infor-
mation on potential intake of Se from staple crops could clearly be used
to improve the targeting of interventions to address deficiency.
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Amap of Se concentration in grain is of greater use for the identifica-
tion of regions at risk of deficiency thanmaps of soil properties alone, as
no assumptionsmust bemade about soil-to-crop transfer. That said, our
approach made use of soil measurements at sites collocated with the
target grain samples, as well as at sampling sites where other crops
were grown, by integrating predicted grain Se concentration from
these data into themultivariate LMM. The predictivemodels for Se con-
centration were based on soil properties selected with false discovery
rate control to avoid over-fitting, and so they merit examination. Soil
pH was a selected predictor for Se concentration in both teff and
wheat grain, with a positive coefficient implying that, other factors re-
maining constant, less Se is expected in grain over more acid soils.
This is consistent with results found in Malawi (Chilimba et al., 2011)
and elsewhere in Africa (Ligowe et al., 2020). The interpretation of lin-
ear models and their coefficients must always be cautious because of
correlations among the predictors, but on the basis of this result it
would be worth examining whether liming the more acid soils would
improve grain Se concentration. It should be noted, though, that these
soils are not particularly acid. The median pH is 6.84, the first quartile
is 5.98 and 90% of the samples had a pH in excess of 5.49. Similarly, ex-
tractable Se in the soil appeared in both predictive models, although Se
obtained with different extractants were selected for prediction of Se in
wheat and teff grain. This suggests that a soil test could be developed to
make site-specific predictions of Se concentration in grain.

Despite the use of methods for variable selection that avoid over-
fitting, and the fact that our predictions are optimal in the sense of
being the best linear unbiased prediction, there is inevitable residual
uncertainty in the predictions. Our cross-validation procedure suggests
that this uncertainty is well-characterized by the prediction error vari-
ance supplied by the model, and so we can quantify the residual uncer-
tainty. In this study we used established methods to represent this
uncertainty in the spatial predictions — while a data-user interested in
a particular location can obtain a prediction of Se concentration in
grain there, they can also obtain the probability that the true value
falls below a threshold of interest to nutritionists, and this can be
expressed on a verbal scale which may facilitate communication to a
wider audience.

This study has demonstrated some innovative approaches to spatial
modelling for prediction. First, by using false-discovery rate controlwith
α-investmentwewere able to select variables for Se prediction from soil
properties with confidence that we are not over-fitting, while at the
same time maintaining statistical power by testing hypotheses in a se-
quence determined by prior knowledge and informed hypothesizing
about underlying processes. The fitted model may therefore merit fur-
ther examination for insight into soil factors influencing grain Se con-
centration, as noted above. One should bear in mind, of course, that
the failure to select a variable does not necessarily mean that it has no
bearing on the process of interest. One underlying reason that a variable
might be rejected is because it is strongly correlated with one already in
the model, or because it is measured with substantial error.

Second, we can be confident that we are not over-fitting covariates,
and indeed nonewere selected for the prediction of Se concentration in
wheat grain. By filtering covariates, where appropriate, by factorial
kriging, and testing the predictive value of the different components
separately, we also avoided introducing spurious short-range variation
into our predictions. It would clearly be wrong, for example, to allow
short-range variation in down-scaled precipitation to induce compara-
ble variation in predicted grain Se concentrationwhen the two variables
are related because of regional-scale climatic covariation. We avoided
this by factorial kriging analysis (FKA). There was no evidence that the
short-range component of this covariate extracted by FKA was related
to grain Se concentration, and only the long-range component was in-
cluded in the predictive model.

Finally, ourmultivariate LMMhad smaller prediction error variances
than did ordinary kriging (Fig. 6(d) and 7(d)). This improved prediction
can be attributed to the covariates used in the model, and to the cross-
coregionalization with the site information and grain Se concentration
at sites where the non-target crop was grown. In this way themultivar-
iate LMM allows us to make maximum predictive use of relationships
among variables measured in the field sampling, even when these are
not collocated with the particular target variable of interest.

There is scope for further development of the work reported in this
paper. First, the sampling and statistical methodology can be extended
to other mineral micronutrients that may be deficient both in this re-
gion and elsewhere. Second, there is potential to combine the predicted
concentrations of micronutrients in grain with food consumption data
to improve estimates of dietary mineral intakes and, potentially, to tar-
get future investments to alleviate deficiencies. Finally, onemight com-
pare these inferences about spatial variation in intake with spatial data
on human biomarkers for nutrient deficiency to validate the implict hy-
pothesis that spatial variations in staple food micronutrient concentra-
tions will, via intake, induce comparable spatial variations in
micronutrient status. Again, this information could help policy makers
identify and target efficient interventions.

To conclude, joint sampling of the crop and soil in an appropriate de-
sign allowed us to map the spatial variation of grain Se concentration
across a large region of Ethiopia, making use of both site-specific soil
and grain observations and exhaustive covariates derived from remote
sensor data and a digital elevation model. A cross-validation procedure
showed that the best linear unbiased predictor and its prediction error
variance gave predictions with robust characterization of their uncer-
tainty, and this allowed us to quantify and communicate uncertainty
in terms of predicted grain Se concentration and the concentration re-
quired to provide the RDA froma standard serving of grain. There is sub-
stantial spatial variability in the supply of Se from staple cereal crops,
which could be relevant to the design of efficient interventions.

CRediT authorship contribution statement

D. Gashu: Conceptualization, Methodology, Investigation, Writing -
original draft, Writing - review & editing, Supervision, Project adminis-
tration, Funding acquisition. R.M. Lark: Conceptualization, Methodol-
ogy, Software, Validation, Formal analysis, Writing - original draft,
Writing - review & editing, Visualization, Funding acquisition. A.E.
Milne: Conceptualization, Methodology, Software, Validation, Formal
analysis,Writing - original draft,Writing - review& editing, Funding ac-
quisition. T. Amede: Conceptualization, Methodology, Writing - review
& editing, Funding acquisition. E.H. Bailey:Methodology, Validation, In-
vestigation, Resources,Writing - review & editing. C. Chagumaira: Soft-
ware, Writing - review & editing, Visualization. S.J. Dunham:
Methodology, Validation, Investigation, Resources, Writing - review &
editing. S. Gameda: Conceptualization, Methodology, Writing - review
& editing, Funding acquisition. D.B. Kumssa: Investigation, Methodol-
ogy, Writing - review & editing, Data curation. A.W. Mossa: Methodol-
ogy, Validation, Investigation, Resources, Writing - review & editing.
M.G. Walsh: Methodology, Software, Validation, Investigation, Re-
sources,Writing - review& editing. L.Wilson:Methodology, Validation,
Investigation, Resources, Writing - review & editing. S.D. Young:Meth-
odology, Validation, Investigation, Resources, Writing - review &
editing. E.L. Ander: Conceptualization, Methodology, Resources, Writ-
ing - review & editing, Supervision, Funding acquisition.M.R. Broadley:
Conceptualization, Methodology, Resources, Writing - review & editing,
Supervision, Project administration, Funding acquisition. E.J.M. Joy:
Conceptualization, Methodology, Investigation, Resources, Writing - re-
view& editing, Supervision, Funding acquisition. S.P.McGrath: Concep-
tualization, Methodology, Resources, Writing - review & editing,
Supervision, Project administration, Funding acquisition.

Acknowledgements

This work was supported by ‘GeoNutrition’ projects, funded by Bio-
technology and Biological Sciences Research Council (BBSRC) / Global



16 D. Gashu et al. / Science of the Total Environment 733 (2020) 139231
Challenges Research Fund (GCRF) [BB/P023126/1] (project lead, SPM);
and the Bill &Melinda Gates Foundation (BMGF) [INV-009129] (project
lead, MRB). The funders were not involved in the study design, the col-
lection, management, analysis, and interpretation of data, thewriting of
the report or the decision to submit the report for publication.

The boundaries, denominations, and any other information shown
on the maps in Figs. 8–13 do not imply any judgment about the legal
status of any territory, or constitute any official endorsement or accep-
tance of any boundaries, on the part of any Government.

The road network data used in the sample planning were
copyrighted OpenStreetMap contributors and available from https://
www.openstreetmap.org. The CHELSA project is acknowledged for
making the downscaled climate data available from https://
climatedataguide.ucar.edu/.

The authors gratefully acknowledge the contribution made to this
research by the field sampling team of the Amhara National Regional
Bureau of Agriculture. Debebe Hailu and Aregash Beshire also contrib-
uted to sample preparation.

ELA's contribution is publishedwith the permission of the Executive
Director of the British Geological Survey (NERC).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.139231.
References

AfSIS, 2015. New cropland and rural settlement maps of Africa. Available at http://
africasoils.net/2015/06/07/new-cropland-and-rural-settlement-maps-of-africa/.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society B 57,
289–300.

Caulfield, L.E., Richard, S.A., Rivera, J.A., Musgrove, P., Black, R.E., 2006. Stunting, wasting,
and micronutrient deficiency disorders. Disease Control Priorities in Developing
Countries, 2nd edition The International Bank for Reconstruction and Development/
The World Bank.

Chilimba, A.D.C., Young, S.D., Black, C.R., Rogerson, K.B., Ander, E.L., Watts, M.J., Lammel, J.,
Broadley,M.R., 2011. Maize grain and soil surveys reveal suboptimal dietary selenium
intake is widespread in Malawi. Sci. Rep. 1, 72.

Chilimba, A.D.C., Young, S.D., Black, C.R., Meacham, M.C., Lammel, J., Broadley, M.R., 2012.
Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop Res.
125, 118–128.

Cressie, N.A.C., 1993. Statistics for Spatial Data. Revised Edition. John Wiley & Sons, New
York.

Deville, J.C., Tillé, Y., 2004. Efficient balanced sampling: the cube method. Biometrika 91,
893–912.

Foster, D.P., Stine, R.A., 2008. α-investing: a procedure for sequential control of expected
false discoveries. Journal of the Royal Statistical Society, B 70, 429–444.

Gashu, D., Stoecker, B.J., Adish, A., Haki, G.D., Bougma, K., Aboud, F.E., Marquis, G.S., 2016a.
Association of serum selenium with thyroxin in severely iodine-deficient young chil-
dren from the Amhara region of Ethiopia. Eur. J. Clin. Nutr. 70, 929–934.

Gashu, D., Stoecker, B.J., Adish, A., Haki, G.D., Bougma, K., Marquis, G.S., 2016b. Ethiopian
pre-school children consuming a predominantly unrefined plant-based diet have low
prevalence of iron-deficiency anaemia. Public Health Nutr. 19, 1834–1841.

Gödecke, T., Stein, A.J., Qaim, M., 2018. The global burden of chronic and hidden hunger:
trends and determinants. Global Food Security 17, 21–29.

Grafström, A., Lisic, J., 2016. BalancedSampling: Balanced and Spatially Balanced Sam-
pling. R Package Version 1.5.2. https://CRAN.R-project.org/package=
BalancedSampling.

Grafström, A., Schelin, L., 2014. How to select representative samples. Scand. J. Stat. 41,
277–290.

Gregory, P.J., Wahbi, A., Adu-Gyamfi, J., Heiling, M., Gruber, R., Joy, E.J.M., Broadley, M.R.,
2017. Approaches to reduce zinc and iron deficits in food systems. Global Food Secu-
rity – Agriculture, Policy, Economics and Environment 15, 1–10.

Hurst, R., Siyame, E.W.N., Young, S.D., Chilimba, A.D.C., Joy, E.J.M., Black, C.R., Ander, E.L.,
Watts, M.J., Chilima, B., Gondwe, J., Kang’ombe, D., Stein, A.J., Fairweather-Tait, S.J.,
Gibson, R.S., Kalimbira, A.A., Broadley, M.R., 2013. Soil-type influences human
selenium status and underlies widespread selenium deficiency risks in Malawi. Sci.
Rep. 3, 1425.

Institute of Medicine of the National Academies, 2002. Dietary Reference Intakes for Vitamin
C, Vitamin E, Selenium, and Carotenoids. National Academies Press, Washington DC.

Joy, E.J.M., Ander, E.L., Young, S.D., Black, C.R., Watts, M.J., Chilimba, A.D., Chilima, B.,
Siyame, E.W., Kalimbira, A.A., Hurst, R., Fairweather-Tait, S.J., Stein, A.J., Gibson, R.S.,
White, P.J., Broadley, M.R., 2014. Dietary mineral supplies in Africa. Physiol. Plant.
151, 208–229.

Joy, E.J.M., Broadley, M.R., Young, S.D., Black, C.R., Chilimba, A.D.C., Ander, E.L., Barlow, T.S.,
Watts, M.J., 2015. Soil type influences crop mineral composition in Malawi. Sci. Total
Environ. 505, 587–595.

Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., et al., 1997. The
moderate resolution imaging spectroradiometer (MODIS): land remote sensing for
global change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249.

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann,
N.E., Linder, H.P., Kessler, M., 2017a. Climatologies at high resolution for the earth’s
land surface areas. Scientific Data 4, 170122.

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann,
N.E., Linder, H.P., Kessler, M., 2017b. Data from: Climatologies at high resolution for
the earth’s land surface areas. Dryad Digital Repository https://doi.org/10.5061/
dryad.kd1d4.

Khokhar, J.S., Sareen, S., Tyagi, B.S., Singh, G., Wilson, L., King, I.P., Young, S.D., Broadley,
M.R., 2018. Variation in grain Zn concentration, and the grain ionome, in field-
grown Indian wheat. PLoS One 13, e0192026.

Kumssa, D.B., Joy, E.J., Ander, E.L., Watts, M.J., Young, S.D., Walker, S., Broadley, M.R., 2015.
Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci.
Rep. 5, 10974.

Kumssa, D.B., Joy, E.J.M., Young, S.D., Odee, D.W., Ander, E.L., Broadley, M.R., 2017. Varia-
tion in the mineral element concentration ofMoringa oleifera Lam. andM. stenopetala
(Bak. f.) Cuf.: role in human nutrition. PLoS One https://doi.org/10.1371/journal.
pone.0175503.

Lark, R.M., 2009. Kriging a soil variablewith a simple non-stationary variancemodel. Jour-
nal of Agricultural Biological and Environmental Statistics 14, 301–321.

Lark, R.M., 2017. Controlling the marginal false discovery rate in inferences from a soil
data set with α-investment. Eur. J. Soil Sci. 68, 221–234.

Lark, R.M., Marchant, B.P., 2018. How should a spatial-coverage sample design for a
geostatistical soil survey be supplemented to support estimation of spatial covariance
parameters? Geoderma 319, 89–99.

Lark, R.M., Ander, E.L., Cave, M.R., Knights, K.V., Glennon, M.M., Scanlon, R.P., 2014. Map-
ping trace element deficiency by cokriging from regional geochemical soil data: a
case study on cobalt for grazing sheep in Ireland. Geoderma 226–227, 64–78.

Lark, R.M., Ander, E.L., Broadley, M.R., 2019. Combining two national-scale data sets to
map soil properties, the case of available magnesium in England and Wales. Eur.
J. Soil Sci. 70, 361–377.

Ligowe, I.S., Phiri, F.P., Ander, E.L., Bailey, E.H., Chilimba, A.D.C., Gashu, D., Joy, E.J.M., Lark,
R.M., Kabambe, V., Kalimbira, A.A., Kumssa, D.B., Nalivata, P.C., Young, S.D., Broadley,
M.R., 2020. Selenium (Se) deficiency risks in sub-Saharan African food systems and
their geospatial linkages. Proc. Nutr. Soc. https://doi.org/10.1017/S0029665120006904
(In press).

Manzeke, M.G., Mtambanengwe, F., Watts, M.J., Hamilton, E.M., Lark, R.M., Broadley, M.R.,
Mapfumo, P., 2019. Fertilizer management and soil type influence grain zinc and iron
concentration under contrasting smallholder cropping systems in Zimbabwe. Sci.
Rep. 9, 6445.

Marchant, B.P., Lark, R.M., 2007. Estimating linear models of coregionalization by residual
maximum likelihood. Eur. J. Soil Sci. 58, 1506–1513.

Marchant, B.P., Newman, S., Corstanje, R., Reddy, K.R., Ozborne, T.Z., Lark, R.M., 2009. Spa-
tial monitoring of a non-stationary soil property: phosphorus in a Florida water con-
servation area. Eur. J. Soil Sci. 60, 757–769.

Mastrandrea, M.D., Field, C.B., Stocker, T.F., Edenhofer, O., Ebi, K.L., Frame, D.J., Held, H.,
Kriegler, E., Mach, K.J., Matschoss, P.R., Plattner, G.-K., Yohe, G.W., Zwiers, F.W.,
2010. Guidance note for lead authors of the IPCC fifth assessment report on consis-
tent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC).
http://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf.

Matheron, G., 1982. Pour une analyse krigeante de données régionalisées. Centre de
Géostatistique, Fontainebleau (Report No. 732).

Mathers, A.W., Young, S.D., McGrath, S.P., Zhao, F.J., Crout, N.M.J., Bailey, E.H., 2017. Deter-
mining the fate of selenium in wheat biofortification: an isotopically labelled field
trial study. Plant Soil 420, 61–77.

Olsen, S.R., Cole, C.V., Watanabe, F.Z., Dean, L.A., 1954. Estimation of Available Phosphorus
in Soils by Extraction With Sodium Bicarbonate. U.S. Government Printing Office,
Washington, D.C.

OpenStreetMap contributors, 2017. Planet dump. retrieved from. https://planet.osm.org
https://www.openstreetmap.org.

Orton, T.G., Pringle, M.J., Bishop, T.F., Paige, K.L., Dalala, R.C., 2014. Spatial prediction of soil
organic carbon stock using a linear model of coregionalisation. Geoderma 230-231,
119–130.

Phiri, F.P., Ander, E.L., Bailey, E.H., Chilima, B., Chilimba, A.D.C., Gondwe, J., Joy, E.J.M.,
Kalimbira, A.A., Kumssa, D.B., Lark, R.M., Phuka, J.C., Salter, A., Suchdev, P.S., Watts,
M.J., Young, S.D., Broadley, M.R., 2019. The risk of selenium deficiency in Malawi is
large and varies over multiple spatial scales. Sci. Rep. 9, 6566.

Phiri, F.P., Ander, E.L., Lark, R.M., Bailey, E.H., Chilima, B., Gondwe, J., Joy, E.J.M., Kalimbira,
A.A., Phuka, J.C., Suchdev, P.S., Middleton, D.R.S., Hamilton, E.M., Watts, M.J., Young,
S.D., Broadley, M.R., 2020. Urine selenium concentration is a useful biomarker for
assessing population level selenium status. Environ. Int. 134, 105218.

R Core Team, 2017. R: a language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria.

https://www.openstreetmap.org
https://www.openstreetmap.org
https://climatedataguide.ucar.edu/
https://climatedataguide.ucar.edu/
https://doi.org/10.1016/j.scitotenv.2020.139231
https://doi.org/10.1016/j.scitotenv.2020.139231
http://africasoils.net/2015/06/07/new-cropland-and-rural-settlement-maps-of-africa
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0005
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0005
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0005
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0015
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0015
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0015
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0015
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0025
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0025
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0030
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0030
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0035
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0035
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0040
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0040
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0045
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0045
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0050
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0050
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0055
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0055
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0055
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0060
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0060
https://CRAN.R-project.org/package=BalancedSampling
https://CRAN.R-project.org/package=BalancedSampling
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0070
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0070
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0075
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0075
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0080
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0080
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0080
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0085
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0085
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0090
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0090
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0095
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0095
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0100
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0100
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0100
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0105
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0105
https://doi.org/10.5061/dryad.kd1d4
https://doi.org/10.5061/dryad.kd1d4
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0115
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0115
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0120
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0120
https://doi.org/10.1371/journal.pone.0175503
https://doi.org/10.1371/journal.pone.0175503
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0130
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0130
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0135
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0135
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0140
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0140
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0140
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0145
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0145
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0145
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0150
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0150
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0150
https://doi.org/10.1017/S0029665120006904
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0160
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0160
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0160
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0165
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0165
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0170
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0170
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0170
http://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0180
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0180
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0185
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0185
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0185
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0190
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0190
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0190
https://planet.osm.org
https://www.openstreetmap.org
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0200
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0200
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0200
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0205
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0205
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0210
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0210
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0215
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0215


17D. Gashu et al. / Science of the Total Environment 733 (2020) 139231
Rayment, G.E., Lyons, D.J., 2011. Method 913b phosphorus buffer index – PBI+OlsenP –
ICPAES. In: Rayment, G.E., Lyons, D.J. (Eds.), Soil Chemical Methods – Australasia.
CSIRO Publications, Melbourne.

Schmidhuber, J., Sur, P., Fay, K., Huntley, B., Salama, J., Lee, A., Cornaby, L., Horino, M.,
Murray, C., Afshin, A., 2018. The Global Nutrient Database: availability of macronutri-
ents and micronutrients in 195 countries from 1980 to 2013. The Lancet Planetary
Health 2, e353–e368.

Schwertman, U., 1964. Differenzierung der eisenoxide des bodens durch extraction mit
ammoniumoxalatösung. Z. Pflanzenernähr. Bodenkd. 105, 194–202.

Shetaya, W.H., Young, S.D., Watts, M.J., Ander, E.L., Bailey, E.H., 2012. Iodine dynamics in
soils. Geochim. Cosmochim. Acta 77, 457–473.

Sillanpää,M., Jansson, H., 1992. Status of Cadmium, Lead, Cobalt and Selenium in Soils and
Plants of Thirty Countries. FAO Soils Bulletin vol. 65. Food and Agriculture Organiza-
tion of the United Nations, Rome, Italy 195 pp.

Smith, M.R., Micha, R., Golden, C.D., Mozaffarian, D., Myers, S.S., 2016. Global Expanded
Nutrient Supply (GENuS) model: a new method for estimating the global dietary
supply of nutrients. PLoS One 11, e0146976.

Tiessen, H., Bettany, J.R., Stewart, J.W.B., 1981. An improvedmethod for the determination
of carbon in soils and soil extracts by dry combustion. Commun. Soil Sci. Plant Anal.
12, 211–218.
Velu, G., Singh, R.P., Huerta-Espino, J., Peña, R.J., Arun, B., Mahendru-Singh, M., Yaqub
Mujahid, M., Sohu, V.S., Mavi, G.S., Crossa, J., Alvarado, G., Joshi, A.K., Pfeiffer, W.H.,
2012. Performance of biofortified spring wheat genotypes in target environments
for grain zinc and iron concentrations. Field Crop Res. 137, 261–267.

Vosti, S., Kagin, J., Engle-Stone, R., Brown, K.H., 2015. An economic optimization model for
improving the efficiency of vitamin A interventions: an application to young children
in Cameroon. Food Nutr. Bull. 36, S193–S207.

Walsh, M., Wu, W., Simbila, W.J., Levy, M.A., Borkovska, O., Schmidt, J., 2019. GeoSurvey
Data Prediction Workflows. OSF. December 3. https://doi.org/10.17605/OSF.IO/
VXC97.

Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientists. 2nd edition.
John Wiley & Sons, Chichester.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., Sampson,
C.C., Kanae, S., Bates, P.D., 2017. A high accuracy map of global terrain elevations.
Geophys. Res. Lett. 44, 5844–5853.

http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0220
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0220
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0220
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0225
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0225
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0225
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0230
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0230
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0235
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0235
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0240
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0240
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0240
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0245
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0245
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0245
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0250
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0250
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0250
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0255
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0255
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0260
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0260
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0260
https://doi.org/10.17605/OSF.IO/VXC97
https://doi.org/10.17605/OSF.IO/VXC97
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0270
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0270
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0275
http://refhub.elsevier.com/S0048-9697(20)32748-0/rf0275

	Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia
	1. Introduction
	2. Materials and methods
	2.1. Sampling
	2.2. Field sampling
	2.3. Sample preparation and laboratory analysis
	2.3.1. Sample preparation
	2.3.2. Laboratory analysis

	2.4. Exhaustive covariates
	2.5. Statistical analysis
	2.5.1. The spatial linear mixed model and the associated spatial predictor
	2.5.2. Implementing the model
	2.5.3. Model validation
	2.5.4. Mapping


	3. Results
	3.1. Summary statistics, orderings of predictors and variable selection
	3.2. Linear mixed model fitting and cross-validation
	3.3. Spatial predictions of Se concentration in grain

	4. Discussion and conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Declaration of competing interest
	Appendix A. Supplementary data
	References


