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Abstract

Observational data, such as electronic health records, are a valuable source of infor-

mation for researchers seeking to answer health-related questions. Since treatment

allocation is not typically randomized in studies using observational data, there is

confounding � systematic di�erences in the characteristics of patients in di�erent

treatment groups. Propensity score analysis (PSA) can be used to handle confound-

ing by modelling the probability of being allocated to a particular treatment, based

on patient characteristics. However, a common issue in analyses of observational

data is missing data. In general, not dealing appropriately with missing data can

lead to loss of e�ciency and biased estimates of the treatment e�ect. Further-

more, having partially observed covariate data can complicate the estimation of the

propensity score.

The missingness pattern approach (MPA) has been proposed to handle partially

observed covariate data in PSA. One key objective of my thesis is to understand

when the approach is appropriate, by exploring its underlying assumptions. I began

by comparing di�erent statements of the MPA's underlying assumptions given in the

literature. I considered the plausibility of the MPA's assumptions in simple scenar-

ios, �nding that they are separate to the conventional classi�cation of missingness

mechanisms. I used d-separation (a rule for testing conditional independence state-

ments) with single world intervention graphs, representing a variety of scenarios, in

order to develop guidance for when the assumptions seem plausible.

I also explored the connection between using the MPA and using missing indi-

cators in the context of PSA, �nding that the use of missing indicators is a simpli-

�cation of the MPA. I extended this work to outcome regression, mathematically

proving that using missing indicators is valid under the MPA's assumptions as well

as an additional simplifying assumption. I also conducted simulation studies to as-

sess bias when using missing indicators to handle partially observed covariate data

in outcome regression.
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Chapter 1

Introduction

Establishing the e�cacy and safety of commonly used drugs remains a challenge

in pharmacoepidemiological research. Real world evidence � arising from obser-

vational data obtained outside the context of highly controlled randomized clinical

trials, typically data generated during routine clinical practice � plays an increas-

ingly important role in a wide range of pharmacoepidemiological investigations. The

expectation that routinely collected health data will be used to measure medication

e�ects � both harms and bene�ts � is now written into EU legislation [1]. In the

US, legislation has noted the potential bene�ts of using routinely collected health

data for regulatory decisions [2].

Important questions that can be usefully addressed using large scale routine

health data include the investigation of long-term and rare e�ects of medications,

treatment interactions, e�cacy of drugs in patients with rare conditions, long-term

resistance to treatments such as antibiotics, and establishing optimal treatment

policies for chronic conditions [3].

These questions are all, at heart, causal questions. Causal inference is the process

of drawing conclusions about questions regarding causal relationships, such as the

comparative e�ect of di�erent treatments on a health outcome [4].

A framework for the formal de�nition and estimation of causal e�ects, based

on the idea of counterfactuals � the idea of what would have happened had a

di�erent treatment been prescribed � has been proposed and is widely used in

15



pharmacoepidemiological research to address causal questions [5].

Randomized controlled trials are commonly considered to be the `gold-standard'

for the estimation of causal e�ects. Evidence from randomized trials has a number

of limitations. The patients recruited to randomized controlled trials are often not

representative of the general population. More speci�cally, they tend to include

patients who are younger, more often male and who have fewer comorbidities. Trials

often exclude the very patients who tend to be treated with the treatments under

investigation in clinical practice. Also, the treatment administration and monitoring

in trials is highly controlled, often leading to much higher adherence to the prescribed

treatment. As such, patients' use of treatments in trials may not be re�ective of use

in clinical practice.

Real-world evidence, re�ecting the e�ectiveness of treatments in routine clinical

practice for large samples of the general population over long periods of time, can

be obtained by the analysis of routinely collected health data with limited exclusion

criteria [6]. Hence, observational studies can be used to answer research questions

surrounding the e�ectiveness and safety of treatments in long-term routine clinical

practice; such research questions may be di�cult or infeasible to address through

randomized controlled trials.

Routinely collected health-related information is increasingly been stored elec-

tronically. These electronic health records (EHRs) o�er rich opportunities for phar-

macoepidemiological research investigating treatments in real-world settings. Exam-

ples of EHR databases in the UK include the Clinical Practice Research Datalink,

Hospital Episode Statistics, and The Health Improvement Network [7�9]. These

EHR databases contain large numbers of anonymised patient records, with informa-

tion on demographic characteristics, as well as prescriptions, diagnostic tests and

procedures.

Since EHR data are not collected for the purposes of research, but rather as part

of routine clinical or administrative practice, treatment allocation is not random

and is instead dependent on a range of factors including age, sex and comorbidities.

So, characteristics for one treatment group (say, the active treatment) may system-
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atically di�er from those of another treatment group (say, the control treatment). If

these characteristics are risk factors for the outcome under study, then these charac-

teristics may `confound' the causal relationship between treatment and control and

lead to biased results. Hence, observational studies using EHR must use strategies

for dealing with confounding bias.

While multivariable regression has a long history of use as a method to account

for confounding in observational data, methods based on the propensity score have

been increasingly applied, particularly to the analysis of large-scale health data. The

popularity of propensity score methods in this context is in part due to the ability

to estimate marginal population-level e�ects, which are typically more relevant for

policy makers. Further, propensity score methods can more readily handle large

amounts of potential confounding data, which is a major advantage when investi-

gating rare outcomes.

Propensity score analysis compares patients in the active treatment group to

patients from the control group with the same propensity for being allocated to the

active treatment group [10]. The basic premise relies on the idea that patients who

have a similar `likelihood' of receiving the treatment � whether or not they actually

do receive a prescription for that treatment � are, on average, similar. Therefore,

propensity score analysis compares outcomes of patients with similar propensity

scores to obtain estimates of treatment e�ect.

Whatever analytic approach is used to account for confounding bias, the prob-

lem of missing data is likely to arise. In EHR data, while health outcomes and

treatment prescriptions are usually well recorded, variables that potentially lead to

confounding bias are less so. For example, these potential `confounders' include pa-

tient characteristics, such as ethnicity or BMI. Further, the extent of missing data

in EHR is typically much greater than is likely to arise in more traditional study

designs. Therefore, the problem of missing confounder data in studies using EHR is

likely to pose considerable challenges.

To deal with the problem of missing confounder data, patients records are often

excluded from analysis. However, this leads to a loss of information and can result
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in biased estimates of the treatment e�ect.

This thesis focuses on propensity score based methods, due to its popularity

in the analysis of EHR data. In such studies, there are a number of methods for

dealing with missing confounder data, some of which have been speci�cally proposed

for the context of propensity score analysis. One method that has been proposed is

the missingness pattern approach (MPA), which incorporates information about the

pattern of missing variables into the propensity score. The assumptions underlying

the MPA have been discussed in the literature, however, the MPA has not been used

much, possibly due to lack of understanding regarding these assumptions.

1.1 Motivating example

Renin angiotensin system blocking using ACE inhibitors (ACEI) and angiotensin

receptor blockers (ARBs) is a common treatment for a wide range of conditions,

including hypertension and heart failure. However, some patients may experience

adverse e�ects. For instance, acute kidney injury (AKI) � a sudden decline in

kidney function � is thought to be associated with use of ACEI/ARBs [11]. This

relationship is biologically plausible, however evidence to support a causal link is

limited: randomized evidence is scarce due to insu�cient or no reporting of renal

events in randomized trials of ACEI/ARBs [11]. Despite this limited evidence,

guidelines recommend reducing or ceasing ACEI/ARB use during acute illness [11].

Mans�eld et al. (2016) used data taken from UK primary care linked data, from

the Clinical Practice Research Datalink (CPRD), to investigate the relationship

between use of ACEI/ARBs and the risk of AKI [11]. The large amount of missing

data in two potential confounders was handled using a missing category approach.

The assumptions under which this approach would have provided valid inference had

not yet been clearly outlined in the literature, thus the validity of the assumptions

underlying this approach could not be fully explored.

I obtained ethics approval to use this data from The Medicines and Healthcare

products Regulatory Agency, CPRD division and the London School of Hygiene and

Tropical Medicine (Appendix A).
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1.1.1 The Clinical Practice Research Datalink

The CPRD, formerly known as the General Practice Research Database, contains

anonymised primary care records from over 1600 general practices for 11 million

registered, alive patients as of 4th September 2019 [12]. These patients are fairly

representative of the general UK population [7,13,14]. Data are collected by general

practice sta� as part of routine clinical care [7]. Data are recorded in a number

of ways in the CPRD: clinical measures such as symptoms and diagnoses can be

classi�ed using Read codes [15] or recorded numerically [7], and prescription data

is recorded with British National Formulary codes and dosage information [7]. Ad-

ditional notes can be recorded as free-text, but are not available to researchers as

standard.

CPRD data can be linked to other data sources, including Hospital Episode

Statistics (HES) data, to provide more complete information about the patient path-

way. Hospital Episodes Statistics (HES) contains records of all patients admitted to

NHS hospitals in England, covering every hospital stay. Data for HES are recorded

by clinicians and entered into an electronic database by dedicated clinical coding

departments [8]. Data are recorded in a number of ways in HES, including: ICD-10

codes for the classi�cation of diagnoses [16], OPCS codes to classify operations and

procedures [17].

Linkage of CPRD and other datasets is carried out by a trusted third party,

NHS Digital [18]. Linkage uses pseudonymised identi�ers and a deterministic linkage

algorithm that produces a ranking variable that indicates the quality of links [19].

1.1.2 Study design

Mans�eld et al. (2016) used data taken from the CPRD linked to HES to investigate

the relationship between use of ACEI/ARBs and the risk of AKI, using a cohort of

new users of antihypertensive drugs to limit confounding by indication [11] (i.e. to

avoid confounding bias arising from a comparison of ACEI/ARBs users and healthy

patients with no antihypertensive prescriptions).

More than 500,000 new users of antihypertensives between 1997-2014 were in-
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cluded in Mans�eld et al.'s study. Being an observational comparative e�ectiveness

study, strategies to deal with confounding were required: the authors chose to use

multivariable Poisson regression, adjusting for age, sex, various chronic comorbidi-

ties, time exposed to other antihypertensive drugs and calendar period [11]. In this

study, many of the baseline characteristics were not balanced across the treatment

groups, indicating potential confounding bias (see Table 5.1 in the research paper

pre-print in Chapter 5). By using propensity score analysis, potential confounders

can be balanced using the propensity score to summarise all of the covariates, re-

placing the need to include all covariates separately in a regression model.

A key comorbidity and potential confounder, baseline chronic kidney disease

(CKD) stage, had missing values in over 50% of patients. Ethnicity also had over

50% missing data. Restricting analysis to patients with complete records would lead

to a large loss of data; only a �fth of the patients in the study had both ethnicity

and baseline CKD stage recorded. Mans�eld et al. opted to use a `missing baseline

CKD stage' category to minimize selection bias and performed a sensitivity analysis

excluding patients with missing baseline CKD stage [11]. They also used sensitivity

analysis to compare the main results for the cohort to the results for a subset of

patients with known ethnicity, �nding that neither of the sensitivity analyses had

much e�ect on the results of the study [11]. However, they do not comment beyond

this on the assumptions about missing data inherent in their analyses.

1.2 Aims and objectives

The overall aim of this thesis is to investigate missing data methods incorporating

missingness information to deal with partially observed confounder data when using

causal inference methods in observational studies, with a focus on gaining a clear

understanding of the assumptions required and providing practical guidance for

assessing their plausibility. The speci�c objectives are listed below.

Objective 1: to explore the assumptions underlying the missingness

pattern approach. The missingness pattern approach (MPA) has been proposed

as a method to handle missing confounder data in propensity score analysis. I will
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explore the assumptions under which the MPA would provide valid inference, by: (i)

investigating the connection between the MPA and the conventional classi�cation

of missing data proposed by Rubin (1976) [20], (ii) identifying settings where the

assumptions are likely to be plausible, and (iii) developing ways of assessing the

assumptions using causal diagrams.

Objective 2: to develop guidance for assessing the assumptions un-

derlying the missingness pattern approach By developing the work from

Objective 1, I will develop practical guidance for assessing the MPA's assumptions

in a given setting and I will demonstrate the practical guidance on the motivating

example using electronic health data.

Objective 3: to investigate the missing indicator approach for propen-

sity score analysis. I will explore the relationship between the MPA and the

missing indicator approach in the context of propensity score analysis, in particular

investigating the implications of this relationship on the assumptions under which

the missing indicator approach can provide valid inference.

Objective 4: to investigate the missing indicator approach for outcome

regression. I will extend the work from Objective 3 to investigate the use of the

missing indicator approach in the context of outcome regression.

Objective 5: to investigate variance estimation for missing confounder

methods incorporating missingness patterns for propensity score analysis.

I will derive a variance estimator for inverse probability of treatment weighting after

using the MPA to deal with partially observed confounder data.

1.3 Thesis overview

I begin in Chapter 2 with an overview of the potential outcome framework for causal

inference and the principles of propensity score analysis. I also describe missing data

methods for propensity score analysis, introduce causal diagrams for representing

causal relationships and review the use of the MPA for propensity score analysis in

health research.

In Chapter 3, I explore the assumptions underlying the validity of the MPA, by
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considering connections with prior work from the literature. I also devise ways of

assessing the assumptions using causal diagrams.

In Chapter 4, I consider ways to communicate how to assess the assumptions

in practice and provide the initial guidance developed for assessing the MPA's as-

sumptions.

In Chapter 5, I present a research paper pre-print that explores the assumptions

underlying the MPA and provides the current guidance for assessing the MPA's

assumptions. This research paper has been submitted for publication in Statistics

in Medicine.

In Chapter 6, I derive a variance estimator inverse probability of treatment

weighting after using the MPA and discuss potential for future simple simulation

studies to empirically assess the performance of this estimator.

In Chapter 7, I explore the connection between the MPA and the approach

where a missingness category for partially observed characteristics is added to the

propensity score model. I then extend these �ndings to investigate the use of missing

indicators in standard outcome regression.

In Chapter 8, I present a research paper pre-print that explores the use of the

missing indicator approach in standard outcome regression. This research paper has

been provisionally accepted for publication by the Biometrical Journal.

In Chapter 9, I conclude with a discussion and propose new avenues for research

in this area.

22



Chapter 2

Background

In this chapter, I provide some background information on the methodology used

in my PhD. I begin with an overview of causal inference and the potential outcome

framework, including propensity score analysis. Next, I describe missing confounder

data methods, introducing key concepts in missing data methodology. I then in-

troduce causal diagrams, which are a way of visually representing relationships in

a scenario of interest. Finally, I review the existing literature using the missingness

pattern approach.

2.1 Causal inference and the potential outcome

framework

Causal inference is the process of drawing conclusions about questions regarding

cause and e�ect. Causal questions in pharmacoepidemiological research concern the

e�ects of drugs, medical devices or other medical interventions in a large population

[3]. For example, my motivating example is a comparative e�ectiveness study that

investigates the association between use of renin-angiotensin system blocking drugs,

compared to other antihyperhensive drugs, and the risk of AKI in a cohort of over

500,000 adults [11]. Causal questions in medical research typically concern the e�ect

of a treatment, exposure or intervention on health outcomes [21]; in this thesis I

discuss causal e�ects in terms of treatments, to correspond with the motivating
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example.

The Neyman-Rubin framework was developed to make inferences about causal

e�ects and relies on the concept of counterfactuals: what would have happened

had the cause not been present [10]. For example, suppose individuals in a study

are allocated to one of two treatment groups, say an active treatment or a control.

Each individual has an observed outcome and a counterfactual outcome (i.e. the

outcome that would have happened if, counter to fact, the individual had a di�erent

treatment allocation). We refer to these collectively as potential outcomes. Each

individual then has two potential outcomes: the outcome that would have been

observed if they were allocated to the active arm, and the outcome that would have

been observed if they were allocated to the control arm [10,22]. Thus a contrast of

potential outcome values for an individual gives the causal e�ect of treatment for

this individual. However, the `fundamental problem of causal inference' [22] is that

this comparison cannot be made directly since only one of these potential outcomes

can be observed and the other is counterfactual [23].

Instead, inferences are made by considering a group of individuals, some of whom

are allocated to the active arm and others allocated to the control arm. The average

outcomes from each treatment arm are compared to estimate the average treatment

e�ect. This estimate is unbiased when the individuals in the active treatment arm

are comparable with the individuals in the control arm [24]. An example of when

the treatment arms are comparable is when treatment allocation is randomized [22].

When randomization is not feasible, observational data can be used to estimate

treatment e�ects. However, in non-randomized settings, obtaining unbiased esti-

mates of the treatment e�ect is more complex and relies on assumptions that are

untestable in practice.

2.1.1 Notation and estimands of causal e�ect

Consider a group of n patients, with information on p characteristics represented

by a row vector Xi = (Xi1, . . . , Xip)
T where i = 1, . . . , n and Xi is fully observed.

Throughout this thesis, treatment allocation is assumed to be binary, denoted by
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Zi = 1 if patient i is in the treatment group or Zi = 0 if they are in the control group.

Correspondingly, the two potential outcomes for patient i are denoted as Yi(z),

where z = 0, 1. The observed outcome for patient i is denoted as Yi. Henceforth,

the subscripts are omitted where unambiguous.

An estimand is a quantity that we want to make inferences about. In this thesis,

the estimand of interest is the average treatment e�ect (ATE): E[Y (1) − Y (0)].

Restricting attention to binary outcomes, this estimand is the risk di�erence [25,26].

The risk di�erence is often of interest in public health questions and is easy to

interpret (as it is an absolute measure) [27]. In addition, the risk di�erence has the

desirable property of being collapsible, unlike the odds ratio [27]. An alternative

estimand would be the marginal risk ratio, E[Y (1)/Y (0)], which is also collapsible

[25].

While I focus on causal inference for the whole population, sometimes the pop-

ulation of interest in a research question is the subgroup of patients in the treat-

ment arm, for which the corresponding estimand is called the average treatment

e�ect in the treatment group (ATT), E[Y (1) − Y (0)|Z = 1] [25, 28]. Similarly, if

the population of interest is the subgroup of patients in the control arm, the cor-

responding estimand is the average treatment e�ect in the control group (ATC),

E[Y (1) − Y (0)|Z = 0]. The choice between the ATE, ATT and ATC depends on

the context of the research [26,28,29]; analogous de�nitions of the estimands can be

made in terms of risk ratios or odds ratios as required [25]. In this thesis, attention

is restricted to the ATE in terms of the risk di�erence.

2.1.2 Identi�cation of causal e�ects

Although the Neyman-Rubin framework was developed for randomized controlled

trials [30], we can use observational data to obtain estimates of the ATE under

certain `identi�ability' assumptions [31]. In this thesis, we assume the following

hold: the consistency assumption, the strongly ignorable treatment assignment as-

sumption, the `no interference' assumption, and the positivity assumption. Note

that di�erent identi�ability assumptions may be used in other causal inference ap-
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proaches, such as analyses using instrumental variables [10,32].

The consistency assumption states that, if an individual is assigned a particu-

lar treatment then the corresponding potential outcome will be observed for that

individual, irrespective of the way in which they were assigned to that treatment

group [31]. This can be expressed as:

Yi = Yi(1)× Zi + Yi(0)× (1− Zi).

The `no interference' assumption states that the treatment received by one pa-

tient does not a�ect the potential outcomes of another patient: [33�35]

Yi(z1, . . . , zi, . . . , zn) = Yi(zi),

where Yi(z1, . . . , zi, . . . , zn) is the hypothetical potential outcome where Zi is set to

zi for all values of i = 1, . . . , n.

The strongly ignorable treatment assignment (SITA) assumption is that there is

no unmeasured confounding: [33]

(
Yi(1), Yi(0)

)
⊥ Zi|Xi∀i . (2.1)

The SITA assumption has also been referred to as `conditional exchangeability' since

the treatment and control groups are exchangeable based on the observed covariate

information [36].

Finally, the positivity assumption states that, on the basis of their characteristics,

it must be possible for each individual to be allocated to treatment or to control

[23,37], and can be expressed as:

0 < P (Zi = 1|Xi) < 1 ∀ i .

Throughout, we assume that these assumptions hold in the complete data.
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2.1.3 Treatment e�ect estimation in observational studies

Randomized controlled trials are considered to be the gold-standard for causal infer-

ence. When treatment allocation is randomized, patient characteristics are balanced

on average across the two treatment groups (i.e. have similar distributions in the

two groups) and so the ATE can be identi�ed as:

ATE = E[Y |Z = 1]− E[Y |Z = 0] .

When randomization is not feasible, observational data can be used to estimate

treatment e�ects. Furthermore, observational studies can be used to answer research

questions that could not feasibly be addressed using randomized controlled trials,

such as the long-term e�cacy and safety of treatments in routine practice. However,

a common issue with observational data is confounding bias: systematic di�erences

in patient characteristics between treatment groups. Since patient characteristics

are not balanced across treatment groups, the SITA assumption does not hold and

the ATE cannot be identi�ed. One solution is to identify a set of confounders which

satisfy the SITA assumption and thus identify the ATE using strategies to account

for those confounders.

Conventionally, a variable is considered to be a `confounder' in the epidemio-

logical sense if it (i) is associated with treatment allocation, (ii) is associated with

the outcome, and (iii) does not lie on the causal pathway between treatment and

outcome [38]. In this thesis, we use the more formal de�nition: a variable is a con-

founder if it is a member of some set of variables that is su�cient to control for

confounding [39]. Causal diagrams provide a way of identifying a set of measured

variables which satis�es the SITA assumption of no unmeasured confounding.

When estimating the treatment e�ect in observational studies, two key ap-

proaches to deal with confounding are: (i) outcome regression models conditioning

on confounders; or (ii) propensity score methods, as described below. In this thesis,

I focus on propensity score methods for estimating marginal treatment e�ects.
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2.1.4 Propensity score analysis

The propensity score e(x) is the probability of being assigned to the treatment group,

as opposed to the control group, given a set of observed characteristics:

ei(xi) = P (Zi = 1|Xi = xi), (2.2)

for patient i (i = 1, . . . , n) with a vector of confounder values Xi = xi.

The propensity score is a balancing score: at each level of the propensity score,

the distributions of observed characteristics are the same for treated individuals as

for controls on average [33]. Rosenbaum and Rubin (1983) showed that at each

value of the propensity score, the di�erence in mean outcomes for the treated and

control groups is an unbiased estimate of the ATE at that value of the propensity

score under the identi�ability assumptions described above [33].

Typically, propensity scores are unknown and must be estimated from the data.

Often, they are estimated using a logistic regression model for the treatment, with

observed confounders as covariates [28]. The predictions obtained from this model

are the individual estimated propensity scores. Sometimes factors that are not

necessarily confounders but are associated with the outcome of interest can also

be included as covariates to increase precision [25]. Alternative strategies for the

estimation of propensity scores, such as classi�cation trees, random forests and gen-

eralised boosted modelling, are discussed elsewhere [28, 40] but are not considered

further here.

Rosenbaum and Rubin (1983) showed that, provided the above identi�ability as-

sumptions hold, matching, strati�cation and adjustment on the estimated propensity

score can give unbiased estimates of the ATE [33]. In propensity score matching,

treated and control individuals are `matched', according to their propensity score

and, for each matched pair, the di�erence in their observed outcomes are calculated.

The average of these di�erences then provides an estimate of the ATT [33]. To

estimate the ATE, each individual in the sample must be matched, which means

that some individuals will appear more than once in the matched sample [23]. Al-
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ternatively, the ATC can be estimated by matching each control individual with a

treated individual [23,25].

Propensity score strati�cation involves separating individuals into strata (e.g.

quintiles), based on their propensity scores [33,41]. The treatment e�ect is estimated

in each of the strata and a weight for each stratum is calculated, corresponding to the

size of the stratum. Then a weighted average of the treatment e�ects is calculated,

providing an estimate of the ATE [23]. Estimates of average treatment e�ects in

the treatment and control subgroups, the ATT and ATC, can be obtained by using

weights corresponding to the proportions of treated individuals in each stratum, or

weights representing the proportions of control individuals respectively [23].

In propensity adjustment, an outcome regression model (e.g. a logistic regression

model for a binary outcome) is �tted including treatment and the propensity score as

covariates [28,33], and often also including potential confounders as covariates [42].

The resulting treatment coe�cient is often reported as an estimate of the treatment

e�ect. In this report, an extension of the propensity adjustment method will be

considered, as follows. Potential outcomes for each individual can be predicted using

the outcome regression model with treatment and propensity score as covariates,

and the di�erence between potential outcomes can be calculated for each individual

and averaged to estimate the ATE [43]. This method can also be used to estimate

the average treatment e�ect in the treatment group and the average treatment

e�ect in the control group by restricting to the appropriate subset of individuals as

required [23].

Another propensity score method that can be used to estimate the causal e�ect

of treatment is inverse probability of treatment weighting (IPTW). IPTW uses the

estimated propensity scores as weights to construct `pseudo-populations' in which

the distributions of observed confounders are balanced across treatment groups: the

pseudo-population where everyone had treatment and the pseudo-population where

everyone had control [28, 36]. The mean outcome in each is calculated, and the
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di�erence between these, provides an estimate of the ATE: [23]

ÂTEIPTW =

∑
i
YiZi

êi∑
i
Zi

êi

−
∑

i
Yi(1−Zi)
(1−êi)∑

i
(1−Zi)
(1−êi)

. (2.3)

Di�erent weights can be applied to construct pseudo-populations which re�ect the

distribution of observed confounders in the treatment group or control group to

obtain the ATT or ATC, respectively [23].

Throughout this thesis, IPTW is used to estimate treatment e�ects.

2.2 Missing confounder data

So far, the discussion of propensity score methods has assumed that data is fully

observed. However, in practice, observational studies su�er from large amounts of

missing data. For example, a valuable source of observational data for investigating

treatments in routine clinical practice is data from electronic health records (EHRs).

Whilst health outcomes and treatment prescriptions are usually well recorded, EHRs

tend to su�er from missing data in recording of patient characteristics. This can be

seen in the motivating example introduced in Chapter 1, where two key confounders,

ethnicity and baseline chronic kidney disease (CKD) stage, each had over 50% of

missing data.

Having missing data is problematic as there is a loss of information, or e�ciency,

from the available data [44]. Missing data can also lead to bias if the assumptions

underlying a chosen missing data method are not satis�ed [44,45].

2.2.1 Further notation and concepts related to missing data

We assume throughout that Y and Z are fully observed, and that any missing data

is in the confounders � often the case in EHRs. Let Rij be a missing indicator

indicating whether the confounder j (j = 1, . . . , p) for patient i (i = 1, . . . , n) is

observed (Rij = 1) or not (Rij = 0). Following D'Agostino and Rubin (2000) and

other established missing data literature [45�47], the set of confounder values Xij

(i = 1, . . . , n; j = 1, . . . , p) can be partitioned into those that are observed and those
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that are missing, where Xobs represents the set of values that are observed and Xmis

represents the set of values that are missing:

X = {Xobs, Xmis} where Xobs = {Xij|Rij = 1} and Xmis = {Xij|Rij = 0}.

We will use Ri = (Ri1, ..., Rip) to refer to the vector of missing indicators for patient

i, omitting the subscript i where unambiguous.

We can use missing indicators to de�ne missingness patterns, which are a way

of representing the knowledge of which characteristics are observed or unobserved.

Subjects can be separated into sets according to the possible combinations of being

observed or missing, i.e. the missingness patterns.

Suppose two covariates, A and B, are measured for a group of individuals and

that there is missing data present in both. We denote the respective missing indi-

cators as RA and RB. In this case, there are four possible combinations of being

observed or missing, and hence 4 distinct missingness patterns de�ned by:

(i) the set of patients for whom both A and B are observed (i.e. RA = 1 and

RB = 1),

(ii) the set of patients for whom only A is observed (RA = 1 and RB = 0),

(iii) the set of patients for whom only B is observed (RA = 0 and RB = 1),

(iv) the set of patients for whom neither A nor B are observed (RA = 0 and

RB = 0).

2.2.2 Taxonomy of missingness mechanisms

Missingness mechanisms refer to the process by which data become missing, cor-

responding to the relationship between the reason for missingness in a particular

sample and the actual values of the observed and missing data [44]. The most com-

mon classi�cation of missingness mechanisms is Rubin's taxonomy, in which data

are missing completely at random (MCAR), missing at random (MAR) or missing

not at random (MNAR). [20, 44,48]
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The �rst missingness mechanism, where data are MCAR, means that the prob-

ability of being missing does not depend on the observed data or the unobserved

data, i.e.

P (R|Y, Z,Xobs, Xmis) = P (R) (2.4)

or R ⊥ Y, Z,Xobs, Xmis .

Data are MAR if the probability of being missing depends on the observed values

of data but not on the missing values:

P (R|Y, Z,Xobs, Xmis) = P (R|Y, Z,Xobs) (2.5)

i.e. R ⊥ Xmis|Y, Z,Xobs .

Finally, data are MNAR if the probability of being missing depends on the

unobserved data, after conditioning on the observed data:

R 6⊥ Xmis|Y, Z,Xobs . (2.6)

In other words, the probability of being missing depends on the missing value itself.

Information about the missingness mechanisms are an important factor when

considering whether an missing data method is appropriate for a particular dataset.

2.2.3 Methods to handle missing data

There has been much methodological research into missing data [44, 45, 49]. Com-

mon ad hoc methods for handling missing data include excluding patients with

missing data [50] or excluding variables with missing data [51]. Other simple meth-

ods include using missing indicators, and replacing missing observations with �xed

values [52]; imputing missing values with the mean of observed values [49]; or, in

the context of longitudinal studies, imputing missing values by carrying forward

the last observation observed [45]. Alternative methods include multiple imputa-

tion [44, 53], likelihood-based methods use models based on observed data [45] and
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inverse probability weighting [54]. Multiple imputation is an increasingly popular

approach to missing data, where missing values are imputed multiple times with

plausible values in order to create multiple `complete' imputed datasets, and results

from each dataset are combined using Rubin's Rules to obtain an overall treatment

e�ect estimate [20, 44]. Standard implementations of multiple imputation require

data to be MAR [44,49].

In the context of propensity scores, insights from the general methodological

research into missing data cannot directly be used because the aims of regression

modelling in propensity score analysis are di�erent (i.e. to achieve balance rather

than to estimate parameters [46]) and so the assumptions underlying the validity

of missing data methods may be di�erent. Thus a chosen missing data technique

may need either stronger SITA-type assumptions or assumptions regarding the miss-

ingness mechanism to ensure that using subsequent propensity score methods will

achieve balance between treatment groups and obtain valid inferences [51].

2.2.4 Common methods to handle missing confounder data

A common approach to dealing with missing confounders is complete record analysis

(CRA), also known as complete case analysis, where individuals with missing data

are discarded before analysis. This approach leads to loss of e�ciency as information

individuals with partial information is discarded. Also, this approach often leads to

biased estimates of the treatment e�ect when missingness depends on both outcome

and treatment [50].

The missing indicator approach, a simple method for handling missing con-

founder data, adds a `missing' category to partially observed categorical confounders.

Equivalently, for continuous confounders, missing values are set to a �xed value, say

0, and both the confounder and its corresponding missing indicator are included

in the propensity score model. Although the missing indicator approach has been

suggested as a missing data method for propensity score analysis [25, 55], the use

of missing indicators is generally considered to be an ad hoc method [56, 57] that

yields biased results [58,59].
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A popular alternative for handling missing confounder data is multiple imputa-

tion. Similarly to dealing with missing data in general, multiple imputation imputes

missing covariates with plausible values several times by drawing from the predictive

distribution of the missing covariates given observed data, thus creating a number of

imputed datasets. The full analysis (estimation of the propensity score then estima-

tion of the treatment e�ect) is performed separately in each imputed dataset [60].

The results are then combined using Rubin's rules to obtain an overall estimate of

the treatment e�ect and standard error [20,44,60]. Multiple imputation is very pow-

erful but also can be fairly complex. Guidelines regarding optimal use of multiple

imputation in conjunction with propensity score analysis have been proposed [60,61].

Another method that has been proposed is the missingness pattern approach,

which incorporates information about the pattern of missing variables into the

propensity score. My thesis focuses on this method, which avoids discarding in-

formation on individuals with missing confounder data and is relatively simple to

understand.

2.2.5 Using missingness patterns to handle missing

confounder data in propensity score analysis

Rosenbaum and Rubin (1984) and D'Agostino and Rubin (2000) proposed a gen-

eralized propensity score that additionally took into account information on miss-

ingness [46, 62]. The generalized propensity score is de�ned as the probability of

being assigned to treatment Z, given the observed covariates Xobs and the missing

indicator [46]:

e∗(X) = P (Z = 1|Xobs, R),

where e∗(X) denotes the generalized propensity score variable.

Rosenbaum and Rubin (1984) proved that adjusting for the generalized propen-

sity score balances on average the observed covariates and the observed-data indi-

cator (but not the unobserved data) [62], i.e.

Xobs, R ⊥ Z|e∗.
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To estimate the generalized propensity scores, Rosenbaum and Rubin (1984)

suggested �tting regression models for e∗(X) in each missingness pattern. Once

the estimated scores have been obtained and collected into one variable, the usual

propensity score methods can be used for analysis.

D'Agostino and Rubin (2000) stated that, assuming P (Z|X, Y (0), Y (1), R) =

P (Z|Xobs, R), this missingness pattern approch (MPA) can obtain valid causal in-

ferences and provide unbiased estimates of the ATE [46]. However, no explicit proof

is provided.

Mattei (2009) instead give the following assumptions for valid inference from the

MPA [63]:

P (Z|X, Y (0), Y (1), R) = P (Z|X,R),

and either P (Z|X,R) = P (Z|Xobs, R),

or P (Y (0), Y (1)|X,R) = P (Y (0), Y (1)|Xobs, R).

An extension of the MPA, suggested by D'Agostino et al. [64], is to estimate the

propensity scores in each missingness pattern for all subjects with data observed for

that pattern, but only retaining the scores for subjects who actually had that speci�c

pattern. Consequently, some subjects are used more than once in the estimation

procedure. However, they do not take into account the resulting correlation in the

data at the analysis stage.

2.3 Causal diagrams

A variable is de�ned a confounder if it is a member of some set of variables that is

su�cient to control for confounding [39]. When considering what variables could be

confounders, it can be helpful to draw a causal diagram to visualise the assumptions

being made in a given setting. Causal diagrams are useful for making explicit the

assumptions about a scenario's underlying causal structure as well as identifying a

set of measured variables (if such a set exists) that would be su�cient to account

for confounding.
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2.3.1 Introduction to causal diagrams

Causal diagrams are a visual representation of the causal relationships between

variables in a scenario of interest and are a useful tool for assessing conditional

independence statements under an assumed causal structure [65].

In graphs, nodes represent variables and directed arrows indicate causal relation-

ships between variables. We can visualise direct and indirect relationships between

variables by considering paths. A path between two variables is a unbroken sequence

of arrows between the variables, irrespective of arrow direction. Di�erent paths be-

tween treatment and outcome variables, for example, represent the di�erent ways

that treatment is associated with outcome, either directly or via other variables. A

directed path is a path where each arrow is in the same direction. We can describe

relationships between variables on a path using the concept of descendants. If there

is a directed path P → M → Q, we say that M and Q are descendants of P .

Directed acyclic graphs are graphs where all arrows are directed and there are no

cycles, i.e. directed paths that start and �nish at the same variable. Causal directed

acyclic graphs, also known as causal diagrams, are directed acyclic graphs which

include all variables that are associated with two or more variables already included

in the graph.

For illustration, we consider a simpli�ed version of our cohort study, introduced

in Chapter 1, looking at the relationship between prescription of ACEI/ARBs and

risk of AKI, where baseline CKD stage is the sole confounder (Figure 2.1). In this

simpli�ed example, we assume (temporarily for illustrative purposes) that baseline

CKD stage is fully observed.

An example of a path in Figure 2.1 is the sequence of arrows from baseline CKD

stage to ACEI/ARB prescription, and from ACEI/ARB prescription to AKI. As each

arrow in this path is following the same direction, this is a directed path between

baseline CKD stage and AKI. In this path, the ACEI/ARB node and the AKI node

are descendants of the baseline CKD stage node, and AKI is also a descendant of

ACEI/ARB.

In Figure 2.1, there are two paths between treatment and outcome: the direct
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Figure 2.1: A causal directed acyclic graph representing confounding of the relationship
between prescription of angiotensin-converting enzyme inhibitors or angiotensin receptor
blockers (ACEI/ARBs) and risk of acute kidney injury (AKI), by baseline chronic kidney
disease (CKD) stage. All variables are fully observed.

arrow from ACEI/ARB prescription to AKI (the causal e�ect of interest), and the

sequence of arrows from ACEI/ARB prescription to baseline CKD stage, and from

baseline CKD stage to AKI.

After creating a causal diagram that represents our scenario of interest, using

clinical knowledge of the scenario, we can determine whether conditional indepen-

dence statements hold in that causal diagram by applying the d-separation rule.

2.3.2 The d-separation rule

The d-separation rule determines if two sets of variables (say A and B) are inde-

pendent when conditioning on a third set of variables (C) under an assumed causal

structure [66]. In order to de�ne the d-separation rule, we �rst de�ne colliders and

blocked paths.

For a particular path in a graph, a variable which has two incoming arrows is

called a collider for that path. In Figure 2.1, the AKI node is a collider for the path

from baseline CKD stage to ACEI/ARB prescription via AKI (i.e. the two arrows

`collide' at the AKI node).

A path may be blocked in two ways [4,66]: either (i) the path contains a collider

that is not in the conditioning set, and does not have any descendants in the con-

ditioning set; or (ii) the path contains a non-collider that is in the conditioning set.

If a path from A to B is not blocked, we say that this path is open, in which case,

A and B are associated. We say that C `d-separates' A and B if every path from A

to B is blocked by C. If C d-separates A and B, then we have A ⊥ B|C, i.e. A is
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conditionally independent of B given C.

2.3.3 Extensions of causal diagrams

Causal diagrams represent relationships between observed variables. However, re-

searchers often need to assess assumptions involving potential outcomes, rather than

observed outcomes. For example, the SITA assumption involves Y (0) and Y (1) in-

stead of Y . In order to incorporate potential outcomes into causal diagrams, we

consider Richardson and Robin's single world intervention graphs [67] and Balke

and Pearl's twin networks [68].

2.3.3.1 Single world intervention graphs

A single world intervention graph is obtained from a causal directed acyclic graph

by `splitting' the treatment variable into two components, separating the random

variable Z from the possible �xed values z treatment can take (eg. 0 or 1 for a bi-

nary treatment variable) [67]. The random variable part keeps the arrows entering

the original variable and the �xed value part keeps the arrows leaving the original

variable. A new graph is constructed for each possible treatment value and descen-

dants of the �xed treatment part are relabelled to re�ect the e�ect of that particular

treatment. For example, when z = 0, Y � a descendant of Z in the original causal

diagram � becomes Y (0) and when z = 1, Y = Y (1).

Returning to our simpli�ed example in Figure 2.1, we can split the ACEI/ARB

prescription variable to obtain the two single world intervention graphs in Figure

2.2. In Figure 2.2a, the ACEI/ARB prescription variable has been split into two

hemispheres: the random hemisphere (ACEI/ARB) and the �xed hemisphere repre-

senting the �xed value of no prescription. For convenience we can represent all values

in a single world intervention template (SWIT), where instead of setting treatment

to one particular value, we �x treatment equal to some value z, where z may be any

possible treatment value. A SWIT for our simple fully observed example is given in

Figure 2.3.

The d-separation rule can be applied to SWITs [67]. For example, we can apply
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(a) (b)

Figure 2.2: The single world intervention graphs resulting from splitting the treatment
variable in the graph in Figure 2.1 and intervening to: (a) not prescribe ACEI/ARBs, and
(b) prescribe ACEI/ARBs, with all variables fully observed.

Figure 2.3: The single world intervention template resulting from splitting the treatment
variable in the graph in Figure 2.1 and intervening to set the ACEI/ARB variable equal
to z = 0, 1, where z = 1 represents treatment (prescription of ACEI/ARBs) and z = 0
represents control (no ACEI/ARB prescription). All variables are fully observed.

the d-separation rule to Figure 2.3 to determine if AKI(z) ⊥ ACEI/ARB | baseline

CKD stage for z = 0, 1. The SWIT in Figure 2.3 contains only one path from

ACEI/ARB prescription to AKI(z) via baseline CKD stage. Conditioning on base-

line CKD stage blocks this path (since it is not a collider). Since the confounder

d-separates the treatment and outcome, ACEI/ARB prescription is conditionally in-

dependent of the corresponding potential AKI outcome, given baseline CKD stage.

Note that we cannot actually assess the SITA assumption as previously de�ned, as

each graph includes only one of the two outcomes, whereas the SITA assumption

involves the joint distribution of Y (1) and Y (0) � we are considering a weaker

version of the SITA assumption:

Z ⊥ Y (z)|X for z = 0, 1. (2.7)

The SITA assumption implies our weaker version in equation (2.7), but the converse

is not true [26].
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2.3.3.2 Twin networks

Researchers may sometimes need to assess whether conditional independence state-

ments involving both observed and counterfactual values of a variable are satis�ed

in a particular scenario. In order to do this, an alternative to SWITs called twin

networks can be used, as described by Balke and Pearl (1994) [68] and Shpitser and

Pearl (2007) [69]. In brief, a twin network can be constructed from a directed acyclic

graph, which involves real world variables and relationships, by adding counterparts

of variables and relationships in the counterfactual world where treatment has been

intervened upon to be set to some realisation of the random variable Z.

Figure 2.4: A simple twin network.
X: partially observed confounder. Z: observed treatment allocation. Y : observed out-
come. Y (z): potential outcome resulting from intervening to set treatment to value z. R:
observed missingness indicator (=1 if X observed, =0 if X is missing). R(z): potential
missingness indicator (=1 if X observed in counterfactual world, =0 if X is missing in
counterfactual world). eY : unobserved error term between Y and Y (z). eR: unobserved
error term between R and R(z).

Figure 2.4 gives an example of a twin network in a simple scenario with a single

partially observed confounder, where treatment has a causal e�ect on missingness

and there are no unobserved common causes with missingness and other variables.

We can determine apply the d-separation rule to twin networks in the same way as

SWITs, conditioning only on the variables in the conditioning set of the assumptions.
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2.4 The MPA in the literature

Before investigating the statistical properties of the MPA and providing practical

recommendations for its use, it is important to understand when and how researchers

currently use this approach. Therefore, I initially planned to perform a systematic

review of the literature to provide a description of the methods used by researchers

to address the issue of missing confounder data in epidemiological studies analysed

using propensity scores. Speci�c objectives were to:

• Estimate the proportion of papers reporting the use of the MPA � and alter-

native approaches� for propensity score analysis when some confounders are

partially observed

• Assess whether the assumptions underlying the validity of the methods em-

ployed were explicitly stated, and their plausibility discussed

• Among papers reporting the use of the MPA, describe the implementation of

the method (e.g. standard vs D'Agostino's extension of the approach [64],

missingness patterns pooling [70]) and the method used to estimate the vari-

ance of the treatment e�ect.

However, a systematic review with a similar scope was published by Malla et

al. [71] in the Journal of Comparative E�ectiveness Research while I was at the

screening stage. To avoid duplication, it has been decided not to perform the sys-

tematic review, but the protocol and the search algorithm are detailed in Appendix

B together with the results of the screening strategy.

Malla et al. screened Embase (OvidSP) and Medline (OvidSP) to retrieve pub-

lications using propensity score methods in comparative e�ectiveness research be-

tween 1 January 2007 and 30 June 2017. Of the 167 papers included in their system-

atic review, 118 (71%) retrospectively analysed routine datasets, which emphasises

the importance of the development of guidance for handling missing data in this

setting.

Although missing data are almost systematic in routinely collected data, only

41



86 articles (51%) provided information about how missing data were handled, and

62 (37%) reported the amount of missing data. Among papers reporting the use of

a missing data method, the most popular approach was complete record analysis

(n=53 (62%)), followed by multiple imputation (n=16 (19%)). These results were

expected given that complete record analysis is also the most common approach

to handle missing covariate data in multivariable regression. As for multiple im-

putation, it has been the focus of several methodological papers in the context of

propensity score analysis in the past few years [60, 61, 72], con�rming an increasing

interest for this method.

The MPA was used in 3 articles only (3%) and the related missing indicator

approach was reported in 1 article. The remaining papers reported the use of a range

of single imputation methods. This distribution con�rms the scarcity of studies using

the MPA in practice. Furthermore, the reasons for missingness were discussed in

12 papers, among which only 3 linked these reasons to the missingness mechanism.

This highlights a suboptimal reporting of missing data and missing data methods

for propensity score analysis, despite the availability of the STROBE guidelines

for the reporting of observational studies which includes speci�c items related to

missing data [73]. This could be explained by the di�culty to assess the assumptions

underlying the validity of the di�erent approaches in real-life scenarios, especially

for the MPA, since its assumptions have not yet been explored in practice. Causal

diagrams could facilitate this investigation and encourage researchers to carefully

consider and report the reasons for missingness and the rationale for the choice of

the missing data methods.
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Chapter 3

Understanding the assumptions

underlying the missingness pattern

approach

One potential explanation why the MPA is not often used by researchers is that

strategies for assessing assumptions underlying the MPA in practice have not been

discussed in prior literature. By using the causal diagrams introduced in Chapter 2

to visually represent scenarios of interest and the assumptions that we have made,

we can apply the d-separation rule to determine whether the MPA's assumptions

hold in a particular clinical scenario.

In this chapter, I explore the connections between the MPA and prior literature.

I then discuss how my use of causal diagrams evolved, driven by the nuances of the

MPA's assumptions.

3.1 Connections between the MPA's assumptions

and prior literature

In Chapter 2, our statement of the MPA's assumptions follows Mattei's statement

of assumptions su�cient for valid inference using the MPA [63]. Whereas Mattei

(2009) used conditional independence statements that hold jointly for the potential
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outcomes, we use weaker statements that hold separately for each potential outcome.

D'Agostino and Rubin (2000) instead asserted that, under the following assumption,

using generalized propensity scores can provide unbiased estimates of the ATE [46].

P (Z|X, Y (0), Y (1), R) = P (Z|Xobs, R) . (3.1)

We can also express Mattei's assumptions (i.e. the stronger versions of the

mSITA, CIT and CIO assumptions) using conditional probabilities:

strong mSITA: P (Z|X, Y (0), Y (1), R) = P (Z|X,R) (3.2)

CIT: P (Z|X,R) = P (Z|Xobs, R) (3.3)

strong CIO: P (Y (0), Y (1)|X,R) = P (Y (0), Y (1)|Xobs, R) (3.4)

Note that Mattei's `stronger' version of the CIT assumption (3.3) is the same as our

CIT assumption, since it does not involve potential outcomes.

Substituting the right-hand side of equation (3.3) into the right-hand side of

equation (3.2) gives the assumption in equation (3.1) as de�ned by D'Agostino and

Rubin [46]. Thus Mattei's statement of the mSITA and CIT assumption imply the

assumption given by D'Agostino and Rubin (2000).

Furthermore, assumptions (3.2) and (3.4) can hold whilst assumption (3.1) is

violated. Thus Mattei (2009) gives a wider set of assumptions than D'Agostino and

Rubin (2000) under which the MPA can give valid inference.

Other work exploring non-systematic monitoring of time-varying covariates [74,

75] suggest a version of the �no unmeasured confounding assumption� which, in the

single time-point exposure setting, can be written as:

Z ⊥ Y (z)|Xobs, R. (3.5)

If the D'Agostino and Rubin assumption (3.1) holds, then assumption (3.5) holds.

Furthermore, if either the mSITA and CIT assumptions hold, or the mSITA and

CIO assumptions hold, then assumption (3.5) holds. The mSITA, CIT and CIO
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assumptions can be seen as a wider set of assumptions under which variants of

missingness-pattern-type approaches can produce valid inference. All three sets of

assumptions seem likely to be satis�ed in a setting where missing confounder values

are unavailable to the individual making the treatment decision and thus do not

a�ect treatment. However, only Mattei's statement of the assumptions, with CIT

and CIO as two separate sub-assumptions, makes it clear that there is another quite

di�erent set of scenarios in which missingness-pattern-type methods may provide

valid inference.

3.2 Using weaker versions of the MPA's

assumptions

Mattei (2009) states three assumptions under which the MPA leads to valid infer-

ence [63]. I present weaker versions of these assumptions and prove that, under

these assumptions, the MPA still gives a consistent estimator of the ATE. The �rst

assumption is an extension of the SITA assumption (equation (2.1)), which I call the

Missingness Strongly Ignorable Treatment Assignment (mSITA) assumption due to

its similarities with the SITA assumption (equation (2.1)):

mSITA: Z ⊥ Y (z)|X,R for z = 0, 1. (3.6)

A key di�erence comparing assumption (3.6) with the weaker version of equation

(2.1) is the inclusion of information about the missingness pattern, represented by

R, in the conditioning set. We assume that SITA holds in the full data, thus this

assumption states that additionally conditioning on R does not introduce bias.

I call the two further assumptions [63]: the conditionally independent treatment

(CIT) assumption and the conditionally independent outcomes (CIO) assumption.

CIT: Z ⊥ Xmis|Xobs, R

CIO: Y (z) ⊥ Xmis|Xobs, R for z = 0, 1.
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If mSITA holds, and either CIT or CIO holds, then the MPA provides a consis-

tent estimate of the treatment e�ect. I refer to these assumptions as the `MPA's

assumptions'. To prove that the weaker versions of the MPA's assumptions lead

to a consistent estimator of the ATE, I �rst show that, under these assumptions,

E[(1− Z)Y/(1− e∗)] = E[Y (0)].

First, using the consistency assumption and conditioning on the missing indicator

and observed confounder values, we have that:

E

[
ZY

e∗

]
= E

[
ZY (1)

e∗

]
= E

[
E

[
ZY (1)

e∗
|Xobs, R

]]
= E

[
1

e∗
E
[
ZY (1)|Xobs, R

]]
. (3.8)

Switching brie�y to summation notation:

E
[
ZY (1)|Xobs, R

]
=
∑
z

∑
y

zyP (Z = z|Xobs, R)P (Y (1) = y|Z,Xobs, R)

=
∑
z

∑
y

zyP (Z = z|Xobs, R)
∑
x

P (Y (1) = y,Xmis = x|Z,Xobs, R)

=
∑
z

∑
y

∑
x

zyP (Z = z|Xobs, R)P (Y (1) = y|Z,Xmis, Xobs, R)

× P (Xmis = x|Z,Xobs, R)

Using mSITA (Z ⊥ Y (z)|X,R for z = 0, 1) and CIT (Z ⊥ Xmis|Xobs, R), we

have that P (Y (1) = y|Z,Xmis, Xobs, R) = P (Y (1) = y|Xmis, Xobs, R) and P (Xmis =

x|Z,Xobs, R) = P (Xmis = x|Xobs, R) respectively. Hence:

E
[
ZY (1)|Xobs, R

]
=
∑
z

∑
y

∑
x

zyP (Z = z|Xobs, R)P (Y (1) = y|Xmis, Xobs, R)P (Xmis = x|Xobs, R)

=
∑
z

∑
y

zyP (Z = z|Xobs, R)
∑
x

P (Y (1) = y,Xmis = x|Xobs, R)
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=
∑
z

∑
y

zyP (Z = z|Xobs, R)P (Y (1) = y|Xobs, R)

=
∑
z

zP (Z = z|Xobs, R)
∑
y

yP (Y (1) = y|Xobs, R)

= E
[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]
We can also show that E

[
ZY (1)|Xobs, R

]
= E

[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]
using

mSITA with CIO (Y (z) ⊥ Xmis|Xobs, R for z = 0, 1):

E
[
ZY (1)|Xobs, R

]
=
∑
z

∑
y

zyP (Y (1) = y|Xobs, R)P (Z = z|Y (1), Xobs, R)

=
∑
z

∑
y

zyP (Y (1) = y|Xobs, R)
∑
x

P (Z = z,Xmis = x|Y (1), Xobs, R)

=
∑
z

∑
y

∑
x

zyP (Y (1) = y|Xobs, R)P (Z = z|Y (1), Xmis, Xobs, R)

× P (Xmis = x|Y (1), Xobs, R)

Under mSITA, P (Z = z|Y (1), Xmis, Xobs, R) = P (Z = z|Xmis, Xobs, R), and

under CIO, P (Xmis = x|Y (1), Xobs, R) = P (Xmis = x|Xobs, R). Hence:

E
[
ZY (1)|Xobs, R

]
=
∑
z

∑
y

∑
x

zyP (Y (1) = y|Xobs, R)P (Z = z|Xmis, Xobs, R)P (Xmis = x|Xobs, R)

=
∑
z

∑
y

zyP (Y (1) = y|Xobs, R)
∑
x

P (Z = z,Xmis = z|Xobs, R)

=
∑
z

∑
y

zyP (Y (1) = y|Xobs, R)P (Z = z|Xobs, R)

=
∑
z

zP (Z = z|Xobs, R)
∑
y

yP (Y (1) = y|Xobs, R)

= E
[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]
Thus, the MPA's assumptions enable us to rewrite equation 3.8 as follows:

E

[
ZY

e∗

]
= E

[
1

e∗
E
[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]]
.
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Since e∗ = E[Z|Xobs, R]:

E

[
ZY

e∗

]
= E

[
E
[
Y (1)|Xobs, R

]]
= E[Y (1)].

This proof is reproduced in Appendix A of the research paper pre-print in Chap-

ter 5.

It can similarly be shown that E[(1−Z)Y/(1− e∗)] = E[Y (0)] under the MPA's

assumptions.

3.2.1 The MPA's connection to Rubin's taxonomy of

missing data

The assumptions underlying the MPA are separate from Rubin's taxonomy of miss-

ing data (i.e. classi�cation of missingness mechanisms into: missing completely at

random, missing at random, and missing not at random [20]) in the sense that clas-

sifying data according to Rubin's taxonomy does not give us any information as

to whether the MPA's assumptions would hold. For instance, one might intuitively

expect that if data are missing completely at random, the MPA's assumptions would

hold, as many missing data methods are appropriate under this assumption. How-

ever this is not true, as can be seen in the counterexample in Figure 3.1a where,

although the confounder data is missing completely at random since the observed-

confounder indicator (R) is not a�ected by any other variables, the MPA is not

appropriate because the confounder values directly a�ect both treatment and out-

come for patients with R = 0, violating both the CIT and CIO assumptions.

Conversely, one might expect that having confounder data missing not at random

would mean that the MPA is not appropriate. This is also not true, as can be seen

in the counterexample in Figure 3.1b. In this graph, missingness of the confounder

depends on the confounder itself and so data are missing not at random. Applying

d-separation to this scenario, we �nd that the mSITA assumption holds (since Z

and Y (z) are not associated given X and R) and that the CIT assumption holds

(since Z and Xmis are not associated given Xobs and R), and thus the MPA is
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(a) (b)

Figure 3.1: (a) An example of a single world intervention graph template, conditioning
on R = 0, under a missing completely at random mechanism. In this example, the MPA's
assumptions do not hold. (b) An example of a single world intervention graph template,
conditioning on R = 0, under a missing not at random mechanism. In this example, the
MPA's assumptions hold.

appropriate here. Despite the data being missing not at random, since the mSITA

and CIT assumptions hold here, the MPA is appropriate in this scenario. Thus,

classi�cation of the missingness mechanism according to Rubin's taxonomy does

not provide information as to whether the MPA's assumptions will hold; instead,

the plausibility of the MPA's assumptions depends on which relationships between

variables exist in the subgroup of patients with missing confounder values.

3.3 The evolution of causal diagrams for assessing

the MPA's assumptions

In Section 2.3.3.1, we demonstrated how to apply d-separation in a simple single

world intervention template (SWIT) representing a simpli�ed version of the mo-

tivating example with a single fully observed confounder, baseline chronic kidney

disease (CKD) stage (Figure 2.3). We now consider the situation where baseline

CKD stage is partially observed, letting RCKD denote the corresponding missing

indicator variable.

By simply incorporating RCKD as another variable in the SWIT, we obtain

the SWIT in Figure 3.2, which additionally assumes that RCKD is associated with

ACEI/ARB prescription via an unobserved common cause (denoted U). Applying

d-separation to this template will allow us to assess the mSITA assumption, i.e.
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Figure 3.2: Extension of the single world intervention template in Figure 2.3 where the
missingness of baseline chronic kidney disease stage is associated with treatment. RCKD
denotes the missing indicator for baseline CKD stage. U denotes an unobserved common
cause of RCKD and treatment. z = 0, 1, where z = 1 represents prescription of ACEI/ARBs
and z = 0 represents no ACEI/ARB prescription.
ACEI/ARB: angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, AKI:
acute kidney injury. CKD: chronic kidney disease.

to determine whether � after conditioning on baseline CKD stage and RCKD �

ACEI/ARB prescription and AKI(z) are conditionally independent (for z = 0, 1).

Since the only path from ACEI/ARB to AKI(z) in Figure 3.2 is blocked by baseline

CKD stage and RCKD, the mSITA assumption holds.

However, we cannot use the SWIT in Figure 3.2 to check whether the CIT and

CIO assumptions hold, as these assumptions involve the observed and missing values

of the confounder separately. Indeed, a necessary condition for one of the CIT and

CIO assumptions to hold is that baseline CKD stage is a confounder only when it is

observed, and so relationships between confounder values and treatment or outcome

must di�er depending on whether the confounder values are observed or missing.

We considered two strategies to be able to assess the CIT and CIO assumptions

in SWITs. We initially split the confounder node into two separate nodes: a node

representing the observed baseline CKD stage values and a node representing the

missing baseline CKD stage values. Our second strategy was to construct a SWIT

restricted to the missingness pattern for the subgroup of patients with missing values.
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Figure 3.3: Extension of the single world intervention template in Figure 3.2 where
the missingness of baseline CKD stage is associated with treatment, modi�ed to separate
the observed and missing components of baseline CKD stage. RCKD denotes the missing
indicator for baseline CKD stage. U denotes an unobserved common cause of measurement
of baseline CKD stage (i.e. RCKD) and treatment. z = 0, 1, where z = 1 represents
prescription of ACEI/ARBs and z = 0 represents no ACEI/ARB prescription. Bold arrows
indicate deterministic relationships.
ACEI/ARB: angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, AKI:
acute kidney injury. CKD: chronic kidney disease.

3.3.1 SWITs with separate confounder nodes

Our �rst strategy incorporated the observed and missing baseline CKD stage values

separately into the SWIT, using bold arrows to represent their deterministic relation-

ships with the full baseline CKD stage variable and RCKD. For example, the bold

arrows in Figure 3.3 indicate that the variables representing observed and missing

values are each fully determined by RCKD and the baseline CKD stage variable by

construction. Figure 3.3 also encodes the assumption that the missing values of base-

line CKD stage do not a�ect prescription of ACEI/ARBs (represented by the absence

of an arrow from the missing baseline CKD stage node to the ACEI/ARB node).

This seems plausible as when baseline CKD stage is not available to the General

Practitioner, it cannot be used to decide whether or not to prescribe ACEI/ARBs.

We also assume that the missing values of baseline CKD stage directly a�ect risk of

AKI (represented by the presence of an arrow from the missing baseline CKD stage
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node to the AKI node) since baseline CKD stage is associated with risk of kidney

disease, whether it is observed or missing.

When using SWITs with separate confounder nodes, the presence of determin-

istic relationships means that extra conditional independencies hold that are not

implied by the graph. Thus d-separation is not complete: d-separation does not

identify all possible conditional independencies [67, 76]. In our simpli�ed example,

this means that if, for instance, we determine that treatment and the missing con-

founder values are not d-separated in the SWIT (given the observed confounder

values and the observed-confounder indicator), then we would conclude that CIT

does not hold. However, lack of completeness implies the CIT assumption might

still hold. Consequently, caution must be exercised when we do not �nd that a

particular conditional independence holds, and we must consider the deterministic

relationships and clinical knowledge to decide if the assumption truly does or does

not hold.

Figure 3.4: Extension of the single world intervention template in Figure 3.2 where
the missingness of baseline CKD stage is associated with treatment, restricted to the
missingness pattern with missing baseline CKD stage values (i.e. RCKD = 0). U denotes
an unobserved common cause of measurement of baseline CKD stage (i.e. RCKD) and
treatment. z = 0, 1, where z = 1 represents prescription of ACEI/ARBs and z = 0
represents no ACEI/ARB prescription.
ACEI/ARB: angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, AKI:
acute kidney injury. CKD: chronic kidney disease.
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3.3.2 SWITs by missingness pattern

In order to avoid the di�culties in applying d-separation to SWITs with determinis-

tic arrows, we developed an alternative strategy for constructing SWITs to be used

for assessing the CIT and CIO assumptions. Instead of splitting the confounder

node, we constructed a SWIT for the subgroup of patients with missing confounder

values (i.e. for the missingness pattern R = 0), using a square node to denote re-

striction to this missingness pattern (Figure 3.4).

We can apply the d-separation rule to this modi�ed SWIT in the same way

as a normal SWIT. This will allow us to assess the CIT and CIO assumptions.

To explain this, we can rewrite the CIT and CIO assumptions separately for each

missingness pattern in a simple situation with a single partially observed confounder

X. For the subgroup of patients with X observed, the CIT and CIO assumptions,

Z ⊥ ∅|X,R = 1, and Y (z) ⊥ ∅|Xobs, R = 1, respectively, are trivially true because

Xmis is empty (= ∅) given R = 1. In the subgroup of patients with X missing, the

assumptions become: Z ⊥ X|R = 0, and Y (z) ⊥ X|R = 0, respectively. Thus, we

can construct SWITs restricted to the missingness pattern R = 0 in order to assess

the CIT and CIO assumptions under an assumed causal structure.

In Figure 3.4, the only path connecting Z and X passes through Y (z), a collider

on the path; thus applying the d-separation rule shows that Z and X are condition-

ally independent (in the subgroup with R = 0). Hence the CIT assumption holds.

However, the CIO assumption does not hold as there is a direct arrow from X to

Y (z). Thus, in this example, the mSITA and CIT assumptions hold and hence the

MPA can obtain valid inference.

We have demonstrated how to construct SWITs for a given scenario and applied

the d-separation rule to the SWITs to determine whether the mSITA, CIT and

CIO assumptions were plausible. We now develop guidance to investigate when the

MPA's underlying assumptions hold.

53



Chapter 4

Guidance for assessing the

assumptions underlying the

missingness pattern approach

A key purpose of this thesis was to create guidance for assessing the assumptions

under which valid inference can be obtained from missing confounder methods in-

corporating missingness information. In this section, I discuss the process of devel-

oping this guidance. We have developed guidance for researchers seeking to decide

whether the MPA's assumptions are plausible in a particular clinical setting, and

thus whether the MPA is an appropriate method for dealing with missing confounder

data in the setting of interest. We developed our guidance by considering a variety of

scenarios and applying d-separation to SWITs representing each of these scenarios.

Initially, we developed a framework in the form of a decision-tree (Figure 4.1).

The intended purpose of this framework was to elucidate the clinical assumptions

underlying the validity of the MPA. In this early framework, we considered the

temporal order of the missingness relative to the confounder, treatment and outcome

variables, however, we found that this was too restrictive. Our current guidance,

given in a step-by-step format, instead focuses on considering the plausibility of

key violations and constructing a causal diagram to help assess the validity of the

assumptions. We will �rst describe the development of the decision-tree framework.
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Figure 4.1: Framework to decide if the missingness pattern approach (MPA) is appropri-
ate when treatment allocation and outcome are fully observed and there is one partially
observed confounder.
mSITA: missingness strongly ignorable treatment allocation assumption. CIT: condition-
ally independent treatment assumption. CIO: conditionally independent outcomes as-
sumption.
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4.1 Development of the early framework for

investigating the MPA's assumptions in

practice

Our initial attempts to develop guidance were restricted to settings with a fully

observed binary treatment, a fully observed outcome and a single partially observed

confounder.

In these initial explorations, to assess the mSITA assumption, we applied d-

separation to conventional SWITs. In order to assess the CIT and CIO assumptions,

we applied d-separation to our modi�ed SWITs which incorporated the observed and

missing parts of the confounder separately and thus involve deterministic relation-

ships.

We considered a variety of scenarios to allow us to produce general conclusions

about when the MPA's underlying assumptions can be expected to hold. In order

to achieve this, we considered three key issues, namely: (i) relationships between

missing confounder values and treatment or outcome, (ii) temporal order of variables,

and (iii) relationships between missingness and confounder, treatment or outcome.

4.1.1 Relationships between missing confounder values and

treatment or outcome

Recall that, in order for at least one of the CIT and CIO assumptions to hold, we

require X to be a confounder only when it is observed. Thus, for the MPA to be an

appropriate method, relationships between confounder values and either treatment

or outcome must di�er depending on whether the confounder values are observed or

missing.

4.1.2 Temporal order of variables

A requirement for treatment to have a causal e�ect on outcome is that treatment

temporally precedes outcome [34]. We have also been implicitly assuming that our
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confounders precede treatment. We now consider where missingness appears in this

temporal order.

Missingness is often considered to be external to the causal structure, i.e. the

relationships between confounders, treatment and outcome are the same whether or

not the values of these variables are measured. However, as previously mentioned, for

the CIT or CIO assumptions to hold we require that relationships between treatment

or outcome with confounder values must di�er depending on missingness. We assume

that: for the relationship between treatment and confounder values to di�er by

missingness, R must occur temporally prior to Z, and for the relationships between

outcome and confounder values to di�er by missingness, R must occur prior to Y (z).

Thus, we assume that R always occurs temporally before Y (z).

Furthermore, we assume that R occurs after X, since a patient's stage of CKD

at the baseline visit exists prior to the assessment of that stage being made (or not

made).

4.1.3 Relationships between missingness and confounder,

treatment or outcome

Missingness can be associated with values of the confounder, treatment and outcome.

When missingness is considered to be external to the causal structure, such associa-

tion is thought to arise either through the variables directly causing the missingness,

or via shared common causes of missingness and the variables under study. In our

case, as discussed above, missingness is part of the causal structure and can a�ect

the values of, and the relationships between, study variables. This creates a third

possibility: that association arises due to missingness a�ecting confounder, treat-

ment or outcome values. Thus the way in which the association between missingness

and study variables arises can impact on the validity of the MPA's assumptions.

There are three ways in which associations between missingness and treatment

may arise. First, missingness has a direct e�ect on treatment (when missingness

occurs temporally prior to treatment). Second, treatment has a direct e�ect on

missingness (when treatment precedes missingness). Third, treatment and missing-
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ness share a common cause.

There are two ways in which associations may arise between missingness and

confounder values (under our assumption that R occurs temporally after X). First,

the confounder values have a direct e�ect on missingness. Second, X and R share a

common cause.

There are two ways in which associations may arise between missingness and

outcome (under our assumption that missingness temporally precedes outcome).

First, missingness has a direct e�ect on outcome. Second, missingness and outcome

share a common cause.

Hence we need to carefully consider the relationships between missingness and

each of the confounder, treatment and outcome when deciding whether the MPA's

assumptions seem plausible.

4.1.4 Application of the early framework to the illustrative

example

To demonstrate how the framework can be used in practice, we now apply the

framework in Figure 4.1 to the cohort study described in Section 1.1.

Given observed confounders, is missingness associated with

both treatment and outcome?

The �rst decision in the framework is to decide whether or not missingness is as-

sociated with both treatment and outcome, given observed confounders. In other

words, to decide if we expect the missingness reason to have unobserved common

causes with each of treatment and outcome.

CKD stage: Missingness in baseline CKD stage is more likely for patients ex-

pected to have a higher risk of kidney disease due to age, chronic comorbidities

or prescription of medicines that may interfere with renal function. Whilst these

risk factors are associated with missingness and treatment or outcome, they are

already captured and accounted for in the electronic health records. So with re-
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spect to baseline CKD stage, it seems plausible that missingness is not associated

with both treatment and outcome, given observed confounders.

Ethnicity: With respect to ethnicity, missingness may be caused by service-level

factors such as the circumstances at the time patients are admitted [13]. We

believe that these factors are unlikely to also be determinants of treatment or

risk factors for AKI, and so it seems plausible that missingness of ethnicity is not

associated with both treatment and outcome.

Thus we can follow the �No� arrow from the �rst yellow decision box in Figure 4.1,

�nding that mSITA is expected to hold for our case study.

When does confounder missingness occur?

CKD stage: CKD stage, a measure of kidney function, was de�ned at baseline,

i.e. prior to treatment by de�nition.

Ethnicity: Ethnicity is also recorded (or not recorded) before treatment is allo-

cated, for example when patients register at a general practice.

So we follow the �Before treatment allocation� arrow to the red decision box.

Do missing confounder values directly a�ect treatment

allocation?

CKD stage: If baseline CKD stage is not available, this unobserved information

cannot be used to determine the General Practitioner's treatment decision whether

or not to prescribe ACEI/ARBs.

Ethnicity: If the General Practitioner believes that ethnicity is important, it is

more likely to be recorded.

It seems plausible that baseline CKD stage and ethnicity a�ect treatment allocation

only when they are measured and so we follow the �No� arrow in the decision-tree

to the left-hand blue decision box.
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Do missing confounder values directly a�ect outcome?

CKD stage: Baseline CKD stage (whether observed or missing) is associated

with risk of kidney disease.

Since at least one of the confounders a�ect outcome even when not measured, we

follow the �Yes� arrow from the left-hand blue decision box and we �nd that here,

we do not expect the CIO to hold.

Given observed confounders, is missingness associated with

both confounder and treatment allocation?

Again, we expect that common causes of missingness and prescription of ACEI/ARBs

are already accounted for in our analysis and thus we follow the �No� arrow from the

lowest yellow decision box, �nding that we expect that the CIT assumption holds.

Result of applying the framework to the cohort study: Based on the as-

sumptions regarding the clinical scenario described above, we conclude that it is

plausible that (although the CIO assumption does not hold) the mSITA and CIT

assumptions hold and thus the MPA is appropriate.

4.2 Current guidance for assessing the MPA's

assumptions in practice

In our early guidance, we considered the temporal order of the missingness relative

to the confounder, treatment and outcome variables, considering settings where

missingness occurs after confounder and before outcome. However, this was too

restrictive and did not allow for scenarios where data is collected retrospectively but

the reason for missingness a�ected treatment assignment and/or outcome. Another

limitation of the early framework was ambiguity in Figure 4.1 regarding the text

descriptions of violations that could occur. This early guidance was developed using

single world intervention graph templates where the confounder node is split into

its observed and missing components.
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When developing our current guidance, we decided against using graphs with

separate missing and observed confounder nodes, in order to avoid di�culties when

applying the d-separation rule in the presence of deterministic relationships, and

chose to use graphs which condition on missingness pattern. This change in the type

of causal diagram used to develop guidance lead to a change in the presentation of

the guidelines, resulting in a step-by-step format. In our current guidance, we forego

the temporal restriction, and focus on considering the plausibility of key violations

and constructing causal diagrams to help assess the validity of the assumptions.

We also endeavoured to provide clearer explanations of violations, aided by causal

diagrams. This guidance is given in the Chapter 5 pre-print, in Section 5.9.
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5.1 Overview of the research paper pre-print:

Propensity scores using missingness pattern

information: a practical guide

In the following research paper pre-print, we explore assumptions under which the

MPA can obtain valid inference. After introducing the MPA and the method's

underlying assumptions, we discuss the plausibility of the CIT and CIO assumptions

using two illustrative examples. The �rst example describes a clinical scenario where

the CIT assumption seems plausible, whilst the second considers a scenario where

the CIO assumption seems plausible. We describe how we can use causal diagrams to

assess the plausibility of the MPA's assumptions and provide guidance for assessing

these assumptions in a given clinical setting. We then illustrate this guidance in

detail using our motivating study.

5.2 Abstract

Electronic health records are a valuable data source for investigating health-related

questions, and propensity score analysis has become an increasingly popular ap-

proach to address confounding bias in such investigations. However, because elec-

tronic health records are typically routinely recorded as part of standard clinical

care, there are often missing values, particularly for potential confounders. In our

motivating study � using electronic health records to investigate the e�ect of renin-

angiotensin system blockers on the risk of acute kidney injury � two key confounders,

ethnicity and chronic kidney disease stage, have 59% and 53% missing data, respec-

tively.

The missingness pattern approach (MPA), a variant of the missing indicator ap-

proach, has been proposed as a method for handling partially observed confounders

in propensity score analysis. In the MPA, propensity scores are estimated sepa-

rately for each missingness pattern present in the data. Although the assumptions

underlying the validity of the MPA are stated in the literature, it can be di�cult in
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practice to assess their plausibility.

In this paper, we explore the MPA's underlying assumptions by using causal

diagrams to assess their plausibility in a range of simple scenarios, drawing general

conclusions about situations in which they are likely to be violated. We present a

framework providing practical guidance for assessing whether the MPA's assump-

tions are plausible in a particular setting and thus deciding when the MPA is appro-

priate. We apply our framework to our motivating study, showing that the MPA's

underlying assumptions appear reasonable, and we demonstrate the application of

MPA to this study.

5.3 Introduction

Observational data are an important source of information for investigating the e�ect

of treatments or interventions on health outcomes. In observational data, confound-

ing is often an issue, as characteristics of treated patients can systematically di�er

from those of untreated patients. Propensity score methods aim to take account

of confounding by achieving balance of patient characteristics across the treatment

groups being compared. [33] However, observational studies may su�er from large

amounts of missing data, which can lead to biased treatment e�ect estimates if the

missing data are not handled appropriately. [50] We focus on scenarios where the

outcome and treatment of interest are fully observed, but data are missing on po-

tential confounders. This is a common occurrence, for example, in studies using

electronic health record data and insurance claims data, where prescriptions and di-

agnoses tend to be well recorded but potential confounders, such as smoking status,

may be less well recorded. [7]

The `missingness pattern' approach (MPA) is a way of handling missing con-

founder data that has been proposed in propensity score analysis. [46,62] It accounts

for missing data by incorporating information about which confounders are missing

into the estimation of the propensity score itself. [46, 62] Despite being easy to im-

plement, the MPA has not been widely used in practice. This might be explained

by the lack of guidance about its use in the literature. In particular, while the
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assumptions required for the validity of the MPA have been described formally in

terms of conditional independence, [46, 62, 63] how these mathematical statements

relate to real clinical scenarios remains unclear. Our aim is therefore to investigate

the assumptions underlying the MPA in order to provide practical guidance for re-

searchers about how to identify whether these assumptions hold in a given clinical

scenario.

We start by introducing our motivating example which investigates the asso-

ciation between renin-angiotensin system drugs and risk of acute kidney injury in

Section 5.4. We review propensity score methods for complete data (Section 5.5)

and approaches to handle missing confounder data in propensity score analysis, with

a particular focus on the MPA and the related missing indicator approach (Section

5.6). We discuss the plausibility of the assumptions underlying the MPA in Sec-

tion 5.7. We use causal diagrams to evaluate the assumptions in Section 5.8 and

present a framework giving practical guidance for assessing these assumptions in

Section 5.9. We illustrate our results on our motivating example (Section 5.10) and

conclude with a discussion (Section 5.11).

5.4 Motivating Example

We consider data from a cohort study using electronic health records to investi-

gate the association between use of angiotensin-converting enzyme inhibitors or

angiotensin receptor blockers (ACEI/ARBs) and risk of acute kidney injury (AKI)

in new users of antihypertensive drugs. [11]

Data were obtained from the UK Clinical Practice Research Datalink linked to

the Hospital Episode Statistics database for adults who were new users of antihyper-

tensive drugs between 1997-2014. Follow-up began at the �rst prescription of any of

the antihypertensive drugs: ACEI/ARBs, beta blockers, calcium channel blockers

or diuretics. Our treatment of interest is ACEI/ARB prescription at the start of

follow-up, and the outcome is AKI within 5 years. Potential confounders considered

are: gender; age; ethnicity; prescription of other antihypertensive drugs at start

of follow-up; and status of chronic comorbidities at start of follow-up, including
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Table 5.1: Patient characteristics by prescription of ACEI/ARBs

Baseline Prescribed ACEI/ARB
Characteristic Yes (n (%)) No (n (%))

(Total = 159,389) (Total = 411,197)
Age (years) 18 to 42 16,616 (10.4%) 94,265 (22.9%)

43 to 53 39,541 (24.8%) 77,224 (18.8%)
54 to 62 36,325 (22.8%) 77,985 (19.0%)
63 to 71 30,667 (19.2%) 75,141 (18.3%)
≥ 72 36,240 (22.7%) 86,582 (21.1%)

Sex Female 62,652 (39.3%) 236,296 (57.5%)

Chronic ≤ Stage 2 88,826 (55.7%) 146,825 (35.7%)
Kidney Stage 3a 10,535 (6.6%) 15,489 (3.8%)
Disease Stage 3b 2,728 (1.7%) 3,127 (0.8%)
Stage Stage 4 457 (0.3%) 551 (0.1%)

Missing 56,843 (35.7%) 245,205 (59.6%)

Ethnicity White 63,791 (40.0%) 153,747 (37.4%)
South Asian 3,072 (1.9%) 4,734 (1.2%)

Black 1,065 (0.7%) 3,905 (0.9%)
Mixed 237 (0.1%) 681 (0.2%)
Other 814 (0.5%) 1,623 (0.4%)

Missing 90,410 (56.7%) 246,507 (59.9%)

Comorbidities:
Diabetes Mellitus Yes 44,727 (28.1%) 38,714 (9.4%)

Ischaemic Heart Disease Yes 42,214 (26.5%) 76,013 (18.5%)
Arrhythmia Yes 17,494 (11.0%) 39,094 (9.5%)

Cardiac Failure Yes 18,647 (11.7%) 13,074 (3.2%)
Hypertension Yes 124,340 (78.0%) 240,135 (58.4%)

Other anti-hypertensives:
Beta-blocker Yes 14,666 (9.2%) 205,156 (49.9%)

Calcium Channel Blocker Yes 3,501 (2.2%) 91,912 (22.4%)
Diuretic Yes 21,950 (13.8%) 129,582 (31.5%)

Abbreviations:
ACEI/ARBs: Angiotensin-converting enzyme inhibitors or angiotensin receptor
blockers
Diuretic: Thiazide diuretics, Loop diuretics or Potassium sparing diuretics
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chronic kidney disease (CKD) stage. Table 5.1 shows the baseline characteristics of

the cohort. Of the 570,586 patients included in the cohort, 159,389 (27.9%) were

prescribed an ACEI/ARB. Many characteristics are not balanced across the treat-

ment groups, indicating potential for confounding. Propensity score analysis is a

popular method for taking account of confounding in analysis of electronic health

records. However, two potential confounders have missing data: ethnicity (59.0%

missing) and baseline CKD stage (52.9% missing). Only 121,527 (21%) of patients

have complete data for both variables.

5.5 Propensity score methods for complete data

5.5.1 Notation and assumptions

Suppose we have a group of n patients, each with a row vector Xi of p confounders:

Xi = (Xi1, ..., Xip)
>, where Xij is the value of confounder j for patient i (i = 1, . . . , n

and j = 1, . . . , p). Throughout the paper, we will assume that in the full data (i.e.

with no missing confounder data) theXi are su�cient to control for confounding. [39]

In this paper, we restrict our attention to a binary treatment (or exposure) and a

binary outcome. Patient i receives either treatment Zi = 1 or control Zi = 0. Each

patient has two potential outcomes: Yi(1) denotes the outcome that would have

been observed for patient i if they had received treatment, and Yi(0) denotes the

outcome value that would have been observed if patient i had received control. [10]

Yi denotes the outcome value that was actually observed. Henceforth, we omit the i

and j subscripts where unambiguous. Our estimand is the average treatment e�ect

(ATE): E[Y (1)− Y (0)]. [25,26] While the odds ratio su�ers from non-collapsibility,

the risk ratio does not and provides an alternative relative measure; results in this

paper follow similarly for this estimand.

To estimate the treatment e�ect we make four standard assumptions: consis-

tency, no interference, strongly ignorable treatment assignment (SITA), and posi-

tivity. Consistency states that, for a patient who receives a particular treatment

level z, their observed outcome Y is the corresponding potential outcome Y (z), irre-
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spective of the way in which they were assigned to that treatment level. [31] Under

the assumption of no interference, the treatment received by one patient does not

a�ect the potential outcomes of another patient. [33�35] SITA implies that there are

no unmeasured confounders and can be expressed as [23,33]:

SITA : Z ⊥
(
Y (1), Y (0)

)
|X. (5.1)

where ⊥ denotes independence. Finally, positivity states that, given their individual

characteristics, all patients have a non-zero probability of receiving either treatment

or control. [23, 37] Throughout this paper, we assume these four assumptions hold

for the complete data.

5.5.2 Propensity scores

The propensity score e(x) is the probability of receiving treatment, conditional on

observed confounders X [33]:

ei(xi) = P (Zi = 1|Xi = xi),

for patient i (i = 1, . . . , n) with a vector of confounder values Xi = xi. Under the

four assumptions described above, Rosenbaum and Rubin showed that at each value

of the propensity score the confounders X are balanced across treatment groups. [33]

Typically, propensity scores are unknown and must be estimated from the data,

often as the predictions, êi, from a logistic regression of treatment allocation on po-

tential confounders. [28] We use inverse probability of treatment weighting (IPTW),

which creates weights from the estimated propensity scores to construct `pseudo-

populations' [36] in which the distribution of observed confounders are balanced

across treatment groups, resulting in the following estimator [28]:

ÂTE =

(∑n
i=1

YiZi

êi∑n
i=1

Zi

êi

)
−

(∑n
i=1

Yi(1−Zi)
(1−êi)∑n

i=1
(1−Zi)
(1−êi)

)
. (5.2)
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5.6 Propensity score methods with missing

confounder data

In practice, observational studies can su�er from large amounts of missing data,

potentially leading to both loss of e�ciency and biased estimates. [44] The magnitude

of bias will depend on the extent to which the probability of missing confounder

data is related to outcome and exposure. [44] The most common classi�cation of

missingness mechanisms is Rubin's taxonomy, in which data are missing completely

at random (MCAR), missing at random (MAR) or missing not at random (MNAR).

[44,48] Under a MCAR mechanism, the probability of being missing does not depend

on the observed or missing data. Missing data are MAR when the probability of

being missing depends on observed data values but, given these, does not depend

on missing values. If the probability of being missing depends on the unobserved

values of data then data are MNAR.

The simplest way of handling missing confounder data in propensity score anal-

ysis is a complete records (or complete case) analysis, which restricts the analyses

to patients with full data on all variables. [50] This approach provides unbiased es-

timates of the conditional average treatment e�ect as long as missingness does not

depend on both the treatment and the outcome. [50]

The missing indicator approach is another simple method. For partially ob-

served categorical confounders, a `missing' category is added before including the

confounder in the propensity score model. For continuous confounders, missing

values are set to a particular value, say 0, and both the confounder and a missing

indicator (a variable indicating whether that variable is observed or not) are included

in the propensity score model. Applied to standard outcome regression models, this

approach induces bias in a number of scenarios [58, 59]; whether this is the case in

the propensity score context has been questioned. [64]

Multiple imputation is a popular alternative, involving imputing (i.e. �lling in)

missing covariates with plausible values several times, by drawing from the predictive

distribution of the missing covariates given observed data, to create a number of
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`complete' imputed datasets. The full analysis (estimation of the propensity score

then estimation of the treatment e�ect) is performed separately in each imputed

dataset. The results are then combined using Rubin's rules to obtain an overall

estimate of the treatment e�ect and standard error. [20, 44] Guidelines regarding

optimal use of multiple imputation in conjunction with propensity score analysis

have been proposed. [60] Standard implementations of multiple imputation require

data to be missing at random. [44,49]

5.6.1 The Missingness Pattern Approach (MPA)

The Missingness Pattern Approach (MPA) [46,62] accounts for missing confounder

data by separating patients into subgroups according to the possible combinations

of confounders being observed or missing, i.e. the missingness patterns, and �tting

a di�erent propensity score model to each pattern.

Let Rij be a missing indicator indicating whether the confounder j (j = 1, . . . , p)

for patient i (i = 1, . . . , n) is observed (Rij = 1) or not (Rij = 0). This allows us to

partition the values Xij (i = 1, . . . , n; j = 1, . . . , p) into two sets: the set of values

that are observed, Xobs, and the set of values that are missing, Xmis:

X = {Xobs, Xmis} where Xobs = {Xij|Rij = 1} and Xmis = {Xij|Rij = 0}. (5.3)

We will use Ri = (Ri1, ..., Rip) to refer to the vector of missing indicators for patient

i, omitting the subscript i where unambiguous.

The generalized propensity score, e∗(x), is de�ned as the probability of receiv-

ing treatment, conditional on both the observed confounder information and the

missingness pattern: e∗(x) = P (Z = 1|Xobs, R). This can be estimated by using

a di�erent propensity score model for each missingness pattern, including only the

confounders observed in that pattern. For example, in a study with treatment and

outcome both fully observed and a single partially observed confounder X, there

are two missingness patterns: X is either observed or missing. For patients with X

observed, the propensity score model would include X, whilst the propensity score

model for patients with X missing would include only a constant term. The gener-
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alised propensity score can then be used in the same way as the standard propensity

score, [62] eg. by substituting in equation (5.2) to estimate the ATE.

5.6.1.1 Assumptions of the Missingness Pattern Approach

Three assumptions under which the MPA leads to valid inference are given by Mat-

tei. [63] We present slightly weaker versions of these assumptions, under which the

MPA still gives a consistent estimator of the ATE (proof in Supplementary Ma-

terial: Section A). The �rst assumption is an extension of the SITA assumption

(equation (5.1)), which we call the Missingness Strongly Ignorable Treatment As-

signment (mSITA) assumption due to its similarities with the SITA assumption

(equation (5.1)):

mSITA: Z ⊥ Y (z)|X,R for z = 0, 1. (5.4)

A key di�erence with equation (5.1) is the inclusion of information about the miss-

ingness pattern, represented by R, in the conditioning set. We assume that SITA

holds in the full data, thus this assumption states that additionally conditioning on

R does not introduce bias.

We call the two further assumptions [63]: the conditionally independent treat-

ment (CIT) assumption and the conditionally independent outcomes (CIO) assump-

tion.

CIT: Z ⊥ Xmis|Xobs, R (5.5a)

CIO: Y (z) ⊥ Xmis|Xobs, R for z = 0, 1. (5.5b)

If mSITA holds, and either CIT or CIO holds, then the MPA provides a consistent

estimate of the treatment e�ect. We loosely term these the `MPA's assumptions'.

We note that the assumptions underlying the MPA are di�erent to Rubin's tax-

onomy of missing data [20,45] in the sense that classifying data according to Rubin's

taxonomy does not provide any information as to whether the MPA's assumptions

would hold. Rather, the MPA's assumptions require the associations between vari-
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ables to di�er across missingness patterns. It is possible for the MPA's assumptions

to hold when data are missing not at random; conversely data being missing com-

pletely at random does not guarantee the MPA's assumptions will hold.

How to assess the plausibility of the MPA's assumptions � and thus the validity

of the MPA itself � in a particular setting remains unclear.

5.6.1.2 Connections with the missing indicator approach

With a single partially observed confounder, the missing indicator approach can be

shown to be equivalent to the MPA (Supplementary Material: Section B). Thus the

missing indicator approach will provide a consistent estimator of the ATE if mSITA

and either CIT or CIO holds.

In a more complex scenario with one partially observed and one fully observed

confounder, the missing indicator approach is a simpli�ed version of the MPA, ad-

ditionally imposing the assumption that the association between the fully observed

confounder and treatment is the same whether or not the other confounder is ob-

served (Supplementary Material: Section B). Therefore, the missing indicator ap-

proach relies on the same assumptions as the MPA, and additionally requires no

e�ect modi�cation of the fully observed confounder(s) by the missingness patterns.

5.7 Plausibility of the CIT and CIO assumptions

The MPA provides valid inference if either CIT or CIO holds (equation (5.5)), in

addition to the mSITA assumption. The plausibility of these assumptions in real-life

settings will therefore determine how useful the MPA is as a missing data approach.

We have assumed that in the full dataX is a confounder, and so is associated with

both treatment and outcome. The CIT assumption requires that the confounder-

treatment relationship is absent in the subset of patients with X unmeasured, whilst

the CIO assumption requires that the confounder-outcome relationship is absent in

patients with X unmeasured. Thus, if either the CIT or CIO assumption holds,

X does not confound the relationship between treatment and outcome when it is

missing (i.e. X is not associated with both treatment and outcome in the subset of
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patients missing X). Informally, we refer to this property as X being a confounder

only when it is observed.

The key point to consider is that the CIT and CIO assumptions are not about the

missingness mechanisms that drive the missing data, as much as which relationships

between variables exist in the subgroup of patients with missing confounder values.

5.7.1 The CIT assumption: an illustrative example

Consider a simpli�ed version of our motivating example, investigating the e�ect of

prescribing ACEI/ARBs on the risk of AKI.

Underlying kidney function prior to ACEI/ARB prescription is a likely con-

founder: kidney function is a known risk factor for AKI and is likely to in�uence

whether ACEI/ARBs are prescribed. Kidney function is classi�ed into the stage of

chronic kidney disease (CKD), via a serum creatinine blood test. Where a clini-

cian ordered a kidney function test prior to the prescribing decision, it is reasonable

to assume that the information regarding CKD stage contributed to that decision.

Where CKD stage was unavailable to the clinician, arguably it is unlikely to have

in�uenced the prescribing decision.

In this simpli�ed example, underlying CKD stage is always a risk factor for

the outcome but is plausibly only associated with treatment allocation when it is

measured. Thus, CIT holds; baseline CKD stage is only a confounder when it is

observed.

5.7.2 The CIO assumption: an illustrative example

Suppose we were interested in estimating the e�ect of exposure to farming in early life

on subsequent development of asthma. Childhood exposures to domestic allergens,

e.g. dust mites, are potential confounders. Such domestic allergens may be measured

by health visitors. Suppose that the relationship between dust mites and asthma

has a threshold e�ect, i.e. an association is seen only once a certain concentration

of dust mites is present.

Since health visitors do not collect information for the purposes of research, they
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might plausibly record information more thoroughly for households where there were

concerns about the child's environment. Missing data for dust mites would therefore

be more likely to occur in households with little evidence of dust mites, and less likely

in households with a high concentration.

In this example, concentration of dust mites may be associated with subsequent

asthma only in households where dust mite concentration was recorded. In this case,

CIO holds; dust mite concentration is a confounder only when measured.

5.8 Detecting and dealing with violations of the

MPA's assumptions

The mSITA, CIT and CIO assumptions are statements of conditional independence.

In this section, we describe how causal diagrams can be used to assess conditional

independence statements. We demonstrate the use of causal diagrams in a simple

scenario in order to draw some general conclusions about situations in which the

MPA's assumptions are likely to be violated.

5.8.1 Causal diagrams

Causal diagrams, or directed acyclic graphs, are a useful tool for assessing conditional

independencies under an assumed causal structure. Because the assumptions of the

MPA involve the potential, rather than observed, outcomes we turn to a speci�c

type of causal diagram: Single World Intervention Templates (SWITs). [67]

SWITs are standard directed acyclic graphs which have been adapted to show

potential, instead of observed, outcomes. This involves `splitting' the treatment

node into two halves; the �rst represents the observed treatment Z, and the second

represents an `intervened-on value', z. Determinants of observed treatment a�ect

the �rst half (i.e. incoming arrows go into the Z half), and e�ects of treatment

are determined by the second (i.e. outcoming arrows leave from the z half). A

consequence of this splitting is that variables a�ected by treatment now become

potential rather than observed variables.
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Figure 5.1: A single world intervention template showing a scenario in which the mSITA
assumption is violated.
X: confounder. Z: treatment. Y (z): potential outcome resulting from intervening to
set Z equal to a particular value z. R: missing indicator (=1 if X observed, =0 if X is
missing). UZ : unobserved common cause between R and Z. UY : unobserved common
cause between R and Y (z).

Figure 5.1 shows a simple SWIT representing a typical confounding scenario

where the confounder X has a causal e�ect on the treatment and the outcome.

Additionally, this graph encodes the assumption that the missing indicator R (i.e.

whether or not the confounder is missing) is associated with the treatment and the

outcome, via shared common causes in both cases (denoted UZ and UY respectively).

In Figure 5.1, the outcome is a�ected by treatment so this SWIT includes the

potential outcome Y (z) rather than the observed outcome Y .

5.8.2 Assessing the MPA's assumptions using causal

diagrams

5.8.2.1 Assessing the mSITA assumption

Suppose Figure 5.1 depicts the true underlying causal structure which gave rise to

our study data. With a single partially observed confounder, the mSITA assumption

states that Z ⊥ Y (z)|X,R. By applying d-separation to Figure 5.1 (as described in

Supplementary Material: Section C), we �nd that the path from Z to Y (z) through

R is open after conditioning on X and R, thus Z is not conditionally independent

of Y (z) given X and R; mSITA is violated in this scenario.

For more complex causal diagrams, it may help to use software such as Dagitty

to assess which conditional independencies hold. [77] R code which uses Dagitty to

check the MPA's assumptions for the scenario shown in Figure 5.1 can be found in
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Supplementary Material: Section F.

5.8.2.2 Assessing the CIT/CIO assumptions

The CIT and CIO assumptions state that Z ⊥ Xmis|Xobs, R, and Y (z) ⊥ Xmis|Xobs,

R, respectively. With a single confounder X, these assumptions are trivially true in

the subgroup of patients with X observed (because Xmis is empty given R = 1). In

the subgroup of patients with X missing, the assumptions become: Z ⊥ X|R = 0,

and Y (z) ⊥ X|R = 0, respectively.

Figure 5.2: A single world intervention template modi�ed (from Figure 5.1) to assess
the CIT and CIO assumptions. The square box around R denotes the restriction of our
attention to the subgroup R = 0.
X: confounder. Z: treatment. Y (z): potential outcome resulting from intervening to
set Z equal to a particular value z. R: missing indicator (=1 if X observed, =0 if X is
missing). UZ : unobserved common cause between R and Z. UY : unobserved common
cause between R and Y (z).

A minimum condition for CIT or CIO to be satis�ed is that X cannot be a

confounder when it is missing. Thus, for either of these assumptions to hold, there

must be grounds for believing that the causal relationships that generate confound-

ing bias in the full data are di�erent in the subgroup with missing confounder values

(compared to the subgroup with observed confounder values). For example, in Fig-

ure 5.1, if we believe that all the arrows shown exist in the subgroup with missing

confounder values, then both CIT and CIO would be violated. In contrast, suppose

we believe that this diagram depicted the correct situation with full data, but we

believe that the arrow from the confounder to treatment did not exist when X was

missing. In this case, Figure 5.2 would depict the underlying causal structure for

the subgroup with X unmeasured.
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In Figure 5.2, the only path connecting Z and X passes through Y (z), a collider

on the path; thus applying the d-separation rule shows that Z and X are condition-

ally independent (in the subgroup with R = 0). Here, CIT holds. Because there is

a direct arrow from X to Y (z), however, CIO does not hold.

5.8.3 Key violations of the MPA's assumptions

In this section, we use causal diagrams to explore when the MPA's assumptions are

violated in a range of simple settings.

Scenarios considered: We consider scenarios where the outcome Y and treat-

ment Z are fully observed. Initially, we focus on simple scenarios with a single par-

tially observed confounder, X. Subsequently we extend this to consider scenarios

with an additional, fully observed confounder, C. We consider all combinations of

the scenarios discussed below, omitting those which give rise to cycles (i.e. we do

not allow scenarios where a variable has a causal e�ect on itself).

Relationships between the confounder, treatment, and outcome: We

consider causal structures where the relationships between the confounder X and

the treatment and outcome are either a direct causal relationship (e.g. X causes

treatment), or via shared unmeasured common causes (e.g. a third factor causes

both X and treatment). The relationship between the confounder and the treatment

is allowed to di�er depending on whether the confounder is observed or missing;

speci�cally, this relationship is allowed to be absent when R = 0. Similarly, the

presence or absence of the relationship between the confounder and outcome is

allowed to depend on R. This allows for X to be a confounder only when observed,

as discussed in the previous section.

Missingness mechanisms: For each of the confounder, treatment and out-

come, we considered: no relationship with the missing indicator, a causal e�ect on

the missing indicator, the missing indicator has a causal e�ect on the variable, or

an unobserved common cause with the missing indicator (allowing scenarios where

one or more variables have both a direct causal relationship and a common cause

with the missing indicator).
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When a variable has a causal e�ect on the outcome, we assume that this e�ect

operates on the potential outcome rather than the observed (e.g. X causes Y (z)

rather than X causing Y ). Conversely, in the case where outcome is a cause of

missingness, we have chosen to allow the observed outcome to cause missingness (Y

causes R) rather than the potential outcome, since this is arguably more plausible

in real data.

Assessment of assumptions: In each setting, we draw the appropriate causal

diagram and assess the assumptions by applying d-separation to the causal diagram

overall, and to the modi�ed causal diagram restricted to the subgroup with X miss-

ing.

In some scenarios, a slightly more complex route must be taken to assess the

conditional independencies involved in the MPA's assumptions. If the treatment or

outcome is a cause of missingness then the relevant SWIT contains R(z), the `poten-

tial' missingness after intervening on treatment, rather than the observed pattern of

missingness. Thus we can no longer use this graph to assess the relevant assump-

tions. In these cases we turn to twin networks [68, 69] (Supplementary Material:

Section D).

5.8.3.1 Key violations of the mSITA assumption

In the scenarios we considered, most violations of mSITA occurred via collider bias

on R. In order for this type of violation to occur, there needs to be a path from

Z to R and a path from Y (z) to R, each ending with arrows pointing towards R.

These violations operate via a cause of R. We let UX represent common causes of

missingness and the confounder, UZ represent common causes of missingness and

the treatment, and UY represent common causes of missingness and the outcome.

The di�erent `Z-to-R' and `R-to-Y' patterns that could occur are summarised in

Figure 5.3. If one (or more) of each of these two patterns occurs then mSITA will

be violated. For example, Figure 5.1 shows the violation which arises when both

the indirect `Z-to-R' pattern and the indirect `R-to-Y' pattern occur (both patterns

in the second row of Figure 5.3).
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Figure 5.3: Summary of violations of the mSITA assumption. If one of the `Z-to-R'
patterns and one of the `R-to-Y' patterns occurs in the causal diagram representing the
study in question then the mSITA assumption will be violated.
a Also a violation if this occurs with additional `R-to-Y patterns' shown in Supplementary
Material: Section E; b Su�cient condition on its own, without a `Z-to-R pattern'.
X: partially observed confounder. C: fully observed confounder. Z: treatment. Y (z):
potential outcome resulting from intervening to set Z equal to a particular value z. Y :
observed outcome. R: missing indicator (=1 if X observed, =0 if X is missing). Ust:
unobserved common cause between two variables s and t. Us: unobserved common cause
between R and another variable s.

A key result in Figure 5.3 is that when treatment and missingness are associ-

ated via shared common causes, and outcome and missingness are associated via

(di�erent) shared common causes, then mSITA is violated (as shown in Figure 5.1).

So the MPA cannot be used in scenarios where there are unmeasured determinants

of confounder missingness which are also associated with the treatment and the

potential outcomes.

Another important result in Figure 5.3 is that if the outcome has a causal e�ect

on confounder missingness, i.e. if Y → R, then mSITA is violated without the

need for any `Z-to-R' patterns. So the MPA cannot be used in scenarios where

outcome a�ects whether or not confounder values are missing. For instance, in

our AKI example, suppose that more e�orts were made to track down historical

laboratory measures of eGFR for patients who were diagnosed with AKI, then this

would immediately violate mSITA.

A third important result is that when treatment causes missingness, and miss-
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ingness in turn has a causal e�ect on the potential outcomes, mSITA is violated

(see footnote a in Figure 5.3), although whether this is likely to occur in practice is

unclear.

5.8.3.2 Handling violations of the mSITA assumption

All violations of mSITA, other than those involving the treatment or the outcome

causing missingness of the confounder, operate via a cause of R. Suppose it were

possible to measure all such factors which determine whether or not the confounder

is measured (although this may be di�cult in practice). We could de�ne a new set

of confounders X̃ = {X,UX , UZ , UY } (or, where there is an additional fully observed

confounder C, X̃ = {X,C, UX , UC , UZ , UY }). Including this new set of confounders

in the propensity score model, and thus the conditioning set for mSITA, removes the

violation of this assumption. In most cases, measuring a subset of these variables

will su�ce. For example, in Figure 5.1, if UZ could be measured and included in the

propensity score model, the mSITA assumption would become: Z ⊥ Y (z)|X,R,UZ ,

which is satis�ed in Figure 5.1.

5.8.3.3 Key violations of the CIT and CIO assumptions

Figure 5.4 summarises the possible violations of CIT and CIO, which fall into two

broad groups: (A) violations related to X being a confounder when it is missing,

and (B) violations due to collider bias via R.

Since mSITA is always violated if outcome causes missingness, some CIT/CIO

violations involving Y → R are shown only in Supplementary Material: Section E,

along with a few additional violations involving Z → R.

Group (A) violations in Figure 5.4 relate to X being a confounder only when

observed, in the sense that if one of the CIT group (A) violations or one of the

CIO group (A) violations held, X would be a confounder when missing. For these

violations, X has been replaced by Xmis to emphasise the fact that we need to focus

on relationships that exist in the subgroup of patients with a missing confounder

value when assessing this assumption.
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Figure 5.4: Summary of violations of the CIT and CIO assumptions. If one or more of the
six sets of conditions on the left hand side appear in the relevant causal diagram (modi�ed
to re�ect relationships in the subgroup with X unobserved i.e. restricted to R = 0), the
CIT is violated. Similarly, if any of the six sets of conditions on the right hand side occur
then CIO is violated. Additional violations involving Y → R and Z → R can be found in
Supplementary Material: Section E.
X: partially observed confounder. C: fully observed confounder. Z: treatment. Y (z):
potential outcome resulting from intervening to set Z equal to a particular value z. Y :
observed outcome. R: missing indicator (=1 if X observed, =0 if X is missing). Ust:
unobserved common cause between two variables s and t. Us: unobserved common cause
between R and another variable s.

In contrast, Group (B) violations relate to collider bias induced by conditioning

on R.

5.8.3.4 Handling violations of the CIT and CIO assumptions

As with violations of the mSITA assumption, many of the violations of the CIT and

CIO assumptions � speci�cally those belonging to Group (B) � can be removed

by measuring and conditioning on causes of R. However, if either (i) both the

confounder and the treatment cause the missingness, or (ii) both the confounder

and outcome cause the missingness, then CIT or CIO are violated, respectively; no

conditioning can remove these violations.
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5.9 Practical guide to assessing the mSITA, CIT

and CIO assumptions

In order to decide if the MPA's assumptions hold in a particular clinical setting,

the �rst, most important step, is to assess whether it is plausible for the partially

observed confounder to be a confounder only when observed.

Second, key scenarios in which the MPA's assumptions do not hold, as identi�ed

in the previous section, should be carefully considered using substantive knowledge

to ensure these do not apply in the setting at hand. These are: (I) outcome a�ects

missingness of the confounder; (II) outcome and missingness have shared unmea-

sured common causes, and treatment and missingness have shared common causes;

or (III) the confounder and treatment both a�ect missingness of the confounder and

the confounder is associated with outcome in the subgroup with X missing.

Third, a causal diagram should be constructed, re�ecting what is believed to

be the underlying clinical structure. As with any causal diagram, any variable �

measured or unmeasured � which may have a causal e�ect on two or more variables

in the causal diagram must also be included. Missing indicators for the partially

observed confounders should be included in the causal diagram at this stage. When

there are multiple partially observed confounders, the causal diagram will include

one missing indicator per partially observed confounder.

Fourth, the causal diagram should be converted into a SWIT or a twin network,

as appropriate. Once the SWIT or twin network has been created, d-separation can

be applied to determine whether mSITA holds.

To assess CIT and CIO, the SWIT or twin network should be modi�ed to re�ect

the relationship thought to be absent in the subgroup of patients with missing

confounder values (i.e. remove the arrows which re�ect the assumption that the

confounder is only a confounder when observed). In this modi�ed diagram, the

d-separation rule can be again applied to assess CIT and CIO.

Supplementary Material: Section F provides R code to assess the mSITA, CIT

and CIO assumptions for Figure 5.1, and for the causal diagram associated with our
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more complex motivating example.

When there are multiple partially observed confounders, we advise constructing

modi�ed diagrams for each missingness pattern with missing values and then apply-

ing the d-separation rule to each diagram to assess the CIT and CIO assumptions

for that particular missingness pattern. An assumption holds only if it holds for

each missingness pattern.

5.9.1 Assessing the validity of the assumptions in the

motivating example

5.9.1.1 Confounders only when observed

For the MPA's assumptions to hold in the motivating example, we have to believe

that the two partially-missing confounders � ethnicity and baseline chronic kidney

disease (CKD) stage � act as confounders only when observed. If baseline CKD

stage is not available, this unobserved information cannot be used to determine the

General Practitioner's treatment decision whether or not to prescribe ACEI/ARBs.

In practice, CKD stage may be recorded in a part of the patient record that the

General Practitioner is aware of but researchers using CPRD data cannot access

(e.g. letters from secondary care). However, this is likely to re�ect advanced CKD

for only a small proportion of the whole study population. So in general, it seems

plausible that baseline CKD stage a�ects the clinician's prescribing decision only

when recorded.

The National Institute for Health and Care Excellence antihypertensive prescrib-

ing guidelines (which include ACEI/ARBs) o�er di�erent recommendations depend-

ing on ethnicity. [78] So, it is plausible that, if a clinician chooses to prescribe or not

prescribe an ACEI/ARB based on an individual's ethnicity, they would ensure that

the individual's ethnicity was recorded.

Therefore, the CIT assumption may be reasonable for this scenario. Conversely,

both baseline CKD stage and ethnicity are risk factors for AKI, whether measured

or not. Thus the CIO assumption is not plausible here.
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5.9.1.2 Checking plausibility of key violations

We also need grounds to believe that the three key scenarios listed above do not

apply in this setting. Scenarios (I) and (III) rely on either outcome or treatment

a�ecting missingness of the confounders. As CKD stage was de�ned at baseline,

missingness of baseline CKD stage precedes treatment and, as a result, outcome.

It also seems plausible that missingness of ethnicity occurs prior to treatment and

outcome. Hence we believe that these scenarios do not apply here.

Scenario (II) is when outcome and missingness have shared unmeasured common

causes, and treatment and missingness have shared common causes. Baseline CKD

stage is more likely to be recorded for patients expected to have a higher risk of

kidney disease due to age or chronic comorbidities (eg. hypertension, diabetes) or

due to other signs that the patient has poor kidney function (i.e. CKD itself may

a�ect the chance of the clinician measuring CKD stage). Whilst these risk factors are

associated with missingness and treatment or outcome, they are already captured

in the electronic health records.

With respect to ethnicity, patients who are hospitalised are more likely to have

ethnicity recorded (due to linkage of primary and secondary care data). Missingness

of ethnicity may be caused by service-level factors such as level of administrative

support at the time patients are admitted to hospital. It seems unlikely that these

factors are also determinants of treatments previously prescribed in primary care or

whether patients develop acute illnesses that require admission to hospital. Since

we believe that any relevant common causes are measured, scenario (II) does not

apply in our setting.

After considering the three key scenarios mentioned above, in which the MPA's

assumptions do not hold, we have found that these do not seem plausible in our

motivating example. Having ruled out these violations, we proceed to the next step

of our framework: to develop a causal diagram.
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Figure 5.5: A single world intervention template for the motivating example.
Eth: Ethnicity. Ckd: Baseline chronic kidney disease. Hyp: Hypertension. Diab: Diabetes
mellitus. Arr: Arrhythmia. Car: Cardiac failure. Ihd: Ischaemic heart disease. Ace:
Prescription of ACE/ARBs (treatment). ace: intervened-on version of exposure. Aki:
Acute kidney injury (outcome). Rckd: Missingness of Ckd. Reth: Missingness of Eth.
Hosp: Hospitalisation. Slf: Service-level factors. U: unmeasured factor.

5.9.1.3 Developing a causal diagram

Figure 5.5 shows the single world intervention template (SWIT) developed for this

example. This causal diagram encodes the investigators' assumptions that age, sex

and ethnicity each a�ect both treatment and outcome. Age and sex a�ect the

risk of developing diabetes, CKD, ischaemic heart disease, cardiac failure, arrhyth-

mia and hypertension. Note that the treatment node, representing prescription of

ACEI/ARBs, has been split into two: `Ace' and `ace', with the former represent-

ing the observed treatment and the latter representing the intervened-on treatment.

Thus patient factors a�ect `Ace' but not `ace', and only `ace' a�ects subsequent AKI.

5.9.1.4 Assessing the mSITA assumption

The mSITA assumption, for the motivating example, says that: Z ⊥ Y (z)|Rckd,

Reth, Ckd, Eth, V , where Z represents ACEI/ARB prescription; Y (z) the potential
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outcome (AKI status that would be observed if the patient were prescribed level z

of ACEI/ARB); V represents the confounders age, sex, diabetes, ischaemic heart

disease, cardiac failure, arrhythmia and hypertension; Reth and Rckd are missing in-

dicators for ethnicity and baseline CKD stage; and Ckd and Eth are the confounders

CKD stage and ethnicity, respectively.

The d-separation rule can be applied to the SWIT in Figure 5.5, to assess whether

this conditional independence holds under the causal assumptions encoded in the

diagram (example code in Supplementary Material: Section F.2). In this case, the

conditional independence statement is true; mSITA holds under the assumed causal

diagram.

5.9.1.5 Assessing the CIT and CIO assumptions

We have already established that the CIO assumption does not hold in our moti-

vating example. The CIT assumption states that:

Z ⊥ (Ckd,Eth) | Rckd = 0, Reth = 0, V,

Z ⊥ Ckd | Rckd = 0, Reth = 1, Eth, V,

Z ⊥ Eth | Rckd = 1, Reth = 0, Ckd, V.

To assess the �rst of these, we create a modi�ed version of Figure 5.5 which omits

the arrows that we do not think exist when both ethnicity and baseline CKD stage

are missing. So we remove the arrow from baseline CKD stage to ACEI/ARB

prescription, and we remove the arrow from ethnicity to ACEI/ARB prescription.

We then assess whether, after conditioning on the two missing indicators and

the fully observed confounders, the treatment is independent of both ethnicity and

baseline CKD stage, by applying the d-separation rule for each partially observed

confounder. In this case, the conditional independence holds (example code in Sup-

plementary Material: Section F.2).

This process is repeated in the two subgroups where only one of ethnicity and

baseline CKD stage is recorded, assessing the second and third independence state-

ments above in the appropriately modi�ed causal diagrams. In each case, the rel-
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evant conditional independence holds. Thus, under the assumed causal diagram,

CIT holds.

If our causal diagram correctly represents the causal structure giving rise to our

study data, both mSITA and CIT hold. Under these two assumptions the MPA will

provide consistent estimates of the ATE.

5.10 Motivating example: applying the MPA

5.10.1 Methods: ACEI/ARBs and AKI

We estimated the e�ect of prescription of ACEI/ARBs on the incidence of AKI

within 5 years of follow-up as a risk di�erence, �rst with no adjustment for con-

founding, and then by using inverse probability of treatment weighting (IPTW). For

IPTW, we estimated propensity scores using logistic regression to model ACEI/ARB

prescription as a function of the covariates: age, sex, baseline CKD stage, ethnicity,

diabetes mellitus, ischaemic heart disease, arrhythmia, cardiac failure and hyper-

tension (including an interaction between age and ischaemic heart disease, and an

interaction between age and hypertension). We applied non-parametric bootstrap-

ping (500 replications of the combined process of propensity score estimation and

treatment e�ect estimation) to obtain Normal approximation 95% con�dence inter-

vals.

To deal with missing data in baseline CKD stage and ethnicity, we applied com-

plete records analysis, the MPA, the missing indicator approach and multiple im-

putation. For the MPA, the propensity scores were estimated separately in the four

subgroups corresponding to whether or not baseline CKD stage and ethnicity were

measured. For the missing indicator approach, we added `missing' categories to each

of baseline CKD stage and ethnicity. For multiple imputation, 10 imputed datasets

were created using chained equations. The imputation model included AKI inci-

dence within 5 years, ACEI/ARB prescription and all covariates and interactions

included in the propensity score model. In each imputed dataset, propensity scores

were estimated and IPTW was used to obtain treatment e�ect estimates, which
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were then pooled using Rubin's rules. [60] To assess covariate balance, standardized

di�erences [25] were calculated in the original sample and after IPTW with each

analysis method used.

5.10.2 Results and discussion: ACEI/ARBs and AKI

The complete records analysis included 121, 527 patients with full data. All other

missing data methods included all 570, 586 patients. Using any of the analysis

methods with IPTW removes most of the imbalance present in the original dataset

(Table S1 in Supplementary Material: Section G).

Table 5.2: Estimated e�ects of ACEI/ARBs on AKI using inverse-probability of treat-
ment weighting (IPTW) to account for confounding.

Confounder Missing data Risk di�erence Normal-based
adjustment method (per 1000 people) bootstrap 95% CI

Crude None 13.30 (12.52, 14.08)
IPTW Complete Case Analysis 4.60 (2.76, 6.45)
IPTW Missingness Pattern Approach 5.96 (5.10, 6.82)
IPTW Missing Indicator Approach 5.93 (5.01, 6.85)
IPTW Multiple Imputation 6.17 (5.27, 7.07)∗

∗ Not bootstrapped; obtained by using Rubin's rules across 10 imputed datasets.

Estimates of the e�ect of ACEI/ARBs on AKI are shown in Table 5.2. All

missing data methods greatly reduce the crude estimate of e�ect, with complete

records analysis providing the smallest estimate and multiple imputation providing

the estimate closest to the crude analysis. The MPA and missing indicator approach

produce almost identical results, estimating that patients prescribed ACEI/ARBs

had 6 additional cases of AKI within 5 years, per 1000 people, with a 95% con�dence

interval of (5,7), compared to patients who were not prescribed ACEI/ARBs.

We expect the MPA estimate to be consistent since � as discussed � the mSITA

and CIT assumptions appear plausible here. Conversely, the missing at random as-

sumption underlying our application of multiple imputation is questionable. Base-

line CKD stage is more likely to be recorded for patients with a lower level of kidney

function (e.g. if they are ill or have more risk factors for kidney disease that have led

to testing) [79] and therefore baseline CKD stage may be MNAR. However, since

factors related to a lower level of kidney function are likely already captured in the
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observed data, the departure from the MAR assumption may be small. This may

explain why multiple imputation and the MPA provide fairly similar estimates in

this example, with multiple imputation giving an estimate closer to the crude es-

timate. Alternatively, having similar results may be due to misspeci�cation of the

parametric models or because ethnicity and baseline CKD stage may not be strong

confounders.

In terms of precision, the complete records analysis has a very wide con�dence

interval, in contrast to the other missing data methods which all produce much

narrower con�dence intervals. This loss in precision, due to the exclusion of a large

portion of the data, is recovered by the MPA, the missing indicator approach and

multiple imputation.

5.11 Discussion

We have explored the three assumptions under which the missingness pattern ap-

proach to dealing with missing counfounders in propensity score analysis provides

valid inference. We have described how d-separation can be applied to a causal

diagram to assess the MPA's assumptions in a given setting and provided a frame-

work and detailed example to allow researchers to ensure the appropriateness of this

method in practice.

The key assumption required by the MPA is that the confounder acts as a con-

founder only when observed. Thus for the MPA to be an appropriate method to

use, we must believe that the relationships between treatment, outcome, and con-

founder are di�erent in the subgroup with the confounder unmeasured. While this

assumption will be plausible only in speci�c scenarios, one setting where it may

have broad applicability is in the area of electronic health record research. In such

studies, missing confounder information re�ects information that the clinician did

not have when making prescribing decisions, thus the assumption that the missing

values did not a�ect prescribing may well be reasonable.

If this key assumption is thought to be satis�ed, careful consideration is required

to ensure that the remaining assumptions of the MPA are satis�ed. In particular, the
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assumptions do not hold in the following scenarios: (i) where the outcome a�ects

missingness of the confounder; (ii) where outcome and missingness have shared

unmeasured common causes, and treatment and missingness have shared common

causes; and (iii) where a partially-missing confounder and treatment both a�ect

missingness of the confounder and the confounder is thought to be associated with

outcome whether or not it is measured. We note that the scenario where the outcome

a�ects the missingness of the confounder also gives biased estimates of the treatment

e�ect when using complete records analysis [50]; multiple imputation can be used

to deal with such scenarios if data are missing at random.

We also found that many violations of the MPA's assumptions can be dealt with

by recording, and including in the analysis, auxiliary variables that are predictors of

confounder missingness. Thus, although measuring such variables may be di�cult

in practice, careful consideration of the process by which data become missing is

essential.

Our results demonstrate that classi�cation of the missingness mechanism accord-

ing to Rubin's taxonomy does not provide information as to whether the MPA's

assumptions will hold. Unlike most missing data methods, for example, data being

missing completely at random does not guarantee that the assumptions of the MPA

are satis�ed: the underlying relationships between the partially missing confounder

and either the treatment or outcome (or both) would need to di�er according to

whether or not the confounder was missing. Also, if a confounder is missing not at

random, but the confounder does not confound the treatment-outcome relationship

when missing, the MPA's assumptions may hold.

The missing indicator approach is a popular and easy method to deal with miss-

ing confounder data. [57, 58] However, it is believed to be an `ad hoc' method [57]

that produces biased results. [58] Although the missing indicator approach is indeed

biased under standard missing at random assumptions, [58] our results show that

in the propensity score context, the missing indicator approach is a simpli�ed ver-

sion of the MPA, and hence requires the same assumptions for valid results, along

with additional assumptions about interaction terms in the propensity score model.
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Our work, therefore, allows researchers to use the missing indicator approach in a

principled way.

There are several advantages to using the MPA, or the simpler missing indicator

approach, when dealing with partially observed confounders in propensity score

analysis. First, the method itself is simple to comprehend and easy to implement.

Second, in contrast to complete records analysis, the MPA retains all patients in the

analysis. Third, the MPA may be appropriate in some situations where multiple

imputation is not, as the MPA does not require the missing at random assumption

to hold.

A limitation of the MPA is that we require su�cient sample size in each missing-

ness pattern in order to be able to estimate propensity scores. This is of particular

concern when there are many missingness patterns, a scenario to which the MPA is

not currently easily extendable. Qu and Lipkovich (2009) suggested a pattern pool-

ing algorithm [70] to ensure su�cient sample size when estimating propensity scores

when there are a large number of missingness patterns. Further work is needed to

explore the performance of their algorithm in a range of scenarios. An extension

to the MPA was proposed by D'Agostino et al. [64] They suggested that in each

missingness pattern, propensity scores should be estimated in the wider group of

all subjects with observed data for the relevant confounders, retaining estimated

propensity scores only for those who actually observed that particular pattern. Fur-

ther work is required to compare this extension with the original MPA, and to

investigate how to account for the correlation induced by this method.

In scenarios with a large number of confounders, causal diagrams may be pro-

hibitively complex to construct. An alternative strategy could be to perform sensi-

tivity analyses to assess the extent of the violation that would be required to change

the study's conclusions. However, further work is required to determine how best

to implement such sensitivity analyses.

We have concentrated on scenarios where treatment and outcome are both fully

observed. A hybrid method, combining the MPA and multiple imputation, was

proposed by Qu and Lipkovich, [70] and studied by Seaman and White. [80]
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The MPA is simple and easy to implement, and may be useful in settings where

other missing confounder data methods are not appropriate. We believe that this

approach will be particularly useful in areas using routinely collected data, partic-

ularly electronic health record research. We have produced practical guidance for

researchers to decide whether the underlying assumptions of the MPA are plausibly

satis�ed in a particular clinical setting.
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Supplementary material

In Section A, we prove that the missingness pattern approach (MPA) gives a con-

sistent estimator of the average treatment e�ect under weaker versions of Mattei's

assumptions, [63] referred to in the main text as the mSITA, CIT and CIO assump-

tions. In Section B, we explore the connection between the MPA and the missing

indicator approach by comparing propensity score models for the two approaches.

Section C describes the d-separation rule. Section D gives a brief overview of twin

networks. In Section E, we present additional violations of the MPA's assumptions.
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In Section F, we provide R code for assessing the MPA's assumptions in a simple

example and in our motivating example. Section G gives standardized di�erences

for our motivating example.
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A Validity of the MPA

In this appendix, we demonstrate that E
[
ZY
e∗

]
= E[Y (1)] under the weaker versions

of the assumptions presented in the text.

First, using the consistency assumption and rearranging, we have that:

E

[
ZY

e∗

]
= E

[
ZY (1)

e∗

]
= E

[
E

[
ZY (1)

e∗
|Xobs, R

]]
= E

[
1

e∗
E
[
ZY (1)|Xobs, R

]]
, (5.6)

where e∗ = E[Z|Xobs, R].

Switching brie�y to summation notation:

E
[
ZY (1)|Xobs, R

]
=
∑∑

zyP (Z|Xobs, R)P (Y (1)|Z,Xobs, R)

=
∑∑

zyP (Z|Xobs, R)
∑

P (Y (1), Xmis|Z,Xobs, R)

=
∑∑∑

zyP (Z|Xobs, R)P (Y (1)|Z,Xmis, Xobs, R)P (Xmis|Z,Xobs, R)

Using mSITA (Z ⊥ Y (z)|X,R for z = 0, 1) and CIT (Z ⊥ Xmis|Xobs, R), we have:

E
[
ZY (1)|Xobs, R

]
=
∑∑∑

zyP (Z|Xobs, R)P (Y (1)|Xmis, Xobs, R)P (Xmis|Xobs, R)

=
∑∑

zyP (Z|Xobs, R)
∑

P (Y (1), Xmis|Xobs, R)

=
∑∑

zyP (Z|Xobs, R)P (Y (1)|Xobs, R)

= E
[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]
We can also show that E

[
ZY (1)|Xobs, R

]
= E

[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]
using

mSITA with CIO (Y (z) ⊥ Xmis|Xobs, R for z = 0, 1) in a similar manner. Thus, we

can rewrite equation 5.6 as follows:

E

[
ZY

e∗

]
= E

[
1

e∗
E
[
Z|Xobs, R

]
E
[
Y (1)|Xobs, R

]]
.

96



Since e∗ = E[Z|Xobs, R]:

E

[
ZY

e∗

]
= E

[
E
[
Y (1)|Xobs, R

]]
= E[Y (1)].

Similarly, we can show that E[(1− Z)Y/(1− e∗)] = E[Y (0)].
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B The connection between the missingness pattern

approach and the missing indicator approach

In this appendix, we consider the propensity score models for the MPA and the

missing indicator approach to explore the connection between these approaches.

In a scenario with a single partially observed confounder X, the propensity score

model for the MPA can be written as:

logit(P (Z = 1)) =

 α1 + β1X if R = 1

α0 if R = 0

with some parameters α1, β1, α0.

De�ning a new variable X∗ which takes the value X if observed, and 0 otherwise,

this can be rewritten as:

logit(P (Z = 1)) = α0 + β1X
∗R + (α1 − α0)R.

If X is binary, this is equivalent to creating a third category for X representing

the missing values. If X is continuous, this sets missing values to 0 and adds an

indicator variable for missing observations. This is exactly the missing indicator

approach. If X were categorical, this could be extended to show that the MPA is

similarly equivalent to adding a `missing' category.

In a scenario with one partially observed confounder X, and one fully observed

confounder C, the propensity score for the MPA can be written as:

logit(P (Z = 1)) =

 α1 + β1X+ γ1C if R = 1

α0 + β1X+ γ0C if R = 0

= α0 + β1X
∗R + (α1 − α0)R + γ0C + (γ1 − γ0)CR

with some parameters α1, β1, γ1, α0, γ0.
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In contrast, the propensity score model for the missing indicator approach is:

logit(P (Z = 1)) = α + βX∗R + ηR + γC

with parameters α, β, η, γ.

This is the MPA model, constraining γ1 to be equal to γ0, i.e. the missing indica-

tor model additionally assumes there are no CR interactions in the true propensity

score model.
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C The d-separation rule

The d-separation rule, proposed within the context of directed acyclic graphs [66]

and extended to SWITs, [67] determines whether a particular conditional depen-

dency holds or not, under an assumed causal structure. Broadly speaking, asso-

ciation is transmitted through series of arrows � paths � in the assumed causal

diagram. [4] A particular path will transmit association between the nodes at either

end unless it contains a `collider': a node which � in that path � has two incoming

arrows. In Figure 5.1, the path Z ← X → Y (z) will transmit association between

Z and Y (z), but the path Z ← UZ → R ← UY → Y (z) will not because R is a

collider in this path. Conditioning on a non-collider blocks associations through a

speci�c path. Conversely, conditioning on a collider removes the blockage through

that collider thereby allowing association to be transmitted. Introducing bias by

conditioning on a collider is often termed collider bias. [81]

The d-separation rule states that two variables in the assumed causal diagram

are conditionally independent given a set of variables V if for each path connecting

the two variables: (i) the path contains two arrows which collide at a node in the

path, and that node is neither in V , nor a cause of a variable in V ; or (ii) the path

has a non-collider which is in V . [4, 66]

In Figure 5.1, there are two paths between Z and Y (z): Z ← X → Y (z), and

Z ← UZ → R ← UY → Y (z). If the conditioning set is V = {X}, then Z and

Y (z) are conditionally independent given V . This is because the �rst path contains

a non-collider (X) which is in V (condition (ii)) and the second contains a collider

(R) which is not in V (condition (i)). In contrast, Z and Y (z) are not conditionally

independent given V = {X,R}, because the second path then contains a collider

(i.e. R) which is in V , and neither X nor R is a non-collider in this path.
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Figure 5.6: A simple example of a twin network.
X: partially observed confounder. Z: observed treatment allocation. Y : observed out-
come. Y (z): potential outcome resulting from intervening to set treatment to value z.
R: observed missing indicator (=1 if X observed, =0 if X is missing). R(z): potential
missing indicator (=1 if X observed in counterfactual world, =0 if X is missing in coun-
terfactual world). eY : unobserved error term between Y and Y (z). eR: unobserved error
term between R and R(z).

D Twin networks

When considering scenarios in which treatment, or the outcome, has a causal e�ect

on missingness, by construction, the SWITs now include R(z) instead of R. This

means that the SWIT can no longer be used to test the MPA's assumptions. Instead,

we can construct twin networks to check such scenarios, as described by Balke and

Pearl, [68] and Shpitser and Pearl. [69]

Brie�y, a twin network can be constructed from a directed acyclic graph, which

involves real world variables and relationships, by adding counterparts of variables

and relationships in the counterfactual world where treatment has been intervened

upon to be set to some realisation of the random variable Z.

For example, Figure 5.6 shows a simple twin network of a scenario where the

confounder X has a causal e�ect on both treatment and outcome, treatment has

a causal e�ect on outcome, and outcome has a causal e�ect on missingness of the

confounder. The `real world' is shown by Z, Y , and R. The nodes z, Y (z), and

R(z) show the counterfactual world � what would occur if we set treatment to

value z. The observed outcome Y and potential outcome Y (z) are connected by an

unobserved error term eY . Similarly, the observed missing indicator R and potential

missing indicator R(z) are connected by an unobserved error term eR. Because X

has a causal e�ect on outcome, it also has a causal e�ect on the potential outcome.
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It does not, however, a�ect the intervened-on value of treatment, z.

To assess mSITA in Figure 5.6, we need to assess whether Z ⊥ Y (z)|R,X.

Conditioning on X blocks the confounding pathway between Z and Y (z). There is

a closed path Z → Y ← eY → Y (z), blocked because Y is a collider on this path.

However, conditioning on R opens this path, because conditioning on a descendant

of a collider (i.e. something a�ected by the collider) has a similar, but weaker, e�ect

as conditioning on the collider itself. Thus the path Z → Y ← eY → Y (z) is open,

after conditioning on R, so the mSITA assumption may not be appropriate here. 1

Dagitty can be used to assess the assumptions in twin networks, just as for

SWITs.

1As d-separation for twin networks is not complete, [67] caution should be used in considering
the plausibility of results that suggest two variables are not d-separated.
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E Additional violations of assumptions

Figure 5.7 summarises additional violations of the MPA's assumptions.

Figure 5.7: Summary of additional violations of the mSITA, CIT and CIO assumptions.
X: partially observed confounder. Xmis: unobserved confounder values. C: fully observed
confounder. Z: treatment. Y (z): potential outcome resulting from intervening to set
Z equal to a particular value z. Y : observed outcome. R: missing indicator (=1 if X
observed, =0 if X is missing). Ust: unobserved common cause between two variables s and
t. Us: unobserved common cause between R and another variable s.
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F Using Dagitty to assess the MPA's assumptions

F.1 Simple example: R code to use Dagitty to assess the

MPA's assumptions

Run in R 3.4.0, [82] the R code below reads in our causal diagram for Figure 5.1

and uses d-separation to assess the mSITA, CIT and CIO assumptions. [77]

### R CODE TO USE DAGITTY: SIMPLE EXAMPLE

install.packages("dagitty")

library("dagitty")

############################

# Load DAG into Dagitty #

############################

# X partially observed confounder

# R observed covariate indicator: =1 if X observed, =0 otherwise.

# Z treatment allocation (fully observed)

# Yz potential outcome that would be observed when Z=z

# U_Y unobserved common cause of R and Y

# U_Z unobserved common cause of R and Z

g1 <- dagitty( 'dag {

z -> Yz

Z <- X -> Yz

R <- U_Z -> Z

R <- U_Y -> Yz

}')

coordinates( g1 ) <-
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list( x=c(Z=1, z=1.2, X=2, Yz=3, R=2, U_Z=1.2, U_Y=2.8),

y=c(Z=3, z=3, X=2, Yz=3, R=1, U_Z=1.7, U_Y=1.7) )

plot( g1 )

### Assess mSITA assumption:

### - Is Z indep of Yz given R, X, and z?

### (note: we add z to the conditioning set because we are using

### a SWIG)

# List all paths between Z and Yz

paths( g1, "Z", "Yz", c("R","X","z") )

# Check whether mSITA holds

dseparated( g1, "Z", "Yz", c("R","X", "z") )

# Check whether mSITA holds if U_Y were also measured and

# included in the confounder set

dseparated( g1, "Z", "Yz", c("R","X", "z", "U_Y") )

#########################################

# DAG for subgroup with X unmeasured #

#########################################

### Suppose we believe that X does not affect Z when unmeasured

### R is now written R0 as shorthand for "R=0"

g2 <- dagitty( 'dag {

z -> Yz

X -> Yz
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R0 <- U_Z -> Z

R0 <- U_Y -> Yz

}')

coordinates( g2 ) <-

list( x=c(Z=1, z=1.2, X=2, Yz=3, R0=2, U_Z=1.2, U_Y=2.8),

y=c(Z=3, z=3, X=2, Yz=3, R0=1, U_Z=1.7, U_Y=1.7) )

plot( g2 )

### Assess CIT assumption:

### - Is Z indep of X given R=0 (and z)?

### (note: we add z to the conditioning set because we are using

### a SWIG)

dseparated( g2, "Z", "X", c("R0", "z") )

paths( g2, "Z", "X", c("R0","z"))

### Assess CIO assumption:

### - Is Yz indep of X given R=0 (and z)?

### (note: we add z to the conditioning set because we are using

### a SWIG)

dseparated( g2, "Yz", "X", c("R0", "z") )

paths( g2, "Yz", "X", c("R0","z"))

F.2 Motivating example: R code to use Dagitty to assess

the MPA's assumptions

Figure 5.5 shows the causal diagram which represents what the investigators believe

to represent the underlying causal structure giving rise to the data. The R code

below reads in our causal diagram for our motivating example and uses d-separation

to assess the mSITA, CIT and CIO assumptions.
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### R CODE TO USE DAGITTY: MOTIVATING EXAMPLE

#install.packages("dagitty")

library("dagitty")

############################

# Load DAG into Dagitty #

############################

# Outcome and treatment:

# Aki Acute Kidney Injury (outcome)

# Ace ACE/ARB (treatment)

# ace Intervened-on ACE/ARB (intervened-on treatment)

# Partially observed confounders and missing indicators:

# Eth Ethnicity (partially observed confounder)

# Ckd Baseline CKD (partially observed confounder)

# Reth Missingness of ethnicity

# Rckd Missingness of baseline CKD

# Determinants of missing data:

# Slf Service-level factors determining whether or not ethnicity

# is measured

# Hosp Hospitalisation

# Fully observed confounders:

# Age

# Sex

# Hyp Hypertension
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# Diab Diabetes

# Arr Arrhythmia

# Car Cardiac failure

# Ihd Ischaemic heart disease

# Unmeasured factors:

# U (e.g. frailty)

### Draw DAG ###

g1 <- dagitty( 'dag {

Age -> Hyp Age -> Diab Age -> Ckd Age -> Arr Age -> Car Age -> Ihd

Sex -> Hyp Sex -> Diab Sex -> Ckd Sex -> Arr Sex -> Car Sex -> Ihd

Reth <- Eth Reth <- Slf Reth <- Hosp

Rckd <- Hyp Rckd<- Ckd Rckd <- Diab Rckd <- Age

Diab -> Ckd Ihd -> Ckd Car -> Ckd

Eth -> Arr Ihd -> Arr Arr -> Car Hyp -> Car Ihd -> Car

U -> Ckd U -> Hyp U -> Diab U -> Hosp U -> Ihd U-> Arr

Hyp -> Ace Sex -> Ace Diab -> Ace Eth -> Ace Ckd -> Ace Car -> Ace

Ihd -> Ace

Age -> Aki Eth -> Aki Sex -> Aki Diab -> Aki Ckd -> Aki U -> Aki

Car -> Aki

ace -> Aki

}')

coordinates( g1 ) <-

list( x=c(Age=1, Sex=1, Eth=1, Ace=6, ace=6.5, Aki=10,

Arr=5, Car=3.25, Ihd=5,

Reth=9, Slf=8, Hosp=8, Hyp=3.25, Ckd=4, Diab=4, Rckd=5, U=1.5),

y=c(Age=3, Sex=5, Eth=8, Ace=4.75, ace=4.75, Aki=5,

Arr=7, Car=6.75, Ihd=6,

Reth=7.5, Slf=8, Hosp=7, Hyp=2, Ckd=3, Diab=4, Rckd=2, U=6) )
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plot( g1 )

#############################

# Check mSITA assumption #

#############################

### mSITA assumption:

### Is Z indep of Yz given R, X, and z?

### Here: Is Ace indep of Aki given Rckd, Reth, Ckd, Eth, ...

### ...Age, Sex, Hyp, Diab, Arr, Car, Ihd and ace?

###

# List all paths between Z and Yz

paths( g1, "Ace", "Aki", c("Rckd", "Reth","Ckd", "Eth",

"Age", "Sex", "Hyp", "Diab",

"Arr", "Car", "Ihd", "ace") )

# Check whether mSITA holds

dseparated( g1, "Ace", "Aki", c("Rckd", "Reth","Ckd", "Eth",

"Age", "Sex", "Hyp", "Diab",

"Arr", "Car", "Ihd", "ace") )

#########################################################

# DAG for subgroup with CKD and ethnicity unmeasured #

#########################################################

### Suppose we believe that:
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### Ckd does not affect prescription of ACE when unmeasured

### Eth does not affect prescription of ACE when unmeasured

### Draw DAG (group with neither ethnicity nor ckd measured) ###

g2 <- dagitty( 'dag {

Age -> Hyp Age -> Diab Age -> Ckd Age -> Arr Age -> Car Age -> Ihd

Sex -> Hyp Sex -> Diab Sex -> Ckd Sex -> Arr Sex -> Car Sex -> Ihd

Reth <- Eth Reth <- Slf Reth <- Hosp

Rckd <- Hyp Rckd<- Ckd Rckd <- Diab Rckd <- Age

Diab -> Ckd Ihd -> Ckd Car -> Ckd

Eth -> Arr Ihd -> Arr Arr -> Car Hyp -> Car Ihd -> Car

U -> Ckd U -> Hyp U -> Diab U -> Hosp U -> Ihd U-> Arr

Hyp -> Ace Sex -> Ace Diab -> Ace Car -> Ace Ihd -> Ace

Age -> Aki Eth -> Aki Sex -> Aki Diab -> Aki Ckd -> Aki U -> Aki

Car -> Aki

ace -> Aki

}')

coordinates( g2 ) <-

list( x=c(Age=1, Sex=1, Eth=1, Ace=6, ace=6.5, Aki=10,

Arr=5, Car=3.25, Ihd=5,

Reth=9, Slf=8, Hosp=8, Hyp=3.25, Ckd=4, Diab=4, Rckd=5, U=1.5),

y=c(Age=3, Sex=5, Eth=8, Ace=4.75, ace=4.75, Aki=5,

Arr=7, Car=6.75, Ihd=6,

Reth=7.5, Slf=8, Hosp=7, Hyp=2, Ckd=3, Diab=4, Rckd=2, U=6) )

plot( g2 )

###############################

# Check CIT/CIO assumption #

###############################
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### CIT assumption:

### Is Z indep of X given R=0 (and z)?

### Here: is Ace indep of Ckd given Rckd=0 and Reth=0, conditional

### on: Age, Sex, Hyp, Diab (and ace)?

### Here: is Ace indep of Eth given Rckd=0 and Reth=0, conditional

### on: Age, Sex, Hyp, Diab (and ace)?

# Check whether CIT holds

dseparated( g2, "Ace", "Ckd", c("Rckd", "Reth",

"Age", "Sex", "Hyp", "Diab",

"Arr", "Car", "Ihd", "ace") )

dseparated( g2, "Ace", "Eth", c("Rckd", "Reth",

"Age", "Sex", "Hyp", "Diab",

"Arr", "Car", "Ihd", "ace") )

### CIO assumption:

### Is Yz indep of X given R=0 (and z)?

### Here: is Aki indep of Ckd given Rckd=0 and Reth=0, conditional

### on: Age, Sex, Hyp, Diab (and ace)?

### Here: is Aki indep of Eth given Rckd=0 and Reth=0, conditional

### on: Age, Sex, Hyp, Diab (and ace)?

# Check whether CIO holds

dseparated( g2, "Aki", "Ckd", c("Rckd", "Reth",

"Age", "Sex", "Hyp", "Diab",

"Arr", "Car", "Ihd", "ace") )

dseparated( g2, "Aki", "Eth", c("Rckd", "Reth",

"Age", "Sex", "Hyp", "Diab",
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"Arr", "Car", "Ihd", "ace") )

### Use similar steps to check CIT/CIO in other missingness pattern

### subgroups
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G Balance of confounders in motivating example

In Table 5.3, we present standardized di�erences [25] calculated to assess the balance

of confounders in our motivating example.

Table 5.3: Standardised mean di�erences of confounders, before and after inverse prob-
ability of treatment weighting for complete records analysis (CRA), missingness pattern
approach (MPA), missing indicator approach (MIndA), and multiple imputation (MI).
A standardized di�erence greater than 10% indicates imbalance for that variable.
(∗ Standardized di�erences for multiple imputation were averaged over 10 imputed
datasets.)

Percentage standardized di�erences (absolute values)
In original After After After After

Covariate sample CRA MPA MIndA MI∗

Age (years) 18 to 42
43 to 53 14.64 1.33 0.49 0.36 0.26
54 to 62 9.42 1.64 1.51 1.45 2.26
63 to 71 2.48 2.17 2.11 1.98 2.93
≥ 72 4.07 2.25 3.70 3.60 4.81

Sex Female 36.95 1.92 4.44 4.99 4.66

Chronic ≤ Stage 2
Kidney Stage 3a 12.84 1.77 1.13 1.08 1.27
Disease Stage 3b 8.62 0.07 0.35 0.38 4.56

Stage 4 3.33 0.32 0.19 0.16 1.19

Ethnicity White
South Asian 6.31 0.38 0.65 0.65 7.63
Black 3.14 3.75 3.75 4.22 8.30
Mixed 1.73 0.56 0.69 0.84 4.25
Other 0.43 0.42 <0.01 0.01 1.12

Diabetes Mellitus 49.21 0.43 2.70 2.01 3.06
Ischaemic Heart Disease 19.25 2.52 2.83 2.28 6.00
Arrhythmia 4.84 0.68 2.16 3.07 2.04
Cardiac Failure 32.90 1.75 0.02 0.03 0.19
Hypertension 43.08 5.74 7.85 7.88 10.93
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Chapter 6

Variance estimation for the

missingness pattern approach

6.1 The theory of M-estimation

M-estimation provides a generalisable theory to obtain the large-sample variance for

estimators that can be written as the solution to a set of estimating equations [83].

Suppose the observed data for individual i are Yi, and the data are independent

and identically distributed according to distribution function F . A M-estimator is

the solution, θ̂, to the estimating equations

n∑
i=1

ψ(Yi, θ) = 0.

So θ̂ is de�ned as the value that solves:

n∑
i=1

ψ(Yi, θ̂) = 0.

The true value of the parameter, θ0, is de�ned by

EF [ψ(Y, θ0)] =

∫
φ(y, θ0)dF (y) = 0.
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Then the large-sample approximate distribution of the estimator θ̂ is:

θ̂ ∼MVN

(
θ0,

V (θ0)

n

)
, as n→∞

where

V (θ0) = A(θ0)
−1B(θ0){A(θ0)

−1}T

with

A(θ0) = E

[
− ∂

∂θT
ψ(Y1, θ0)

]
, B(θ0) = E[ψ(Y1, θ0)ψ(Y1, θ0)

T ].

To obtain an estimate of the variance, the matrices A(θ0) and B(θ0) can be

replaced by sample estimates of the relevant quantities, i.e..

Â(θ0) = − 1

n

n∑
i=1

∂

∂θT
ψ(Yi, θ̂), B̂(θ0) =

1

n

n∑
i=1

ψ(Yi, θ̂)ψ(Yi, θ̂)
T .

6.2 Estimating the variance of the IPTW

estimator with MPA for a partially missing

confounder

This chapter considers a simpli�ed setting with a single potential confounder, X,

which is partially observed. The variable R indicates whether the confounder is

observed (R = 1) or missing (R = 0).

6.2.1 The IPTW estimator with MPA as an M-estimator

If the propensity scores were given by πi for individual i, then the two means which

are contrasted to give the IPTW treatment e�ect estimator can be written as the

solution to the estimating equations

n∑
i=1

vi = 0
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where

vi =

 (Yi − µ1)Ziπ
−1
i

(Yi − µ0)(1− Zi)(1− πi)−1


The treatment e�ect estimate is given by µ̂1 − µ̂0.

In fact, the propensity scores are themselves estimated, often via a logistic re-

gression model for the treatment with the potential confounders as explanatory

variables. Thus
n∑

i=1

wi = 0

where, letting xi = (1, Xi)
T , and using expit(.) to denote the function expit(x) =

exp(x)/(1 + exp(x)), we have

wi =

Rixi(Zi − expit(λTxi))

(1−Ri)(Zi − expit(ζ))


Putting these two estimation steps together, the two estimated means are ob-

tained by solving the estimating equations

n∑
i=1

ui = 0

where

ui =



(Yi − µ1)Ziπi(Ri, Xi, λ, ζ)−1

(Yi − µ0)(1− Zi)(1− πi(Ri, Xi, λ, ζ))−1

Rixi(Zi − expit(λTxi))

(1−Ri)(Zi − expit(ζ))


with

πi(Ri, Xi, λ, ζ) = Ri × expit(λTxi) + (1−Ri)× expit(ζ)

The parameter being estimated by solving the set of estimating equations is

θ = (µ1, µ0, λ
T , ζ)T , and the parameter of interest � the estimated treatment e�ect

� is given by δ = µ1 − µ0.
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6.2.2 Large sample variance

Partitioning the matrix B into four components, corresponding to the four compo-

nents of u, we can write

B(θ0) =



b11 0 b13 b14

0 b22 b23 b24

bT13 bT23 b33 0

bT14 bT24 0 b44


where the zeros arise from multiplying Z and (1− Z) or R and (1−R).

The matrix A can also be partitioned in a similar manner:

A(θ0) =

(
−E

[
∂u

∂µ1

]
,−E

[
∂u

∂µ0

]
,−E

[
∂u

∂λT

]
,−E

[
∂u

∂ζ

])

giving

A(θ0) =



a11 0 a13 a14

0 a22 a23 a24

0 0 a33 0

0 0 0 a44


where the zeros arise from di�erentiating with respect to a parameter not appearing

in the relevant part of the estimating equation.

The inverse matrix is given by

A(θ0)
−1 =



a−111 0 −a13a−111 a
−1
33 −a14a−111 a

−1
44

0 a−122 −a23a−122 a
−1
33 −a24a−122 a

−1
44

0 0 a−133 0

0 0 0 a−144


The large-sample approximate variance of the estimator θ̂ = (µ̂1, µ̂0, λ̂

T , ζ̂)T , is

given by: V ar(θ̂) = A(θ0)
−1B(θ0){A(θ0)

−1}T . The variance of the treatment e�ect
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estimator δ̂ = µ̂1 − µ̂0 is given by

V ar(δ̂) = V ar(µ̂1) + V ar(µ̂0)− 2Cov(µ̂1, µ̂0)

Thus, to obtain an estimator for the variance, the following steps must be fol-

lowed:

• Obtain sample estimates of the individual components of the matrices B and

A

• Multiply out the matrices Â(θ̂)−1B̂(θ̂){Â(θ̂)−1}T

• Extract the variances nV̂ ar(µ̂1) and nV̂ ar(µ̂0), as the (1, 1) and (2, 2) entries

of the matrix obtained. Similarly, extract Ĉov(µ̂1, µ̂0) as the (1, 2) component

of the matrix obtained.

• Substitute into the equation to obtain V̂ ar(δ̂)

6.2.3 Estimating the matrix B

The components of this matrix can be estimated by:

b̂11 =
1

n

n∑
i=1

(Y − µ̂1)
2Ziπ̂

−2
i

b̂22 =
1

n

n∑
i=1

(Y − µ̂0)
2(1− Zi)(1− π̂i)−2

b̂13 =
1

n

n∑
i=1

{Rixi(Yi − µ̂1)Zi(1− expit(λ̂Txi))}π̂−1i

b̂14 =
1

n

n∑
i=1

{(1−Ri)(Yi − µ̂1)Zi(1− expit(ζ̂))}π̂−1i

b̂23 = − 1

n

n∑
i=1

{Rixi(Yi − µ̂0)(1− Zi)expit(λ̂
Txi)}(1− π̂i)−1

b̂24 = − 1

n

n∑
i=1

{(1−Ri)xi(Yi − µ̂0)(1− Zi)expit(ζ̂)}(1− π̂i)−1
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b̂33 =
1

n

n∑
i=1

Rixix
T
i (Zi − expit(λ̂Txi))

b̂44 =
1

n

n∑
i=1

(1−Ri)(Zi − expit(ζ̂))

with

π̂i = Ri × expit(λ̂Txi) + (1−Ri)× expit(ζ̂)

6.2.4 Estimating the matrix A

The components of the matrix A can be estimated as follows:

â11 = − 1

n

n∑
i=1

∂

∂µ1

{(Yi − µ1)Ziπi(Ri, Xi, λ, ζ)−1} =
1

n

n∑
i=1

Zi

π̂i

Similarly,

â22 =
1

n

n∑
i=1

(1− Zi)

(1− π̂i)

And

â33 = − 1

n

n∑
i=1

∂

∂λT
{Rixi(Zi − expit(λTxi))}

= − 1

n

n∑
i=1

Rixix
T
i expit(λ

Txi)(1− expit(λTxi))

Similarly,

â44 = − 1

n

n∑
i=1

(1−Ri)expit(ζ)(1− expit(ζ))

We also have

â13 =
1

n

n∑
i=1

Rix
T
i (Yi − µ̂1)Ziπ̂

−1
i (1− π̂i)

â23 = − 1

n

n∑
i=1

Rix
T
i (Yi − µ̂0)(1− Zi)π̂i(1− π̂i)−1
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â14 =
1

n

n∑
i=1

Ri(Yi − µ̂1)Zi(1−Ri)π̂
−1
i (1− π̂i)

â24 =
1

n

n∑
i=1

Ri(Yi − µ̂0)(1− Zi)(1−Ri)π̂i(1− π̂i)−1

6.3 Plans to evaluate and extend the variance

formula

Further work will involve simulation studies, including a single partially observed

confounder, in order to assess how well the large-sample variance formula performs

in �nite � particularly in small � sample sizes.

The variance formula above is immediately extendable to the case with multi-

ple confounders, in the simpli�ed setting where confounders are either all missing

simultaneously or all observed. Future work will extend the variance formula to

the case where multiple confounders are partially missing and others fully observed,

with all possible combinations of the partially missing confounders being missing or

observed.

In this latter scenario, sparsity of data patterns mean that some sort of `pattern

pooling' is likely to be required, whereby similar patterns of missingness are grouped

together. This will enable estimation of the propensity score within each of the larger

missingness patterns.
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Chapter 7

The connection between the

missingness pattern approach and

the missing indicator approach

7.1 The MPA's connection to the missing

indicator approach in propensity score analysis

The missing indicator approach (MIA) is a simple missing data method where all

missing values are set to a particular value, say 0, and a missingness indicator is

included in the analysis model. In our cohort study, this is equivalent to adding

an `absent' category to baseline CKD stage for patients with missing data for this

confounder.

In a scenario with a single partially observed confounder, it can be seen that

the MIA is equivalent to the MPA. With a single partially observed confounder, the

propensity score model for the MPA can be written as:

logit(P (Z = 1)) =

 α1 + β1X if R = 1

α0 if R = 0
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with coe�cients α0, α1, β1. This can be rewritten as:

logit(P (Z = 1)) = (α1 + β1X)R + α0(1−R),

which is equivalent to the propensity score model for the MIA.

Since the MPA and MIA are equivalent in this simple scenario with a single

partially observed confounder, it is clear that the MIA also requires the mSITA

assumption and at least one of the CIT and CIO assumptions to hold.

In order to see if this equivalency can be extended to more complex scenarios,

we now consider the scenario with one partially observed confounder and one fully

observed confounder, C.

The propensity score model for the MIA is now:

logit(P (Z = 1)) = α + βXR + ηR + γC,

with coe�cients α, β, η, γ.

The propensity score model for the MPA can be written as follows:

logit(P (Z = 1)) =

 α1 + β1X+ γ1C if R = 1

α0 + β1X+ γ0C if R = 0

with coe�cients α0, α1, β1, γ0, γ1. This can be rewritten as:

logit(P (Z = 1)) = (α1 + β1X + γ1C)R + (α0 + γ0C)(1−R)

= α0 + β1XR + (α1 − α0)R + γ0C + (γ1 − γ0)CR.

In this more complex scenario, we �nd that the models for the MIA and the

MPA are not equivalent, as there is an additional term for the interaction between

C and R. Hence, the MIA can be seen to be a simpli�ed version of the MPA, where

the e�ect of the fully observed confounder on treatment is assumed to be the same

for all missingness patterns (i.e. the coe�cient for the interaction term is zero).

Before using the MIA in practice, in addition to considering the plausibility of the

MPA's assumptions, researchers also need to check the assumption that there are no
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interactions between fully observed confounders and the missing indicator. Unlike

the mSITA, CIT and CIO assumptions, this interaction assumption can be assessed

in the data at hand, and the propensity score model adapted as necessary to ensure

correct speci�cation.

7.2 How MIA relates to MPA with multiple

partially observed confounders

Let Z denote treatment allocation and X, W denote two partially observed con-

founders with corresponding missing indicators RX and RW . We de�ne X∗, which

takes the value X if X is observed and 0 otherwise, and similarly de�ne W ∗.

With two partially observed confounders, the propensity score for the MPA can

be written as

logit(P (Z = 1)) =



α00 if RX = 0 & RW = 0

α10 + β10X if RX = 1 & RW = 0

α01 + γ01W if RX = 0 & RW = 1

α11 + β11X + γ11W if RX = 1 & RW = 1

= α00 + (α10 − α00)RX + (α01 − α00)RW

+ (α00 − α10 − α01 + α11)RXRW + β10X
∗RXγ01W

∗RW

+ (β11 − β10)X∗RXRW + (γ11 − γ01)W ∗RXRW .

In contrast, the propensity score model for the MIA is:

logit(P (Z = 1)) = α + βX∗RX + γW ∗RW + δRX + ηRW .

This is the MPA model, where the coe�cents for terms involving interactions be-

tween missing indicators are zero. So, in general, the missing indicator method is a

simpli�cation of the MPA, which makes additional assumptions about the absence

of interactions between the missingness indicator(s) and other fully-observed con-

founders. These additional assumptions can be assessed in the data by testing for
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interactions in the propensity score model.

7.3 Motivation for extending from propensity

score analysis to outcome regression

When investigating the missingness pattern approach (MPA), I found that, with a

single partially observed confounder, the MPA was equivalent to the missing indica-

tor approach (MIA), and thus the MIA would provide unbiased estimates under the

mSITA assumption and either the CIT or the CIO assumption. With an additional

fully observed confounder, I showed that the MIA is a simpli�cation of the MPA,

with the additional assumption that the propensity score model is correctly speci-

�ed. In particular, the MIA as typically applied implicitly assumes the absence of

interactions in the true propensity score model between the missing indicator and

the fully observed confounder, i.e. the e�ect of the fully observed confounder on

treatment does not vary by missingness pattern.

So, in the propensity score context, the MIA can provide unbiased estimates

under certain assumptions. Indeed, the use of missing indicators has been rec-

ommended by Stuart (2010) for use in propensity score analysis [55] and also by

Hernán et al. (2009) and Kreif et al. (2018) in the context of non-systematic mon-

itoring of covariates in settings with time-varying treatments [74, 75]. However, in

the context of outcome regression, the MIA is often considered to be an �ad hoc�

approach [56, 57] that gives biased results [58, 59]. The purpose of this chapter is

to investigate whether our �nding that the MIA can provide unbiased estimates

extends to the context of outcome regression.

In order to investigate whether our work in the propensity score context can be

extended to outcome regression, we must �rst consider how these contexts di�er

from each other. Although in both cases the aim is to remove confounding bias,

in propensity score analysis, we wish to model the relationship between covariates

and the treatment, whilst in outcome regression, we wish to model the relationship

between covariates and the outcome. Thus the MIA (or other methods to handle
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partially observed confounders) would be applied di�erently for each context: in

the propensity score context, the MIA is applied when modelling the covariate-

treatment relationship, whereas for outcome regression, the MIA would be used in

the outcome model. Consequently, when extending the MIA to outcome regression,

instead of assuming correct speci�cation of the propensity score model, the analogous

assumption would be that the outcome model is correctly speci�ed. In particular,

we might expect that that the e�ect of fully observed confounders on the outcome

does not vary by missingness pattern.

7.3.1 Relating our �ndings to previous literature

I prove that the MIA gives unbiased treatment e�ect estimates in outcome regression

when (i) the mSITA assumption holds, (ii) either the CIT or the CIO assumption

holds, and (iii) the outcome model is correctly speci�ed. Details are given in the

MIA research paper pre-print (Chapter 8).

Jones assumed that the true model for the outcome Y was a linear regression

model with two covariates X1, X2 and an independent normal error term ε, where

Y and X1 are assumed to be fully observed and X2 may be partially observed [59].

Jones (1996) proved that the MIA for outcome regression gives biased least squares

estimators and noted that the least squares estimators are unbiased when (i) the

proportion of individuals with missing data is zero, or (ii) the sample covariance of

X1 and X2 for individuals missing X2 is zero.

As our interest lies in estimating the e�ect of treatment, we will henceforth

replace Jones'sX1 with the treatment allocation variable Z andX2 with our notation

for a partially observed covariate: X. So, Jones's work suggests that the least square

estimator for the treatment e�ect is unbiased when the sample covariance of Z and

X for individuals missing X is zero. We prove below that if the CIT assumption

holds, this sample covariance is indeed zero, and thus the least square estimator for

the treatment e�ect is unbiased. Furthermore, if the true outcome model resembles

a parametric model corresponding to the MIA, then the CIO assumption holds, and

it is simple to show that the least squares estimator is unbiased.
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Suppose that the true data generation model for outcome Y is:

Yi = β0 + β1Zi + β2Xi + εi,

for i = 1, ..., n patients, where Z denotes treatment allocation, X is a single partially

observed confounder, and ε is an independent normal error term. Suppose further

that the true data generation model for Z is:

Zi = γ0 + γ1XiRi + γ2(1−Ri), i = 1, ..., n (7.1)

where R denotes the missing indicator. Under the model in equation (7.1), the CIT

assumption holds (Z ⊥ X|R = 0).

The sample covariance of Z and X for patients missing X is de�ned as:

S = [n(1− R̄)]−1
∑

(1−Ri)(Zi − Z̄m)(Xi − X̄m) (7.2)

where R̄ = n−1
∑
Ri and V̄

m = [n(1− R̄)]−1
∑

(1−Ri)Vi for V = Z,X.

Under the model in equation (7.1),

Z̄m = [n(1− R̄)]−1
∑

(1−Ri)
(
γ0 + γ1XiRi + γ2(1−Ri)

)
.

Since the missing indicator is binary, we can rewrite this as:

Z̄m = [n(1− R̄)]−1
∑(

γ0(1−Ri) + γ2(1−Ri)
)
.

By cancelling, we get Z̄m = γ0 + γ2. Substituting this expression and equation (7.1)

into equation (7.2):

S = [n(1− R̄)]−1
∑

(1−Ri)
(
γ0 + γ1XiRi + γ2(1−Ri)− γ0 − γ2

)
(Xi − X̄m).

= [n(1− R̄)]−1
∑(

γ1XiRi(1−Ri)− γ2Ri(1−Ri)
)
(Xi − X̄m)

= 0.
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Hence, if the CIT assumption holds, the sample covariance of Z and X for

patients missing X is zero. Thus, the least square estimator for the treatment e�ect

is unbiased [59].
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8.1 Overview of the research paper pre-print:

Estimating treatment e�ects with partially

observed covariates using outcome regression

with missing indicators

In the following research paper pre-print, we extend the MIA from propensity score

analysis to the context of outcome regression. After introducing the MIA and the

method's underlying assumptions, we prove that the MIA gives unbiased treatment

e�ect estimates when the mSITA assumption holds, either the CIT or the CIO

assumption holds, and the outcome model is correctly speci�ed. We show how this

�nding is compatible with previous work by Jones (1996) which found that the MIA

generally gives biased estimates in outcome regression [59], and highlight additional

interesting results. In addition, we use simulation studies to explore the extent

of bias when the MIA's assumptions are violated. We then illustrate the MIA in

outcome regression with a cohort study using electronic health records.

8.2 Abstract

Missing data is a common issue in research using observational studies to investigate

the e�ect of treatments on health outcomes. When missingness occurs only in the

covariates, a simple approach is to use missing indicators to handle the partially

observed covariates. The missing indicator approach has been criticised for giving

biased results in outcome regression. However, recent papers have suggested that

the missing indicator approach can provide unbiased results in propensity score anal-

ysis under certain assumptions. We consider assumptions under which the missing

indicator approach can provide valid inferences, namely: (1) no unmeasured con-

founding within missingness patterns; either (2a) covariate values of patients with

missing data were conditionally independent of treatment; or (2b) these values were

conditionally independent of outcome; and (3) the outcome model is correctly spec-
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i�ed: speci�cally, the true outcome model does not include interactions between

missing indicators and fully observed covariates. We prove that, under the assump-

tions above, the missing indicator approach with outcome regression can provide

unbiased estimates of the average treatment e�ect. We use a simulation study to

investigate the extent of bias in estimates of the treatment e�ect when the assump-

tions are violated and we illustrate our �ndings using data from electronic health

records. In conclusion, the missing indicator approach can provide valid inferences

for outcome regression, but the plausibility of its assumptions must �rst be consid-

ered carefully.

8.3 Introduction

Observational studies are a valuable source of information for research investigating

the e�cacy and safety of treatments in practice. We focus on scenarios where we

want to estimate the e�ect of treatment on a health outcome. However, a common

challenge when using observational data is how to deal with missing data. If not

handled appropriately, missing data can lead to bias and a loss of e�ciency [50].

When using observational data for research, missing data is often an issue in variables

that may be considered as potential confounders, such as smoking status or ethnicity.

The simplest approach for handling partially observed covariates is complete

record analysis (also called complete case analysis), where patients with missing

data are excluded from analysis. Although complete record analysis can provide

unbiased results [50], this approach will typically lead to a loss of e�ciency due to

the exclusion of information. Furthermore, if patients with complete records are not

representative of the population of interest, results from a complete record analysis

may not be generalizable to the population of interest [45, 84].

A popular alternative missing data method is multiple imputation, where missing

values are imputed multiple times with plausible values in order to create multiple

`complete' imputed datasets. After analysing each dataset, the results are com-

bined using Rubin's Rules to obtain an overall treatment e�ect estimate [20, 44].

Although multiple imputation is very powerful, it can be fairly complex and stan-
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dard implementation requires the assumption that data are missing at random (i.e.

the probability of being missing depends on observed data and, given these, does

not depend on unobserved data) [44,48]. The plausibility of the missing at random

assumption should be considered when implementing multiple imputation [49]. In

addition, imputing missing values in standard multiple imputation relies on para-

metric assumptions [45], the plausibility of which should also be considered [85].

Another simple way of dealing with partially observed covariates is to use missing

indicators � variables which indicate whether the covariate is missing or observed.

For a continuous covariate, missing observations are replaced with a �xed value, say

0, and a missing indicator is added to the analysis model, alongside the continuous

variable. For a categorical covariate, the missing indicator approach is equivalent to

adding a `missing' category to the variable.

The use of missing indicators to handle missing covariates in outcome regression

has been criticised in the literature for being �ad hoc� [56,57], and for giving biased

results [58, 59]. However, the missing indicator approach is often used to deal with

missing covariates [52] and has been recommended as a missing data method for

propensity score analysis [55]. Related methods, incorporating the last-observation-

carried-forward approach, have been studied in the context of non-systematic mon-

itoring of covariates in settings with time-varying treatments [74,75]. Furthermore,

our recent work in the propensity score context suggests that the missing indicator

approach can provide unbiased estimates under certain assumptions [86]. In propen-

sity score analysis, we want to model the relationship between the covariates and

the treatment, whereas in outcome regression, we wish to model the relationship

between the covariates and the outcome. So, we need to investigate whether the

validity of our �ndings in the propensity score context also holds for outcome re-

gression. Therefore, in this paper we consider whether our work can be extended to

the context of outcome regression.

We begin in Section 8.4 by describing the basic principles of the missing indicator

approach and the assumptions underlying its validity. In Section 8.5, we prove that

the missing indicator approach can give unbiased estimates of the treatment e�ect in
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outcome regression and show how our work �ts in with the literature. In Section 8.6,

we explore the extent of bias in the estimation of the treatment e�ect when these

assumptions are violated. In Section 8.7, we apply the missing indicator approach

in multivariable outcome regression to an illustrative example. We conclude with a

discussion in Section 8.8.

8.4 Background

8.4.1 Notation and potential outcome framework

Let Z be a binary variable indicating treatment allocation (or exposure status, etc.

depending on context) and let Y represent the observed outcome variable. In this

paper, we will concentrate on missing data in covariates and assume that treatment

Z and outcome Y are fully observed, as the missing indicator method does not

accommodate missing data on the outcome or exposure.

To enable us to describe the assumptions underlying the missing indicator ap-

proach, we refer to the potential outcome framework, developed by Rubin (1974),

for causal inference from observational data. We let Y (z) represent the potential

outcome that would be observed if Z was set equal to the value z (z = 0, 1).

We focus on a scenario with two confounders: a fully observed confounder C

and a partially observed confounder X. The missing indicator R equals 1 if X is

observed, and R = 0 if X is missing.

The confounder values can be partitioned as {Xobs, Xmis}, where Xobs is the set

of X values that are observed and Xmis is the set of missing X values (i.e. Xmis

contains the true unobserved X values). For each patient with R = 1, Xobs is equal

to X and Xmis is empty. For each patient with R = 0, Xmis = X and Xobs is empty.

Additionally, we de�ne X∗ = X when R = 1, and X∗ = 0 when R = 0. Note that

an alternative approach would be to de�ne Xobs instead as RX (which is equivalent

to X∗) and Xmis as (1− R)X. However, for the purposes of this paper, we use the

Xobs and Xmis notation, following the literature on which our theory builds [46,63].

Our estimand of interest is the average treatment e�ect (ATE): E[Y (1)]−E[Y (0)].
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To estimate the treatment e�ect, we make the following standard assumptions for

causal inference with complete data: strongly ignorable treatment allocation (SITA),

no interference, consistency, and positivity.

The SITA assumption � an important assumption in causal inference using

observational data � is that there is no unmeasured confounding [33]. In a scenario

with two confounders, C and X, the SITA assumption can be written as:

Z ⊥ Y (1), Y (0)|C,X. (8.1)

Under the assumption of no interference, the treatment status of one patient does

not a�ect the potential outcomes of another patient [31,34]. Assuming consistency,

the observed outcome of a patient is equal to the potential outcome corresponding

to the treatment they actually received, i.e. if Z = z then Y = Y (z) [31]. Finally,

under positivity, all patients have a non-zero probability of being assigned to each

value of treatment, given their characteristics [31, 37]

8.4.2 The missing indicator approach

The missing indicator approach is a simple method of dealing with partially observed

covariates. When using outcome regression, the missing indicator approach allows

patients with missing data to be used for the estimation of the treatment e�ect on

the outcome, given covariates.

For a continuous partially observed covariate, the missing indicator approach in

outcome regression replaces missing covariate values with some �xed value: the same

value (for example, 0) is used for all participants with that covariate missing. Both

the modi�ed covariate and the missing indicator R are then included in the analysis

model. For a categorical partially observed covariate, the missing indicator approach

is equivalent to adding a `missing' category to the variable. The regression coe�cient

for treatment can then be used to obtain an estimate of the treatment e�ect using

appropriate transformations (eg. the identity function for linear regression).

For example, using the missing indicator approach for linear regression, the anal-

ysis model is E[Y ] = α0 + α1Z + α2C + α3X
∗ + α4R, where X

∗ = X when R = 1,
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and X∗ = 0 when R = 0, and where α1 is the regresssion coe�cient corresponding

to our estimate of the ATE.

We note that, in the propensity score context, the missing indicator approach

allows patients with missing data to contribute to the estimation of the propensity

score (i.e. the probability of receiving treatment, given patient characteristics). So,

missing indicators are included in the propensity score model, rather than the out-

come model (which only includes treatment allocation and the propensity score as

covariates).

8.4.2.1 Assumptions underlying the missing indicator approach

Our recent work in the context of propensity score analysis has shown that the

missing indicator approach relies on four assumptions [86]. In this paper, we extend

this work by investigating whether these four assumptions also underlie the validity

of the missing indicator approach in outcome regression, in order to understand

when this approach is appropriate in practice.

The �rst assumption is that there is no unmeasured confounding within missing-

ness patterns, i.e. within each subgroup of patients who have information recorded

on the same variables [63]. We call this the missingness Strongly Ignorable Treat-

ment Allocation (mSITA) assumption, due to the similarity to the SITA assumption

(equation (8.1)). Mathematically:

mSITA: Z ⊥ Y (z)|C,X,R for z = 0, 1. (8.2)

We call the second and third assumptions the Conditionally Independent Treat-

ment (CIT) assumption and the Conditionally Independent Outcomes (CIO) as-

sumption, respectively. The CIT assumption is that missing confounder values are

conditionally independent of treatment, given the observed confounder values and

the missing indicator, while the CIO assumption is that missing confounder values
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are conditionally independent of the potential outcomes [63].

CIT: Z ⊥ Xmis|C,Xobs, R. (8.3a)

CIO: Y (z) ⊥ Xmis|C,Xobs, R for z = 0, 1. (8.3b)

Note that in scenarios with partially observed confounders, the mSITA, CIT and

CIO assumptions replace the SITA assumption with respect to identi�cation of the

causal estimand.

The fourth assumption in the propensity score context is that the propensity

score model is correctly speci�ed; in particular, we assume that the true propensity

score model does not include an interaction between the missing indicator R and

the fully observed confounder C (CR interaction). In other words, the e�ect of the

fully observed confounder on treatment allocation is assumed to be the same for all

missingness patterns.

The analogue assumption for outcome regression is that the outcome model is

correctly speci�ed and, in particular, the true outcome model does not include a

CR interaction. The plausibility of this correct speci�cation assumption is context-

dependent and can be assessed in the data at hand, allowing the possibility of

adapting the model in order to ensure the outcome model is correctly speci�ed.

We can obtain valid inferences from the missing indicator approach in propensity

score analysis under the following su�cient assumptions: (i) the mSITA assumption

holds; (ii) either the CIT or the CIO assumption holds; and (iii) the propensity

score model is correctly speci�ed [86]. In this paper, we extend this work to the

outcome regression context, demonstrating in Section 8.5 that we can use the missing

indicator approach with outcome regression to obtain valid inferences under the

following assumptions: (i) the mSITA assumption holds; (ii) either the CIT or the

CIO assumption holds; and (iii) the outcome model is correctly speci�ed.
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8.4.2.2 Plausibility of the assumptions underlying the missing

indicator approach

In missing data methodology, when deciding if a particular method is appropriate, it

is important to consider the way in which data becomes missing, i.e. the missingness

mechanism. Rubin's taxonomy [20] is commonly used to classify data as being

missing completely at random, missing at random, or missing not at random [44,45].

The plausibility of the assumptions in Section 8.4.2.1 rely instead on the under-

lying structure of the data (i.e. the causal associations between variables), rather

than the missingness mechanisms [86]. For example, the CIT and CIO assump-

tions together mean that the partially observed confounder does not confound the

relationship between treatment and outcome when it is missing [86]. So, either the

confounder-treatment relationship is absent in individuals who have missing con-

founder values or the confounder-outcome relationship is absent in individuals who

have missing confounder values. Hence, key violations of the CIT or CIO assump-

tions occur when the missing confounder values a�ect treatment allocation or the

outcome, respectively.

If we believe that the SITA assumption (i.e. no unmeasured confounding) holds

in full data, then the mSITA assumption says that additionally conditioning on

missingness patterns does not introduce bias. One key way in which this can be

violated is when there are: shared unmeasured common causes between outcome and

missingness, and unmeasured common causes between treatment and missingness.

This is an example of M-bias, which has been discussed extensively in the literature

[4, 81].

The correct speci�cation assumption would be violated if the e�ects of fully

observed confounders on the outcome varied by missingness pattern. Unlike this

parametric assumption, which can be tested in the data, the mSITA, CIT and CIO

assumptions are not testable. Instead, researchers should use substantive knowledge

of the given clinical setting to determine the plausibility of the mSITA, CIT and

CIO assumptions.

The �rst step to assess the plausibility of these assumptions would be to consider

138



Figure 8.1: A causal diagram for a simple scenario with a partially observed confounder
X and a fully observed confounder C, incorporating the missing indicator R. Y (z) is the
potential outcome resulting from intervening to set treatment Z to a particular value z.

whether it is clinically plausible that X is only a confounder when it is observed.

If so, and if key violations of the assumptions can be ruled out, then researchers

can construct a causal diagram to represent the underlying structural assumptions

for the given clinical setting [86]. This causal diagram should include the missing

indicator R. The next step is to convert this causal diagram to incorporate potential

outcomes [67�69]. Then, the d-separation rule � which determines whether variables

are conditionally independent given a set of other variables [66,67] � can be applied

to the causal diagram to assess whether the mSITA assumption holds. In order to

assess the CIT and CIO assumptions, the causal diagram should be restricted to

patients with R = 0 and modi�ed to re�ect why it is plausible that X is only a

confounder when it is observed [86]. The d-separation rule can then be applied to

this �nal causal diagram to assess the CIT and CIO assumptions.

For example, consider a simple scenario with a partially observed confounder X

and a fully observed confounder C, where C also has causal e�ects on both X and

R. Further suppose that the X-Z relationship is absent in patients with missing X

values. Hence, it is plausible that X is only a confounder when it is observed. Figure

8.1 shows a causal diagram representing this scenario, constructed in the form of

a single world intervention graph in order to incorporate potential outcomes [67].

Applying the d-separation rule to Figure 8.1, as previously described [67, 86], we
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Figure 8.2: A causal diagram for a simple scenario with a partially observed confounder
X and a fully observed confounder C, modi�ed to assess the CIT and CIO assumptions.
The square box around R = 0 indicates restriction to individuals with missing X values.
Y (z) is the potential outcome resulting from intervening to set treatment Z to a particular
value z.

�nd that Z is conditionally independent of Y (z) given C, X and R. Hence, the

mSITA assumption holds in this example. In order to be able to assess the CIT

and CIO assumptions, we modify Figure 8.1, by restricting to patients with R = 0

and removing the arrow from X to Z in order to encode the assumption that the

X-Z relationship is absent in patients with R = 0. Figure 8.2 shows this modi�ed

causal diagram. Applying the d-separation rule to this diagram, we �nd that the

CIT assumption holds and that the CIO assumption is violated. Hence, in this

scenario, the mSITA and CIT assumptions hold and the missing indicator approach

is considered appropriate.

When there are multiple partially observed confounders, R becomes a vector of

the missing indicators, whilst Xobs now represents all of the sets of observed con-

founder values and Xmis represents all sets of missing confounder values. Assuming

that the missingness of these confounders are not associated with each other or with

the other confounders, we can assess the CIT and CIO assumptions for each con-

founder separately, but whilst conditioning on all sets of observed confounder values

and all fully observed confounders. An assumption only holds if it holds for every

confounder. Issues may arise if the missing indicator of one confounder changes

the missing values of another confounder; however, this seems unlikely. For com-
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plex scenarios, we recommend constructing a causal diagram that incorporates all

relevant substantive knowledge and a missing indicator for each partially observed

confounder, and then using software such as Dagitty [77] to assess the plausibility

of the assumptions.

8.5 Unbiased estimation of the average treatment

e�ect

In this section we prove that, under the four assumptions given in Section 8.4.2.1,

the missing indicator approach in outcome regression can give an unbiased estimate

of the average treatment e�ect (ATE). We also explore how this result relates to the

�ndings in the literature that the missing indicator approach gives biased results [59],

and how the assumptions relate to prior literature.

The target estimand is: ATE = E[Y (1)]− E[Y (0)]. We can rewrite this as:

ATE = E
[
E
(
Y (1)|C,Xobs, R

)
− E

(
Y (0)|C,Xobs, R

)]
,

which can then be written as:

ATE =
∑[∑

yP
(
Y (1) = y|C,Xobs, R

)
−
∑

yP
(
Y (0) = y|C,Xobs, R

)]
. (8.4)

Below in Section 8.5.1, we show that if the mSITA assumption holds and either

the CIT assumption or the CIO assumption holds, then:

E[Y (z)|C,Xobs, R] = E[Y (z)|Z,C,Xobs, R] (for z = 0, 1). (8.5)

Hence, we can rewrite equation (8.4) as:

ATE =
∑[∑

yP
(
Y (1) = y|Z,C,Xobs, R

)
−
∑

yP
(
Y (0) = y|Z,C,Xobs, R

)]
= E

[
E
(
Y (1)|Z,C,Xobs, R

)
− E

(
Y (0)|Z,C,Xobs, R

)]
.
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Under the consistency assumption (Section 8.4.1), this is:

ATE = E
[
E
(
Y |Z = 1, C,Xobs, R

)
− E

(
Y |Z = 0, C,Xobs, R

)]
. (8.6)

So, we can model the relationship between the outcome and C,Xobs, R in each

of the two treatment groups and � assuming that the outcome model is correctly

speci�ed � we can substitute estimates of the conditional expectations in equation

(8.6) to obtain an unbiased estimate of the ATE. Thus, under the assumptions

given in Section 8.4.2.1, we can get an unbiased estimate of the treatment e�ect by

modelling the relationship between outcome and treatment, given confounders and

the missing indicator.

The missing indicator approach suggests a particular parametric speci�cation of

the outcome model, at this stage. In particular, missing indicators are added as

main e�ects only, thereby encoding the assumption that there are no interactions

between the missing indicators and fully observed confounders. These parametric

modelling assumptions can be assessed using the data at hand, although it is unclear

whether such checks are common in practice.

8.5.1 Proof of equation (8.5)

We �rst suppose the mSITA and CIT assumptions hold (equations (8.2) and (8.3a),

respectively). For z = 0, 1, we can write E[Y (z)|C,Xobs, R] (from equation (8.5)) in

summation notation:

∑
yP
(
Y (z) = y|C,Xobs, R

)
=
∑∑

yP
(
Y (z) = y,Xmis|C,Xobs, R

)
=
∑∑

yP
(
Y (z) = y|Xmis, C,Xobs, R

)
P(Xmis|C,Xobs, R). (8.7)

Under the mSITA assumption, the �rst probability in equation (8.7) can be

written as P
(
Y (z) = y|Z,Xmis, C,Xobs, R

)
, and under the CIT assumption, the

second probability can be written as P(Xmis|Z,C,Xobs, R). So, for z = 0, 1, equation
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(8.7) becomes:

∑∑
yP
(
Y (z) = y|Z,Xmis, C,Xobs, R

)
P(Xmis|Z,C,Xobs, R)

=
∑∑

yP
(
Y (z) = y,Xmis|Z,C,Xobs, R

)
=
∑

yP
(
Y (z) = y|Z,C,Xobs, R

)
.

Alternatively, if the mSITA and CIO assumptions (equations (8.2) and (8.3b))

hold, for z = 0, 1, we write:

∑
yP
(
Y (z) = y|C,Xobs, R

)
=
∑

y
P
(
Y (z) = y|C,Xobs, R

)
P
(
Z|C,Xobs, R

) ∑
P
(
Z,Xmis|C,Xobs, R

)
,

(8.8)

where the denominator is strictly positive under the positivity assumption.

Now, we can write:

∑
P
(
Z,Xmis|C,Xobs, R

)
=
∑

P
(
Z|Xmis, C,Xobs, R

)
P
(
Xmis|C,Xobs, R

)
. (8.9)

Under the mSITA assumption, the �rst probability in equation (8.9) can be

written as P
(
Z|Y (z) = y,Xmis, C,Xobs, R

)
, and under the CIO assumption, the

second probability can be written as P(Xmis|Y (z) = y, C,Xobs, R). So, for z = 0, 1,

equation (8.9) becomes:

∑
P
(
Z,Xmis|C,Xobs, R

)
=
∑

P
(
Z|Y (z) = y,Xmis, C,Xobs, R

)
× P

(
Xmis|Y (z) = y, C,Xobs, R

)
=
∑

P
(
Z,Xmis|Y (z) = y, C,Xobs, R

)
= P

(
Z|Y (z) = y, C,Xobs, R

)
.
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Hence, we can write equation (8.8) as:

∑
y
P
(
Y (z) = y|C,Xobs, R

)
P
(
Z|C,Xobs, R

) P
(
Z|Y (z) = y, C,Xobs, R

)
=
∑

y
P
(
Y (z) = y, Z|C,Xobs, R

)
P
(
Z|C,Xobs, R

)
=
∑

yP
(
Y (z) = y|Z,C,Xobs, R

)
.

8.5.2 Connections to prior work on the missing indicator

approach

Jones (1996) assumed that the true outcome model is a linear regression model with

a fully observed covariate Z, a single partially observed covariate X and independent

normal errors ε:

Y = β0 + β1Z + β2X + ε, (8.10)

where ε is independent of (Z,X,R). Correspondingly, the missing indicator approach

can be represented mathematically as:

E[Y ] = γ0 + γ1Z + γ2X
∗ + γ3R. (8.11)

Jones (1996) showed that the least squares estimator of γ1 is biased for β1, noting

that the least squares estimator is unbiased when the sample covariance of Z and X,

for patients missing X, is zero. If the CIT assumption holds, this condition holds,

since treatment allocation is independent of the confounder for those patients with

missing confounder values.

The true outcome model assumed by Jones (1996) in equation (8.10) leads to

the CIO assumption being violated as the outcome is dependent on the missing con-

founder values. However, if the CIO assumption does hold, then the true outcome

model instead resembles the parametric model corresponding to the missing indica-

tor approach in equation (8.11) (i.e. the true model is Y = β0+β1Z+β2X
∗+β3R+ε),

and it is simple to show that the least squares estimator is unbiased.

Hence, our �ndings are compatible with Jones's �ndings (1996). We have addi-
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tionally shown that the missing indicator approach can give unbiased estimates when

the mSITA and CIO assumptions hold (regardless of whether the CIT assumption

additionally holds).

8.5.3 Connection to alternative statements of assumptions

in the literature

The missing indicator method has been recommended for propensity score anal-

ysis [55], based on work in relation to the missingness pattern approach within

propensity score analysis [46, 63]. This approach involves modelling the propensity

score separately for each pattern of missing confounder data and can be thought of

as a generalisation of the missing indicator method.

In Section 8.4.2.1, our statement of the mSITA, CIT and CIO assumptions fol-

lows Mattei (2009), who states assumptions su�cient for valid inference for the

missingness pattern approach. Our assumptions di�er from Mattei (2009) in that

our version of the CIO assumption is slightly weaker, and requires the conditional

independence statement to hold separately for each potential outcome, rather than

jointly for the pair of potential outcomes as in the original presentation.

D'Agostino and Rubin (2000) instead provide the following assumption, su�cient

for valid inference in the missingness pattern approach:

Z ⊥ (Y (0), Y (1), Xmis)|Xobs, R. (8.12)

The mSITA and CIT assumptions imply that equation (8.12) holds. However,

mSITA and CIO can hold while equation (8.12) is violated. Thus Mattei (2009) gives

a wider set of assumptions under which the missingness pattern approach provides

valid inference.

There are strong connections between the missingness pattern approach and

other work exploring non-systematic monitoring of time-varying covariates [74, 75].

These papers suggest a version of the �no unmeasured confounding assumption�
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which, in the single time-point exposure setting, can be written as:

Z ⊥ Y (z)|Xobs, R. (8.13)

If the D'Agostino assumption holds, then assumption (8.13) holds. Further, if

either the mSITA and CIT assumptions hold, or the mSITA and CIO assumptions

hold, then assumption (8.13) holds. Compared to the D'Agostino assumption (8.12),

therefore, the mSITA, CIT and CIO assumptions can be seen as a wider set of as-

sumptions under which variants of missingness-pattern-type approaches can produce

valid inference.

Kreif et al. (2018) focus on the scenario where the partially missing (non-

systematically monitored) covariate is key to the treatment decision process and

thus when the clinician does not have this covariate information, they must rely

on the last measurement available. Therefore, in their setting � in contrast to our

scenario � the covariate always contributes to the treatment decision, whether as

an up-to-date measurement or as the last available measurement. However, both

settings lead to a causal structure which satis�es a CIT-type assumption.

Here, we assume that full-data inference is the goal, i.e. if we were able to obtain

full data then we would. Kreif et al. (2018), in contrast, treat the monitoring process

(which induces the missing covariate data) as an intrinsic part of the setting, and as

an attribute of interest in its own right. In particular, in time-varying settings the

optimal treatment combination may depend on the intended monitoring process.

This makes the inferential goals of Kreif et al. (2018) quite di�erent to those laid

out in the current paper. In particular, the set of assumptions we focus on (mSITA,

CIT and CIO) require the investigator to consider the confounding structure in the

full data setting and how missingness arises in that setting (mSITA), and then to

subsequently explore how this structure may change when missing confounder values

are present (CIT/CIO). We have found this two-step process useful in considering

plausibility of assumptions in real-life settings.

All three sets of assumptions make it clear that they are likely to be satis�ed in

a setting where missing confounder values are unavailable to the individual making
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the treatment decision and thus do not a�ect treatment. However, only the �rst

version, with CIT and CIO as two separate sub-assumptions, makes it clear that

there is another quite di�erent set of scenarios in which missingness-pattern-type

methods may provide valid inference.

8.6 Simulation Study

In this simulation study, we explored the extent of the bias introduced into the

treatment e�ect estimation when each of the key assumptions is violated. Source

code to reproduce the results is available as Supporting Information on the journal's

web page (http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

8.6.1 Data-generating mechanisms

We considered 81 data-generating mechanisms. For each, datasets of sample size

n = 500 were generated. The data-generating mechanisms di�ered according to

which of the assumptions hold. A factorial design was used to consider all possible

combinations of each assumption having no violation, a weak violation or a strong

violation.

We let UZ represent a common cause between treatment and the missing indica-

tor, UY represent a common cause between the outcome and the missing indicator,

and e represent error in the outcome regression model. We generated UZ , UY and e

from independent standard Normal distributions.

Two binary confounders X and C were generated using Binomial distributions:

X ∼ Bin(1, 0.67) and C ∼ Bin(1, 0.58). To create missing data in X, we generated

a missing indicator R ∼ Bin(1,P(R = 0)), where: logit(P(R = 0)) = −0.5 + 1.48 ·

UZ + 1.36 · UY .

We also generated a binary treatment allocation variable Z ∼ Bin(1,P(Z = 1)),

where:

logit(P(Z = 1)) = −1.2 + αUZ + 1.38XR + βX(1−R) + 2R + 1.69C.
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The observed proportion of treated patients varied between 62.2% and 86.2%, de-

pending on the data-generating mechanism. We generated a continuous outcome

using the regression model:

Y = 1− 2.35Z − 2.2αUY − 1.55XR + γX(1−R) + 1.8R− 1.7C + δCR + 3e.

where α ∈ {0, 0.125, 1.25}, β ∈ {0, 0.138, 1.38}, γ ∈ {0,−0.155,−1.55} and δ ∈

{0,−0.42,−4.2}. If α = 0, then the mSITA assumption holds. Similarly, if β = 0,

γ = 0, or δ = 0, then, respectively, the CIT assumption holds, the CIO assumption

holds, or the outcome model is correctly speci�ed. For each parameter, the smaller

and larger non-zero values represent, respectively, a weak violation and a strong

violation of the corresponding assumption.

Data were simulated using Stata 14.2 with 5000 simulation repetitions per data-

generating mechanism.

8.6.2 Methods

Each simulated data set was analysed using the missing indicator approach with mul-

tivariable linear regression, by creating a new version of the partially observed binary

covariate with a third `missing' category. Our estimand is the average treatment ef-

fect, as estimated using the treatment coe�cient from a linear regression model.

Our performance measure of interest is absolute bias of the ATE: 1
5000

∑5000
i=1 θ̂i − θ,

where θ̂i is the estimated treatment e�ect from the ith repetition, and θ is the true

treatment e�ect.

8.6.3 Results

In Figure 8.3, the left-hand panel presents the absolute bias in the estimated treat-

ment e�ect for eight scenarios, depicting all possible combinations of the mSITA,

CIT and CIO assumptions holding or not. The dark bars show scenarios where the

mSITA assumption (required for valid inference) holds. The light bars show scenar-

ios where it does not. As expected from our theory above, if the mSITA assumption
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Figure 8.3: Results from a simulation study showing the absolute bias in the estimated
treatment e�ect when using the missing indicator approach for multiple linear regression
under di�erent data-generating mechanisms, which vary according to: (i) whether the
mSITA assumption holds; (ii) whether the CIT assumption holds; (iii) whether the CIO
assumption holds; and (iv) whether there is an interaction between the fully observed
confounder C and the missing indicator R in the true outcome model. True treatment
e�ect: −2.35. Sample size: n = 500. Number of replications: 5000.

is violated (light bars), bias is present. The four sets of bars show combinations

of the CIT and CIO assumptions holding or not, for scenarios where the mSITA

assumption holds (dark bars); bias is present only when both CIT and CIO are

violated. The right-hand panel of Figure 8.3 shows the same eight scenarios, but

with a violation of the parametric assumption: the outcome model �tted assumes

no interaction between the missingness indicator and the fully observed confounder

C, but in truth this interaction does exist. Violation of this parametric assumption

leads to bias in all eight scenarios.

Figure 8.4 shows a number of scenarios in which the outcome model is correctly

speci�ed but the other three assumptions (mSITA, CIT and CIO) may be violated.

The three panels show � from left to right � increasing levels of violation of the

CIO assumption. Within the three panels, the three sets of bars show � from

left to right � increasing levels of violation of the CIT assumption. Within each

set of bars, the bars show � from left to right � increasing levels of violation of

the mSITA assumption. Large bias is seen when either a strong violation of the

mSITA assumption is present, or when strong violations of both the CIT and CIO

assumptions are present.
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Figure 8.4: Results from a simulation study showing the absolute bias in the estimated
treatment e�ect when using the missing indicator approach for multiple linear regression
under di�erent data-generating mechanisms, which vary according to whether there is no
violation, a weak violation or a strong violation of: (i) the mSITA assumption, (ii) the
CIT assumption, and (iii) the CIO assumption. For all data-generating mechanisms, the
outcome model is correctly speci�ed. True treatment e�ect: −2.35. Sample size: n = 500.
Number of replications: 5000.

Figure 8.5 shows the same scenarios as Figure 8.4, but with weak violations

of the parametric assumptions (weak CR interactions present but not included in

the �tted model) shown in the top panel, and strong violations of the parametric

assumptions shown in the bottom. Weak violations of the parametric assumptions

induced additional small amounts of bias compared to Figure 8.4. Strong violations

of the parametric assumptions induced large amounts of bias under most settings.

The missing indicator approach gives unbiased estimates of the treatment e�ect

when the mSITA assumption holds, the outcome model is correctly speci�ed and

either one, or both, of the CIT and CIO assumptions hold. When both the CIT and

CIO assumptions are violated, the missing indicator approach gives biased results,

whether or not the other two assumptions hold. The worst bias occurs when both

the mSITA assumption and the correct speci�cation assumption is violated and the

CIT assumption holds, whether or not the CIO assumption holds. In general, having

the mSITA assumption violated results in larger biases for the settings explored in

the simulation study. In addition, incorrectly specifying the outcome model, i.e.

failing to include an interaction between the fully observed confounder C and the

missing indicator R in the true outcome model, generally results in larger biases
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Figure 8.5: Results from a simulation study showing the absolute bias in the estimated
treatment e�ect when using the missing indicator approach for multiple linear regression
under di�erent data-generating mechanisms, which vary according to whether there is no
violation, a weak violation or a strong violation of: (i) the mSITA assumption, (ii) the
CIT assumption, and (iii) the CIO assumption. For all data-generating mechanisms, the
true outcome model contains either a weak interaction (8.5a) or a strong interaction (8.5b)
between the fully observed confounder C and the missing indicator R. True treatment
e�ect: −2.35. Sample size: n = 500. Number of replications: 5000.

than when the outcome model is correctly speci�ed.

When the outcome model is correctly speci�ed, weak violations of the other

assumptions results in similar biases compared to when the assumptions hold (Fig-

ure 8.4). Similar results were found when considering data-generating mechanisms

where the true outcome model includes a weak CR interaction and when considering

data-generating mechanisms with a strong CR interaction (Figures 8.5a and 8.5b

respectively). In general, having a weak CR interaction resulted in similar or larger

biases compared to scenarios where the outcome model is correctly speci�ed.
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8.7 Application to illustrative example

8.7.1 Study description

Our illustrative example is a cohort study using electronic health records data from

the UK Clinical Practice Research Datalink and the Hospital Episode Statistics [11].

The cohort study aimed to investigate the association between risk of acute kidney

injury (AKI) and use of angiotensin-converting enzyme inhibitors or angiotensin

receptor blockers (ACEI/ARBs), compared to other antihypertensive drugs. An

important covariate in the study was chronic kidney disease, which was categorised

into stages based on a continuous measure of kidney function called the estimated

glomerular �ltration rate (eGFR). Lower values of eGFR indicate worse kidney

function.

Data were obtained for 570 586 new adult users of antihypertensive drugs be-

tween 1997 and 2014. Follow-up began at �rst prescription of ACEI/ARBs, beta

blockers, calcium channel blockers, or diuretics. The treatment of interest was pre-

scription of ACEI/ARBs. Our outcome of interest was kidney function within 2

months of �rst prescription of an antihypertensive drug, as measured using eGFR

[87]. Due to conditions of the data use agreement, we can no longer access the

eGFR data after treatment initiation, so we have simulated this variable, based on

observed relationships in prior studies (see Appendix for details). As a result, the

`true' treatment e�ect is known.

In this study there were a number of fully observed potential confounders: age,

sex, chronic comorbidities, other antihypertensive or diuretic drugs, and calendar

period. In addition, two potential confounders were partially observed: ethnicity,

which had 59.0% missing data; and baseline eGFR category, which had 52.9% miss-

ing data.

In this example, only 21% of patients had complete data for both ethnicity and

baseline eGFR category; the majority of patients records would be discarded, lead-

ing to a loss of e�ciency, if complete record analysis was used for this example.

Furthermore, standard multiple imputation may not be appropriate since the miss-
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ing at random assumption is questionable: baseline eGFR category is more likely to

be measured for patients with worse kidney function. The assumptions underlying

the missing indicator approach seem reasonable in this context. First, the mSITA

assumption would be violated if there are any unobserved common causes between

missingness of baseline eGFR category and treatment allocation or the outcome.

In this example, it seems plausible that any such common causes, such as age or

chronic comorbidities, are measured and able to be included in the analysis model.

In addition, predictors of missingness in ethnicity seem unlikely to also be predictors

of prescription decisions. Thus the mSITA assumption seems plausible here.

Second, it is plausible to assume that information about a patient's baseline

eGFR category is unlikely to in�uence the clinician's decision to prescribe if this

information is not available to the clinician (eg. if a kidney function test had not been

ordered beforehand). In practice, proxy information about a patient's baseline eGFR

category may be available to the clinician (but not to researchers using electronic

health records). However, this is likely to re�ect poor kidney function for only a

small proportion of the whole study population. In addition, it is plausible that a

clinician would ensure information on patient's ethnicity is recorded if they believe

that this information is an important factor in their decision whether or not to

prescribe ACEI/ARBs. Thus we believe that the CIT assumption is plausible.

Third, it seems plausible that the e�ect of the other fully observed risk factors

on AKI would not vary according to whether or not ethnicity and baseline eGFR

category were measured. Furthermore, this assumption can be tested in the data.

Fourth, the CIO assumption does not seem plausible in this context � since

baseline kidney function remains a risk factor for change in eGFR, whether or not

baseline eGFR category is measured. Since we can obtain valid inferences from

the missing indicator approach when just one of the CIT and CIO assumptions

hold (in addition to the mSITA and correct speci�cation assumptions holding), the

CIO assumption being violated is not an issue here; the mSITA, CIT and correct

speci�cation assumptions seem plausible and thus the missing indicator approach is

considered appropriate.
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8.7.2 Method

We applied linear regression, adjusted for ethnicity, baseline eGFR category and

fully observed confounders (age category, sex, chronic comorbidities, and calendar

period), to obtain estimates of the treatment e�ect comparing patients prescribed

ACEI/ARBs at start of follow-up time exposed to ACEI/ARBs versus patients not

prescribed ACEI/ARBs at baseline. To handle missing data in ethnicity and base-

line eGFR category, we applied complete record analysis and the missing indicator

approach. Analysis was conducted in Stata 14.2.

8.7.3 Results

Our results are given in Table 8.1. The missing indicator approach uses all miss-

ingness patterns; in addition to the 121 527 patients with complete data, 112 142

patients had missing data for baseline eGFR category, 147 011 have ethnicity miss-

ing, and 189 906 had missing data for both. Using the missing indicator approach,

the estimated treatment e�ect was closer to the true treatment e�ect than the esti-

mate from complete record analysis. In addition, the complete record analysis esti-

mate has a wider con�dence interval due to the exclusion of over 75% of the patient

records. When interactions between the missing indicators and the fully observed

confounders are added into the regression model, the results do not change much

compared to the missing indicator approach (-0.6575, 95% CI: [-0.7509, -0.5640]),

and so there is no evidence of a violation of the parametric assumption.

Table 8.1: Estimated treatment e�ects (mean di�erences) and 95% con�dence intervals
(CIs) using linear regression to compare the e�ect on (simulated) kidney function of being
prescribed ACEI/ARBs at start of follow-up versus not being prescribed ACEI/ARBs at
baseline. True treatment e�ect: -0.6831

Missing data method Treatment e�ect (95% CI) Number of
patients analysed

Complete record analysis −0.6150 (−0.7977,−0.4324) 121 527
Missing indicator approach −0.6496 (−0.7424,−0.5567) 570 586
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8.8 Discussion

In this paper, we have shown that the missing indicator approach in outcome regres-

sion is unbiased when (i) there is no unmeasured confounding within missingness

patterns; (ii) either confounder values of patients with missing data are condition-

ally independent of treatment assignment, or these missing confounder values are

conditionally independent of the outcome; and (iii) the e�ect of fully observed con-

founders on the outcome is the same for all missingness patterns. We have applied

the missing indicator approach to an illustrative example using routinely collected

data, a key area in which the method's underlying assumptions may be plausible [86].

An advantage of the missing indicator approach for outcome regression is that it

is easy to implement and, unlike complete record analysis, avoids discarding much

information when the proportion of missing data is large. In addition, the missing

indicator approach may be appropriate in situations where multiple imputation is

not, as the missing indicator approach does not rely on the conventional classi�-

cation of missingness mechanisms. Whereas standard implementation of multiple

imputation is guaranteed to be valid when data are missing at random, the CIT and

CIO assumptions are not about the missingness mechanism, but are rather about

whether the partially observed covariate confounds the relationship between treat-

ment and outcome when it is missing. When either the CIT or the CIO assumption

holds, the relationships between variables among patients with observed data are

not the same as those among patients with missing data, and so multiple imputa-

tion may not be appropriate. In contrast, the missing indicator approach may be

unbiased under missing not at random mechanisms, and biased under some missing

completely at random mechanisms.

The missing indicator approach has been criticised in the missing data method-

ology literature as being `ad hoc' [57] and biased [58, 59]. We have shown that the

missing indicator approach can give unbiased results under certain assumptions. Re-

searchers seeking to use the missing indicator approach should �rst consider whether

these assumptions seem plausible within the context of a given clinical setting, with
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the help of causal diagrams. In our simulation study, we considered scenarios with

a single partially observed variable. Our suggested approach to handling multiple

partially observed confounders within the missing indicator framework requires the

assumption that the missingness of one confounder does not a�ect the missing val-

ues of another confounder. In practice, researchers should carefully consider the

plausibility of such an assumption, in addition to considering the plausibility of

the mSITA, CIT, CIO, and correct speci�cation assumptions. If the assumptions

underlying the missing indicator approach are found to not be appropriate, then

researchers should consider whether the assumptions underlying complete record

analysis or multiple imputation are more appropriate in the given scenario.

The missing indicator approach is a method for handling missing covariate data,

but cannot handle missing data on the outcome or treatment allocation. Further

work is required to extend the approach to handle other missing data, perhaps by

combining with other methods such as multiple imputation. Another limitation

of the missing indicator approach, in the context of propensity score analysis, is

that estimation issues may arise if there are many missingness patterns and some of

these patterns have low sample size. Qu and Lipkovich (2009) proposed a pattern-

pooling algorithm to ensure su�cient sample size for estimation in propensity score

analysis [70]. Further work is needed to explore the impact of low sample size in

missingness patterns in the context of outcome regression and whether this impact

can be alleviated by using pattern-pooling algorithms. A limitation of our simulation

study is that we did not assess the impact of changing the proportion of missing

data. However, when the assumptions do not hold, bias is expected to increase with

the proportion of missing data. Furthermore, in this paper, we have focused on

linear regression. We believe that our theoretical results can be extended to risk

di�erence estimation and Poisson regression; further work is required to con�rm

this. Careful consideration would be required to translate these results to the odds

ratio setting due to non-collapsibility issues.

In conclusion, the missing indicator approach for outcome regression can be ap-

plied in a principled way and can give valid results under a particular set of assump-
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tions, but researchers must �rst consider whether these assumptions seem plausible

in the clinical setting of interest. We end by noting that standard application of

the missing indicator approach makes rather strong parametric assumptions about

absence of interactions between missing indicators and fully observed confounders;

we recommend that checking these assumptions in the data at hand should form

part of routine practice when applying this approach.
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Appendix

A. Simulating kidney function for the illustrative example

We simulated a continuous outcome Y = Xβ+e whereX denotes the design matrix,

β represents the vector of regression coe�cients and e denotes the vector of error

terms, where e ∼ (0, 14.65). The design matrix contains the vector with all entries

equal to 1 and the following variables: prescription of ACEI/ARBs at baseline;

diabetes mellitus status at baseline; hypertension status at baseline; cardiac failure

status at baseline; arrhythmia status at baseline; ischaemic heart disease status

at baseline; sex; ageband at baseline; calendar period at baseline; ethnicity; and

baseline eGFR category. The regression coe�cients are given in Table 8.2.

Table 8.2: Regression coe�cients for using baseline characteristics to simulate an outcome
variable measuring kidney function within two months of prescription of antihypertensive
drugs. ACEI/ARBs: angiotensin-converting enzyme inhibitors or angiotensin receptor
blockers. eGFR: estimated glomerular �ltration rate.

Coe�cient Variable Coe�cient Variable

-0.6831 ACEI/ARBs prescription 1.3974 calendar period 2001− 2004
0.4847 diabetes mellitus 2.7825 calendar period 2005− 2008
-5.5041 hypertension 4.2181 calendar period 2009− 2011
-1.9321 cardiac failure 4.9409 calendar period 2012− 2014
-1.6349 arrhythmia 4.1883 ethnicity recorded as south asian
-3.4547 ischaemic heart disease -2.6490 ethnicity recorded as black
-1.6717 female 2.7238 ethnicity recorded as other
-12.8473 45 ≤ age < 55 3.3971 ethnicity recorded as mixed
-17.6097 55 ≤ age < 60 0.1647 ethnicity missing
-20.0686 60 ≤ age < 65 -36.7126 baseline eGFR < 30
-22.1784 65 ≤ age < 70 -25.1941 30 ≤ baseline eGFR < 45
-24.1881 70 ≤ age < 75 -16.3931 45 ≤ baseline eGFR < 60
-26.5288 75 ≤ age < 85 -4.4043 baseline eGFR missing
-25.6283 age ≥ 85 94.0335 constant
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Chapter 9

Discussion

In this thesis, I have investigated missing data methods incorporating missingness

information to deal with partially observed confounder data when using causal in-

ference methods in observational studies. In particular, I have focused on the miss-

ingness pattern approach (MPA) for propensity score analysis, as well as the related

missing indicator approach for propensity score analysis and for outcome regression.

9.1 Objective 1: Exploring the assumptions of the

missingness pattern approach

The �rst objective of my thesis was to explore the assumptions under which the

MPA would provide valid inference, by: (i) investigating the connection between

the MPA and the conventional classi�cation of missing data proposed by Rubin

(1976) [20], (ii) identifying settings where the assumptions are likely to be plausible,

and (iii) developing ways of assessing the assumptions.

Two methodological articles in the literature, D'Agostino and Rubin (2000)

and Mattei (2009), have proposed assumptions underlying the validity of the MPA

[46, 63]. However, the connection between these two sets of assumptions is unclear.

Nor is it clear how the assumptions relate to the conventional classi�cation of miss-

ingness mechanisms proposed by Rubin [20,44] or how to assess whether or not the

assumptions hold.
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In this thesis, I have clari�ed the connection between the two sets of assump-

tions given in the literature, �nding that the set of assumptions proposed by Mattei

(2009) [63] is a wider statement of the assumptions underlying the MPA than the

assumption stated by D'Agostino and Rubin (2000) [46]. Following Mattei's state-

ment of the assumptions su�cient for valid inference using the MPA [63], I have

stated weaker assumptions that hold separately for each potential outcome, rather

than holding jointly. I have proved that the MPA can obtain unbiased estimates of

the treatment e�ect under these weaker assumptions.

In addition, I have found that the assumptions underlying the MPA are separate

from the conventional classi�cation of missingness mechanisms, as classifying missing

data according to Rubin's taxonomy is not informative with respect to assessing

plausibility of the MPA's assumptions.

In order to be able to assess the plausibility of the MPA's assumptions, I used

single world intervention graph templates (SWITs) incorporating the missing in-

dicator. I then adapted these causal diagrams in order to be able to assess the

CIT and CIO assumptions. My initial strategy was to construct SWITs where the

confounder node was split into two component parts: the observed confounder val-

ues and the missing confounder values. However, this strategy required the use of

deterministic arrows which meant that applying d-separation may not identify all

conditional independencies. Thus, I used an alternative strategy to modify SWITs

for use in assessing the CIT and CIO assumptions, where SWITs are constructed by

conditioning on missingness patterns, and d-separation is applied to the SWIT(s)

representing the pattern(s) with missing data.

9.2 Objective 2: Guidance for assessing the

assumptions underlying the missingness

pattern approach

The second objective of my thesis was to develop practical guidance for assessing

the MPA's assumptions in a given setting. Prior to this work, no guidance existed
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for how to assess the MPA's assumptions; this may be a major factor as to why the

MPA is not used much in practice.

In this thesis, I have used causal diagrams to explore when the MPA's assump-

tions are violated in a range of simple settings, by varying: the causal relationships

between confounders and treatment allocation, the causal relationships between con-

founders and outcome, and causal relationships with the missing indicator. I con-

sidered all combinations of the factors considered, applying d-separation to causal

diagrams representing each scenario and employing the use of twin networks when

treatment allocation or potential outcomes has a causal e�ect on the missing indi-

cator.

On the basis of the results, I have developed guidance for assessing the MPA's

assumptions. Initially, I developed the guidance in the form of a decision tree and

provided a worked example of how it could be used to assess the assumptions in set-

tings with a single partially observed confounder and restricted to certain temporal

assumptions.

I then developed more comprehensive guidance in a step-by-step format that

focuses on assessing the plausibility of possible violations and recommends the use

of causal diagrams to help assess the plausibility of the MPA's assumptions.

The step-by-step guidance for assessing the MPA's assumptions in practice be-

gins by considering whether or not it is plausible that the confounder with missing

data is only a confounder when observed. In other words, given that the observed

confounder values do indeed confound the relationship between treatment allocation

and the potential outcomes, either the missing confounder values have no e�ect on

treatment allocation or the missing confounder values have no e�ect on the potential

outcomes (or both). If it is decided that it is indeed plausible that the confounder is

only a confounder when it is observed, then the next step is to assess the plausibility

of key violations in the setting of interest. If it is considered plausible that these

violations are not present, then I recommend constructing a causal diagram where

possible and using the d-separation rule to assess the MPA's assumptions.

I have demonstrated the step-by-step guidance in a real-data example, discussing
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the clinical context of the example setting and showing how this information is

utilised when assessing the plausibility of the MPA's assumptions. In addition, I

have provided code for constructing causal diagrams and applying d-separation using

the DAGitty package in R, both for a general hypothetical example as well as for

the real world example.

9.3 Objective 3: The missing indicator approach

for propensity score analysis

My third thesis objective was to explore the relationship between the MPA and the

missing indicator approach in the context of propensity score analysis, in particular

investigating the implications of this relationship on the assumptions under which

the missing indicator approach can provide valid inference.

The missing indicator approach has been criticised in the missing data methodol-

ogy literature for being an `ad hoc' missing data method [56,57] that leads to biased

results in general [58, 59]. Whilst Stuart (2010) [55] and Williamson and Forbes

(2014) [25] have recommended the use of the missing indicator approach to handle

partially observed confounder data in propensity score analysis, no formal evidence

has been yet provided to support their recommendations. Despite this, incorporat-

ing missing indicators into regression models is a popular method in epidemiological

studies [52]. Indeed, my motivating example is from a pharmacoepidemiological

study using electronic health records that includes an `absent' category in the base-

line chronic kidney disease (CKD) stage variable. Baseline CKD stage is more likely

to be recorded for patients with poorer kidney function and so excluding patients

missing baseline CKD stage would induce selection bias. Hence my third thesis ob-

jective is to consider whether using missing indicators was an appropriate approach

to handing missing confounder data.

In this thesis, I have shown a clear mathematical connection between the be-

tween the MPA and the missing indicator approach, �nding that the missing indi-

cator approach is a simpli�cation of the MPA. I also demonstrated that the missing
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indicator approach can provide valid inference under the MPA's assumptions and an

additional parametric assumption that there are no interactions between fully ob-

served confounders and the missing indicator in the propensity score model. Hence,

I have shown that the missing indicator approach for dealing with partially observed

confounder data can provide valid inference and so enable researchers to use this

approach in a principled way.

9.4 Objective 4: The missing indicator approach

for outcome regression

My fourth thesis objective was to investigate the use of the missing indicator ap-

proach in the context of outcome regression. The general missing data methodology

literature consider the missing indicator approach to be `ad hoc' and unprincipled,

and recommend avoiding the approach, with some theoretical work [59] showing that

the approach is generally biased. Indeed, our result from Objective 3 showed that

the missing indicator approach can provide valid inference in the propensity score

context. The continued use of the missing indicator approach in outcome regression

settings, such as our motivating example encourages a further consideration of this

approach.

In this thesis, I have proved that the missing indicator approach can obtain valid

inference in the context of outcome regression under the MPA's assumptions and

further parametric assumptions. Furthermore, I have shown how this �nding relates

to the results published by Jones (1996) [59].

In particular, although Jones ultimately concludes that the missing indicator

approach for outcome regression is generally biased, Jones notes situations where

the approach is unbiased, including scenarios where data are fully observed. I have

shown that the other situation highlighted by Jones corresponds to settings where

the MPA's assumptions � in particular the CIT assumption � hold. I have also

shown that the assumed true outcome model in Jones (1996) [59] precludes the CIO

assumption from being satis�ed. If instead, the CIO assumption does hold, then

163



the true outcome model incorporates the missing indicator as a covariate, and the

missing indicator approach can thus provide valid inference.

In addition, I have implemented a simulation study to explore the extent of bias

introduced in outcome regression when the assumptions underling the missing indi-

cator approach are violated, �nding that weak violations of the assumptions may not

introduce substantial amounts of bias compared to strong violations. A key �nding

from the simulation studies conducted during the PhD was that the conventional

approach of generating missing data after the main data generation of confounders,

treatment and outcome leads to violations of both the CIT and CIO assumptions,

and thus the MPA would generally yield biased results. Instead, I discovered that for

the CIT or CIO assumptions to be able to hold, the missingness generation must be

incorporated into the main data generation process: the missingness pattern must

be able to in�uence the treatment allocation and/or the potential outcomes.

9.5 Dissemination of my research so far

In this thesis, I have included two papers that have been developed over the course

of my PhD. The �rst paper, providing step-by-step guidance for assessing the MPA's

assumptions in propensity score analysis, has been resubmitted to Statistics in

Medicine after undergoing review and revisions based on the reviewers' comments.

The second paper, exploring the use of the missing indicator approach in the con-

text of outcome regression, has undergone revisions based on reviewer comments

and has been accepted by the Biometrical Journal pending further minor revisions.

Other dissemination e�orts include presentations at two international conferences

and internal meetings throughout the PhD.

In March 2017, I presented a poster on the decision-tree guidance at a research

degree poster day at the London School of Hygiene and Tropical Medicine for a

general audience. I also presented this work in more detail at a meeting in May 2017

for researchers involved in missing data methodological research, and in July 2017

at the 38th Annual Conference of the International Society for Clinical Biostatistics

in Vigo, Spain.
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In August 2018 I presented preliminary work, on extending the work on the miss-

ing indicator approach being a principled approach for handling missing confounder

data in propensity score analysis to the context of outcome regression, at the Joint

International Society for Clinical Biostatistics and Australian Statistical Conference

2018 in Melbourne, Australia.

9.6 Further areas for research

During the course of my PhD, I have identi�ed areas for further work. First, whilst

the MPA is a relatively simple method to implement compared to multiple impu-

tation, as the number of missingness patterns increases (and thus the number of

propensity models increases), implementation of the MPA in standard software may

become more complex. Further work would be required to write functions for imple-

menting the MPA in standard software such as Stata and R, including calculating

appropriate standard errors.

Another issue when dealing with a large number of missingness patterns is spar-

sity of data: some missingness patterns may be rare and thus lead to model es-

timation issues. Approaches for dealing with sparsity have been suggested in the

literature. D'Agostino et al. (2001) suggested a variation of the MPA where, in each

missingness pattern, propensity scores are estimated in the wider group of all pa-

tients with observed data for the relevant confounders but retaining the estimated

propensity scores only for those who actually had that missingness pattern [64].

However, this approach may lead to correlation issues as patients will be used in

multiple patterns. How to deal with this correlation in order to calculate appropriate

standard errors requires further consideration.

An alternative approach to dealing with sparse missingness patterns was sug-

gested by Qu and Lipkovich (2009). Their suggested approach was a pattern pooling

algorithm that groups `similar' missingness patterns using a distance metric in order

to obtain a set of pooled patterns that have a minimum sample size [70]. Further

work is required to investigate the performance of this algorithm in practice and to

compare pattern pooling to the D'Agostino modi�cation of the MPA. Writing func-
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tions in standard software for implementing the pattern pooling algorithm would

also be a valuable contribution.

Qu and Lipkovich (2009) also proposed an approach that combines multiple

imputation and the MPA [70]. Seaman and White (2014) explored this approach

[80], but further consideration is required to investigate assumptions underlying the

method and their connections with the MPA's assumptions and Rubin's taxonomy.

It would be also interesting to explore the use of multiple imputation for dealing

with missing outcome or treatment allocation values with missingness pattern-type

approaches to deal with partially observed confounders, and other combinations of

missing data methods.

It is well known in the propensity score literature that propensity score analysis

is a two-stage process: the �rst stage estimates the propensity score and the second

stage uses this estimated propensity score in the estimation of the treatment e�ect

[25, 88]. Thus, when estimating the variance of the treatment e�ect estimate, if

the propensity score estimation stage is not taken into account, then the standard

error is likely to be conservative, with this loss of precision being a greater issue in

scenarios with a continuous outcome [25, 88]. Williamson et al. (2014) [88] have

derived a variance estimator for propensity score analysis in complete data. This

has not yet been extended to settings where the MPA is used to deal with multiple

missing confounders, and is a key area for further work.

The simulation studies in this thesis are relatively simple. Future work could

explore magnitudes of bias in realistic settings by using plasmode simulation studies.

Another opportunity for further work would be to extend the MPA to settings

with more than two treatment arms. In addition, it is not currently clear how to

assess balance after use of the MPA or missing indicator approach.

Future work could be to consider the use of the MPA when using alternative

methods of estimating the propensity score, such as classi�cation trees, random

forests and generalised boosted modelling [40]. Using non-parametric approaches

to estimating the propensity score, would enable development of a parsimonious

version of the MPA model, including only necesssary interactions (as opposed to
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using the MPA-equivalent approach of including covariates, missing indicators and

all interactions between missing indicators and covariates).

Another key area for further research is how to perform sensitivity analyses for

violation of the MPA's assumptions in real-world data examples.

9.7 Implications for research

Researchers must carefully consider the assumptions underlying approaches for han-

dling missing confounder data in causal inference. If considering employing miss-

ingness pattern-type approaches, it is not enough to consider which missingness

mechanism seems most plausible. Researchers should carefully consider the plau-

sibility of the MPA's assumptions in the setting of interest prior to analysis. This

can be achieved by following the practical guidance developed over the course of

my PhD, in particular by: (i) considering the clinical context to assess whether it

is plausible that the confounder(s) with missing data is only a confounder when

observed, (ii) considering the key violations identi�ed in the guidance, and (iii) con-

structing a causal diagram to represent the scenario of interest. The plausibility of

the MPA's assumptions should be considered prior to analysis to enable capture of

predictors of missingness that might have otherwise been completely unobserved.

Advantages of the MPA and the missing indicator approach are that they are

simple to understand and they retain all patients in the analysis whether or not

they have missing data. In addition, these approaches may be appropriate where

multiple imputation is not as they do not rely upon data being missing at random.

However, there are still some key areas of research that could be explored, including:

dealing with sparseness and settings with many missingness patterns; developing

ways to assess covariate balance after using missingness pattern-type approaches

in propensity score analysis; and investigating how to perform sensitivity analyses

for violations of the MPA's assumptions. Settings in which the missingness pattern

approach and the missing indicator approach are likely to be useful are studies

using routinely collected data such as electronic health records. In these settings,

whilst the CIO assumption may be less plausible, the CIT assumption is likely to be
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plausible as making decisions about treatment allocation can only take into account

the information available.

The information available to the researcher using routinely collected data is in

general the same as the information that was available to the clinician making the

treatment decision. Thus, we believe it is plausible to assume that treatment al-

location is not associated with confounder information that is unavailable to the

researcher. Hence, research using electronic health records is a key area in which

the CIT assumption is likely to be plausible.

Furthermore, as studies using large health datasets become ever more popular

with the increasing popularity of big data, approaches using missingness patterns

to handle partially observed confounder data may be less computationally intensive

than multiple imputation.

9.8 Conclusion

Using missingness patterns to deal with missing confounder data is a simple alterna-

tive to conventional missing data methods which can provide valid inference under

certain assumptions. In this thesis, I have clari�ed the connection between the sets

of assumptions given in the literature and I have found that classifying missing

data according to Rubin's taxonomy is not informative with respect to assessing

plausibility of the assumptions underlying the missingness pattern approach. I have

provided guidance for assessing the plausibility of these assumptions in practice. I

have also shown that using missing indicators to deal with missing confounder data

is a simpli�ed version of the missingness pattern approach, and thus is a principled

approach in propensity score analysis and outcome regression contexts.
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Appendix A

Ethics approval

In this appendix, I include:

• the cover letter and application for ethics approval from CPRD by an Inde-

pendent Scienti�c Advisory Committee

• the favourable ethics approval letter from CPRD

• the (redacted) application form for ethics approval from LSHTM

• the favourable ethics approval letter from LSHTM
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Study Design         
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(including estimate of expected number of  
relevant patients in the CPRD)  

 
 

 
 

 

      

Selection of comparison group(s) or controls         

Exposures, outcomes and covariates 
Exposures are clearly described  
Outcomes are clearly described 

 
 
 

 
 
 

      

      

Use of linked data  
(if applicable) 

        

Data/ Statistical Analysis Plan 
There is plan for addressing confounding  
There is a plan for addressing missing data 
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Limitations of the study design, data sources  
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results 
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Study Protocol 
1. Title 
The incidence and mortality of acute kidney injury (AKI) associated with prescribing of ACE inhibitors 

and angiotensin-receptor blockers  

2. Lay Summary 
This study uses very large numbers of linked electronic health records to answer important questions 

about episodes of sudden decline in kidney function with the aim of preventing serious illness and 

death, and creating substantial savings for the NHS. A sudden decrease in kidney function or acute 

kidney injury (AKI) is common and associated with an increased risk of death, prolonged hospital stay 

and risk of permanent kidney failure. Rates of AKI are increasing and causing significant cost to the 

NHS. Some limited evidence suggests that AKI can occur as a side effect of angiotensin converting 

enzyme inhibitors (ACEI) and angiotensin-receptor blockers (ARBs), particularly when prescribed with 

water tablets (diuretics) and anti-inflammatory painkillers. ACEI and ARBs are commonly prescribed 

for conditions such as high blood pressure and heart problems. At present it is not known how 

common AKI is among people taking these drugs or whether there are any conditions (e.g. diabetes, 

existing kidney problems) that modify the risk. This is important because if it was understood who is 

likely to develop AKI and in what circumstances, strategies could be developed to prevent AKI.  

3. Objectives 
The overall aims of the project are to investigate the incidence and mortality of acute kidney injury 

(AKI) associated with prescribing of ACE inhibitors and angiotensin-receptor blockers, and other 

commonly prescribed antihypertensive drugs (calcium channel blockers, beta-blockers, and diuretics), 

and to investigate what chronic comorbidities are associated with the development of drug-

associated AKI. 

Specifically: 

1. To evaluate the validity of an operational case definition for AKI based on morbidity coding (from 

Read-coded primary care data and ICD-10 coded hospital data) and biochemical test results. 

2. To obtain estimates for the incidence of antihypertensive-associated AKI in the UK general 

population and investigate the variation in incidence over time. 

3. To explore differences in the rate of antihypertensive-associated AKI in different classes of 

antihypertensive drugs (ACEI/ARBs, beta-blockers, calcium channel blockers and diuretics). 

4. To determine which chronic comorbidities are associated with increased risk of drug-associated 

AKI. 

5. To determine rates of mortality, hyperkalaemia and dialysis following drug-associated AKI. 
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4. Background 
Acute kidney injury (AKI) is a sudden (within hours or days) decline in renal function. It is associated 

with increased mortality (1,2) and increased duration of hospital stay (3,4). AKI has been observed in 

15–20% of hospital admissions (2,5,6). It has been estimated that the annual cost of AKI inpatient care 

in England is £1.02 billion, a little over 1% of the NHS budget (4).  

AKI has been variably defined based on changes in serum creatinine and urine output (See Appendix 

1, Table A1.1). Estimates for annual AKI hospital incidence differ based on varying AKI definitions 

ranging from 1,811 per million population using the RIFLE criteria (Risk, Injury, Failure, Loss and End 

stage) (7), to 2,400 per million population using administrative coding (8) (13), and 15,325 per million 

population using the AKIN (Acute Kidney Injury Network) definition (2). 

Angiotensin converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) are often 

used in the management of hypertension and cardiac failure. There is evidence that combinations of 

ACEI/ARBs, non-steroidal anti-inflammatory drugs, and diuretics may impair renal function (9–12). 

However, there is only limited evidence of an association between AKI and ACEI/ARBs alone (13,14). 

One study has suggested an increase in post-operative AKI in cardiovascular surgery patients taking 

ACEI/ARBs preoperatively (13). While other existing evidence for an association between AKI and 

ACEI/ARBs comes from an ecological study and is therefore limited by lack of patient level data (14). 

To reduce the potential adverse effects associated with ACEI/ARBs we need a better understanding of 

individual level risk factors for AKI associated with these drugs. 

Current consensus suggests that ACEI/ARBs should be withheld during acute illness, however the 

evidence supporting this is limited (15,16) (11,20). This is in part because observational studies on this 

topic are confounded by indication. The indications for ACEI/ARB prescription are themselves 

associated with increased risk of AKI. Therefore an observed increased incidence of AKI may reflect 

increasing prevalence of comorbidities rather than a causal effect of the drugs themselves.  

We aim to investigate the association between ACEI/ARBs and AKI (drug-associated AKI). We will 

calculate the incidence of AKI in those prescribed ACEI/ARBs and compare this to AKI incidence in a 

number of control groups. We have selected our control groups to avoid confounding by indication. In 

addition to a group of matched (age, gender and GP practice) controls with no prescriptions for 

medications with similar indications to those for ACEI/ARBs, we will also look at AKI incidence in those 

prescribed other classes of antihypertensive medications (i.e. drugs prescribed for indications similar 

to those for ACEI/ARBs). Our control groups will therefore be: i) those prescribed beta-blockers (BB); 

ii) those prescribed calcium channel blockers (CCBs); iii) those prescribed thiazide diuretics; and iv) an 

age, gender and GP practice matched control group not prescribed antihypertensives (ACEI/ARBs, 

BBs, CCBs or thiazide diuretics). We will investigate changes in AKI incidence rates over time, changes 

in AKI incidence when ACEI/ARBs are prescribed in drug combinations thought to be associated with 

impaired renal function (ACEI/ARB drugs plus other diuretics and non-steroidal anti-inflammatory 

drugs), and investigate the mortality, and rate of progression to end-stage renal disease (ESRD) in 

drug-associated AKI. 
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5. Study type 
This will primarily be a hypothesis testing study. The null hypothesis is that ACEI/ARBs do not increase 

the risk of AKI compared to other antihypertensive drugs. 

6. Study design 
This will be a new-user cohort study with time-updating exposure status, using CPRD data and linked 

HES data. 

7. Study population 
We will use data from general practices in CPRD that have consented to Hospital Episode Statistics 

(HES) data linkage. The study period will cover the period for which there is HES data linkage with the 

CPRD database; from April 1997 to March 2012. However, if an updated version of CPRD linked HES 

data becomes available at an appropriate point in the project timeline (i.e. before data extraction) we 

will use the most recent version of the linked data available, which will result in a later end to the 

study period and maximise follow-up time. 

We will retrieve data on all patients aged 18 or over who do not have end stage renal disease (ESRD), 

who have no record of a prescription for antihypertensive medication (ACEI/ARBs, beta-blockers, 

calcium channel blockers, or thiazide diuretics) within the 12 months prior to cohort entry, who have 

at least one serum creatinine result recorded at any time from 12 months prior to cohort entry 

onwards (in order to establish CKD status – see Section 10.4.2), and who have a new prescription for 

one or more of the following: i) ACEI/ARBs; ii) beta blockers (BB); iii) calcium channel blockers (CCB); 

or iv) thiazide diuretics, in addition to an age, sex and GP practice matched control group on none of 

these drugs.  

7.1 Cohort entry 
Cases (antihypertensive users) will enter the cohort at first prescription for an antihypertensive (new 

use of ACEI/ARB, BB, CCB, or thiazide diuretic). Controls will enter the cohort on the same date as 

their matched cases. Patients will be eligible for cohort entry from the latest of: i) one year after 

practice registration date; ii) date practice reached CPRD quality control standards; or iii) 18th 

birthday.  

We have chosen to use a new-user cohort (i.e. entry to cohort on new use of the drugs of interest). If 

we were to include existing users of these drugs, we would introduce adherence bias, since those 

who have remained on the drug will be systematically different to those who stop taking a drug after 

the first prescription due to early adverse effects. In addition we may miss important outcomes in 

those who entered the cohort who were already prescribed the drugs of interest. 

7.2 Cohort exit 
Individuals will be eligible until the first of: i) date of death; ii) patient transferred out of practice; iii) 

last data collection from the practice; or iv) ESRD diagnosis. 

ESRD will be defined based on hospital and primary care morbidity coding as: i) presence of an ESRD 

morbidity code; ii) a code for renal transplant; iii) a code for peritoneal dialysis; iv) two or more 

haemodialysis codes more than 90 days apart; v) stage 5 chronic kidney disease (CKD); or vi) stage 4 

CKD with a fistula (this suggests rapidly worsening renal function). 
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8. Outcome 

The primary outcome of interest will be AKI. AKI cases will be identified from three sources: i) primary 

care morbidity coding (Read-codes); ii) hospital admission morbidity coding (ICD-10 codes); and iii) 

biochemical results recorded in primary care health records. 

8.1 Morbidity codes 
Primary care (Read) and hospital (ICD-10) morbidity codes for AKI will be identified by a consensus 

exercise. A list of search terms to identify AKI will be developed using the Medline medical subject 

headings (MeSH) thesaurus (see Appendix 2, Table A2.1). These search terms will be applied in both 

Read and ICD-10 code browsers. We (Laurie Tomlinson (LT) and Kate Mansfield (KM)) will classify the 

two lists of codes (Read and ICD-10) returned by the search terms independently as either probably 

representing an episode of AKI or possibly identifying an episode of AKI. The code lists we generate 

will be compared and any disagreements discussed in order to generate one list of codes that 

definitely represent an AKI episode. A previous study has already investigated the positive predictive 

value of the ICD-10 code N17 in UK hospital admissions data for the KDIGO AKI definition and found it 

to be accurate for 95% of cases (17). 

Lists of Read and ICD-10 codes for AKI are provided in Appendix 2, Tables A2.3 and A2.4, and are 

illustrative of the final lists that will be generated from the more rigorous code list development 

process described above. 

8.2 Serum creatinine algorithm 
We have developed an algorithm to identify community cases of AKI based on changes in serum 

creatinine recorded in primary care health records. Our algorithm is based on the 2013 Association 

for Clinical Biochemistry and Laboratory Medicine (ACB) algorithm for AKI (18). The ACB algorithm 

was developed to generate e-alerts using electronic hospital lab data based on the KDIGO guidelines 

for AKI (19). Applying this unchanged to community data would be imprudent since the frequency of 

renal function testing in a hospital setting is likely to be quite different to that in primary care. 

Compared to a hospital setting, serial serum creatinine measurements in the community are likely to 

be separated by longer intervals. This increases the likelihood of misclassifying a gradual decline in 

renal function as AKI.  

To avoid this sort of misclassification, our algorithm for diagnosis of AKI in the community applies the 

ACB algorithm only in those recorded with morbidity codes for acute conditions likely to cause AKI 

(e.g. acute infections) but not sufficiently severe as to as to warrant immediate hospital admission. It 

is assumed that in severe acute conditions needing hospital admission (e.g. sepsis or gastrointestinal 

bleeding) if AKI occurs it will be recorded in hospital records and therefore picked up by ICD-10 coding 

in linked HES records. 

To be classified as having an episode of AKI based on changes in community serum creatinine 

measurements a patient must have: 

1. Baseline serum creatinine measurement: A minimum of one serum creatinine result prior to the 

recording of the index acute morbidity code in order to determine baseline serum creatinine. 

2. A primary care morbidity code for an acute condition that may precipitate AKI but does not 

necessarily require hospital admission. Operationalised as a Read code for gastroenteritis, urinary 

tract infection or lower respiratory tract infection (termed the index infection). 

3. A change in serum creatinine classified as AKI according to the ACB algorithm in the two weeks 

following the record of an acute morbidity code. The maximum interval of two weeks between 

acute morbidity coding and serum creatinine result has been chosen pragmatically to allow time 

for the practicalities of community blood testing. 
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4. If a hospital admission occurs within the two weeks following the index acute morbidity code 

then, to be defined as AKI, the recorded creatinine change must occur between the index 

infection morbidity code and up to and including the day of hospital admission. If a hospital 

admission is recorded between the index-infection morbidity code and the date of the change in 

creatinine, this will not be defined as AKI since we cannot assume that the index infection 

recorded in primary care is related to the change in creatinine. 

Codes for acute infections that may precipitate AKI (urinary tract infection, gastroenteritis and 

respiratory tract infection) will be identified using a similar consensus approach to that presented in 

the previous section on identifying morbidity codes for AKI (Section 8.1). 

To explore the validity of our AKI definition we will compare incidence rates calculated using our 

measures of AKI (using a combination of both morbidity coding and biochemical test results) with 

those from a study in the Canadian general population (8) and those from a recent study using 

secondary care biochemical data in East Kent (2). 

8.3 Secondary outcomes 
We will investigate mortality, hyperkalaemia and ESRD following AKI (addressing objective five: To 

determine rates of mortality, hyperkalaemia and dialysis following drug-associated AKI). We will 

investigate overall mortality and mortality at 0–3 months following the AKI episode, 4–6 months and 

7–12 months. Hyperkalaemia will be established using specific Read and ICD-10 morbidity codes and 

potassium levels ascertained in biochemical tests. ESRD will be defined using morbidity coding as 

above (see Section 7.2). 
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9. Exposure 

9.1 Exposure status 
In the main analysis the exposure of interest will be ACEI/ARB use. Patients prescribed ACEI/ARB may 

be at greater risk of the outcome (AKI) due to prescribing indication. The main analysis will therefore 

investigate how AKI incidence differs in those exposed to ACEI/ARBs compared to three other classes 

of antihypertensive drug (BB, CCB, and thiazide diuretics), in addition to a control group exposed to 

no antihypertensive medication. 

Prescriptions for each class of antihypertensive will be identified from coded primary care 

consultation data. Drugs are uniquely identified in CPRD using codes. We will identify both the generic 

and brand names of relevant drugs using the British National Formulary (BNF). The BNF is an 

authoritative guide to UK prescription drugs. We will use the drug names to create search terms to 

identify relevant drug codes in a data file containing codes for all the available prescription drugs. We 

will exclude drugs that are not taken orally from the list. A list of search terms for each class of 

antihypertensive is included in Appendix 2 (Table A2.2). 

A prescription does not necessarily mean that a patient has taken a drug. To indicate regular use of 

the drug one approach would be to develop an exposure measure based on continued repeat 

prescription. However, our primary outcome (AKI) is an acute event that may occur as an early 

adverse event following initiation of therapy. Our main analysis will therefore use time-updating 

exposure status where individuals can move between exposure groups based on changing 

prescriptions.  

For the main analysis, exposure status will be defined in two different ways: i) time exposed to a 

single class of antihypertensive drug; and ii) exposure defined by multiple binary indicator variables 

for each class of antihypertensive or control status. We will repeat the analysis using each exposure 

definition. We will also conduct a secondary analysis looking at combination antihypertensive therapy 

in individuals prescribed ACEIs or ARBs. 

9.1.1 Exposure to a single class of antihypertensive  
We will use time-updating variables to define time at risk to the different classes of drugs. Exposure 

will be defined in the following categories: 

i. Time when prescribed an ACE/ARB (no other class of antihypertensives prescribed) 

ii. Time when prescribed a BB (no other class of antihypertensives prescribed) 

iii. Time when prescribed a CCB (no other class of antihypertensives prescribed) 

iv. Time when prescribed a thiazide diuretic (no other class of antihypertensives prescribed) 

v. Time contributed by a random sample of patients not prescribed ACEI/ARBs, BBs, CCBs or thiazide 

diuretics. 

Figure 1 shows assignment of exposure status under four example scenarios. In scenario one the 

patient remains exposed to only one agent for the duration of the study. In scenario two, in the 

situation where a second antihypertensive is added, the patient is censored from follow-up (unless 

there is a further change in prescription resulting in prescription for a single agent). In scenario three, 

when a patient switches from one class of drug to a different class of drug, we account for a seven-

day wash-out period between prescriptions, therefore start of time-at-risk to the second drug is 

delayed for seven days to allow for the practicalities of prescription fulfilment. In scenario four, where 

an individual initially selected to be part of the control group is started on an antihypertensive, the 

patient is censored from follow-up as a control and begins to contribute follow-up tome to ACEI/ARB 

exposure. 
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Figure 1. Assignment of time-varying exposure status during follow-up using a single exposure variable 

under four example scenarios. 

 

 

 

9.1.2 Exposure defined by multiple binary indicators  
As a secondary analysis we will use an alternative definition for exposure status that will allow 

exposure to more than one class of antihypertensive at a time. Rather than a single variable 

representing time exposed to a single class of antihypertensive, we will use five time-updating, binary 

indicator variables to indicate exposure status. Each indicator variable will identify whether the 

associated period of time at risk was exposed (1) or unexposed (0) to a specific class of 

antihypertensive. Figure 2 illustrates the same four example scenarios shown in Figure 1 using 

multiple binary indicator variables rather than a single exposure variable. 
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Figure 2. Assignment of time-varying exposure status during follow-up using multiple binary indicator 

exposure variables under four example scenarios. 
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9.2 Control group 
The control group will be identified as a matched cohort. Controls will be individuals not prescribed 

one of the exposure drugs they will be matched on age, sex and GP practice, and will enter the cohort 

on the same day as a matched antihypertensive case. Controls will be matched to all cases entering 

the cohort who are prescribed one of the classes of antihypertensive to be investigated. We will 

select ten controls for each case (since we do not know whether potential controls are eligible for 

study inclusion, we will match a high number of controls to each case to allow for a proportion of 

matched controls being ineligible for inclusion). We will allow controls to be matched to more than 

one case (i.e. controls can be selected more than once – in order to maximise the possibility of 

matching cases that might occur less frequently within the dataset, for example, the very young and 

the very old).  

During follow-up, if a control is started on one of the drugs of interest, their follow-up will be 

censored (with respect to the control group) from this date and they will enter the exposed cohort. 

If antihypertensive users are no longer prescribed any antihypertensives, their follow-up will be 

censored following a seven-day wash-out period from the end of their prescription. That is, they will 

not move into the control group because they are likely to be systematically different to the existing 

control group since there will be a clear clinical reason for withdrawal of all antihypertensive 

medications (e.g. frailty). 

10. Covariates 
We aim to use a directed acyclic graph (DAG) to guide the development of covariates to be included 

in regression models. Examples of the covariates we will use are: ethnicity, socioeconomic status, 

chronic comorbidities, proteinuria, body mass index (BMI), smoking status, alcohol use, and non-

steroidal anti-inflammatory drugs (NSAIDs). We will include age and sex as forced variables. 

10.1 Age 
Age will be categorised into the following age bands: 18–44, 45–54, 55–59, 60–64, 65–69, 70–74, 75–

84, 85+. However, we will also examine the age distribution of the cohort to inform the final the age 

bands used in the analysis, should a high proportion (e.g. more than 40%) of the cohort fall into only 

one of the a priori defined age bands will we split this age band more finely (e.g. into five-year rather 

than 10-year intervals). For descriptive analyses age will be defined as age at cohort entry. For 

regression analyses age will be entered as a time-updating variable in the age bands defined above (or 

those informed by the age distribution of the cohort). 

10.2 Socioeconomic status 
Individual socioeconomic status will be measured using index of multiple deprivation (IMD). CPRD 

offers index of multiple deprivation as quintile, decile or twentile data for 2004, 2007 or 2010. Our 

study dates are from 1997 to 2012, since patients can enter and leave the study at any point during 

the study period, we will use the 2004 IMD data because it is as close to the midpoint of the study 

period as possible.  

10.3 Ethnicity 
Ethnicity will be classified according to both Read and ICD-10 coded data to improve data 

completeness (20). However, research suggests (20) that a large proportion of ethnicity data is 

missing. We will therefore only rely on ethnicity as a covariate in secondary analyses.  
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10.4 Chronic comorbidities 
The following chronic comorbidities will be considered as covariates: diabetes mellitus, hypertension, 

ischaemic heart disease, cardiac failure, rhythm disorders, and chronic kidney disease (CKD).  

10.4.1 Comorbidities recorded as present or absent 
With the exception of CKD, chronic comorbidities included as potential covariates (diabetes mellitus, 

hypertension, ischaemic heart disease, cardiac failure, and rhythm disorders) will be recorded as 

present or absent based on recorded Read or ICD-10 codes. For descriptive analyses chronic 

comorbidities (excluding CKD) will be defined as those recorded prior to cohort entry. For regression 

analyses chronic comorbidities (excluding CKD) will be entered as a time-updating variables, with 

disease status changing with the first recorded code for each specific condition. 

10.4.2 CKD 
CKD stage will be established using estimated glomerular filtration rate (eGFR) calculated using serum 

creatinine test results. We will not use Read codes or creatinine clearance test results to identify CKD 

stage (in the main analysis) as adding these measures may compromise the granularity of CKD stage 

classification (21). 

CKD will be categorised as stage two and below, and stages 3–5 based on eGFR levels (stage 2 and 

below: eGFR >=60; stage 3a: eGFR 45–59; stage 3b: eGFR 30–44; stage 4: eGFR 15–29; and 5: eGFR 

<15). Patients with no recorded serum creatinine results will be excluded from the main analysis. 

Estimated GFR will be calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-

EPI) equation (22) with serum creatinine measures, age, gender and ethnicity. The CKD-EPI equation 

contains a variable for Afro-Caribbean ethnicity, however research suggests (20) that a large 

proportion of ethnicity data is missing. Since the proportion of people of Afro-Caribbean ethnicity in 

England and Wales is just over 3% (23) for the main analysis we will calculate eGFR without regard to 

ethnicity.  

Serum creatinine measurements were not standardised until 2013, we will therefore assume that all 

creatinine results are not standardised and multiple results with a correction factor of 0.95 (24) 

before using the CKD-EPI eGFR formula (unstandardized creatinine results will give a falsely low 

estimate for GFR). 

We will use both baseline and time-updated measures of CKD status: 

a. Baseline CKD status 

Baseline CKD status will be defined as: i) best of two: the highest eGFR from the most recent two 

serum creatinine results recorded in the 12 months prior to baseline and separated by a minimum of 

three months (three month timeframe chosen to correspond to the requirement for eGFR to remain 

at a consistent level of impairment for at least three months in order for a patient to be diagnosed at 

a specific CKD stage); or ii) if only one suitable creatinine result is available, the single most recent 

serum creatinine recorded prior to baseline (excluding patients without two serum creatinine results 

could systematically exclude healthier individuals, since healthy patients are less likely to serum 

creatinine levels monitored). 

b. Time-updated CKD status 

Time-updated CKD status will be defined using the ‘last-carried-forward’ method (25,26). Here CKD 

stage is defined based on the most recent creatinine result (allowing CKD stage to be updated over 

time). However, taking this approach may misclassify AKI episodes as worsening CKD. To avoid this, 

when establishing CKD status, we will ignore serum creatinine results within 28 days either side of an 

AKI episode identified by our AKI case definition (see Section 8.2). This approach however, will not 

remove the risk of misclassifying episodes AKI missed by our definition as declining CKD status. It is 
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hoped that increased monitoring of renal function in these cases (until serum creatinine stabilises) 

will minimise the amount of time patients are misclassified. 

For descriptive analyses we will define CKD status using the baseline measure described above. For 

regression analyses we will use time-updated CKD status.  

10.5 Proteinuria 
Presence of proteinuria will be established using specific morbidity codes (Read and ICD-10) and 

biochemical test results from primary care electronic health records. Since urinary tract infection can 

cause a transient proteinuria, proteinuria recorded on the same day as a morbidity code for UTI will 

be disregarded (i.e. a record of proteinuria on the same day as UTI will not change a patient’s 

proteinuria status to positive). The first valid record of proteinuria will change a patient’s status from 

negative to positive for the remainder of the study. 

10.6 Lifestyle 
BMI, smoking status and alcohol use will be defined as those recorded prior to cohort entry. BMI will 

be calculated directly from weight and height records. Smoking status and alcohol use will be 

categorised based on primary care Read-coded electronic medical records.  

10.7 Covariate morbidity code lists 
Final morbidity code lists for ethnicity, smoking status, alcohol intake, proteinuria and chronic 

comorbidities are yet to be developed. A number of existing code lists have already been tested and 

used (20,21,27–30), and the CALIBER data portal (31) also offers a source of case definition algorithms 

and code lists. Where code lists/case definition algorithms have already been developed for existing 

electronic health record studies or as part of the CALIBER project we will identify relevant lists and use 

them to inform the development of our own code lists. Where existing code lists are unavailable, 

morbidity codes will be identified by a series of consensus exercises. A list of search terms to identify 

each relevant covariate will be developed. These search terms will then be used to search a data file 

containing all the available Read codes. We (LT and KM) will classify the lists of codes returned by the 

search terms independently as either probably or possibly representing the relevant outcome. The 

code lists we generate will be compared with each other and any disagreements discussed in order to 

generate the lists of codes to be used in the project. 

We will document the decisions taken regarding code list eligibility, and where necessary we will 

conduct sensitivity analyses to compare codes that we feel definitely represent the relevant covariate 

to those that we feel only possibly represent it. 
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11. Sample size/power calculation 
A feasibility count using CPRD (January 2014 build) (see Table 1) shows that: i) for those with a 

minimum of six months registration prior to their first antihypertensive prescription, there were more 

than 1,400,000 people with a first prescription for one or more classes of antihypertensive (ACEI/ARB, 

BB, CCB or diuretic) during the study period (1st April 1997 to 31st March 2012); and ii) for those with 

a minimum of twelve months prior registration there were more than 1,300,000 with a first 

prescription for an antihypertensive during the study period. Of those identified in the CPRD database 

with a first antihypertensive prescription during the study period, 59% were eligible for HES linkage 

(HES version 9) (n=839,622 patients with a minimum of six months prior registration; and n=795,464 

with a minimum of 12 months prior registration). 

Our study design allows a patient to move between multiple exposures if their prescription changes 

over time. Consequently numbers in the different exposure groups will be dynamic. Therefore, we 

have based our calculation of the minimum effect size that our study can detect on the most 

conservative sample size, i.e. the smallest group who are prescribed only one class of 

antihypertensive drugs during the study period, this is the group of individuals prescribed CCBs as 

their only hypertensive in those with a minimum of 12 months prior registration (n=64,078). If we are 

cautious and allow for 20% of this sample to be ineligible for inclusion in the study, we are left with a 

sample size of 102,524 for calculation of the minimum effect size detectable (A previous study (32) 

within CPRD, where follow-up started after more than 12 months of exposure to an ACEI/ARB, 

identified 377,649 individuals with a mean duration of follow-up of 4.6 years).  

A previous study (8) has estimated the incidence of hospital admission for AKI the adult general 

population to be 0.7% during median follow-up of 35 months. This translates to a 1.2% probability of 

AKI assuming an average of 5 years follow-up. This is a conservative estimate of AKI incidence, as not 

all cases will lead to hospital admission. Based on a cautious estimate of a sample size (n= 102,524), 

we will have greater than 90% power (alpha 0.05) to detect a relative risk of 1.2 or more for incident 

AKI comparing each class of antihypertensive with a group of individuals not taking antihypertensives 

(Table 2). [Calculation done in G*Power version 3.1.9.2 (33), and cross-checked in both OpenEpi (34) 

using the ‘Sample size and power’ module for cohort studies, and Stata (35) using the stpower logrank 

command]. 

There is only a 5% drop in the number of patients identified using the more stringent requirement for 

12 months antihypertensive-free interval prior to study entry compared to only 6 months. Therefore, 

given that there is sufficient power to detect a relative risk of 1.2 or more, we will use the more 

robust 12-month (prior to ‘first’ antihypertensive) definition for cohort entry. 
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Table 1. Results of feasibility count: Number of patients aged 18 years and over identified with a first 

prescription for a class of antihypertensive between 1st April 1997 and 31st March 2012 in CPRD (January 

2014 build), and, of those identified in CPRD, the number eligible for HES linkage (HES version 9). 

  ACEI/ARB BB CCB Diuretic Total 

Minimum 6 

months 

registration 

prior to first 

prescription 

First prescription in study period 732,514 

(52%) 

576,740 

(41%) 

501,394 

(35%) 

600,759 

(42%) 

1,420,953 

First prescriptions in study period in 

those eligible for HES linkage 

438,344 

(52%) 

338,518 

(40%) 

302,806 

(36%) 

355,078 

(42%) 

839,622 

 

First class of antiHt drug prescribed in 

study period  

233,151 

(28%) 

238,785 

(28%) 

134,185 

(16%) 

233,501 

(28%) 

839,622 

 

Prescriptions for only one class of 

antiHt during the study period 

129,850 

 

147,492 

 

66,082 

 

109,046 

 

452,470 

 

Minimum 12 

months 

registration 

prior to first 

prescription 

First prescription in study period 700,839 

(52%) 

538,173 

(40%) 

477,549 

(35%) 

563,526 

(42%) 

1,348,019 

First prescriptions in study period in 

those eligible for HES linkage 

419,343 

(53%) 

315,587 

(40%) 

288,419 

(36%) 

332,724 

(42%) 

795,464 

 

First class of antiHt drug prescribed in 

study period  

225,555 

(28%) 

222,187 

(28%) 

129,030 

(16%) 

218,692 

(27%) 

795,464 

Prescriptions for only one class of 

antiHt during the study period 

126,827 136,495 64,078 101,976 429,376 

 

antiHt: antihypertensive 

ACEI: Angiotensin converting enzyme inhibitor 

ARB: Angiotensin receptor blocker 

BB: Beta-blocker 

CCB: Calcium channel blocker 

 

Table 2. Minimum effect sizes given α=0.05, sample size=102,524, power=0.80–0.95 

Power Minimum risk ratio detectable 

 Assuming mean  

5-yrs follow-up  

(base rate 1.2%) 

Assuming mean  

4-yrs follow-up  

(base rate 1.0%) 

Assuming mean  

3-yrs follow-up  

(base rate 0.7%) 

80% 1.17 1.19 1.22 

85% 1.18 1.20 1.23 

90% 1.19 1.22 1.25 

95% 1.22 1.24 1.28 

 

We plan to undertake our main analysis twice by defining exposure as either exposure to a single class 

of antihypertensive only or using multiple binary indicators for exposure to each class of 

antihypertensive (see Section 9.1). Defining exposure using multiple binary indicators will allow for 

individuals to be exposed to more than one class of antihypertensive at a time, maximising follow-up 

time for each exposure. Therefore, if using the single-agent exposure definition leads to the study 

being underpowered (due to insufficient follow-up time) we will define exposure using the multiple 

binary indicator approach only. 
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12. Analysis 
All analyses will be undertaken in Stata version 13 (35). Analysis of the data will include the following 

stages: 

1. Basic baseline descriptive statistics for the five exposure groups: 

i. ACEI/ARB 

ii. BB 

iii. CCB 

iv. Thiazide diuretic 

v. Age, sex and GP practice matched control group 

2. Main analysis: Incidence of drug associated AKI in the five exposure groups (crude and 

adjusted using Poisson regression).  

3. Incidence of AKI when other drugs are prescribed in combination with ACEI/ARBs. 

4. Comparison of AKI incidence in ACEI users versus that in ARB users. 

5. Incidence of AKI when recurrent AKI is taken into account. 

6. Outcomes following AKI in the five exposure groups including mortality and ESRD rates. 

7. The effect of changes over time. 

8. Sensitivity analyses. 

12.1 Descriptive statistics 
We will present basic descriptive statistics to describe the five exposure groups: i) ACEI/ARB; ii) BB; iii) 

CCB; iv) thiazide diuretics; and v) an age, sex and GP practice matched control group not prescribed 

any of the classes of exposure drug. Membership of each exposure group will be determined by any 

contribution of time at risk to that exposure (e.g. if a patient contributes time at risk to both the 

ACEI/ARB and BB exposures that patient will contribute to both the ACEI/ARB and BB exposure 

groups). 

For each exposure group we will present the number and percentage of the group: 1) who are 

female; 2) in each predefined age band (18–44, 45–54, 55–59, 60–64, 65–69, 70–74, 75–84, 85+) at 

cohort entry; 3) have CKD stage two and below, and stages three to five at cohort entry; 4) have 

diabetes mellitus, cardiac failure, ischaemic heart disease, arrhythmia, hypertension or proteinuria at 

cohort entry; 5) in each smoking status category (non-smoker/ex-smoker, current smoker, or 

missing); 6) in each alcohol use category (non-problem drinker or problem drinker); 7) in each BMI 

category (underweight, normal, overweight/obese, or missing); 8) in each ethnic group; and 9) in each 

quintile of index of multiple deprivation. 

We will use this information to populate the skeleton table included in Appendix 3 (Table A3.1). No 

statistical tests are planned at this stage of analysis we will present summary statistics alone. 
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12.2 Main analysis: Drug associated AKI incidence 
For the main analysis, exposure status will be defined in two different ways: i) time exposed to a 

single class of antihypertensive drug; and ii) exposure defined by multiple binary indicator variables 

for each class of antihypertensive or control status. 

12.2.1 Primary analysis: exposure defined as time exposed to a single class of 

antihypertensive  
Our primary analysis will compare the incidence of AKI in the five exposure groups. Patients will 

contribute time only when they are prescribed the drug of interest alone (no simultaneous 

prescriptions for other classes of antihypertensive) and patients will swap between drug exposure 

groups when a prescription is changed. We will calculate crude AKI incidence rates and adjusted 

incidence rate ratios for each exposure group. Robust standard errors will be used to account for 

clustering by practice. Poisson regression will be used to calculate adjusted incidence rate ratios, 

initially adjusted only for time-updated age (data is split into the following age bands: 18–44, 45–54, 

55–64, 65–74, 75–84, 85+) and sex, and then estimated using a fully adjusted model including 

covariates informed by a directed acyclic graph (DAG). Time-updated age and sex will be included as 

forced variables, examples of other possible covariates include: proteinuria, chronic comorbidities 

(CKD stage, diabetes mellitus, ischaemic heart disease, cardiac failure, hypertension and arrhythmia), 

and baseline smoking, alcohol intake, socioeconomic and BMI status. Rate ratios will be calculated 

using the control group as the reference category. Before fitting the fully adjusted model we will add 

each covariate independently to a Poisson regression model including the exposure, and age and sex.  

The results of this analysis will be used to populate skeleton Tables A3.2 and A3.3 included in 

Appendix 3. 

The exposure definition we have chosen for this analysis (where time at risk will be counted only 

when an individual is prescribed a single class of antihypertensive) allows for easier interpretation of a 

regression model because the coefficients returned by the model offer a direct comparison between 

the different types of exposure. However, it will reduce available follow-up time as we will not be able 

to include time when a patient is prescribed more than one class of antihypertensive agent. 

Therefore, we will repeat the main analysis using an alternative definition of exposure status. 

12.2.2 Secondary analysis: exposure status defined by binary indicators 
We will repeat the primary analysis defining exposure status using five time-updating, binary indicator 

variables to indicate exposure. The approach will maximize the available follow-up time for each 

exposure, control for exposure to other antihypertensives, allow drug combinations to be investigated 

through interaction terms in the model, and more closely model real life. 

We would expect results from the two analyses to be broadly similar. However, rate ratios for 

exposure in the single-drug class exposure model will compare rates for each class of drug to 

incidence in the control group, while rate ratios for exposure in the multiple binary indicators model 

will compare rates of AKI in each anti-hypertensive class to those not exposed to that class of drug 

controlled for other classes of antihypertensive. 
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12.3 Combination prescriptions  
There is evidence that combinations of ACEI/ARBs, diuretics and NSAIDs may impair renal function (9–

12). We will therefore investigate combination drug therapy in ACEI/ARB users using time-updating 

exposure status. Time at risk will be defined in the following categories: 

i. ACEI/ARB alone 

ii. ACEI/ARB + thiazide diuretic  

iii. ACEI/ARB + loop diuretic 

iv. ACEI/ARB + loop diuretic + thiazide diuretic 

v. ACEI/ARB + loop diuretic + potassium-sparing diuretic 

(spironolactone/eplerenone/amioloride/triamterene) 

vi. ACEI/ARB + loop diuretic + potassium-sparing diuretic + thiazide diuretic 

vii. ACEI/ARB + NSAID +/- any BB, CCB or diuretic. 

Combination drugs (e.g. valsartan/hydrochlorothiazide, a combination of an ARB and a thiazide 

diuretic) will be considered as dual exposure to the classes of drug included in the preparation. 

We will investigate how AKI incidence rate changes in ACEI/ARB users who are also prescribed 

additional medications by calculating crude and adjusted (for all covariates used in the main analysis) 

AKI incidence rate ratios comparing exposure to ACEI/ARBs alone (reference category) with exposure 

to ACEI/ARBs in addition to other drugs. 

These data will be used to populate a skeleton table included in Appendix 3 (Table A3.4). 

12.4 ACEI versus ARB 
We will investigate AKI incidence rate in ACEI users versus that in ARB users. We will repeat the main 

analysis this time defining exposure as time at risk to ACEIs alone compared to ARBs alone. We will 

use these data to populate the skeleton table presented in Appendix 3 (Table A3.5). 

12.5 Recurrent AKI 

Our main analysis uses first recorded episode of AKI as the outcome measure. Patients therefore stop 

contributing time at risk at their first episode of AKI. To investigate the effect of multiple episodes of 

AKI we will repeat the main analysis including recurrent episodes of AKI. We will account for clustering 

in the analysis using a random effects model.  

We will define recurrent AKI differently depending on whether AKI has been defined using morbidity 

coding or biochemistry results. Two or more successive AKI codes will be considered to represent 

recurrent episodes of AKI. However, if AKI is defined using biochemical data, to be classified as being a 

recurrent episode there would have to be a return to baseline creatinine before a second increase in 

serum creatinine.  

12.6 Outcomes following AKI 
We will investigate outcomes following AKI by investigating rates of mortality, ESRD and 

hyperkalaemia among those who develop AKI. We will compare rates of mortality, ESRD and 

hyperkalaemia in AKI patients from each of the five exposure groups in order to compare health 

outcomes following AKI in those on different antihypertensives compared to the control group. 

Exposure will be defined based on exposure status at time of an AKI event, for example, an individual 

will be classified as being exposed to a beta-blocker if they are prescribed a beta-blocker when they 

experience an episode of AKI. 

We will investigate mortality following AKI episodes by calculating crude mortality rates following AKI 

episodes. We will also calculate crude, age and sex adjusted, and fully adjusted mortality rate ratios 
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for overall mortality and mortality at 0–3 months following the AKI episode, 4–6 months and 7–12 

months. These data will be used to populate the skeleton table presented in Appendix 3 (Table A3.6). 

12.7 Changes over time 
There have been some important changes in diagnostic and administrative practices that may 

influence the number of cases our AKI definition identifies and the classification of CKD. These 

include: 

i. 2004: Publication of RIFLE (36) AKI definition 

ii. 2006: Introduction of standardised serum creatinine measurements. 

iii. 2007: Standardised lab reporting (Pathology Messaging Implementation Project (37)) and 

publication of AKIN (38) AKI definition. 

iv. 2012: Publication of KDIGO (19) AKI definition. 

We will therefore investigate changes in AKI incidence rates over time using the following epochs: i) 

before 2004; ii) 2004–2005; iii) 2006–2007; iv) 2007–2011; and, v) from 2012. We will repeat the 

main analysis including calendar period as a covariate (after splitting the data on the calendar periods 

defined above). 

12.8 Sensitivity analyses 
We will test the validity of some of the variable definitions used in the analysis by repeating the main 

analysis a number of times either in select patient populations or using alternative variable 

definitions. 

12.8.1 Person-time 
The analysis will be repeated using an alternative approach to calculating person-time. In the main 

analysis person-time will be calculated from cohort entry to cohort exit, without taking hospital 

admission time into account. Our AKI outcome definition uses hospital coding, therefore, for the 

duration of a hospital admission, we can only define the outcome once, effectively reducing available 

time at risk. To check whether this influences our findings we will repeat the main analysis calculating 

person-time from cohort entry to cohort exit with any hospital admission time excluded from person-

time.  

12.8.2 Exposure status 
The analysis will also be repeated defining exposure status on the basis of two or more consecutive 

prescriptions to investigate a subgroup with a more reliable exposure to the drugs interest. 

12.8.3 Ethnicity 
We will also repeat the main analysis in a group who are more likely to have complete ethnicity data. 

After 2006 recording of ethnicity was rewarded as part of the Quality and Outcomes Framework 

leading to improvements in the completeness of ethnicity recording in CPRD (20). We will therefore 

repeat the main analysis in new entrants to the cohort from 2006 onwards who have ethnicity data 

recorded in CPRD or HES. In this sensitivity analysis we will include ethnicity both as a covariate and in 

the equation used to calculate eGFR. 
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12.8.4 Renal function 
Our analyses rely on serum creatinine test results both to establish biochemically defined AKI and as a 

measure of CKD status. We plan a number of sensitivity analyses to test the validity of both variable 

definitions. 

a. Limited numbers of serum creatinine results 

i) Limited to patients with diabetes mellitus 

Patients with limited numbers of serum creatinine measures available may have their CKD status 

misclassified or be incorrectly identified as having biochemical AKI. Further, they are likely to be 

systematically different to those with multiple serum creatinine results (since regular renal function 

testing is more likely in those perceived to be at risk of kidney disease). Therefore, to test the validity 

of both our AKI and our CKD definitions we will repeat the main analysis only in those who are also 

recorded as having diabetes mellitus. Regular checking of renal function has been remunerated in 

diabetics through the Quality and Outcomes Framework. Using this group will therefore reduce 

information bias occurring as a result of kidney function being measured only in those perceived to be 

at risk of the outcome.  

ii) Two serum creatinine results before index-infection code in biochemically defined AKI 

We will further test the validity of our AKI definition by repeating the main analysis including only 

those biochemically defined AKI episodes where there is a minimum of two serum creatinine results 

(recorded at least three months apart) available prior to the recording of the index acute morbidity 

code that defines the AKI episode (UTI, gastroenteritis, URTI – see Section 8.2) in order to establish a 

more robust baseline serum creatinine. 

b. CKD status definition 

i) CKD status defined using morbidity coding and test results 

Our main analysis requires a minimum of one available serum creatinine result to establish CKD 

status. This will limit the number of patients eligible for inclusion and is also likely to result in an 

unusual control group since it is unlikely that routine serum creatinine measures will be available in 

healthy controls. We will therefore repeat the main analysis, without the requirement for a serum 

creatinine result, using an alternative CKD definition. CKD will be defined as present or absent on the 

basis of: i) eGFR calculated using serum creatinine results (see Section 10.4.2); ii) morbidity codes for 

CKD; and iii) intrinsic renal disease codes (e.g. glomerulonephritis). 

ii) Baseline CKD status rather than time-updated CKD status 

We will also repeat the main analysis using baseline CKD status rather than the time-updated variable 

(see Section 9.4.2) to investigate: i) the association between CKD stage at initial prescription of 

antihypertensive medication and subsequent risk of AKI; and ii) to ensure that rapidly worsening CKD 

status has not affected the results of the analysis – AKI episodes in patients with rapidly worsening 

CKD status may lead to a falsely high rates of AKI at more severe stages of CKD (patients with rapidly 

worsening renal function will contribute less person-time at more severe levels of CKD than patients 

who had maintained consistently levels of CKD, therefore, episodes of AKI occurring in patients with 

rapidly worsening renal function would lead to a falsely high rate of AKI at higher stage of CKD).  
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c. Transient serum creatinine increases not representing renal disease 

We may also misclassify CKD status or incorrectly identify biochemical AKI in two specific clinical 

scenarios that may result in a raised serum creatinine that does not represent renal disease 

(trimethoprim prescription or ACEI/ARB initiation). We will therefore repeat the main analysis in the 

following two sensitivity analyses: 

i. Excluding the first recorded serum creatinine result after starting an ACEI/ARB from the algorithm 

used to identify biochemical AKI – Since ACEI/ARB initiation results in an acute increase in serum 

creatinine (39).  

ii. Excluding any serum creatinine results in the two weeks following trimethoprim prescription from 

AKI/CKD definitions – Since trimethoprim also temporarily increases serum creatinine (40). 

13. Missing data 
Patients on antihypertensive drugs are likely to have other cardiovascular risk factors considered 

when their medications are prescribed; consequently, we anticipate the proportion of completeness 

to be high in this population. We will therefore undertake a complete case analysis unless missing 

data is greater than 30% when we will undertake further sensitivity analyses (in addition to those 

discussed in Section 12.8 above). For example, if necessary, we will repeat the main analysis 

restricting it to more recent calendar periods when BMI, alcohol and smoking data is more complete 

(41), in order to reduce any selection biases due to data being missing. 

14. Limitations of study design, data sources and 

analytic methods 
The main limitation in this project is one common to all studies using electronic medical records. It is 

the problem of accurately defining measures for outcomes, exposures and covariates. Coding may be 

a reflection of individual GPs’ diagnostic beliefs and the patterns and context of their coding 

behaviour (42,43). Variation in coding practices will impact on the reliability of the definitions we use 

to identify outcomes, exposures and covariates in our study. However, research (44) suggests that 

most diagnoses within GPRD (CPRD) are recorded accurately, and, further research suggests that 

there have been improvements in data quality in the domains assessed by the Quality and Outcomes 

Framework (QOF) (45,46). We hope that any misclassification due to variability in coding practices will 

be mitigated by careful development of code lists and, where possible, use of previously validated 

code lists. In relation to our primary outcome measure, previous research has (17) has shown a high 

agreement between ICD-10 coding for AKI and a clinical AKI diagnosis.   

The first guidelines for the diagnosis of AKI date from 2004, we might therefore expect changes in AKI 

recording as awareness of the diagnosis increases. Any observed increases in AKI incidence over time 

might therefore be attributed to changes in diagnostic awareness rather than real changes in AKI 

incidence. This must be acknowledged when interpreting our results. However, we will use 

biochemical data in addition to coding data where this temporal change should not contribute to an 

apparent increase in incidence. 

In order to establish a more robust measure for CKD status with the ability to classify CKD into stages 

we have chosen to limit the study population to only those with serum creatinine measures available. 

Further, in those with no serum creatinine result available in the 12 months prior to cohort entry, we 

will only include follow-up time after the first serum creatinine result available following cohort entry. 

This will limit the number of patients eligible for inclusion, reduce follow-up time, and also result in 

select group of controls (since it is unlikely that routine serum creatinine measures will be available in 

healthy controls). However, it is assumed that most patients will have their renal function tested prior 
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to initiation of antihypertensive therapy limiting the reduction of follow-up time for cases. In addition, 

we plan to repeat the main analysis, without the requirement for those included to have a serum 

creatinine result recorded, using an alternative CKD definition that uses both biochemical test results 

and morbidity coding (see Section 12.8.b.i). 

The ability of both our biochemical AKI definition and our CKD algorithm to reliably classify renal 

disease is likely to limited by the frequency of serum creatinine measures. However, we plan a 

number of sensitivity analyses (Section 12.8.4) to account for differences in the frequency and timing 

of serum creatinine measures between patients. In relation to the biochemical AKI definition 

specifically, since we do not have access to hospital test results, we have modified the ACB AKI e-alert 

algorithm (18) to account for differences in primary care biochemical data (compared to hospital lab 

data) and included AKI morbidity coding as part of the outcome definition. 

Missing ethnicity data may limit the findings of the study. Ethnicity has been shown to be related to 

CKD risk (47) and should therefore should be considered as a covariate. However, research has shown 

that a high proportion of ethnicity data in incomplete (20), therefore rather than reducing sample size 

by excluding those with incomplete ethnicity data from the main analysis we will only rely on ethnicity 

as a covariate in a sensitivity analysis to check the validity of our findings (see Section 12.8.3). In 

addition, calculation of eGFR requires a variable for Afro-Caribbean ethnicity. Since census data shows 

the proportion of people of Afro-Caribbean ethnicity in England and Wales to be just over 3% (23) we 

plan to calculate eGFR without regard to ethnicity for the main analysis and check the validity of our 

findings in the sensitivity analysis presented in Section 12.8.3. 

Undertaking the study in HES linked practices only will reduce the size of the study cohort. However, a 

feasibility count has shown that, while using linked practices reduces the number of patients in the 

cohort by 41%, there are still over 795,000 individuals with a new prescription for an antihypertensive 

during the study period. By using an analysis that limits follow-up time to time exposed to a single 

class of antihypertensive only may reduce follow-up time further and may limit the generalizability of 

the findings (individuals on single therapy are likely to have less morbidity than those on multiple 

antihypertensives). However, we hope to mitigate this by repeating the main analysis using an 

alternative definition for exposure that allows for multiple antihypertensive usage and maximises 

follow-up time (Section 12.2.2). 

We aim to reduce confounding by assessing and adjusting for a covariates informed by development 

of a DAG. We hope to reduce confounding by indication by using prescriptions for other classes of 

antihypertensive agents as control groups. However, slight differences in the indications for different 

classes of antihypertensives may result in some degree of confounding by indication. It is hoped that 

this will be limited by controlling for a number of chronic comorbidities that are indications for these 

drugs. 

There is some concern regarding the number of comparisons being made in some of our secondary 

analyses (particularly our analysis of combination prescriptions in ACEI/ARB users – Section 12.3). Our 

study will focus on the primary objective (to examine the association between ACEI/ARBs and AKI) 

and this will be given prominence in the write-up. We will interpret with caution the results of 

secondary analyses where high numbers of comparisons are made. 
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15. Dissemination 

15.1 Patient or user group involvement 
We plan to share our findings with patient/user groups via Kidney Research UK. We aim to develop 

some materials to communicate the balance of risks and benefits regarding the use of specific 

medications for patients with CKD. 

15.2 Disseminating and communicating study results 
The study findings will be submitted for publication in peer-reviewed scientific journals, and will be 

presented both at appropriate conferences and at other meetings; the latter will include scientific 

meetings externally, for example, The European Renal Association and European Dialysis and 

Transplant Association Congress, The American Society of Nephrology Kidney Week and internally 

within the London School of Hygiene and Tropical Medicine. 
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Glossary of acronyms 
ACEI Angiotensin converting enzyme inhibitor 

AKI Acute kidney injury 

AKIN Acute Kidney Injury Network: the group to produce the AKIN AKI criteria (38) 

ARB Angiotensin receptor blocker 

BB Beta-blocker 

BNF British national formulary 

CCB Calcium channel blocker 

CKD Chronic kidney disease 

CPRD  Clinical Practice Research Datalink 

DAG Directed acyclic graph 

DM Diabetes mellitus 

eGFR Estimated glomerular filtration rate 

ESRD End stage renal disease 

HES Hospital episode statistics 

IMD Index of multiple deprivation 

KDIGO Kidney disease improving global outcomes 

NSAID Non-steroidal anti-inflammatory drug 

RIFLE     The AKI criteria produced by Acute Dialysis Quality Initiative (36): Risk, Injury, 

Failure, Loss and End stage renal disease. 

SCr Serum creatinine 
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Appendix 1 – AKI definitions 
 

Table A1.1 The staging of acute kidney injury in adults1 – comparing RIFLE, AKIN and KDIGO (adapted from NICE 

2013 acute kidney injury clinical guidelines)(15). 

Stage RIFLE(36) 2 

serum creatinine criteria 

AKIN(38) 

serum creatinine criteria 

KDIGO(19) 

serum creatinine criteria 

Urine output 

RIFLE Risk or  

AKIN/KDIGO 1 

eGFR decrease by ≥ 25%  Rise of ≥26μmol/L 

within 48 hours 

Rise of ≥26μmol/L 

within 48 hours 

< 0.5 ml/kg/h for 

more than 6h 

 OR  

50–99% SCr rise from 

baseline* 

(1.50–1.99 x baseline) 

OR 

50–99% SCr rise from 

baseline* 

(1.50–1.99 x baseline) 

OR 

50–99% SCr rise from 

baseline* 

(1.50–1.99 x baseline) 

RIFLE Injury or  

AKIN/KDIGO 2 

eGFR decrease by ≥ 50%  

OR 
  < 0.5 ml/kg/h for 

more than 12h 

100–199% SCr rise from 

baseline* 

(2.00–2.99 x baseline) 

100–199% SCr rise from 

baseline* 

(2.00–2.99 x baseline) 

100–199% SCr rise from 

baseline* 

(2.00–2.99 x baseline) 

RIFLE Failure or 

AKIN/KDIGO 3 

eGFR decrease by ≥ 75% 

OR 
  < 0.3 ml/kg/h for 

24h or anuria for 

12h 

 ≥ 200% SCr rise from 

baseline* 

(≥ 3.00 x baseline) 

≥ 200% SCr rise from 

baseline* 

(≥ 3.00 x baseline) 

≥ 200% SCr rise from 

baseline* 

(≥ 3.00 x baseline) 

 OR 

SCr rise to ≥354μmol/L 

with acute rise of 44μmol/L 

OR 

SCr rise to ≥354μmol/L 

with acute rise of 44μmol/L 

OR 

SCr rise to ≥354μmol/L 

with acute rise of: 

≥ 26μmol/L within 48hrs or 

≥ 50% rise within 7 days 

  any requirement for renal 

replacement therapy 

any requirement for renal 

replacement therapy 

1. The initial diagnosis or detection of AKI is based on a patient meeting any of the criteria for stage 1. Staging is carried out retrospectively 

when the episode is complete. Patients are classified according to the highest possible stage where the criterion is met, either by 

creatinine rise or urine output. 

2. RIFLE: for simplicity the Loss and End stage categories of RIFLE are not included here (these can be regarded as clinical outcomes rather 

than AKI stages). 

SCr - Serum creatinine. 

*Increase from baseline serum creatinine is either known (based on a prior blood test) or presumed (based on the patient history) to have 

occurred within 7 days. 

  

201



  

32 ISAC v1.3-August 2017 

Appendix 2 – Code lists 
 

Table A2.1 Search terms to identify morbidity codes which may represent AKI. 

Condition Symptoms Tests Procedures 

*kidney* 

*renal* 

*tubular* 

*nep* to pick up nephritis +- 

nephropathy etc. 

*glomerulo* 

*uria* to pick up oliguria, 

anuria, etc. 

*urine* to pick up reduced 

urine output 

 

*creatinine* 

*hyperkalaemia* 

*electrolyte* 

 

*dialysis* 

*haemofiltration* 

 

* represents wildcard operator. 

Table A2.2 Search strings to identify codes from CPRD code browsers/code data files. 

Variable 

 

Search string to identify relevant medcode/prodcode 

AKI *kidney*;*renal*;*tubular*;*nep*;*glomerulo*;*uria*;*urine*;*creatinine*;*hyperkalaemia*; 

*electrolye*;*dialysis*;*haemofiltration* 

ACEI *captopril*;*cilazapril*;*enalapril*;*fosinopril*;*imidapril*;*lisinopril*; 

*moexipril*;*perindopril*;*quinapril*;*ramipril*;*trandolapril*; 

*capoten*;*noyada*;cozidocapt*;*capozide*;*vascace*;*innovace*;*innozide*;*tanatril*;*zestril*

;*carace*; 

*zestoretic*;*perdix*;*coversyl*;*accupro*;*accuretic*;*tritace*;*triapin* 

ARB *azilsartan*;*candesartan*;*eprosartan*;*irbesartan*;*losartan*;*olmesartan*;*telmisartan*;*val

sartan*; 

*edarbi*;*amias*;teveten*;*aprovel*;*coaprovel*;*cozaar*;*olmetec*; 

*sevikar*;*micardis*;*diovan*;*exforge* 

Beta-

blockers 

*propranolol*;*acebutolol*;*atenolol*;*bisoprolol*;*carvedilol*;*celiprolol*; 

*co-tenidone*;*esmolol*;*labetalol*;*metoprolol*;*nadolol*;*nebivolol*;*oxprenolol*; 

*pindolol*;*sotalol*;*timolol*; 

*bedranol*;*beta prograne*;*sectral*;*tenormin*;*cardicor*;*carvedilol*;*celectol*;*tenoret*; 

*tenoretic*;*brevibloc*;*trandate*;*betaloc*;*lopresor*;*corgard*;*nebilet*; 

*slow-trasicor*;*visken*;*beta-cardone*;*sotacor* 

 

with diuretic: *kalten*;*viskaldix*;*prestim* 

with CCB: *beta-adalat*;*tenif* 

Calcium 

channel 

blockers 

*amlodipine*;*diltiazem*;*felodipine*;*lacidipine*;*lercanidipine*;*nicardipine*;*nifedipine*; 

*nimodipine*;*verapamil*;*istin*;*exforge*;*diltiazem*;*tildiem*;*adizem*;*angitil*;*dilcardia*; 

*dilzem*;*slozem*;*viazem*;*zemtard*;*plendil*;*triapin*;*motens*;*zanidip*;*cardene*;*adala

t*; 

*adipine*;*coracten*;*fortipine*;*nifedipress*;*tensipine*;*valni*;*tenif*;*nimotop*;*cordilox*; 

*securon*;*univer*;*verapress*;*vertab* 

Thiazide 

diuretics 

*bendroflumethiazide*;*chlortalidone*;*cyclopenthiazide*;*indapamide*;*metolazone*; 

*xipamide*; 

*aprinox*;*neo-naclex*;*hygroton*;*navidrex*;*natrilix*;*ethibide*;*tensaid*;*diurexan* 

Loop 

diuretics 

*bumetanide*;*furosemide*;*torasemide*;*frusemide*; 

*lasix*;*torem* 

K+ sparing 

diuretics 

*amiloride*;*triamterene*;*eplerenone*;*spironolactone*; 

*inspra*;*aldactone* 

with other diuretics: *co-amilofruse*;*frumil*;*co-amilozide*;*moduret*;*moduretic*;*frusene* 

Other 

diuretics 

*acetazolamide*;*mannitol* 

NSAIDs *aceclofenac*;*acemetacin*;*celecoxib*;*dexibuprofen*;*dexketoprofen*;*diclofenac*; 

*etodolac*;*etoricoxib*;*fenoprofen*;*flurbiprofen*;*ibuprofen*;*indometacin*; 

*ketoprofen*;*mefenamic*;*meloxicam*;*nabumetone*;*naproxen*;*piroxicam*;*sulindac*; 

*tenoxicam*; *tiaprofenic*;*aspirin*; *phenylbutazone*;*ketorolac*;*parecoxib*;*tolfenamic* 
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Table A2.3 Read codes for AKI. 

Read code Read term Definite* 

K04..00 Acute renal failure 

K04..11 ARF - Acute renal failure 

K04..12 Acute kidney injury 

K040.00 Acute renal tubular necrosis 

K040.11 ATN - Acute tubular necrosis 

K04y.00 Other acute renal failure 

K04z.00 Acute renal failure NOS 

K0E..00 Acute-on-chronic renal failure 

Kyu2000 [X]Other acute renal failure 

1AC1.00 Oliguria x 

8H2M.00 Admit renal medicine emergency x 

K043.00 Acute drug-induced renal failure x 

K043000 Acute renal failure due to ACE inhibitor x 

K043400 Acute renal failure induced by non-steroid anti-inflamm drug x 

K044.00 Acute renal failure due to urinary obstruction x 

K045.00 Acute renal failure due to non-traumatic rhabdomyolysis x 

K04B.00 Acute renal failure due to traumatic rhabdomyolysis x 

K0C1.00 Nephropathy induced by other drugs meds and biologl substncs x 

K0C2.00 Nephropathy induced by unspec drug medicament or biol subs x 

R085000 [D]Oliguria x 

R085z00 [D]Oliguria and anuria NOS x 

SK08.00 Acute renal failure due to rhabdomyolysis x 

SP15400 Renal failure as a complication of care x 

SP15411 Kidney failure as a complication of care x 

SP15412 Post operative renal failure x 

*Codes that possibly represent AKI (i.e. not definite AKI codes) will be used in a sensitivity analysis to test the validity of the AKI definition – 

the main analysis will be repeated using both possible and definition AKI codes as an outcome definition. 

Table A2.4 ICD-10 codes for AKI 

ICD-10 code ICD-10 term Definite 

N17* Acute renal failure 

N17.0 Acute renal failure with tubular necrosis 

N17.8 Other acute renal failure 

N17.9 Acute renal failure, unspecified 

N14  Drug- and heavy-metal-induced tubulo-interstitial and tubular conditions   x 

N14.1  Nephropathy induced by other drugs, medicaments and biological substances   x 

N14.2  Nephropathy induced by unspecified drug, medicament or biological substance   x 

N17.1 Acute renal failure with acute cortical necrosis x 

N17.2 Acute renal failure with medullary necrosis x 

N19 Unspecified kidney failure x 

N99.0 Postprocedural renal failure x 

R34  Anuria and oliguria   x 

R94.4  Abnormal results of kidney function studies   x 

*Due to variability in coding practices between hospitals and trusts, it is difficult to place reliance on numbers after the decimal place in ICD-

10 codes: suggestion is that all N17 codes are included regardless of subcategories. 
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Appendix 3 – Skeleton tables 
 

Table A3.1 Characteristics of study population on ACEI/ARBs, BBs, CCBs, thiazide diuretics, and an age, sex and GP 

practiced matched control group of patients not prescribed any of these drugs. Data are number (%). 

 ACEI/ARB 

(n=x) 
Beta-blockers 

(n=u) 

Calcium channel 

blockers 

(n=y) 

Thiazides 

(n=z) 
Control 

(n=w) 

Female (%) n (%)     

Age (at baseline)      

18–44      

45–54      

55–59      

60–64      

65–69      

70–74      

75–84      

85+      

Comorbidity (at baseline)      

CKD stage      

   eGFR >=60 (stage 1/2)      

   eGFR 45–59 (stage 3a)      

   eGFR 30–44 (stage 3b)      

   eGFR 15–29 (stage 4)      

   eGFR <15 (stage 5)      

Diabetes mellitus      

Ischaemic heart disease      

Cardiac failure      

Hypertension      

Cardiac arrhythmia      

Proteinuria      

Index of multiple 

deprivation (quintiles) 

     

0–20      

21–40      

41–60      

61–80      

81–100      

Ethnicity      

White      

South Asian      

Black      

Other      

Missing      

BMI      

Underweight      

Normal      

Overweight/obese      

Missing      
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Table A3.1 continued. 

 ACEI/ARB 

(n=x) 
Beta–blockers 

(n=u) 

Calcium channel 

blockers 

(n=y) 

Thiazides 

(n=z) 
Control 

(n=w) 

Smoking      

Non-smoker/ex-smoker      

Current smoker      

Missing      

Alcohol use      

Non-problem drinker      

Problem drinker      

Missing      

 

 

Table A3.2 AKI incidence rates and rate ratios for HES linked CPRD population with a new prescription for 

ACEI/ARBs, BBs, CCBs, thiazide diuretics (between April 1997 and October 2011), and a age, sex and GP practice 

matched control group not prescribed any of these drugs. 

Exposure Person 

years 

AKI cases Crude AKI 

incidence rate 

(95% CI) 

Age and sex 

adjusted IRR 

(95% CI)* 

Fully adjusted IRR 

(95% CI)** 

Primary analysis – exposure to a single class of antihypertensive only 

ACEI/ARB      

BB      

CCB      

Thiazides      

Control    1 1 

Sensitivity analysis – binary indicators for exposure to each class of antihypertensive 

ACEI/ARB      

BB      

CCB      

Thiazides      

Control    1 1 

IRR: Incidence rate ratio. 

*Adjusted for: age and sex using Poisson regression. 

**Adjusted for: age, sex, and covariates informed by DAG.   
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Table A3.3 Poisson regression model comparing AKI incidence rate ratios (95% CIs) in each of the exposure groups 

prescribed ACEI/ARBs, BBS, CCBs or thiazide diuretics with the control group as the reference category – 

unadjusted and adjusted incidence rate ratios. 

 Incidence rate ratio (95% CI) 

 Crude Age & sex adjusted Fully adjusted* 

Exposure    

ACEI/ARB    

BB    

CCB    

Thiazides    

Control reference reference reference 

Sex    

Female    

Male reference reference reference 

Age    

18–44 reference reference reference 

45–54    

55–59    

60–64    

65–69    

70–74    

75–84    

85+    

Comorbidity    

CKD    

   eGFR >=60 (stage 1/2) reference reference reference 

   eGFR 45–59 (stage 3a)    

   eGFR 30–44 (stage 3b)    

   eGFR 15–29 (stage 4)    

   eGFR <15 (stage 5)    

Diabetes mellitus    

Ischaemic heart disease    

Cardiac failure    

Hypertension    

Arrhythmia    

Proteinuria    

*Adjusted for: age, sex, and covariates informed by DAG.   
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Table A3.4 Crude and adjusted AKI incidence rates (95% CIs) for subgroups of ACEI/ARB users taking additional 

medications compared to those on an ACEI/ARB alone. 

Exposure Person years AKI cases Crude AKI 

incidence rate 

(95% CI) 

Age and sex 

adjusted IRR 

(95% CI) 

Fully adjusted 

IRR 

(95% CI)* 

ACEI/ARB alone    reference reference 

ACEI/ARB + thiazide diuretic      

ACEI/ARB + loop diuretic      

ACEI/ARB + loop + thiazide      

ACEI/ARB + loop + potassium-sparing 

diuretic 

     

ACEI/ARB + loop diuretic + potassium-

sparing diuretic + thiazide 

     

ACEI/ARB + NSAID (+/- any BB, CCB or 

diuretic) 

     

IRR: Incidence rate ratio. 

*Adjusted for: age, sex and covariates informed by DAG. 

 

 

Table A3.5 AKI incidence rate for CPRD adult population on ACEI compared to ARBs. 

Exposure Person years AKI cases Crude AKI 

incidence rate 

(95% CI) 

Age and sex 

adjusted IRR 

(95% CI) 

Fully adjusted 

IRR 

(95% CI)* 

ACEI alone    reference reference 

ARB alone      

IRR: incidence rate ratio. 

*Adjusted for: age, sex and covariates informed by DAG. 
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Table 3.6 Mortality following AKI episodes. 

 Exposure 

 AKI on ACEI/ARB AKI on BB AKI on CCB AKI on thiazides AKI control 

Person years      

Deaths      

Crude mortality rate (95% CI)      

Any time following AKI      

0–3 months      

4–6 months      

7–12 months      

Mortality rate ratio (95% CI)      

Any time following AKI      

- crude     reference 

- age and sex adjusted     reference 

- fully adjusted*     reference 

0–3 months      

- crude     reference 

- age and sex adjusted     reference 

- fully adjusted*     reference 

4–6 months      

- crude     reference 

- age and sex adjusted     reference 

- fully adjusted*     reference 

7–12 months      

- crude     reference 

- age and sex adjusted     reference 

- fully adjusted*     reference 

*Adjusted for: age, sex and covariates informed by DAG. 
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Amendment 

A. Background 
A recent meta-analysis demonstrated an association between socioeconomic deprivation and 

risk of chronic kidney disease (CKD).1 The review estimated that the odds of low renal 

function was 1.41 times greater in those with low socioeconomic status (SES) compared to 

high SES. CKD is also a main risk factor for acute kidney injury (AKI). Therefore, in our original 

protocol we requested SES as a confounding variable for our main analyses (the association 

of ACEI/ARB use with AKI).  

As expected, a preliminary analysis for the study described in the main protocol revealed an 

association between SES and AKI. Risk of AKI increased with increasing level of deprivation. 

For example, after adjusting for age, sex, calendar period, antihypertensive drug exposure 

(ACEI/ARB, BB, CCB, thiazide diuretics), time-updated chronic comorbidities (DM, IHD, cardiac 

failure, arrhythmia, hypertension), baseline CKD stage, and lifestyle covariates (smoking, BMI, 

alcohol intake), those in the most deprived IMD quintile were 1.59 (95% CI 1.41, 1.66) times 

more likely to have AKI than those in the least deprived quintile; While those in the second 

quintile were 1.07 (95% CI 0.96, 1.19) times more likely to have AKI than those in the least 

deprived (first) quintile. 

Therefore, as a secondary analysis using the cohort identified in the main protocol, we aim to 

investigate the association between SES and AKI in a cohort of antihypertensive users. 

B. Objectives 
The overall aim is to investigate the association between SES and risk of acute kidney injury 

(AKI) in new antihypertensive users. Specifically we aim to: 

1. Describe rate of AKI by level of deprivation defined by quintiles of Index of Multiple 

Deprivation (IMD).  

2. Assess whether there is a dose-response relationship between level of deprivation and 

risk of AKI. 

3. Explore any variation in AKI rates in different levels of deprivation over time, and by age, 

sex, and geographical region (London versus the rest of England – postcode derived IMD 

may have a different meaning for people living in London compared to elsewhere). 

4. Investigate mediators of the association between socioeconomic status AKI, for their 

presence and magnitude, and whether they vary with ethnicity. 

C. Study type 
This study will test the null hypothesis that, among patients taking antihypertensives, there is 

no association between SES and rate of AKI. 

D. Study design and study population 
This will be a population-based cohort study. We will use the same cohort as that described 

in the main protocol; that is, new users of antihypertensive medications aged 18 and over. 

However, to avoid selection bias, we will include those without serum creatinine results 

recorded in the 12 months prior to cohort entry. Those with baseline serum creatinine test 

results may represent a select group of patients (renal function is more likely to be tested in 
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those who are acutely unwell, or routinely monitored as part of incentivised programs; 

diabetics for example). 

E. Sample size – power calculation 
In the study documented in the main protocol, we identified a cohort of 570,445 eligible new 

users of antihypertensive drugs (including those without baseline serum creatinine results). 

During follow-up, 14,907 people developed AKI. Twenty-four percent of the cohort 

(n=135,536) were in the lowest quintile of Index of Multiple Deprivation (IMD). Taking those 

in the lowest quintile of IMD as the exposed group, we have a power of 80% to detect an 

effect size of 1.02 or more (Calculated using G*Power, version 3.1.9.2).  

F. Selection of comparison group(s) or controls 
Comparison groups will be defined within the cohort according to exposure status (see 

Section G below). 

G. Exposures, outcomes and covariates 

G1. Exposures 

Our primary exposure will be socioeconomic status level defined using quintiles of IMD 

scores for 2004. We will use the 2004 IMD data because it is as close to the midpoint of the 

study period as possible. 

G2. Outcomes 

The outcome will be AKI as defined in the main protocol. 

G3. Covariates 

Based on a priori knowledge, we will consider the following pre-specified variables as 

potential confounders: age, sex, calendar period, region (London versus rest of England – 

postcode derived IMD may have a different meaning for people living in London compared to 

elsewhere), and ethnicity. We will include calendar period (1997–2000, 2001–2004, 2005–

2008, 2009–2011, and 2012–2014) as a covariate to adjust for the many changes in clinical, 

diagnostic and administrative practices over the study period that may influence the 

measurement of baseline renal function and registration of outcomes. Research suggests2 

that a large proportion of ethnicity data is missing. We will therefore only rely on ethnicity as 

a covariate in secondary analyses. Ethnicity will be classified according to both Read and ICD-

10 coded data to improve data completeness.2 

We believe that the following variables are on the causal pathway between SES and AKI and 

we will therefore not adjust for them the main analysis: lifestyle factors (smoking, alcohol 

intake, and body mass index), chronic comorbidities (diabetes mellitus, hypertension, cardiac 

failure, ischaemic heart disease, and arrhythmia), and antihypertensive medications. 

However, we will consider the magnitude of their contribution in mediation analyses. 

F. Analysis 
We will present descriptive characteristics for individuals in the cohort by level of deprivation 

(quintile of IMD). We will calculate absolute rates of AKI for each level of deprivation; initially 

overall and then stratified by age, sex, calendar period, and region (London versus rest of 

England). We will calculate incidence rate ratios comparing AKI rates for each level of 

deprivation with the least deprived quintile using Poisson regression, adjusting for potential 
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confounders and using robust standard errors to account for clustering by general practice. 

We will initially adjust for age and sex only, and then fit an adjusted model informed by a 

priori knowledge including the following covariates: age, sex, calendar period, and region. 

Finally, we will fit a model additionally adjusting for ethnicity.  

Subsequently, using a conceptual framework, we will attempt to indirectly assess the 

contribution of each health-related behaviour (lifestyle covariates) and time-updated 

comorbidity to the association between SES and AKI using a multiple regression model and 

investigate whether they vary by ethnicity. 

As sensitivity analyses we will stratify by region (London versus rest of England – postcode 

derived IMD may have a different meaning for people living in London compared to 

elsewhere), and restrict to post 2006 data (in order to: i) limit differential misclassification of 

the outcome over time; ii) improve the reliability of baseline CKD stage – since 2006 GPs 

were reimbursed for providing a register of CKD patients); and iii) improve the reliability of 

ethnicity data – after 2006 recording of ethnicity was rewarded as part of the Quality and 

Outcomes Framework leading to improvements in the completeness of ethnicity recording in 

CPRD). 

All data management and analyses will be performed using Stata version 14 (StataCorp, 

Texas). 

References 
1 Vart P, Gansevoort RT, Joosten MM, Bültmann U, Reijneveld SA. Socioeconomic disparities in chronic 

kidney disease: A systematic review and meta-analysis. Am J Prev Med 2015; 48: 580–92. 

2 Mathur R, Bhaskaran K, Chaturvedi N, et al. Completeness and usability of ethnicity data in UK-based 

primary care and hospital databases. J Public Health (Oxf) 2013; 36: 684–92. 
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Amendment II 

A. Background 
The original ISAC protocol proposed to “undertake a complete case analysis unless missing 

data is greater than 30% when we will undertake further sensitivity analyses”. In the data 

described, there are two key confounders each with missing data greater than 50%: baseline 

chronic kidney disease stage (a measure of kidney function) and ethnicity.  

The published analysis took a complete case approach to missing data in variables other than 

kidney function and ethnicity (due to the large amount of missing data in these two 

confounders, sensitivity analyses were undertaken). The absence of a kidney function 

measurement was treated as a separate “unmeasured” group rather than as missing values. 

So with respect to this major confounder, the missing data was handled using a missing 

indicator approach. With respect to missing ethnicity values, a sensitivity analysis was 

undertaken restricting the main analysis to a subset of patients with recorded ethnicity. 

We have undertaken mathematical work (not involving any data) investigating the 

circumstances under which the missing indicator approach and the missingness pattern 

approach are valid. The missing indicator approach involves creating a “missing” variable for 

each confounder with some missing data, indicating whether that variable was missing or not 

for each patient, and incorporating that indicator into the analysis model. The missingness 

pattern approach adds interactions between the missingness indicator variable(s) and the 

other confounders in the analysis model. These approaches are simple, transparent, and less 

computationally intensive than other popular approaches. Our theoretical work suggests that 

the missingness pattern approach may be a reasonable analysis option in many settings using 

data taken from electronic health records, and that the even simpler missingness indicator 

approach is likely to be approximately unbiased in many of these scenarios.  

In order to demonstrate the usefulness of our proposed approach in practice, we would now 

like to: (i) apply these methods (missingness indicator and missingness pattern approach) to a 

CPRD dataset which has been used to address a substantive clinical question, (ii) compare 

them to other popular approaches (complete case and multiple imputation) which require 

very different underlying assumptions, and (iii) use our theoretical framework to explain 

differences between the resulting estimated treatment effects.   

Our theoretical framework supports the use of the simple missingness indicator and 

missingness pattern approaches in a wide range of studies using data from electronic health 

records. By demonstrating the results of applying this theoretical framework to the clinical 

setting described above, we hope to illustrate the value of our methodological work for 

researchers using CPRD data. 

B. Objectives 
The overall aim is to compare the results of the original analysis and sensitivity analyses 

(conventional approaches to handle missing data), with the results obtained using our new 

approach to missing data. This will illustrate the value of our methodological work in the 

context of CPRD data. Specifically, we aim to determine: 

1. The estimated effect of prescription of renin-angiotensin system blockers on the risk of 

acute kidney injury using a missing indicator approach (as published analysis).  
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2. The estimated effect using the missingness pattern approach (our variant of the 

missingness indicator approach).  

3. The estimated effect obtained using multiple imputation.  

4. The estimated effect obtained using full complete case analysis (i.e. additionally excluding 

people with unmeasured kidney function; which results in a much smaller sample than 

the original analysis).  

C. Study type 
As per original protocol. 

D. Study design 
As per original protocol. 

E. Study population 
As per original protocol.  

F. Exposure, outcome and covariates 

F1. Exposure 

Binary baseline ACEI/ARB exposure status derived using time-updating exposure status as 

described in original protocol. 

F2. Outcome 

We will use a dichotomised version of the AKI outcome as defined in the original protocol (eg. 

within 5 years from cohort entry or not). 

F3. Covariates 

We will use covariates deemed of importance in the published analysis, as per original 

protocol. 

G. Analysis 
All analyses will be undertaken in STATA version 14 (StataCorp, Texas). 

We will undertake propensity score analysis to estimate the effect of ACEI/ARB prescription 

on the risk of AKI in new users of antihypertensive drugs using different missing data 

methods:  

1. Missing indicator approach 

2. Missingness pattern approach 

3. Multiple imputation 

4. Complete case analysis 

References 
1 Mansfield KE, Nitsch D, Smeeth L, et al. Prescription of renin–angiotensin system blockers and risk of 

acute kidney injury: a population-based cohort study. BMJ Open 2016; 6: e012690.     

doi: 10.1136/bmjopen-2016-012690 
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Appendix B

Resources for the planned systematic

review

B.1 Protocol of the systematic review

Sources: Searches will be performed in Embase, Medline, PubMed and Scopus to

select papers published between 1 January 1983 (following the publication of the

�rst paper proposing propensity scores to account for confounding) and 13 May

2016.

Search algorithm: To restrict our review to studies using propensity scores in

which missing data was a particular concern, the search strategy will be constructed

for all four databases in order to search for articles referring to propensity score and

missing data in either the title or the abstract. Eligible papers will have `propensity

score' as a phrase in the title, abstract or keyword �elds. Variations of this phrase

will be also considered in the search strategy, for example phrases with the words

`propensity' and `match' in close proximity. In addition to mentioning propensity

scores, the search strategies will require some variations of the phrase `missing data',

such as `incomplete data' or phrases using Rubin's taxonomy of missing data. The

search strategies for each database will be constructed with the aim of being as
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similar as possible, with some variation resulting from di�ering syntax used in some

databases. For example, the search strategy for Pubmed will be:

(("propensity-score"[MeSH Terms]) OR propensity analys*[Title/

Abstract] OR propensity match*[Title/Abstract] OR propensity adjust*

[Title/Abstract] OR propensity stratif*[Title/Abstract] OR propensity

covariate*[Title/Abstract] OR propensity weight*[Title/Abstract]) AND

(missing data[Title/Abstract] OR incomplete data[Title/Abstract] OR

missing value*[Title/Abstract] OR mcar data[Title/Abstract] OR mar

data[Title/Abstract] OR mnar data[Title/Abstract] OR missing

random[Title/Abstract])

Screening: After search results are obtained, references will be reviewed to

identify and exclude duplicates, �rst using the "Find Duplicates" function in End-

note X7 to identify a preliminary list of duplicate records, then conducting a manual

review to identify remaining duplicates. The criteria for deciding which record to

keep and which to discard as a confounder, will be decided on the basis of the

amount of information available in each record, favouring records with more infor-

mation. I will review the resulting references by considering the title, abstract and

keywords of the articles, retrieving the full text when further information is required.

Exclusion criteria: I will exclude articles if: they are unrelated to propensity

score analysis of observational data; missing data methods focused on methods for

handling missing data in the treatment or outcome, rather than missing confounder

data; they are conference abstracts, commentary, editorials or letters; if they have

no data example, real or simulated; or if they are published in languages other than

English. Articles with a methodological focus will not included in the general re-

view, but will be considered separately.

Data extraction: For each article included in the literature review, I will extract

information on:
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• propensity score method (matching, strati�cation, adjustment, weighting, or

not reported)

• the number of confounders with missing data (number, or not reported)

• the overall proportion of missing data (percentage, or not reported)

• the missing data method(s) used (complete records analysis, multiple imputa-

tion, MPA, MIA, other, or not reported)

• whether the justi�cation for the choice of missing data method(s) was discussed

• whether the plausibility of missingness assumptions were discussed

• whether further details were given regarding implementation of the missing

data method (s)

B.1.1 Literature review: results of the screening for

eligibility

From 13th May 2016: Searching the four databases listed above yielded 559 records

(see Table B.1). Using Endnotes's �Find duplicates� function identi�ed 192 dupli-

cate records to be excluded. Manual review of the author �eld identi�ed 40 more

duplicate records, and manual review by title identi�ed 4 further duplicates. After

excluding these duplicate records, 323 records remained.

Table B.1: A table showing the number of records retrieved from each database searched
on 13th May 2016.

Database Number
of
records
retreived

Duplicate
records
excluded

Number
of undu-
plicated
records

Embase 178 107 71
Medline 83 79 4
PubMed 47 41 6
Scopus 251 9 242
TOTAL 559 236 323

228



Bibliography

[1] Regulation (EU) No 1235/2010 of the European Parliament and of the Council,

2010 OJ L 348.

[2] J. M. Franklin, R. J. Glynn, D. Martin, and S. Schneeweiss, �Evaluating the

use of nonrandomized real-world data analyses for regulatory decision making,�

Clinical Pharmacology & Therapeutics, vol. 105, no. 4, pp. 867�877, 2019.

[3] B. L. Strom, S. E. Kimmel, and S. Hennessy, Textbook of pharmacoepidemiology.

Chichester, West Sussex [England]: Wiley Blackwell, second edition ed., 2013.

[4] J. Pearl, Causality: Models, Reasoning and Inference. New York: Cambridge

University Press, 2nd ed., 2009.

[5] J. W. Jackson, I. Schmid, and E. A. Stuart, �Propensity scores in pharma-

coepidemiology: Beyond the horizon,� Current epidemiology reports, vol. 4,

p. 271�280, December 2017.

[6] I. Abraham, �A de�nition of comparative e�ectiveness research [Peer commen-

tary on �More research is needed�but what type?� by F. Godlee],� BMJ,

vol. 341, 2010.

[7] E. Herrett, A. M. Gallagher, K. Bhaskaran, H. Forbes, R. Mathur, T. van Staa,

and L. Smeeth, �Data resource pro�le: Clinical Practice Research Datalink

(CPRD),� Int J Epidemiol, vol. 44, no. 3, p. 827, 2015.

[8] A. Herbert, L. Wijlaars, A. Zylbersztejn, D. Cromwell, and P. Hardelid, �Data

resource pro�le: Hospital Episode Statistics Admitted Patient Care (HES

APC),� International Journal of Epidemiology, vol. 46, pp. 1093�1093i, 03 2017.

229



[9] P. Vezyridis and S. Timmons, �Evolution of primary care databases in UK: a

scientometric analysis of research output,� BMJ Open, vol. 6, no. 10, 2016.

[10] S. Guo and M. W. Fraser, Propensity score analysis : statistical methods and

applications. Los Angeles: Sage, 2010.

[11] K. E. Mans�eld, D. Nitsch, L. Smeeth, K. Bhaskaran, and L. A. Tomlinson,

�Prescription of renin�angiotensin system blockers and risk of acute kidney

injury: a population-based cohort study,� BMJ Open, vol. 6, no. 12, 2016.

[12] CPRD, �Clinical Practice Research Datalink - CPRD,� Accessed 24th Septem-

ber 2019.

[13] R. Mathur, K. Bhaskaran, N. Chaturvedi, D. A. Leon, T. vanStaa, E. Grundy,

and L. Smeeth, �Completeness and usability of ethnicity data in uk-based pri-

mary care and hospital databases,� Journal of Public Health, vol. 36, no. 4,

pp. 684�692, 2014.

[14] K. Bhaskaran, H. J. Forbes, I. Douglas, D. A. Leon, and L. Smeeth, �Repre-

sentativeness and optimal use of body mass index (BMI) in the UK Clinical

Practice Research Datalink (CPRD),� BMJ Open, vol. 3, no. 9, 2013.

[15] J. Chisholm, �The read clinical classi�cation.,� BMJ: British Medical Journal,

vol. 300, no. 6732, p. 1092, 1990.

[16] NHS Digital, �International statistical classi�cation of diseases and health re-

lated problems (ICD-10) 5th Edition,� Accessed 24th September 2019.

[17] NHS Digital, �OPCS classi�cation of interventions and procedures,� Accessed

24th September 2019.

[18] NHS Digital, �Home - NHS Digital,� Accessed 24th September 2019.

[19] S. Padmanabhan, L. Carty, E. Cameron, R. E. Ghosh, R. Williams, and

H. Strongman, �Approach to record linkage of primary care data from Clin-

ical Practice Research Datalink to other health-related patient data: overview

230



and implications,� European Journal of Epidemiology, vol. 34, pp. 91�99, Jan

2019.

[20] D. B. Rubin, �Inference and missing data,� Biometrika, vol. 63, no. 3, pp. 581�

592, 1976.

[21] Z. Luo, J. C. Gardiner, and C. J. Bradley, �Applying propensity score methods

in medical research: Pitfalls and prospects,� Medical Care Research and Review,

vol. 67, no. 5, pp. 528�554, 2010. 20442340[pmid] Med Care Res Rev.

[22] P. W. Holland, �Statistics and causal inference,� J Am Stat Assoc, vol. 81,

no. 396, pp. 945�960, 1986.

[23] E. Williamson, R. Morley, A. Lucas, and J. Carpenter, �Propensity scores: From

naïve enthusiasm to intuitive understanding,� Stat Methods Med Res, vol. 21,

no. 3, pp. 273�293, 2012.

[24] W. M. Holmes, Using propensity scores in quasi-experimental designs. Los

Angeles: Sage, 2014.

[25] E. J. Williamson and A. Forbes, �Introduction to propensity scores,� Respirol-

ogy, vol. 19, no. 5, pp. 625�635, 2014.

[26] G. W. Imbens, �Nonparametric estimation of average treatment e�ects under

exogeneity: A review,� Rev Econ Stat, vol. 86, no. 1, pp. 4�29, 2004.

[27] S. Greenland, J. M. Robins, and J. Pearl, �Confounding and collapsibility in

causal inference,� Statist. Sci., vol. 14, pp. 29�46, 02 1999.

[28] P. C. Austin, �An introduction to propensity score methods for reducing the

e�ects of confounding in observational studies,� Multivariate Behav Res, vol. 46,

no. 3, pp. 399�424, 2011.

[29] D. F. McCa�rey, G. Ridgeway, and A. R. Morral, �Propensity score estimation

with boosted regression for evaluating causal e�ects in observational studies,�

Psychological Methods, vol. 9, no. 4, pp. 403�425, 2004. Article.

231



[30] D. B. Rubin et al., �For objective causal inference, design trumps analysis,� The

Annals of Applied Statistics, vol. 2, no. 3, pp. 808�840, 2008.

[31] M. Hernán and J. Robins, Causal Inference. Boca Raton: Chapman &

Hall/CRC, 2020.

[32] E. Stuart, �The why, when, and how of propensity score methods for estimating

causal e�ects,� 2011.

[33] P. R. Rosenbaum and D. B. Rubin, �The central role of the propensity score in

observational studies for causal e�ects,� Biometrika, vol. 70, no. 1, pp. 41�55,

1983.

[34] M. Hö�er, �Causal inference based on counterfactuals,� BMC Med Res

Methodol, vol. 5, pp. 28�28, 2005.

[35] M. E. Halloran and C. J. Struchiner, �Causal inference in infectious diseases,�

Epidemiology, vol. 6, no. 2, pp. 142�151, 1995. Article.

[36] M. A. Hernán and J. M. Robins, �Estimating causal e�ects from epidemiological

data,� J Epidemiol Community Health, vol. 60, no. 7, pp. 578�586, 2006.

[37] R. J. Little and D. B. Rubin, �Causal e�ects in clinical and epidemiological

studies via potential outcomes: Concepts and analytical approaches,� Annu

Rev Public Health, vol. 21, pp. 121�145, 2000.

[38] J. P. Vandenbroucke, �The history of confounding,� Sozial- und Präventivmedi-

zin, vol. 47, pp. 216�224, Jul 2002.

[39] T. J. VanderWeele and I. Shpitser, �On the de�nition of a confounder,� Ann.

Statist., vol. 41, pp. 196�220, 02 2013.

[40] H. Cham and S. G. West, �Propensity score analysis with missing data,� Psy-

chological Methods, 2016. Export Date: 13 May 2016 Article in Press.

[41] J. K. Lunceford and M. Davidian, �Strati�cation and weighting via the propen-

sity score in estimation of causal treatment e�ects: a comparative study,� Statis-

tics in Medicine, vol. 23, no. 19, pp. 2937�2960, 2004.

232



[42] P. C. Austin, �Goodness-of-�t diagnostics for the propensity score model when

estimating treatment e�ects using covariate adjustment with the propensity

score,� Pharmacoepidemiology and Drug Safety, vol. 17, no. 12, pp. 1202�1217,

2008.

[43] S. Vansteelandt and R. Daniel, �On regression adjustment for the propensity

score,� Stat Med, vol. 33, no. 23, pp. 4053�4072, 2014.

[44] J. Carpenter and M. Kenward, Multiple Imputation and Its Application. Statis-

tics in Practice, Chichester: Wiley, 2013.

[45] R. Little and D. Rubin, Statistical Analysis with Missing Data. Wiley Series in

Probability and Statistics, Wiley, 2002.

[46] R. B. D'Agostino and D. B. Rubin, �Estimating and using propensity scores

with partially missing data,� J Am Stat Assoc, vol. 95, no. 451, pp. 749�759,

2000.

[47] C. A. Welch, I. Petersen, J. W. Bartlett, I. R. White, L. Marston, R. W.

Morris, I. Nazareth, K. Walters, and J. Carpenter, �Evaluation of two-fold fully

conditional speci�cation multiple imputation for longitudinal electronic health

record data,� Statistics in Medicine, vol. 33, no. 21, pp. 3725�3737, 2014.

[48] S. Seaman, J. Galati, D. Jackson, and J. Carlin, �What is meant by �missing

at random�?,� Statist. Sci., vol. 28, pp. 257�268, 05 2013.

[49] J. A. C. Sterne, I. R. White, J. B. Carlin, M. Spratt, P. Royston, M. G. Ken-

ward, A. M. Wood, and J. R. Carpenter, �Multiple imputation for missing data

in epidemiological and clinical research: potential and pitfalls,� BMJ, vol. 338,

2009. doi:10.1136/bmj.b2393.

[50] J. W. Bartlett, O. Harel, and J. R. Carpenter, �Asymptotically unbiased esti-

mation of exposure odds ratios in complete records logistic regression,� Am J

Epidemiol, vol. 182, no. 8, pp. 730�736, 2015.

233



[51] J. Hill, �Reducing bias in treatment e�ect estimation in observational studies

su�ering from missing data.� ISERP Working Papers, 2004.

[52] M. J. Knol, K. J. Janssen, A. R. T. Donders, A. C. Egberts, E. R. Heerdink,

D. E. Grobbee, K. G. Moons, and M. I. Geerlings, �Unpredictable bias when

using the missing indicator method or complete case analysis for missing con-

founder values: an empirical example,� J Clin Epidemiol, vol. 63, no. 7, pp. 728

� 736, 2010.

[53] O. Harel and X.-H. Zhou, �Multiple imputation: review of theory, implementa-

tion and software,� Stat Med, vol. 26, no. 16, pp. 3057�3077, 2007.

[54] J. M. Robins, A. Rotnitzky, and L. P. Zhao, �Analysis of semiparametric re-

gression models for repeated outcomes in the presence of missing data,� J Am

Stat Assoc, vol. 90, no. 429, pp. 106�121, 1995.

[55] E. A. Stuart, �Matching methods for causal inference: A review and a look

forward,� Statist. Sci., vol. 25, pp. 1�21, 02 2010.

[56] W. Vach and M. Blettner, �Biased estimation of the odds ratio in case-control

studies due to the use of ad hoc methods of correcting for missing values for

confounding variables,� Am J Epidemiol, vol. 134, pp. 895�907, 10 1991.

[57] S. Greenland and W. D. Finkle, �A critical look at methods for handling missing

covariates in epidemiologic regression analyses,� American Journal of Epidemi-

ology, vol. 142, no. 12, pp. 1255�1264, 1995.

[58] R. H. Groenwold, I. R. White, A. R. T. Donders, J. R. Carpenter, D. G.

Altman, and K. G. Moons, �Missing covariate data in clinical research: when

and when not to use the missing-indicator method for analysis,� Can Med Assoc

J, vol. 184, no. 11, pp. 1265�1269, 2012.

[59] M. P. Jones, �Indicator and strati�cation methods for missing explanatory vari-

ables in multiple linear regression,� J Am Stat Assoc, vol. 91, no. 433, pp. 222�

230, 1996.

234



[60] C. Leyrat, S. R. Seaman, I. R. White, I. Douglas, L. Smeeth, J. Kim, M. Resche-

Rigon, J. R. Carpenter, and E. J. Williamson, �Propensity score analysis with

partially observed covariates: How should multiple imputation be used?,� Stat

Methods Med Res, 2017. doi: 10.1177/0962280217713032.

[61] E. Granger, J. C. Sergeant, and M. Lunt, �Avoiding pitfalls when combining

multiple imputation and propensity scores,� Statistics in Medicine, vol. 38,

2019. doi: 10.1002/sim.8355.

[62] P. R. Rosenbaum and D. B. Rubin, �Reducing bias in observational studies using

subclassi�cation on the propensity score,� J Am Stat Assoc, vol. 79, no. 387,

pp. 516�524, 1984.

[63] A. Mattei, �Estimating and using propensity score in presence of missing back-

ground data: An application to assess the impact of childbearing on wellbeing,�

Stat Methods Appl, vol. 18, no. 2, pp. 257�273, 2009.

[64] R. D'Agostino, W. Lang, M. Walkup, T. Morgan, and A. Karter, �Examining

the impact of missing data on propensity score estimation in determining the ef-

fectiveness of self-monitoring of blood glucose (SMBG),� Health Serv Outcomes

Res Method, vol. 2, no. 3, pp. 291�315, 2001.

[65] E. J. Williamson, Z. Aitken, J. Lawrie, S. C. Dharmage, J. A. Burgess, and A. B.

Forbes, �Introduction to causal diagrams for confounder selection,� Respirology,

vol. 19, no. 3, pp. 303�311, 2014.

[66] J. Pearl, �Causal diagrams for empirical research,� Biometrika, vol. 82, no. 4,

p. 669, 1995.

[67] T. Richardson and J. Robins, �Technical report 128. Single World Intervention

Graphs (SWIGs): A uni�cation of the counterfactual and graphical approaches

to causality.� http://www.csss.washington.edu/Papers/wp128.pdf, 2013.

[68] A. Balke and J. Pearl, �Probabilistic evaluation of counterfactual queries,� in

Proceedings of the Twelfth AAAI National Conference on Arti�cial Intelligence,

pp. 230�237, 1994.

235



[69] I. Shpitser and J. Pearl, �What counterfactuals can be tested,� in Proceedings of

the Twenty-Third Conference on Uncertainty in Arti�cial Intelligence, pp. 352�

359, 2007.

[70] Y. Qu and I. Lipkovich, �Propensity score estimation with missing values using a

multiple imputation missingness pattern (MIMP) approach,� Stat Med, vol. 28,

no. 9, pp. 1402�1414, 2009.

[71] L. Malla, R. Perera-Salazar, E. McFadden, M. Ogero, K. Stepniewska, and

M. English, �Handling missing data in propensity score estimation in compar-

ative e�ectiveness evaluations: a systematic review,� J Comp E� Res, vol. 7,

no. 3, pp. 271�279, 2018.

[72] R. Mitra and J. P. Reiter, �A comparison of two methods of estimating propen-

sity scores after multiple imputation,� Statistical methods in medical research,

vol. 25, no. 1, pp. 188�204, 2016.

[73] E. von Elm, D. G. Altman, M. Egger, S. J. Pocock, P. C. Gøtzsche, J. P. Van-

denbroucke, and for the STROBE Initiative, �The Strengthening the Reporting

of Observational Studies in Epidemiology (STROBE) Statement: Guidelines

for Reporting Observational Studies,� Annals of Internal Medicine, vol. 147,

pp. 573�577, 10 2007.

[74] M. A. Hernán, M. McAdams, N. McGrath, E. Lanoy, and D. Costagliola, �Ob-

servation plans in longitudinal studies with time-varying treatments,� Statistical

Methods in Medical Research, vol. 18, no. 1, pp. 27�52, 2009.

[75] N. Kreif, O. Sofrygin, J. Schmittdiel, A. Adams, R. Grant, Z. Zhu, M. van der

Laan, and R. Neugebauer, �Evaluation of adaptive treatment strategies in an

observational study where time-varying covariates are not monitored systemat-

ically,� 2018. arXiv preprint arXiv:1806.11153 [stat.ME].

[76] D. Koller and N. Friedman, Probabilistic graphical models: principles and tech-

niques. Cambridge, Massachusetts: MIT press, 2009.

236



[77] J. Textor, J. Hardt, and S. Knüppel, �DAGitty: A graphical tool for analyzing

causal diagrams,� Epidemiology, vol. 22, p. 745, 2011.

[78] �Hypertension in adults: diagnosis and management - clinical guideline

[cg127].� National Institute for Health and Care Excellence (NICE) website.

https://www.nice.org.uk/guidance/cg127/, accessed 9th August 2019.

[79] H. I. McDonald, C. Shaw, S. L. Thomas, K. E. Mans�eld, L. A. Tomlinson,

and D. Nitsch, �Methodological challenges when carrying out research on CKD

and AKI using routine electronic health records,� Kidney Int, 2016.

[80] S. Seaman and I. White, �Inverse probability weighting with missing predic-

tors of treatment assignment or missingness,� Commun Stat Theory Methods,

vol. 43, no. 16, pp. 3499�3515, 2014.

[81] S. Greenland, �Quantifying biases in causal models: Classical confounding vs

collider-strati�cation bias,� Epidemiology, vol. 14, no. 3, pp. 300�306, 2003.

[82] R Core Team, R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2017.

[83] L. A. Stefanski and D. D. Boos, �The calculus of m-estimation,� The American

Statistician, vol. 56, no. 1, pp. 29�38, 2002.

[84] T. D. Pigott, �A review of methods for missing data,� Educ Res Eval, vol. 7,

no. 4, pp. 353�383, 2001.

[85] C. D. Nguyen, J. B. Carlin, and K. J. Lee, �Model checking in multiple impu-

tation: an overview and case study,� Emerg Themes Epidemiol, vol. 14, p. 8,

Aug 2017.

[86] H. A. Blake, C. Leyrat, K. E. Mans�eld, S. Seaman, L. A. Tomlinson, J. Car-

penter, and E. J. Williamson, �Propensity scores using missingness pattern

information: a practical guide,� 2019. Under review in Statistics in Medicine.

arXiv preprint arXiv:1901.03981 [stat.ME].

237



[87] A. S. Levey, L. A. Stevens, C. H. Schmid, Y. L. Zhang, A. F. Castro 3rd,

H. I. Feldman, J. W. Kusek, P. Eggers, F. Van Lente, T. Greene, J. Coresh,

and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), �A new

equation to estimate glomerular �ltration rate,� Ann Intern Med, vol. 150, no. 9,

pp. 604�612, 2009.

[88] E. J. Williamson, A. Forbes, and I. R. White, �Variance reduction in randomised

trials by inverse probability weighting using the propensity score,� Stat Med,

vol. 33, no. 5, pp. 721�737, 2014.

238


