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Abstract

Investigations into intracellular replication and differentiation of Trypanosoma cruzi within

the mammalian host have been restricted by limitations in our ability to detect parasitized

cells throughout the course of infection. We have overcome this problem by generating

genetically modified parasites that express a bioluminescent/fluorescent fusion protein. By

combining in vivo imaging and confocal microscopy, this has enabled us to routinely visual-

ise murine infections at the level of individual host cells. These studies reveal that intracellu-

lar parasite replication is an asynchronous process, irrespective of tissue location or

disease stage. Furthermore, using TUNEL assays and EdU labelling, we demonstrate that

within individual infected cells, replication of both mitochondrial (kDNA) and nuclear

genomes is not co-ordinated within the parasite population, and that replicating amastigotes

and non-replicating trypomastigotes can co-exist in the same cell. Finally, we report the

presence of distinct non-canonical morphological forms of T. cruzi in the mammalian host.

These appear to represent transitional forms in the amastigote to trypomastigote differentia-

tion process. Therefore, the intracellular life-cycle of T. cruzi in vivo is more complex than

previously realised, with potential implications for our understanding of disease pathogene-

sis, immune evasion and drug development. Dissecting the mechanisms involved will be an

important experimental challenge.

Author summary

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is becoming an

emerging threat in non-endemic countries and establishing new foci in endemic coun-

tries. The treatment available has not changed significantly in over 40 years. Therefore,

there is an urgent need for a greater understanding of parasite biology and disease patho-

genesis to identify new therapeutic targets and to maximise the efficient use of existing
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drugs. We have used genetically modified strains of T. cruzi carrying a bioluminescence/

fluorescence dual reporter fusion gene to monitor parasite replication in vivo during both

acute and chronic infections in a mouse model. Utilising TUNEL assays for mitochondrial

DNA replication and EdU incorporation for total DNA replication, we have found that

parasite division within infected cells is asynchronous in all phases of infection. Differenti-

ation also appears to be uncoordinated, with replicating amastigotes co-existing with non-

dividing trypomastigotes in the same host cell.

Introduction

The obligate intracellular parasite Trypanosoma cruzi is responsible for Chagas disease, a debil-

itating infection that is widespread in Latin America. There are an estimated 6–7 million peo-

ple infected [1]. In addition, due to migration, cases are increasingly being detected outside

endemic regions [2, 3]. T. cruzi is spread by blood-sucking triatomine bugs, although oral

transmission via contaminated food or drink, and the congenital route are also important. The

parasite has a wide mammalian host range and can infect most nucleated cells. During its life-

cycle, the major features of which were established more than a century ago [4], T. cruzi passes

through a number of differentiation stages involving both replicative and non-replicative

forms. Infections are initiated by insect transmitted metacyclic trypomastigotes, which are

flagellated and non-replicating. Once these have invaded host cells, they escape from the para-

sitophorous vacuole into the cytosol, differentiate into ovoid non-motile amastigotes, and

divide by binary fission. After a period of approximately 4–7 days, by which time parasite

numbers can have reached several hundred per infected cell, they differentiate into non-repli-

cating flagellated motile trypomastigotes. This eventually promotes host cell lysis, and the

released parasites then invade other cells, spread systemically through blood and tissue fluids,

or can be taken up by triatomine bugs during a bloodmeal. Within the insect vector, they dif-

ferentiate into replicating epimastigotes, and finally metacyclic trypomastigotes, to complete

the cycle.

More recently, in vitro studies have suggested that the parasite life-cycle may be more com-

plex than outlined above. These reports include the identification of an intracellular epimasti-

gote-like form (elongated cell body with anterior, membrane-attached flagellum, anterior

discoid kinetoplast and spherical nucleus) [5], and amastigote-like forms with short non-

membrane-attached flagella, termed sphaeromastigotes [6]. Whether these parasite forms rep-

resent intermediate transitional types, or correspond to intracellular stages with a specific role,

remains to be determined. Adding to the complexity, trypomastigotes can also differentiate

into an epimastigote-like stage, via an amastigote-like transitional form in vitro and in the tria-

tomine vector [7]. These recently differentiated epimastigotes have a distinct proteomic pro-

file, display complement-resistance, can invade phagocytic and cardiac cells, and are infectious

to mice. In addition, it has been reported that when bloodstream trypomastigotes invade

mammalian cells, they can undergo a differentiation step in which asymmetric cell division

results in the generation of an amastigote, together with a second, defective parasite cell termed

a zoid, which contains a kinetoplast, but lacks a nucleus [8]. This has not, as yet, been demon-

strated for the metacyclic trypomastigote which initiates natural mammalian infection. Most

recently, it has been observed that infrequent spontaneous dormancy can occur in intracellular

amastigotes, a phenomenon that may be linked to increased drug tolerance [9]. These non-

proliferating intracellular amastigotes, which have been identified both in vivo and in vitro,

retain the ability to differentiate into trypomastigotes. Their metabolic status is unknown. To
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date, a lack of sufficiently sensitive in vivo parasite detection methods has meant that it has not

been possible to investigate the biological role of these and the other non-classical parasite

forms during either acute or chronic stage infections.

There are three distinct stages to Chagas disease. In humans, the acute stage occurs in the

first 4–6 weeks, and is characterised by a widely disseminated infection, together with patent

parasitemia. This results in the induction of a robust CD8+ T cell-mediated response [10], with

infected individuals then progressing to the asymptomatic chronic stage, where the parasite

burden is extremely low and difficult to detect. Around 30–40% of those infected eventually

develop chronic disease pathology, predominantly cardiomyopathy and/or digestive tract

megasyndromes [11, 12]. In humans, infections with T. cruzi are considered to be life-long,

however our understanding of parasite biology and tropism during the chronic stage, and

their relationship to disease outcome is limited [13]. To address these issues, we developed an

experimental murine model based on highly sensitive bioluminescence imaging of T. cruzi
genetically modified to express a red-shifted luciferase [14, 15]. This system allows chronic

infections to be followed in real time for periods of longer than a year, and enables endpoint

assessment of parasite location by ex vivo imaging. In this mouse model, the infection is pan-

tropic during the acute stage and parasites are readily detectable in almost all organs and tis-

sues. During the chronic stage however, the parasite burden is very low and restricted mainly

to the colon and/or stomach, with other organs/tissues infected only sporadically [14, 16].

Although bioluminescence can be widely used for in vivo testing of drugs and vaccines, and

as a technique for exploring infection kinetics and dynamics, it does not easily allow the identi-

fication or study of single parasites at a cellular level [16–19]. To overcome this limitation, we

re-engineered the T. cruzi strain to express a bioluminescent/fluorescent fusion protein [20].

The aim was to enable infection dynamics to be monitored at a whole animal level using biolu-

minescence, followed by investigation of host-parasite interactions at a single cell level using

fluorescence. With this approach, we have been able to routinely image individual parasites in

murine tissues during chronic stage infections. This has allowed us to readily visualise parasites

residing within individual host cells in chronically infected animals. Here, we describe the

exploitation of this dual imaging procedure to gain new insights into parasite biology in exper-

imental models of acute and chronic Chagas disease.

Methods

Ethics statement

All animal work was performed under UK Home Office licence 70/8207 and approved by the

London School of Hygiene and Tropical Medicine Animal Welfare and Ethical Review Board.

All protocols and procedures were conducted in accordance with the UK Animals (Scientific

Procedures) Act 1986.

Parasite culture

T. cruzi CL-Luc::Neon epimastigotes were cultured in supplemented RPMI-1640 as described

previously [21]. Genetically manipulated lines were routinely maintained on their selective

agent (hygromycin, 150 μg ml-1; puromycin, 5 μg ml-1; blasticidin, 10 μg ml-1; G418, 100 μg

ml-1). MA-104 (fetal African green monkey kidney epithelial) cells (ATCC CRL-2378.1) were

cultivated to 95–100% confluency in Minimum Essential Medium Eagle (MEM, Sigma.), sup-

plemented with 5% Foetal Bovine Serum (FBS), 100 U/ml of penicillin, and 100 μg ml-1 strep-

tomycin at 37˚C and 5% CO2. Tissue culture trypomastigotes (TCTs) were derived by

infecting MA104 cells with stationary phase metacyclic trypomastigotes. Cell cultures were

infected for 18 hours. External parasites were then removed by washing in Hank’s Balanced
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Salt Solution (Sigma-Aldrich), and the flasks incubated with fresh medium (Minimum Essen-

tial Medium (Sigma-Aldrich) supplemented with 5% FBS) for a further 5–7 days. Extracellular

TCTs were isolated by centrifugation at 1600 g. Pellets were re-suspended in Dulbecco’s PBS

and motile trypomastigotes counted using a haemocytometer. In vitro infections for micros-

copy were carried out as above, but on coverslips incubated in 24-well plates using an MOI of

5:1 (host cell:parasite). Coverslips were fixed with 2% paraformaldehyde at 72 hours post infec-

tion. Cells were then labelled with TUNEL (section 4.6).

Mouse infection and necropsy

Mice were maintained under specific pathogen-free conditions in individually ventilated

cages. They experienced a 12 hour light/dark cycle and had access to food and water ad libi-
tum. Female mice aged 8–12 weeks were used. CB17 SCID mice were infected with 1x104 tis-

sue culture trypomastigotes, and monitored by bioluminescence imaging (BLI), as previously

reported [14]. At the peak of the bioluminescence signal, when trypomastigotes were visible in

the bloodstream, the mouse was culled by an overdose of pentobarbital sodium, and the

infected blood obtained by exsanguination. The trypomastigotes were washed in Dulbecco’s

PBS and diluted to 5x103 ml-1. 1x103 trypomastigotes were injected i.p. into each mouse

(BALB/c or C3H/HeN) and the course of infection followed by BLI. At specific time-points,

the mice were euthanised by an overdose of pentobarbital sodium and necropsied (for detailed

description of the necropsy method, see [22]). Their organs were subject to post mortem BLI.

We excised those segments that were bioluminescence-positive and placed them into histology

cassettes. BLI images from living animals and post-mortem tissues were analysed using Living

Image 4.5.4 (PerkinElmer Inc.)

Tissue embedding and sectioning

Tissue sections were produced as described previously [20, 22]. Briefly, excised tissue was fixed

in pre-chilled 95% ethanol for 20–24 hours in histology cassettes. The tissues were dehydrated

in 100% ethanol, cleared in xylene, and then embedded in paraffin at 56˚C. Sections were cut

with a microtome and mounted on glass slides, then dried overnight. Slides were stored in the

dark at room temperature until required.

TUNEL assay for kDNA replication

For in vitro studies, logarithmically growing epimastigotes and infected mammalian cells on

coverslips were fixed with 2% paraformaldehyde in PBS. Fixed epimastigotes were air-dried

onto glass 8-well slides. Cells were washed once in PBS and permeabilized in 0.1% TritonX-

100/PBS for 5 min and washed 3 times with PBS. 20 μL TUNEL reaction mixture (In situ

Cell Death Detection Kit, TMR-red, Roche) was added to each well or coverslip and the reac-

tion incubated for 1 hour at 37˚C. For tissue sections, slides were deparaffinised in 2 changes

(30 s each) of xylene, 3 changes (1 min each) of pre-chilled 95% ethanol, and 3 changes (1

min each) of pre-chilled Tris-buffered saline (TBS). Sections were outlined with a hydropho-

bic pen then permeabilized in 0.1% TritonX-100/PBS for 5 min and washed 3 times with

PBS. 20 μL TUNEL reaction mixture was added to each section and the slide was overlaid

with a coverslip to ensure that the reaction mix was evenly distributed. The reaction was

incubated for 20 min to 2 hours at 37˚C. Coverslips and slides were mounted in VECTA-

SHIELD with DAPI (Vector Laboratories, Inc.) before observation on a Zeiss Axioplan

LSM510 confocal microscope.
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EdU assay for DNA replication

Mice were injected intraperitoneally with 12.5 mg kg-1 EdU (Sigma-Aldrich) in PBS at specific

time points (as detailed in Results) prior to euthanasia. Tissues were fixed and sectioned as

above. Labelling of the incorporated EdU was carried out using the Click-iT Plus EdU Alexa-

Fluor 555 Imaging kit (Invitrogen), following a similar method as used for TUNEL labelling,

but substituting the Click-iT reagent for the TUNEL reaction mix. For sections which had

been in paraffin for extended time periods (> 6 months), the slides were immersed in 100 mM

EDTA for 16 hours (on manufacturer’s recommendation), then washed extensively with TBS

prior to the Click-iT reaction.

Confocal microscopy

Slides and sections were examined using a Zeiss LSM510 Axioplan confocal laser scanning

microscope. Cells containing multiple parasites were imaged in three dimensions to allow pre-

cise counting of amastigotes (using the 63x or 100x objectives with appropriate scan zoom for

the particular cell/number of parasites). Phase images were obtained at lower magnification

(40x) to allow orientation of the tissue section and identification of specific layers/structures.

All images were acquired using Zeiss LSM510 software. Scale bars were added using the Zeiss

LSM Image Browser overlay function and the images were then exported as .TIF files to gener-

ate the Figs.

Live imaging of infected cells

Videos were acquired using an inverted Nikon Eclipse microscope. The chamber containing

the specimen was moved in the x-y plane through the 580 nm LED illumination. Images were

collected using a 16-bit, 1-megapixel Pike AVT (F-100B) CCD camera set in the detector

plane. An Olympus LMPlanFLN 20x/0.40 objective was used to collect the exit wave leaving

the specimen. Time-lapse imaging was performed by placing the chamber slide on the micro-

scope surrounded by an environmental chamber (Solent Scientific Limited, UK) maintaining

the cells and the microscope at 37˚C / 5% CO2. Time-lapse video sequences were created using

the deconvolution app in the Nikon imaging software.

Results

Parasite kinetoplast DNA replication is not synchronised within individual

infected cells

The text book view of the T. cruzi intracellular cycle is that invading trypomastigotes differen-

tiate into amastigotes, which then begin to divide by binary fission within the cytoplasm of the

host cell. These then differentiate into trypomastigotes and the host cell lyses releasing the try-

panosomes, see for example Fig 1A in [23]. However, the degree to which amastigote division

and differentiation are co-ordinated within single host cells, and the potential for this to be

influenced by host cell type and/or tissue-specific location are poorly understood.

During trypanosomatid cell division there are two distinct DNA replication events that

result in duplication of the mitochondrial (kinetoplast or kDNA) and then the nuclear

genomes. However, at early stages of kDNA or nuclear DNA replication, it is not feasible to

assign parasites to a particular cell-cycle phase by morphology or total DNA staining, as many

parasites appear similar. To identify the replication status of the mitochondrial genome in

intracellular amastigotes we took advantage of the TUNEL assay (terminal deoxynucleotidyl

transferase dUTP nick end labelling), a procedure normally used to quantify apoptotic cell

death in mammalian cells [24]. In T. cruzi, this assay can be utilised to monitor kDNA
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replication [20], a genome that consists of thousands of catenated circular double-stranded

DNA molecules. The majority of these are the mini-circles that encode the guide RNAs that

mediate RNA editing [25]. To maintain functional RNA editing, daughter cells must each

inherit copies of the entire mini-circle repertoire. During replication, mini-circles are first

detached from the catenated network and the new strands are then synthesised. However,

some of the single-strand breaks that result from removal of RNA primers in the newly synthe-

sised DNA are maintained until the whole mini-circle network has been replicated. This

enables newly duplicated circles to be distinguished from non-replicated circles and ensure

each daughter network is complete [26, 27]. Therefore, during the S-phase of kDNA replica-

tion, the free 3’ hydroxyl groups at the nicks on the newly synthesised strands can be labelled

with a fluorescent analogue by terminal uridylyl transferase [20, 26, 28]. This means that the

TUNEL assay enables specific labelling of parasites that have commenced cell division.

We first applied TUNEL assays to asynchronous, exponentially growing epimastigote cul-

tures to confirm that this method was applicable to T. cruzi. Parasites in the early phase of

kDNA synthesis displayed TUNEL positivity in antipodal sites on either side of the kDNA

disk, indicative of the two replication factories (Fig 1A). Later in replication, the entire disk

was labelled (Fig 1B). Nuclear DNA did not exhibit a positive signal at any stage (Fig 1A

and 1B).

To quantify the replication of kDNA in intracellular amastigotes, the parasites in 200

infected cells were assessed for TUNEL positivity in vitro 72 hours post-infection. These cul-

tures were infected with a low multiplicity of infection (1 parasite per 5 host cells) to minimise

the chance of individual cells being infected twice. It was apparent that kDNA replication

within single infected cells was largely asynchronous, since most infected cells contained both

TUNEL+ve and–ve amastigotes (Fig 1C and 1D). Most TUNEL+ve parasites displayed antipo-

dal staining, indicative of early phase replication (see examples in Fig 1C). The number of

amastigotes displaying whole disk staining was low suggesting that kDNA nick repair may

occur more rapidly than in epimastigotes. The few amastigotes that displayed a 2K1N (2 kinet-

oplasts and 1 nucleus) morphology showed no TUNEL staining on either kinetoplast, indicat-

ing that nicks are repaired prior to segregation, as expected (example shown in S1 Fig) [26].

Total amastigote numbers within infected cells were also consistent with asynchronous rep-

lication; they did not follow a geometric progression (i.e 1, 2, 4, 8, 16, 32. . .) as would be

expected if growth was co-ordinated (Fig 1D, red line). There were no cases where a specific

number of amastigotes within a cell was always associated with 100% TUNEL labelling (S2

Fig). Intracellular populations of 2, 4 or 8 amastigotes were equally as likely to be asynchronous

as populations containing non-geometric numbers (Fig 1D, black bars, S2 Fig). In the minority

of infected cells where every amastigote was TUNEL+ve (14.5% of cells that contained more

than one parasite), there were differences in the degree of labelling between the parasites in

24% of the host cells (Fig 1C inset, for example, white arrows indicate faint TUNEL labelling of

one amastigote in earlier phase of kDNA replication). Collectively, these results therefore show

that within a single infected cell in vitro, amastigote kDNA replication is not synchronised

within the population.

We then applied the TUNEL assay to mouse tissues obtained from acute experimental

infections with the dual bioluminescent/fluorescent T. cruzi cell line CL-Luc::Neon [20]. The

acute phase in mice is characterised by widespread dissemination of infection with amastigotes

in diverse cell and tissue types. We sampled a range of organs and tissues (Fig 2; S3 Fig). This

revealed that within any given infected host cell, the extent of kDNA labelling varied between

parasites. We quantified the frequency of TUNEL positivity amongst amastigotes in sections

from various organs in a single mouse (Fig 3). The majority of amastigotes in the acute phase

had TUNEL+ve kDNA, showing that they were undergoing replication. However, there was
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no evidence for programmed synchronicity, and in each tissue, individual cells could contain

both TUNEL+ve and TUNEL-ve parasites. Moreover, all of the different organs that were ana-

lysed showed similar profiles with respect to parasite replication states (Fig 3).

Replication of parasite nuclear DNA is not synchronised within individual

infected host cells

TUNEL assays identify parasites where kDNA replication has initiated, but do not provide

information on those where it has terminated and the parasite has progressed to nuclear DNA

synthesis. To get a more quantitative picture of both nuclear and kinetoplast replication, we

injected T. cruzi-infected mice with the nucleoside analogue 5-ethynyl-2’-deoxyuridine (EdU)

at specific time points prior to necropsy [29]. We chose EdU rather than BrdU, since this ana-

logue can be fluorescently labelled directly in double stranded DNA and does not require

harsh denaturing conditions. This preserves the mNeonGreen fluorescence used to locate T.

cruzi in situ. EdU is incorporated into newly synthesised DNA molecules and identifies para-

sites undergoing nuclear or kDNA replication during the time period of the EdU pulse. It also

labels mammalian cells that enter S-phase during this period. EdU distribution in murine tis-

sues is extensive and incorporation is stable. For example, Merkel cells from mice whose

Fig 1. Kinetoplast replication of T. cruzi amastigotes is asynchronous in vitro. (a) Epimastigote at early stage of kDNA replication with TUNEL labelling of antipodal

sites. (b) Epimastigotes at late stage of kDNA replication showing TUNEL labelling of entire kDNA disk. (c) MA104 cells infected with T. cruzi CL-Luc::Neon

amastigotes for 72 hours then fixed and labelled with the TUNEL reagent. Left hand panel: cell containing 11 amastigotes with non-replicating kDNA (all TUNEL-ve);

central panel: cell with parasites in which kDNA replication is asynchronous (mix of TUNEL+ve and TUNEL-ve); right hand panel: cell where all amastigotes are

TUNEL+ve, but at different stages of kDNA replication (7 of 8 amastigotes display bright antipodal staining, the eighth is faintly TUNEL+ve, as shown by white arrows

in the inset). (d) TUNEL data from 200 infected cells pooled from 3 replicate wells. The red line represents the number of infected cells assessed that contained the

specified number of resident amastigotes. The black bars represent the percentage of amastigotes per cell that label as TUNEL+ve. Bar = 5 μm.

https://doi.org/10.1371/journal.pntd.0008007.g001
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mothers were injected with EdU during pregnancy remain labelled nine months after birth,

suggesting that the analogue is not removed during DNA repair [30–32]. Labelling of replicat-

ing host cells within a given tissue section can therefore be used as an internal control for EdU

tissue penetration to sites of T. cruzi infection. Fixed tissue sections containing host cells and/

or parasites that incorporate EdU are fluorescently labelled by click chemistry and can be

examined by confocal microscopy [33] (Experimental procedures).

We assessed a range of bioluminescence positive tissues excised from mice in the acute

stage of infection (Fig 4). In cardiac sections, there was negligible labelling of host cell nuclei,

as expected, since heart muscle consists predominantly of terminally differentiated non-repli-

cative cells. However, labelled intracellular parasites were easily detected. Within host cells

containing multiple parasites, EdU labelling was heterogeneous across the population and

many parasites had not incorporated EdU (Fig 4A) during the time of exposure. Similarly, in

adipose tissue, parasites within the same infected cells displayed a wide range of EdU specific

fluorescence intensity (Fig 4B). This heterogeneity was dispersed throughout the infected cell,

with replicating and non-replicating organisms being interspersed.

In gut sections obtained from chronically infected mice, EdU labelling of host cells in the

mucosal epithelium was readily apparent, since these cells are continually shed into the gut

lumen and replaced from stem cells (Fig 4C, white arrowheads). As in the acute stage, the

labelling pattern within amastigote “nests” was consistent with asynchronous replication of

nuclear DNA, with many parasites showing no detectable EdU incorporation (Fig 4C; S4A

and S4B Fig). We also analysed sections taken from tissue samples that contained all of the

detectable bioluminescent foci in the gastrointestinal tract of three individual chronically

infected C3H/HeN mice (M275-17, M277-17 and M279-17). We injected these animals with

Fig 2. Asynchronous replication of parasite mitochondrial DNA within single infected host cells in vivo revealed by TUNEL assays. (a) Asynchronous replication

of kDNA in intracellular parasites infecting mouse spleen cells during an acute stage infection (day 19). BALB/c mice were infected with T. cruzi CL-Luc::Neon and

histological sections prepared from bioluminescent tissue (Experimental procedures). Parasites were detected by green fluorescence (mNeon), and the tissue sections

subjected to TUNEL assays to highlight replicating kDNA (red). (b) Asynchronous replication of kDNA in an amastigote nest detected in the smooth muscle layer of

stomach tissue during a chronic stage infection (day 117). Bar = 10 μm.

https://doi.org/10.1371/journal.pntd.0008007.g002
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two pulses of EdU at 18 and 28 hours before euthanasia. The number of parasites and infected

cells was consistent with the strength of the bioluminescent signal visible on ex-vivo organ sec-

tions (Fig 5A). Some of the nests were very large (“mega-nests”), containing hundreds of para-

sites, and in some cases, they clearly extended beyond the limits of the tissue section (indicated

by asterisks, Fig 5B and 5C). However, examination of serial sections of a single large nest indi-

cated that the asynchronous nature of EdU incorporation was sustained throughout the nest

(Fig 6), since in each section there were both EdU+ve and Edu-ve amastigotes. The extent of

EdU labelling within amastigotes in an infected cell was variable as had been observed with the

TUNEL assay. This would be expected if parasites were sampled at different stages within S-

phase. It was clear that many parasites had not replicated during the period of EdU exposure

Fig 3. Quantification of TUNEL in BALB/c mice during the acute stage of infection with T. cruzi CL-Luc::Neon. Tissue sections from mice

sacrificed on day 19 post-infection were processed for imaging and subjected to TUNEL staining (Experimental procedures). The graphs show the

number of amastigotes that were TUNEL+ve (red) or TUNEL-ve (blue) in individual infected cells within the specified tissues. The x-axis refers to

individual host cells. Bars containing both TUNEL-ve and +ve amastigotes were present in all tissues examined. Note that the level of TUNEL signal

may vary between amastigotes within a given cell, so even bars that are red only may represent parasites at different stages of kDNA replication (c.f.

differential levels of TUNEL staining in Fig 2A and 2B, DAPI/TUNEL panels).

https://doi.org/10.1371/journal.pntd.0008007.g003
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because most amastigotes (77% in the GI tract, 62% in the abdominal wall muscle) were nega-

tive for EdU labelling in either kinetoplast or nucleus. Therefore, both TUNEL assays and EdU

incorporation demonstrate that in vivo, the timing of DNA replication is autonomous to indi-

vidual parasites within an infected host cell, with no evident synchronisation of the process

between different amastigotes.

Both replicating and differentiating parasites co-exist in the same host cell

The final step in the intracellular development of T. cruzi is differentiation of replicating amas-

tigotes into non-dividing flagellated trypomastigotes, prior to their escape from the host cell.

The mechanisms that regulate this process in vivo, from a temporal and organisational per-

spective, are unknown. In mammalian cell monolayers infected in vitro, we observed that

amastigotes could be detected in the same cells as differentiated trypomastigotes (Fig 7A). We

used the TUNEL assay to examine whether amastigotes in this environment were undergoing

replication or were about to differentiate. Antipodal TUNEL staining was observed in the

kinetoplasts of some amastigotes present in cells with trypomastigotes, indicating ongoing

kDNA replication (Fig 7B). Co-existence of replicating parasites with trypomastigotes was

confirmed by live-cell imaging of infected cells in vitro (S5 Fig, S1 Movie, S2 Movie). This

Fig 4. Asynchronous parasite DNA replication within single infected host cells in vivo revealed by EdU-labelling. Replication of parasite DNA within mice

infected by T. cruzi clone CL-Luc::Neon was assessed after inoculating EdU (for (a) and (b), one pulse 6 hours prior to tissue sampling; for (c), two pulses 18 and 28

hours prior to tissue sampling (Experimental procedures). Parasite location in histological sections was detected by green fluorescence (mNeon). (a) DNA

replication (EdU, red) in a parasite nest during an acute stage infection (heart tissue, day 15 post-infection). In the DAPI stained image, the white arrow indicates

parasite nest, and red arrow the host cell nucleus. The merged DAPI/EdU image, bottom left, illustrates the heterogeneity in the DNA replication status of parasites

within the nest. (b) DNA replication in parasites within adipose tissue (day 15 post-infection). Red and white arrows in the DAPI image identify host and parasite

DNA, respectively. Combined EdU and DAPI image shows replicating parasites interspersed with non-replicating parasites. (c) Section from GI tract of mouse,

upper panel shows image at low magnification–note the presence of some EdU+ve mammalian cells within the mucosal layer due to epithelial cell replacement

(indicated by white arrowheads). Lower panels show magnified view of parasite nest. EdU signal in magenta box is shown in higher magnification to the right; note

a single amastigote with EdU labelling at antipodal sites of kDNA replication. All other parasites in this nest are negative. Bars = 10 μm.

https://doi.org/10.1371/journal.pntd.0008007.g004
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Fig 5. EdU labelling reveals that cells infected with small numbers of amastigotes have a lower percentage of actively replicating

parasites in a chronic infection. (a) Ex vivo imaging of organs. Bioluminescent foci were removed from the GI tract of three chronically

infected C3H/HeN mice (day 211 post-infection) that had been injected with two pulses of EdU 18 and 28 hours prior to necropsy

(Experimental procedures). (b) Each infected cell in the GI tract foci was imaged and the number of amastigotes that were positive or

negative for EdU incorporation was quantified. The graphs show the total number of amastigotes in each cell (blue bars) and the

number that were labelled with EdU (red bars). (c) Bioluminescent foci from the abdominal wall muscle were also dissected, stained for

EdU and quantified as above. Asterisks above bars indicate cells were the number of parasites represents a minimum due to the infected

nest being larger than the z-dimension of the section.

https://doi.org/10.1371/journal.pntd.0008007.g005
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Fig 6. Large nests are present in the chronic stage of infection (C3H/HeN mouse, day 211) and show asynchronous EdU incorporation throughout. Images

of the same nest taken from different sections through the tissue. The top row shows DAPI, EdU and mNeonGreen merged channels, whilst the lower row shows

DAPI and EdU channels (for clarity). Bar = 10 μm. Note that sections are from the same infection focus but not all sections of this nest are included due to loss in

processing.

https://doi.org/10.1371/journal.pntd.0008007.g006

Fig 7. TUNEL assays indicate that amastigote replication and amastigote-to-trypomastigote differentiation can

occur concurrently within single infected host cells in vitro. (a) MA104 cells infected in vitro with T. cruzi. Two

amastigotes (1 and 2) are visible within a cell full of trypomastigotes. The two lower right-hand panels show the two

amastigotes at a higher magnification for clarity. (b) MA104 cells infected in vitro with T. cruzi. The cells were fixed 72

hours post-infection and subjected to a TUNEL assay. Two replicating amastigotes can be identified by antipodal

TUNEL labelling on the kinetoplast, amongst a population of differentiated trypomastigotes. Bar = 10 μm.

https://doi.org/10.1371/journal.pntd.0008007.g007
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suggested asynchronicity in the process of both differentiation and cell division. Amastigotes

can therefore initiate a new replicative phase while in the same host cell as parasites that have

differentiated to trypomastigotes as judged by morphology and flagellar position. It remains

possible that some amastigotes initiate replication but then “pause”, leading to TUNEL+ve

parasites co-existing with flagellated trypomastigotes.

Multiple morphological forms of T. cruzi are present in deep tissues of

infected mice

Classically, the T. cruzi life-cycle in mammals involves two distinct morphological stages, the

intracellular replicative amastigote, which lacks an external flagellum, and the non-replicating

extracellular flagellated trypomastigote. However, other forms of the parasite have been

observed under in vitro conditions (for review, [34]). These observations normally involve

only one host cell type, and lack environmental signals and a tissue milieu. Therefore, it has

not been possible to be assess if these non-classical forms are physiologically relevant during

host infections, or whether they are artefacts of in vitro culture.

We observed a number of distinct T. cruzi morphological forms during murine infections

that do not conform to the standard amastigote/trypomastigote dichotomy. In both acute and

chronic infections, we frequently visualised amastigote-like forms with a protruding flagellum

(Fig 8). This flagellum extended from the anterior of the parasite, based on the relative position

of the kinetoplast and nucleus (Fig 8A–8C). The kinetoplast and nucleus displayed the forms

associated with the replicative stages of the parasite. The length of the visible flagellum was

highly variable with the majority of amastigotes having no protruding flagellum. (Fig 8D). The

length of the amastigote cell body varied between 3 and 7 μm (mean 4.2 ± 0.8 μm) with the fla-

gellar length being independent of cell body length (Fig 8C and 8E). The flagellated amasti-

gote-like parasites have similarities to sphaeromastigotes (Tyler & Engman, 2001), a form that

has been observed in vitro.

In addition to the flagellated amastigote-like parasites, we also observed a second non-stan-

dard form that displays an epimastigote-like morphology. In these forms, the kinetoplast

remains discoid and anterior and the nucleus is spherical but the cell body is elongated in com-

parison to an amastigote (Fig 8C, orange box and inset). Similar forms have been reported

once before in a very early stage infection (day 8) [35]. These epimastigote-like forms, which

we detected repeatedly in tissue samples, often co-existed with dividing amastigotes and differ-

entiating trypomastigotes in the same infected cell, and could be observed by live cell imaging

in vitro (S5 Fig). Whether these forms are simply morphological intermediates, or have a dis-

tinct role in infection or transmission remains unknown.

Discussion

The broad outline of T. cruzi replication and stage-specific differentiation during mammalian

infection has been known for more than a century. However, it is clear that this part of the life-

cycle is more complex than previously described, with possible implications for our under-

standing of pathogenesis, immune evasion and transmission [34]. Unravelling the biology of

T. cruzi within the host is also crucial from a drug development perspective, since some life-

cycle stages may be less sensitive to treatment [9], and the ability of the parasite to reside in

metabolically distinct tissue compartments may have significant effects on drug exposure and

pharmacodynamics. To date, most research on T. cruzi replication and differentiation has uti-

lised in vitro systems. Although these are informative, they may not capture the full develop-

mental range, and could give rise to artefactual observations that are not relevant to these

processes within the mammalian host. In addition, in vitro cultures often use immortalised
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mammalian cell lines, whereas in vivo T. cruzi is usually found in non-replicating terminally

differentiated cells such as muscle fibres.

One of the major unknowns in T. cruzi biology is the extent to which parasite growth is co-

ordinated within individual host cells during a mammalian infection, and how it is influenced

by tissue/organ location and disease status. This issue has been highlighted by recent reports of

spontaneous dormancy during intracellular infection (Sánchez-Valdéz et al., 2018). Here,

using a bioluminescent/fluorescent dual reporter strain that significantly enhances our ability

to identify and visualise infected host cells in vivo, we provide evidence that intracellular repli-

cation is largely asynchronous. From observation, it is apparent that the number of parasites

per host cell does not follow a predictable or tightly regulated pattern in vitro (Fig 1, S2 Fig), or

in vivo, at any phase of the infection, or in any specific tissues (Figs 2–6). Consistent with this,

two separate assays indicate that, within individual infected cells, DNA replication is not syn-

chronised between parasites at either nuclear or kinetoplast genome levels (Figs 2–6, S3 and

S4). In the case of EdU labelling, this was not a reflection of differential tissue penetration,

since replicating amastigotes were interspersed with non-labelled parasites in a wide range of

tissues types, during both acute and chronic infections. TUNEL labelling is not dependent on

incorporation of nucleoside analogues in a living mouse and is therefore an orthogonal assay

for mitochondrial DNA replication.

Fig 8. T. cruzi parasites display a wide range of morphologies during murine infections. BALB/c mice were inoculated with parasites expressing a fluorescent/

bioluminescent fusion protein and infected tissues identified by in vivo bioluminescence imaging (Experimental procedures). Fluorescent (green) flagellated

“amastigote” forms detected in (a) adipose tissue (day 13 post-infection) (DNA stained red–appears yellow where mNeon fluorescence overlaps DNA), and (b) cardiac

tissue (day 19 post-infection). (c) Parasite nests in the rectum (day 19 post-infection) containing a variety of morphological forms. Note that none of the flagellated

forms displays the posterior rounded kinetoplast characteristic of trypomastigotes. Bar = 5 μm. (d and e) The flagellar length was measured in 100 amastigote-like cells

from various tissue sites, where parasites were distinct enough to measure both flagellum and cell body. (d) Graph showing the flagellar length (μm) measured in each

individual amastigote. (e) Graph showing the flagellar length (μm) plotted against parasite body length (μm).

https://doi.org/10.1371/journal.pntd.0008007.g008
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Other intracellular protozoan pathogens display various modes of replication within the

host. In the case of Plasmodium falciparum intra-erythrocytic cycle schizogony consists of

multiple rounds of DNA replication and nuclear division within the same plasma membrane

resulting in a multinucleated parasite cell within the erythrocyte. These nuclear divisions have

been shown to be asynchronous [36]. The two major stages of Toxoplasma gondii behave very

differently with the rapidly dividing tachyzoite form undergoing synchronous division within

an individual vacuole, while the bradyzoite stage (long thought to be dormant) has recently

been shown to replicate slowly and often asynchronously within the tissue cyst in vivo [37].

Leishmania mexicana amastigotes display a much extended division cycle in lesions (~12 days)

as compared to axenic amastigotes (4.2 days), amastigotes in macrophages in vitro (4 days)

and promastigotes (9 hours) [38], Clearly, a 12-day cell division cycle is likely to result in a

lower likelihood of incorporation of exogenously administered nucleoside analogues such as

EdU, since the available pool of these is subject to pharmacodynamic/pharmacokinetic fluctu-

ations in an infected animal. Therefore, using currently available DNA replication assays, very

slow growth could suggest metabolic dormancy since parasites would appear to be non-

replicating.

The finding that extremely large nests of asynchronously dividing or differentiating para-

sites can exist in chronically infected animals (Fig 6 and S4 Fig) could have therapeutic impli-

cations. Infected cells such as these may contain parasites in a range of metabolic states

(including dormancy) that exhibit heterogeneity in terms of drug susceptibility. In addition,

one possibility is that these in vivo mega-nests could result in some form of intracellular “herd-

protection” in which parasites in the centre of the nest are exposed to lower drug concentra-

tions than those on the periphery. If the drug is taken up through the plasma membrane of the

host cell, then peripheral parasites may deplete the drug before it reaches those in the centre.

This may give rise to an environment that is difficult to replicate in the standard in vitro assays

used in the drug development pipeline.

Single infected cells can contain both replicating amastigotes and non-replicating, differen-

tiated trypomastigotes (Fig 7). Therefore, whatever the signal(s) that trigger differentiation

and/or replication, they are not perceived and/or acted on in concert by every parasite within

the nest. This contrasts with the related extracellular parasite T. brucei in which a well-charac-

terised quorum sensing pathway initiates differentiation from the replicative long slender

bloodstream form to the non-replicating short stumpy form, preadapted for transmission to

the tsetse fly vector [39–42]. The lack of synchrony in differentiation between amastigote,

intracellular “epimastigote” and trypomastigote, during T. cruzi infection, indicates that either

a ubiquitous quorum sensing mechanism of this kind does not operate within single infected

host cells, or that some parasites remain refractory to the trigger signal, as exemplified by the

quiescent amastigotes identified recently [9].

The dual reporter parasite strain also enabled us to identify a number of non-standard para-

site forms in tissues of infected mice, sometimes co-existing within the same host cell (Fig 5,

S5 Fig). The role of the intracellular and extracellular epimastigote-like, and flagellated amasti-

gote-like forms in the parasite life-cycle remains to be determined. Their relative scarcity sug-

gests that they could be transient forms which occur during the differentiation from

amastigote to trypomastigote. Importantly, detection of these morphological forms in vivo
excludes the possibility that they represent laboratory culture artefacts. Intriguingly, in this

context, it has been established that in the opossum, an ancient natural host of T. cruzi, there is

an insect stage-like epimastigote cycle within the anal glands. This appears to exist indepen-

dently of the intracellular pathogenic cycle found in other tissues [43]. It has also been demon-

strated that trypomastigotes can exist in two distinct populations (TS+ and TS-, referring to

trans-sialidase surface expression). TS- parasites are poorly infective to mammalian cells and
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significantly less virulent in mice [44]. This suggests that the two populations may have distinct

roles, one perhaps preadapted for invasion of the insect vector, and the other for propagation of

infection within the mammalian host, analogous to the slender and stumpy forms of T. brucei.
In conclusion, this study reports the first detailed analysis of T. cruzi replication in animals

at the level of single infected cells within a range of tissue types. The data reveal the complexity

of parasite replication and differentiation cycles, and confirm the existence in vivo of parasites

with a non-classical morphology. The presence of even transient non-canonical forms in

infected animals highlights important questions about their susceptibility to trypanocidal

drugs, compared with standard amastigotes. Similarly, it is unknown whether these forms

express the same surface protein repertoire as amastigotes and/or trypomastigotes, if they are

equally targeted by anti-parasite antibodies in the bloodstream and tissue fluids, or if they

retain the ability to infect other cells and disseminate the infection. It will now be important to

develop procedures to isolate these non-classical parasite types in sufficient numbers to allow

their biochemical and biological characterisation.

Supporting information

S1 Fig. MA104 cells infected with T. cruzi CL-Luc::Neon amastigotes for 72 hours, fixed,

then labelled with the TUNEL reagent. The parasite in the red box has completed kDNA rep-

lication and segregation, but not nuclear replication, and clearly shows that the segregated

kinetoplasts no longer display TUNEL positivity.

(PPTX)

S2 Fig. Plot of TUNEL+ve amastigote numbers as a function of total amastigotes present

in an infected cell, for each infected cell used to derive Fig 1D. Each circle represents a single

infected host cell. (a) All 200 infected cells from Fig 1D. (b) An expanded view of the area indi-

cated by the box to allow clear visualisation of the host cell numbers. For cells infected with 1

amastigote, n = 28.

(PPTX)

S3 Fig. Asynchronous parasite kDNA replication within single infected host cells in vivo in

acutely infected (19 days post infection) BALB/c mice revealed by TUNEL reactivity. (a)

caecum, (b) rectum, (c) heart, (d) spleen and (e) lung. Images are from two individual mice.

Bar = 10 μm.

(PPTX)

S4 Fig. Asynchronous parasite DNA replication within single infected host cells in chroni-

cally infected (211 days post infection) C3H/HeN mice revealed by EdU-labelling. Replica-

tion of parasite DNA within mice infected by T. cruzi clone CL-Luc::Neon (Costa et al., 2018)

was assessed after inoculating two EdU pulses 18 and 28 hours prior to tissue sampling (Exper-

imental procedures). Parasites were located in histological sections by fluorescence (mNeon,

green). a) DNA replication (red) in a chronic phase parasite nest (colon). The combined

DAPI/EdU image illustrates the heterogeneity of parasite replication within the nest.

Bar = 10 μm. b) Section from colon of mouse showing parasite nest. Upper panels show indi-

vidual channels and a merged image. The lower panel shows DAPI and EdU channels only,

allowing visualisation of the interspersed nature of EdU+ve amongst EdU-ve parasites. (a) and

(b) are from different mice. Bars indicate 10 μm.

(PPTX)

S5 Fig. Multiple morphological forms within single infected cells. Each image shows an

MA104 cell (blue, nucleus) 6 days after infection with T. cruzi (green) showing amastigotes
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(arrow a) dividing amastigotes (arrow da), epimastigote-like forms (arrow e) and trypomasti-

gotes (arrow t) within the same cell. (a-d) sequential still images from S1 Movie, (e-h) sequen-

tial still images from S2 Movie. Bars indicate 20 μm.

(TIF)

S1 Movie. Multiple morphological forms within a single infected cell. Live cell imaging of

an MA104 cell 6 days after infection with T. cruzi showing dividing amastigotes, epimastigote-

like forms and trypomastigotes within the same cell. See S5A–S5D Fig for locations of repre-

sentative parasites for each morphotype.

(MP4)

S2 Movie. Another example of multiple morphological forms within a single infected cell.

Live cell imaging of an MA104 cell 6 days after infection with T. cruzi showing amastigotes,

epimastigote-like forms and trypomastigotes within the same cell. See S5E–S5H Fig for loca-

tions of representative parasites for each morphotype.

(MP4)
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