1' frontiers
in Chemistry

REVIEW
published: 18 February 2020
doi: 10.3389/fchem.2020.00093

OPEN ACCESS

Edited by:
Teodorico Castro Ramalho,
Universidade Federal de Lavras, Brazil

Reviewed by:
Hyun Lee,
University of lllinois at Chicago,
United States
Salvatore Guccione,
University of Catania, Italy
Daiana Mancini,
Universidade Federal de Lavras, Brazil

*Correspondence:
Nicholas Furnham
nick.furnham@Ishtm.ac.uk
Carolina Horta Andrade
carolina@ufg.br
Floriano Paes Silva Jr.
oriano@ioc. ocruz.br

TThese authors have contributed
equally to this work

Specialty section:
This article was submitted to
Medicinal and Pharmaceutical
Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 25 October 2019
Accepted: 30 January 2020
Published: 18 February 2020

Citation:

de Souza Neto LR, Moreira-Filho JT,
Neves BJ, Maidana RLBR, Guimaraes
ACR, Furnham N, Andrade CH and
Silva FP Jr (2020) In silico Strategies

to Support Fragment-to-Lead
Optimization in Drug Discovery.

Front. Chem. 8:93.

doi: 10.3389/fchem.2020.00093

Check for
updates

In silico Strategies to Support
Fragment-to-Lead Optimization in
Drug Discovery

Lauro Ribeiro de Souza Neto *f, José Ted lo Moreira-Filho 2, Bruno Junior Neves 23",
Rocio Lucia Beatriz Riveros Maidana #, Ana Carolina Ramos Guimaréaes *,
Nicholas Furnham %, Carolina Horta Andrade % and Floriano Paes Silva Jr. *

! LaBECFar — Laboratério de Bioquimica Experimental e Compational de Farmacos, Instituto Oswaldo Cruz, Fundagao
Oswaldo Cruz, Rio de Janeiro, Brazif LabMol — Laboratory for Molecular Modeling and Drug Desigriaculdade de
Farmécia, Universidade Federal de Goias, Goiania, BraZil,aboratory of Cheminformatics, Centro Universitario de Aapolis
— UniEVANGELICA, Anapolis, BrazilLaboratério de Gendmica Funcional e Bioinformatica, Instito Oswaldo Cruz,
Fundagdo Oswaldo Cruz, Rio de Janeiro, Brazif,Department of Infection Biology, London School of Hygiene ahTropical
Medicine, London, United Kingdom

Fragment-based drug (or lead) discovery (FBDD or FBLD) hasdeloped in the last
two decades to become a successful key technology in the phanaceutical industry for
early stage drug discovery and development. The FBDD straggy consists of screening
low molecular weight compounds against macromolecular tagets (usually proteins)
of clinical relevance. These small molecular fragments cabind at one or more sites
on the target and act as starting points for the development blead compounds. In
developing the fragments attractive features that can trasiate into compounds with
favorable physical, pharmacokinetics and toxicity (ADMEFabsorption, distribution,
metabolism, excretion, and toxicity) properties can be imgrated. Structure-enabled
fragment screening campaigns use a combination of screenmby a range of biophysical
techniques, such as differential scanning uorimetry, sdace plasmon resonance,
and thermophoresis, followed by structural characterizaon of fragment binding using
NMR or X-ray crystallography. Structural characterizatiois also used in subsequent
analysis for growing fragments of selected screening hitsThe latest iteration of
the FBDD work ow employs a high-throughput methodology of nassively parallel
screening by X-ray crystallography of individually soakeffragments. In this review
we will outline the FBDD strategies and explore a variety oh silico approaches to
support the follow-up fragment-to-lead optimization of eher: growing, linking, and
merging. These fragment expansion strategies include hotpot analysis, druggability
prediction, SAR (structure-activity relationships) by d¢alog methods, application of
machine learning/deep learning models for virtual screemj and severalde novo design
methods for proposing synthesizable new compounds. Finaj] we will highlight recent
case studies in fragment-based drug discovery wherén silicomethods have successfully
contributed to the development of lead compounds.

Keywords: fragment-based, drug discovery, lead discovery,
optimization, hot spot analysis

in silico methods, machine learning, de novo design,
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INTRODUCTION Promiscuous fragments may bind parts of the protein which are
Fragment-B d Drua Di r not involved in the protein function and therefore are unliie
agment-base ug Discovery to yield a successful inhibitor. Additionally, as the fragrse

Since the inception of fragment-based drug discovery (FBDD) o' their very nature weak binders and X-ray crystallogyaph
over 20 years ago it has become an established technolody uﬁ%ing a sensitive technique, observed binding events nbght

n bOth_ industry and academl_a-(ubbard, 2_015 FBDD o €San  yransient and not easily reproducible. It is therefore impmt to
attractive approach for e ectively exploring the chemical space . 1 hits with orthogonal structural (e.g., NMR), biophysit

for binding a target protein. In conventional high-throughpu techniques (SPR, MST, etc.)initro biological assays.

screening (HTS) campaigns, large libraries of often complex

compounds are screened for activity against a tardédll( Fragment Libraries

et al., 201 In contrast, FBDD use relatively small IibrariesA crucial step in FBDD process is in the development and
of low complexity compounds represgnting fragments. of largegyoice of the fragment library used in the screening campaign.
more .drug-llke compounds. By reducmg the ‘FOmP'ex'W of theSeveraI fragment libraries have been developed that exploit
chemicals screened more of the potential binding sites afgeta certain properties or chemistries. An example of a fragment
protein can be explored through the binding promiscuity of theIibrary is the Diamond-SGC Poised Library (DSPO et al.,
fragments {homas et al., 20/ Where fragments do bind, albeit 2016. This has been developed for use with high-throughput
with lower potency than the drug-like molecules of HTS, theyXChem platform and consists of around 760 fragments that
0 er good starting points to design larger higher a nity binde have been selected to contain at least one functional group
using knowledge of the protein structure as a template to geeer . i< open to rapid, cheap follow-up synthesis using robust

compounds with greater ligand e ciency (improved per atom well-characterized reactions (poised) and maximizing cloaini

binding energy to the target). This bottom-up approach meangy; sty Other fragment libraries optimize other propest&ich
that a greater range of chemical space can be explored, Ieadlgg solubility, 3D traits or based on subsets of existing dargs
quickly to higher a nity lead compounds with greater specitgi

Patel L 2004 related molecules such as natural produ@si{u enhauer et al.,
(Patel etal., . ): ) ) . . 2009. The fragment libraries generally share similar properties
FBDD projects require relatively lower investments in

h 4 devel h X d of “Rule of 3” compliant i.e., less than 300 Da molecular
research an evelopment _(R&D) _t an HT®dis an . weight, 3 or less hydrogen bond donors, 3 or less hydrogen
Roughleyl,v'201)7 An example is the_ discovery of yemurafenlbbond acceptors and CLogP no more than 3. In addition,
(ZelporaF ), the .rst fragment-gerived drug, which moved they are soluble in dimethyl sulfoxide (DMSO) or phosphate
relatively very quickly (6 years) between the phases of R& u ered saline. Fragment libraries generally tend to<#,000
pipeline before reaching Food and Drug Association (FDA)r

> . ragments, which is signi cantly less than the many millgon
approval Erlanson et al., 20)6Thus, FBDD provides attractive of compounds screened in high-throughput and high content
opportunities for the drug discovery eld.

screening campaignsevizani et al., 2017

OUtpUt of Structure-Enabled Fragment Fragment Expansion Strategies

Screening Campaigns Once the fragment screen has been completed and hits
FBDD work ows are multi-step starting with target selectio characterized, the next step is the challenge of expandiegeth
and protein isolation and followed by an initial screen of thefragments to generate larger molecular entities with higtdimg
fragment library using biophysical techniques such as rarcle a nity and demonstrating inhibition activity. There are seral
magnetic resonance (NMR), surface plasmon resonance (SPRiategies that can be followedgmoree and Hubbard, 20).7
thermal-shift assay, microscale thermophoresis (MST), magfigure 1). One option is to use expert medicinal chemistry
spectrometry, and others. For fragments which show evidenadvice to design and synthesize larger molecules based on
of binding, a further step of hit validation and charactetdion  the protein and the fragment pose. Another approach is to
occurs principally using X-ray crystallography€rdonk and de ne vectors along the fragment molecule based on thecsteri
Hartshorn, 200} Using hit characterization, an iterative cycle hindrance of the protein target in which the fragment can be
of fragment development can occur employing a ranganof expanded. The fragmentis then searched for within a largarjb
silico and experimental techniques. Advances in this protocobf synthesizable (or purchasable) molecules which are blgge
try to compress the process by combining the initial fragmenbetween one and three heavy atoms along the identi ed vector
screen with the hit characterization. This has been implete@én These expanded fragments can be synthesized and soaked/co-
in a high throughput FBDD platform called XChem located crystallized and re-screened by X-ray crystallography. Ecgdn

at the United Kingdom's national synchrotron the Diamond fragments that show improved binding can be further extended
Light Source Cox et al., 2016 It uses the ability to produce or structurally modi ed using the same process, with thisleyc
and handle a large number of crystals of the target proteircontinuing until a larger high-a nity binding entity is reahed.

to screen the fragment library by soaking each individual An alternative to this “small steps” approach is to try to get a
crystal with a fragment and then using X-ray crystallographytarger higher a nity binding molecule in a single step. Thiarc

to determine which fragments have bound and where. Thouglhe achieved by having an silicomethod using the fragment in
this high throughput technique often provides multiple hitsye  a substructure search of a large purchasable compound library
needs to be taken in interpreting the signi cance of the hit.(e.g., Zinc15), and to virtually screen the results usinggbse
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FIGURE 1 | Multiple routes to expanding fragment to more drug-like ma@cule with improved binding af nity.(A) Traditional medicinal chemistry route:
knowledge-based design and synthesis(B) “Small steps” route: successive cycles of extension of therhgment hit by 1-3 heavy atoms through vectors de ned by
high-resolution structural characterization methods, sch as X-ray crystallography(C) “Large leaps” or “SAR by catalog” route: from fragment to r@ of 5 compliant
molecules using virtual screening of commercial compoundbraries. (D) Fragment merging route: bridging two overlapping fragmemstbound at neighbor sites.
Regardless of the route, expanded fragments should be cheakd for biological activity usingn vitro, ex vivo,or in vivoassays.

of the fragment to dock the molecules and rank them basegoorly to protein binding or, in some cases, can even disrupt the
on docking parametersi(evizani et al., 2007 The top-ranking  protein-ligand interaction. On the other hand, fragmentdeof
virtual screening hits can then be co-crystallized and wasll form high-quality interactions able to more easily bind toet
evaluatedin vitro and in vivo. A nal expansion option is to protein target, translating to a greater number of higure 2
link or merge fragments that hit near to each other or withiret  depicts schematically this concept.
same sitelDavis and Roughley, 20.7The combined fragments Another advantage of FBDD is the potential for faster hit
can then be further expanded using the approaches describ@dogression through the campaign, since the fragments are
previously. It is vital that as expansion progressedtro andin  usually structurally simple and many follow-up compounds can
vivoassays are conducted to asses activity of the new moleculdse easily purchased from commercial databases (e.g., MolPort,
In the next section, we will discuss in depth the mainZINC15, and ChemBridge) instead of being synthesized. Aot
optimization approaches used for a fragment structurallimportant characteristic often used to defend this approach is
characterized in a binding site of its target. Further seddiwill ~ the high hit rates. In this sense, high hit rates means that the
describe existing software tools or modeling techniqueg.,(e. FBDD yields relatively more hits in comparison to the traditéd
machine learning) employed for taking a fragment hit thorbug methods such as HTSCputard et al., 2014; Mondal et al.,
the path for becoming a lead compound—a process known &015. This is due the inversely related nature between molecula
fragment-to-lead (F2L)—for drug development and concludeeomplexity and the binding probabilityHann et al., 2001
by presenting case studies whenesilico strategies have been Other advantages includes the more e cient chemical space
successfully utilized to support the F2L optimization process. sampling Coutard et al., 2014; Mondal et al., 2)1&nd the
relative low cost to implement the FBDD, as it can be seen
from comparing the usual size of the HTS library (thousands of
FRAGMENT OPTIMIZATION APPROACHES compounds) with fragment libraries (hundreds of compounds)
(Macarron et al., 2001
After the hit identi cation in a FBDD campaign, the fragment  Assessment of the interactions between the fragment and
moves forward to the optimization phase. This optimizationits binding site should be carefully performed for further
takes into account the structural characteristics of tlgatid identi cation of synthetically accessible vectors on tigahd.
as well as its binding site. The principle in using fragmentsAlthough x-ray crystallography data is a valuable technigue
relies on the premise that these molecular entities are morisagment optimization, is important to keep in mind that the
e cient ligands compared to drug-like molecules, and their observed structural data only represents a snapshot of therayst
structures can be further optimized more e ciently. In fact, underinvestigation. Its been known that the ligand a nigan be
this constitutes one of its many advantages. As small estiti a ected by the structural protein dynamics without changitngt
molecular fragments can be iteratively optimized to showttelbe ligand-binding interfacel(latias et al., 2000; Seo et al., 20This
pharmacokinetic pro le in the later development stages. Drug-complex dynamic environmentHenzler-Wildman and Kern,
like molecules may contain functional groups that contribut 2007; Boehr et al., 20p8an a ect small and weak ligands as
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A Traditional drug design approaches
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FIGURE 2 | Discovery and structural-optimization of drug-like molegles (A) and fragments (B) using protein target information. The surface representse binding
site. The red and gray colors represent the level of complenmearity of ligand with the active site. Pockets with low comfementarity with ligand are colored in red;
pockets with high complementarity with ligand are highligted in gray.

fragments. With this in mind, many methods can additionally = For the sake of brevity these metrics will not be further
be used to guide the fragment identi cation/optimizatiorteér  discussed and we recommend the references above for a deeper
providing complementary data (e.g., thermodynamic data) ounderstanding. The structural complexity of the protein make
acting as orthogonal approachesi(lli, 20139. These methods larger, more complex and less e cient molecules less likely to
are mostly biophysicalShuker et al., 1996; Lo et al., 2004bind. This is one of the main reasons why fragment libraries
Navratilova and Hopkins, 2010; Pedro and Quinn, 20&aAd often yield more hits when compared to a drug-like molecule
their use has some advantages such as, direct measurementommonly used in HTSHann et al., 200)L The use of fragments

the binding, detection of small ligands with low a nity, and is a bottom-up approach, starting from less complex molecules
not needing any prior information about the protein function with greater binding e ciency and ending up with a larger

(Ciulli, 20131). Despite the supremacy of biophysical methodspptimized molecule. As already highlighted, there are thneén

biochemical approaches are increasingly being uSedi¢mann
et al., 2009; Boettcher et al., 2010; Mondal et al., @@IFBLD.

strategies that can be employed to optimize a ligand found doun
in its target surface: linking, merging and growinBidure 3).

In addition to orthogonal and complementary methods, theThe next sections are dedicated to discussing in more deth ea

ligand e ciency (LE) or one of its related metrics should &gy
be used to keep track of the quality of follow-up ligands a=yth
progress through the iterative optimization cycle. Some efth
parameters are described below.

Ligand E ciency ( LE) (Hopkins et al., 2004; Nissink, 2009;
Davis and Roughley, 201D 1 G/HAC A;

Binding Eciency Index BEI) (Abad-Zapatero, 20)3D
pKi/MW B;

PercentageE ciency Index (PEI) (Abad-Zapatero, 2017;
Davis and Roughley, 201D % inhibition/MW B
Surface-bindinge ciency Index (SEI) (Abad-Zapatero, 2093
D pICso/(TPSA ©);

Lipophilic Eciency (LipE/LLE) (Shultz, 2018 D plCso—
cLogP;

SzedndependentigandE ciency ( SILE) (Nissink, 2009 D
1G/HAC?! %

LigandE ciency-DependentLipophlicity (LELP) (Davis and
Roughley, 200D logP/LE.

AHeavy Atom Count;BMolecular Weight;“Topological Polar
Surface Area;

of them.

Growing

Fragment growing igure 3A) is the strategy most commonly
employed during FBLD campaigns. As the name suggests, it
consists of modifying the fragments to increase their size.
Conceptually this approach is identical to the traditional
compound modi cation methods employed in the optimization

of hits from HTS campaigns. This modi cation occurs through
the addition of groups.

A recent paper published bystrecker et al. (2019js
an example of how the growing strategy can be used to
improve bind anity. Using computer-aided drug design
(CADD) and synthesis, the authors explored small structural
modi cations in a previously (PDB: 3UOX) identi ed compound
(1) (K; D 800mM).

These studies showed that a modication of a fragment
phenyl moiety to a naphthyl allowed two new simultaneug
interactions, a parallel-displaced with Trp300 and an edg&ate
with His233. This minor modi cation led to a compoun@j with
a 3-fold improved binding a nity (K; D 271mM) (Figure 4).
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A Fragment growing
B Fragment linking
c Fragment merging
N
)

Complementarity
Low Medium High

FIGURE 3 | Fragment optimization approaches: fragment growindgA), fragment linking(B), and fragment merging(C). The surface of the binding site is depicted in
gray. The red and gray colors represent the level of complenmgarity of ligand with the active site. Pockets with low comfgmentarity with ligand are colored in red;
pockets with high complementarity with ligand are highligted in gray.

or spacer. Although conceptually simple, linking fragments is
/4 perhaps the most challenging strategy to implement. Although
//\N /4\ HN\J fragmgnt linking is the most attractive approach in terms-of
HN\) rapld |mprqument qf potenc_y, thg design qf a Ilnk.er 'Wlth
suitable exibility while not disturbing the original bindig
1 modes of the fragments, makes it one of the most challenging
optimization approaches.
As previously discussed, the introduction of exible moistie
a ects these compounds properties and an optimal orientation
should always be pursued. In fact, varying the degree ofitygid
of a linker for the purpose of conformational restriction ofeth
This example highlights the use of optimal growth vectordinked product can be used as a strategy for linker optimizatio
to introduce a rigid group, which led to an increasedas it can be seen in Chung and colleagues warkufg et al.,
binding a nity. Alternatively, introduction of a moiety wih ~ 2009. This work shows how a conversion of oxime linkers into
increased number of rotatable bonds could impact negatively-monoamine and diamines interferes with the rigidity and its
due to the entropic penalty—in the anity. Although this impacton binding.
optimization approach can be computationally aided without Although often neglected, the impact on the ADMET
further structural data, small modi cations—as in the ca$¢he  properties should also be taken in consideration. In the caeeof
hypothetical exible moiety addition—can led to great chasgn linker, that usually adds rotatable bonds to the systérnifiara
binding mode. When growing fragments is the chosen approaclgt al., 2011; De Fusco et al., 2])1tlis modi cation can lead to
structural data can be decisive to avoid misinterpretation. poor PK features, like low permeability ¢ber et al., 2002

FIGURE 4 | Hit to lead progression of an initial fragmen¢1) to a compound (2)
with improved af nity.

Linking Merging

Fragment linking Figure 3B) describes the process of joining This strategyfigure 3C) can be used in cases where two distinct

two non-competitive fragments (i.e., fragments that bindwo  fragments partially occupy the same region, or when two binding
di erent sub-pockets of the binding site) with a chemical letk sites have regions in common and therefore their ligands are
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partially competitive with respect to the site. In such casesemurafenib, the results here showed that the predicted patiss
the overlapping parts form a nucleus where dissimilar part®verlap the grown portions of vemurafenib.
come together. In a recent example, a gain of 2 orders of During fragment screening, the fragment hits can bind in
magnitude in potency was achieved for an inhibitor of avin- di erent sites of the protein Giordanetto et al., 20)9 If
dependent monooxygenase (EthA) transcriptional repressdhe binding site is not well-de ned, the researchers can use
(EthR) (Nikiforov et al., 201pwhere the existence of overlapping the pocket druggability prediction to move forward in F2L
groups within fragments bound to EthR allowed the use ofwith the most druggable site, capable to accommodate ligands
merging as an optimization strategy. orally bioavailable $chmidtke and Barril, 2010; Hussein et al.,
Although not always possible, merging is a simpler strategg015. There are many available methods for predicting pocket
than linking, as there is no need to design a spacer that joindruggability and these are well-described and revieweavbkse
fragments togetherq{u et al., 2017; Miyake et al., 2018s also (Barril, 2013; Abi Hussein et al., 2017
seen in this example, like linkin@@vis and Roughley, 20}, this
approach has the drawback of relying on high-quality struatur SAR by Catalog
data to go further in the optimization process. One fast and cheap way in F2L optimization is the SAR by
Therefore, merging is an approach related to the “moleculacatalog approachHall et al., 201y, This approach relies on the
hybridization” strategy, a long-consolidated approach insearch of analogs @fi-houseor commercial databases that can
medicinal chemistry for designing new compounds withbe purchased or rapidly accessed for testidghulz et al., 20)1
improved potency through the fusion of other active This process can use the fragment hit features for similarity
compound structures. ligand-based pharmacophores, shape-based, ngerpritig€rs
and Hahn, 2010; Riniker and Landrum, 2013; Alvarsson et al.,
2019, and substructure searches to nd suitable compounds
(Hubbard and Murray, 2011; Andrade et al., 2Dp1&ome

IN SILICO STRATEGIES FOR F2L databases often used for SAR by catalog are ZIS@r(ing
OPTIMIZATION and lrwin, 2019, MolPort (https://www.molport.com), Mcule

. (https://Imcule.com/), and eMolecules (https://www.emolesule
Hot Spots Analy5|5 and Pocket com) that contains collections of commercially available
Druggability Prediction compounds. The databases Enamine (https://enaminestore.

Hot spots analysis is an important tool for structure-based F2 com), ChemDiv (http://www.chemdiv.com/) and ChemBridge
that allows the prediction of the small regions of the binding(https://www.chembridge.com) are direct suppliers.
sites containing residues mostly contributing to the bimgli SAR by catalog approach only retrieves similar compounds
free energy Cukuroglu et al., 2004 Once a fragment hit is or superstructures of the fragment hit. Thus, other Itersosiid
experimentally identi ed, the hot spots analysis can be used tbe applied to Iter compounds with more optimized properties.
map the subsites around the fragment hit using small organi@hese lters are molecular docking, ADMET, machine learning
probes, driving the optimization into higher-a nity ligands models, aqueous solubility, among others, and will be dsedis
(Hall et al., 201p later in this review.

One of the most used methods of hot spot analysis is the
FTMap web server{ozakov et al., 20)5This algorithm places Molecular Docking
16 small organic probe molecules of di erent shape, size, anllolecular docking is a computational approach used to predict
polarity on the protein surface to nd favorable positions for the position, orientation, and the binding scores of small
each probe. Then, each probe type is clustered and overlappingplecules to proteinsTorres et al., 2009 Hence, as the F2L
clusters of di erent probes, called consensus sites (C$sgsent process is commonly addressed as a combinatorial problem,
the hot spots. The consensus sites are ranked by the number mblecular docking is a method that can be used in combination
probe clusters, and the main hot spot is, generally, where thsith other approaches to enhance the F2L process, and to
fragment hit binds and secondary hot spots are used to extenidcrease the chances to convert a fragment hit into higher
the fragment in the best directiorHall et al., 2012; Ngan et al., a nity ligands. The SAR by catalog approach in combination
2012; Kozakov et al., 20115 with molecular docking, for example, can be used to select

As an example, we used the FTMap server for predictingompounds that maintain the fragment hit binding mode while
the hot spots for the oncogenic B-RAF kinase, the targethe binding energy is optimized. Moreover, the number of
of the rst marketed drug from fragment-based drug design,generated optimized fragments can exceed the number that can
vemurafenib Bollag et al., 20)2Figure 5A shows the fragment be tested experimentally. Thus, applying molecular docking,
hit experimentally bound to B-RAF kinase (PDB ID: 2UVX) large compound datasets are e ciently assessed using SAR by
(Donald et al., 2007 and the predicted hot spots around this catalog, and a small subset of most promising compounds can
fragment (shown in yellow dots) using the FTMap server. Inbe selected by binding modes and scores for experimentaigest
Figures 5B—D the iterative process of growing the fragment hit(Grove et al., 2006
led to the discovery of the drug vemurafenib (PDB ID: 30G7) To overcome the problem that SAR by catalog has the
(Bollag et al., 20)0with the hot spots shown in yellow dots. limitation to cover only the nite chemical space of commezity
Although hot spot analysis was not used in the F2L process @ivailable compoundsHp er et al., 201§, it is possible to
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A
i
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ICsy = 0.031 uM

FIGURE 5 | Example of a hot spot analysis using FTMap web server of the @ogenic B-RAF kinase, the target of the rst marketed drug fron fragment-based drug
design, vemurafenib. The surface of the binding site is degiied in gray. (A) (PDB ID: 2UVX) the fragment hit (carbon atoms in purple stickand the predicted hot
spots (yellow dots and surface)(B-D) The iterative growing process of vemurafenib (PDB ID: 30G7yerlapping the predicted hot spots (the carbon atoms of the
fragment hit portion is shown in purple sticks and carbon atms of the grown portions in yellow sticks).

generate virtual catalogs with analogs to hit fragments taa
be easily synthesized, astronomically increasing the rauinob

However, there are concerns about fragment docking in
the scientic community. The assumption is that fragments,

possible compounds. Then, a docking-based virtual screeniras low molecular weight compounds, are weak binders and
can be applied to prioritize compounds for experimentalpromiscuous in binding modes, and consequently, the fragment

evaluation Rodriguez et al., 2016; Mannel et al., 2017

docking implies in incorrect predictions of the binding modes

Another scenario in F2L is when the co-crystallization ofAlso, there is a concern that scoring functions of the
a fragment hit commonly fails and no structural information docking programs are parameterized to drug-like ligandspdpei
about the binding mode is available. In these cases, atigena inaccurate to di erentiate native and other low-energy poses
strategies for F2L process are required where the bindinggnodd (Chen and Shoichet, 2009; Wang et al., 2015; Grove et al)).2016

a fragment can be predicted using molecular docking calmriat
(Kumar et al., 2012; Chevillard et al., 2018; Erlanson e2@1.9
on high-quality three-dimensional structures of the targeapo

To overcome these concerns, there are studies demonstiraing
signi cant di erence in docking performance between fragnien
and drug-like ligands \(erdonk et al., 2011; Joseph-mccarthy

form or bound to other ligands. When neither of the latter areet al., 2018 They showed that molecular weight is not the

available, a theoretical model of the target protein can hiaiobd
by homology modeling methods.

principal parameter for docking performance, instead, for high
LE compounds the docking performance fared better for both
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fragments and drug-like ligands/érdonk et al., 2011; Kumar interest in using DL generative and predictive models for F2L
etal., 201p optimization (Olivecrona et al., 2017; Gupta et al., 2018
When available, the use of experimental structural For this task, a combination of DL architectures is used
information data can be used to support and improve dockingand in many cases, generative DL models based on recurrent
performance. These data are used in docking programs inofudimeural networks (RNNs) are trained on the simpli ed molecular
distance constraints, pharmacophore constraints, shapeebasinput line entry system (SMILES) representation of compounds
constraints, similarity or substructure overlap, interacti from large databases (DrugBank, ChEMBL, etc.) to learn the
ngerprints, hydrogen-bond constraints, and othersgrdonk  syntax of SMILES language and the chemical space distribution
etal., 2011; Erlanson et al., 2019; Jacquemard et al).2019 (Olivecrona et al., 20)7 After training, the models are able
Similarly to hot spot analysis, molecular docking can also b&o generate new strings that are new SMILES, corresponding
used to discover secondary binding pockets and guide the F2b new compounds $egler et al., 20).8Then, the transfer
processl{lannel et al., 201)7 learning (TL) can be used to ne-tuning the model and generat
compounds related to a fragment hit. As the name suggests, TL
learns and transfers the information from an old source to a
. . . new application {ang et al., 2019bThe aim of this integrative
Machine Learning (ML) and Deep Learning approach is to learn general features from a big dataset and,
(DL) Models then, retrain the model focusing on a smaller dataset such as
A large variety of F2L approaches use structure-based methoftagment hits, for F2L purposes$-igure 7) (Gupta et al., 2018;
to optimize fragments into high-a nity ligands taking into Segler et al., 20).8Gomez—Bombarelli et al. used variational
consideration the steric and electronic constraints withi autoencoder (VAE) to encode SMILES into a continuous latent-
binding pockets of the target of interestS¢hneider and space, then a separate multilayer perceptron trained to predict
Fechner, 2005 However, the optimized compounds generatedseveral properties on the latent space was applied to generate new
constantly present drawbacks of poor synthetic feasibilitynolecules with the desired properties. After this, a decodes w
and/or undesirable biological properties, including absimpt used to retrieve the molecules on the latent space into SMILES
distribution, metabolism, excretion, and toxicity (ADMET) (Gomez-Bombarelli et al., 20)L.8Handling these DL methods
properties {fang et al., 2019blIn the last years, novel ligand- in a multidimensional way, fragment hits can be optimized
based methods, including machine learning (ML) models, havautomatically taking into consideration several paramesersh
been used for F2L campaigns. ML models are statistical methods bioactivity, solubility, synthetic feasibility, and MET
that present the capacity to learn from data without the explici properties, generating new compounds with optimized values for
programming for this task, and then, make a prediction for newthese parameters$-igure 7) (Olivecrona et al., 2017; Ramsundar
compounds lak and Pichika, 2009 The increase of storage et al., 2017; Gomez-Bombarelli et al., 2018; Harel and RBkgin
capacity and the size of the datasets available, coupledémeds 2018; Li et al., 2018; Merk et al.,, 2018; Polykovskiy et al.,
in computer hardware such as graphical processing units (GPU&P18; Popova et al., 2018; Putin et al., 2018; Awale et a; 201
(Gawehnetal., 20)frovided means to move theoretical studiesVamathevan et al., 20).9
in ML to practical applications in drug discovery/gmathevan
etal., 201p De novo Design
The ML algorithms are widely used to construct quantitativeThe de novoapproach looks for new chemical entities from
structure-activity relationship (QSAR) models, able to nd scratch within a structurally de ned binding sité&¢hneider and
mathematical correlations between molecular features andlark, 2019. These entities are generated out of building blocks,
compound activity/property, and this correlation can beeither by growing from an initial fragment or by linking two
categorical (active, inactive, toxic, nontoxic, etc.) ontinuous  or more non-overlapping fragmentsDgy and Caisch, 2008;
(pICs0, PEGsp, Ki, and others) by means of classication Kumar et al., 201R Since their arisein silico methods have
or regression techniquesTiopsha, 2010; Cherkasov et al.,played animportant role in FBDDKumar et al., 2012
20194. Thus, machine learning-based QSAR models can be
constructed for biological activity, ADMET properties, salitp ~ Software for Building New Compounds Within a
and synthetic feasibility, among other endpoints, and applied@tructurally-De ned Binding Site
after fragment optimization, with aforementioned methodts, De novo design software takes advantage of a known
a cascade virtual screening for Itering compounds with thebinding mode of a fragment, described experimentally or
desired activities and propertie§igure 6) (Braga et al., 2014; computationally, to propose modi ed analogs with improved
Neves et al., 2018; Pérez-Sianes et al. )2018 binding a nities. The LUDI (Bohm, 199 program was one of
More recently, a sub eld of ML called deep learning (DL)the rst programs developed faile novadesign. It calculates the
which utilizes arti cial neural networks to learn from a lg& interaction sites, maps the molecular fragments, and comnect
amount of data have been used to resolve complex problentsem using bridges, using an empirical scoring. Considetimegy
(Mak and Pichika, 2009 DL models are not only able to learn vast chemical space, evolutionary algorithms are widely used
from a dataset and to make predictions for new data but aréSrinivas Reddy etal., 201t this context, the program GANDI
also able to generate new data instances through a conisiuct (Dey and Ca isch, 2008connects pre-docked fragments with
process$chneider, 20)8In this context, there has been a rising linker fragments using a genetic algorithm and a tabu search
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FIGURE 6 | Cascade virtual screening Itering optimized compounds wh the desired activities and properties.

The scoring function is a linear combination of force- eld and the druggability. The program ADAPTPEgg et al., 2001;
binding energy and similarity measures. BREEDe(ce et al., Srinivas Reddy et al., 201&pplies a genetic algorithm which
2009 is a computational method for merging fragments thatuses molecular interactions and docking calculations as a
is widely used. It aligns the 3D coordinates of two ligandd an tness function to reduce the search space. The initial séts o
recombines the fragments or substructures into the overlagpincompounds are iteratively built until it reaches the predethe
bonds to generate new hybrid molecules in a strategy calledrget value.

fragment shu ing. LigBuilder (Wang et al., 2000; Yuan et al.,

201) is a program that uses a genetic algorithm to build up theprediction of ADMET Properties of New Compounds

ligands using a library of organic fragments. It contempdate The ADMET properties and synthetic accessibility (SA)
the growing and linking approach. The 2.0 version includegonstitutes the secondary constraints whereas primary
the synthesis accessibility analysis through a chemieattisn  constraints are geometric and chemical constraints derived
database and retro-synthetic analysis. Autogrowr(ant et al., from the receptor or target ligand(s) and internal constraints
2009, 201Bis another growing approach algorithm that builds to the geometry and chemistry of the lead compound being
a fragment upon a “core” scaold. The fragment is dockedconstructed. Issues with these points result in the majooity

to the receptor. A genetic algorithm evaluates the dockinglinical trial failures Pong et al., 2018 Numerous software
score to select the best population which forms the subsequeahd web platforms were developed to predicted ADMET
generation. The last version considers the synthetic aimity  parameters but presented limitations due to narrow chemical
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FIGURE 7 | Representation of the integrative approach of generativeral predictive deep learning models and transfer learning fdragment-to-lead optimization.

space coverage or expensive pricesgng et al., 20)2Recent algorithms. It presents 27 endpoints and also includes eco-
works predominantly rely on ML methods, like random foresttoxicity models and an optimization module called ADMETopt
(RF), support vector machine (SVM), and tree-based methodhat optimize the query molecule by scaold hopping based
(Ferreira and Andricopulo, 20)9 The vNN Web Server for on ADMET properties. The ADMETIab platformOong et al.,
ADMET predictions Gchyman et al., 20)i5 a publicly available 2019 performs its evaluations based on a database of collected
online platform to predict ADMET properties and to build entries and assess drug-likeness evaluation, ADMET predicti
new models based on the k-nearest neighbor (k-NN), whiclsystematic evaluation and database/similarity searchingsds
rest on the premise that compounds with similar structures31 endpoints applying RF, SVM, recursive partitioning regression
have similar activities. VNN uses all nearest neighbors éha  (RP), naive Bayes (NB), and decision tree (DT).
structurally similar to de ne the model's applicability domma SwissADME tool Daina et al., 20])7uses predictive models
The similarity distance employed is Tanimoto's coe cienthd for physicochemical properties, lipophilicity and water solipi
platform allows running pre-build ADMET models, and to build It also analyses pharmacokinetics models as BBB permeability,
and run customized models. Those models assess cytotoxicigastrointestinal absorption, P-gp binding, skin permeation
mutagenicity, cardiotoxicity, drug-drug interactionsjerosomal  (logKp), and CYP450 inhibition. Additionally, the tool preden
stability, and likelihood of causing drug-induced liverjuny.  ve drug-likeness models (Lipinsky, Ghose, Veber, Egan, and
Like all machine learning methods, the lack of training deta Muegge) and medicinal chemistry alerts. It is integrated wli t
a limitation. SwissDrugDesign workspace. The QikProp (Schrodinger, LLC,
Pred-hERG Braga et al., 2015; Alves et al., 20i83a web NY, 2019) provides rapid predictions of ADME properties for
app that allows users to predict blockers and non-blockers aholecules with novel scaolds as for analogs of well-known
the hERG channels, and important drug anti-target associatedrugs and display information about octanol/water and wajes
with lethal cardiac arrhythmia Mitcheson et al., 2000 The logPs, logS, logBBB, overall CNS activity, Caco-2 and MD@GK ce
current version of the app (v. 4.2) was developed usingermeabilities, log Kd for human serum albumin binding, and
ChEMBL (Willighagen et al., 20)3rersion 23, containing 8,134 log ICso for HERG KC-channel blockage.
compounds with hERG blockage data after curation, using robus
and predictive machine learning models based on RF. This app Rrediction of Synthetic Tractability (Synthesizability)
publicly available at http://labmol.com.br/predherg/. of New Compounds
In admetSAR 2.0 Gheng et al., 2012; Yang et al., 2019aEven though large numbers of molecules are generated by
tool, the predictive models are built using RF, SVM and kNNde novodesign, many of them are synthetically infeasible
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(Dey and Ca isch, 2008 To address this problem, methods to TABLE 1 | FBDD programs with respective approaches.
calculate the synthetic accessibility (SA) are being deeel. SA

can be addressed by estimating the complexity of the molecuf&®?@™ Algorithm FBA?Eroach SA

or making a retrosynthetic approach, where the complete

synthetic tree leading to the molecules needs to be processgeiroGRow  DockingC Genetic Growing YES (Latest
(Ertl and Schu enhauer, 2009 SYLVIA (Boda et al., 20Q7is Algorithm version)
one of the programs that estimate the synthetic accesgibilit.ubi Empirical scoring Linking NO

of an organic compound. It obtains the SA score by theAUTOTandT  Transplants fragments into Merging NO
addition of ve variables as the molecular graph complexity, the lead

ring complexity, stereochemical complexity, starting miter LeadOpCR Looks for associated Growing YES
similarity and reaction center substructure, where thet rs reaction rules

three are structure-based and the other two utilize infotimm ~ AND! Genetic Algorithm Linking NO

from starting material catalogs and reaction databages. -9Builder2 Genetic Algorithm Linking and — YES
and Schu enhauer (2009developed another method that ] ) Gmw"?g

. . . . . ADAPT Genetic Algorithm Growing NO
uses historical synthetic knowledge obtained by analyzing
information from millions of already synthesized chem&ahd
also considers molecule complexity. The method is based on a
combination of fragment contributions and a complexity penalty
Podolyan et al. (2010presented two approaches to quickly the causative agent of tuberculosis, has several therapeutic
predict the synthetic accessibility of chemical compounds binterventions developed to treat the disease. However, tiou
utilizing SVMs operating on molecular descriptors. The rsttheir long-term use and misuse, the e cacy of these drugs is
approach (RSsvm) identi es compounds that can be synthesizdzbcoming reduced with strains currently circulating thatea
using a specic set of reactions and starting materials andnono-resistant, multidrug-resistant, extensively druggistant
builds the model by training the compounds identi ed as and totally drug-resistant. Despite this little drug deymitent
synthetically or otherwise accessible by retrosyntheti@yesis activity has been undertaken since the 1960's. Howevatijvrely
while the second approach (DRSVM) is constructed to generaia response to the growing drug-resistant threat many di erent
amore general assessment. More recehthxunishi et al. (2014) approaches are being deployed to developing novel therapeutics,
designed a new method of predicting SA based on commerciallpcluding FBDD. An example of such an e ort is against the meta
available compound databases and molecular descriptorsewhaslieavage product hydrolase (HsaD) that is involved in clietes
the SA is estimated from the probability of the existence otatabolism irMtb. Initial screening was conducted on a library of
substructures of the compound, the number of symmetry atomsl,258 fragments using di erential scanning uorimetry, Wwihits
the graph complexity, and the number of the chiral center ofcon rmed by ligand-observed NMR spectroscopy and inhibition

the compound. by enzymatic assay. The three con rmed fragment initialshit
S were structurally characterized by X-ray crystallographyl an
Synthesizability-Aware Methods fragment soaking. A small series of compounds based on these

Given the di culty of synthesis of most of the leads produced hits were further tested for activity both vitro andex vivowith

by de novaapproaches, some programs added methods to scofomising resultsiRyan et al., 2097

the SA. Lea@Op (Lin et al., 201pis an example of these  Another target of Mtb where FBDD has been applied
programs that takes an initial fragment, looks for assodatejs the pantothenate synthetase (Pts) where a similar sized
reaction ruIeS, Virtually genel’ate the reaction pl'OdUCtS aelect fragment |ibrary of 1,250 rule-of-three Comp]iant fragmemas

the best binding conformation. Them it generates conforsner jnyestigated. An initial screen was performed using a thermal
and select one that becomes a reactant for another rouna, Alsshift assay, followed by a secondary screen using 1-D NMR
programs mentioned above as LigBuilder and Autogrow includgpectroscopy with ultimate hit validation by isothermal ition

SA analysis on their current versions. In the medicinal Cmm Ca|0rimetry and characterization by X-ray Crysta”ograp'ﬁyree
component ofSwissADME a SA score is also included. distinct fragment binding sites were identi edS{lvestre et al.,

Di erent programs use distinct algorithms fate novadesign  2013. Follow-up expansion of one of the fragment sites using
CompOUndS in CADDTable 1summarizes some programs Citeda combination of fragment ||nk|ng and fragment growing
in this section. generated a new series of inhibitors. Though fragment figki

seemed to be an attractive approach, the limitation in the

CASE STUDIES IN THE LAST FIVE YEARS repertoire of linkers compromised the binding mode. Greater

) success came from fragment growth using expert knowledge and
Case 1: FBDD in the Deve|0pment of New the protein target as a templatel(ng et al., 200Q
Anti-mycobacterium Drugs Targets in other pathogenidlycobacteriumsp. have also
A successful application of the FBDD techniques have bedreen subject to successful FBDD campaigns. Most notably the
applied to early stage drug discovery of new therapeuticecent development of inhibitors against tRNA methyltranafer
against Mycobacterium spand in particular M. tuberculosis (TrmD) of M. abscessugMab). This multi-drug resistant
(Mtb) and M. abscessus (Mak)rhomas et al., 20)7 Mtb,  pathogen is increasingly problematic in individuals with cysti
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brosis and other chronic lung conditions. A library of 960 TABLE 2 | Inhibition and potency data from the nal hits Coutard et al., 2014).
fragments was screened biophysically using di erential soan

uorimetry in a similar fashion used for HsaD, with 53 hits DENVij;]%i':f;is&a;Ct'v'ty :lei'\\/‘i\t/ zlco 'Mzris,\j)
taken to validation and structural characterization usigay e
crystallography (no NMR based validation was undertaken)s: 4 390 0.16
Only 27 fragments could be validated all of which bound withi o1 11 2.83 0.18
the substrate binding pocket. A strategy of fragment-meggin g5 85 0.18 0.01
centered around the overlap of a 4-methoxyphenyl ring systeny; 9 9.39 0.90
with the indole ring system of two fragments that spanned-; 1 312 027

the adenine and ribose binding pockets. This was explored

successfully with a new combined compound providing a new

aminopyrazole-indole sca old with both improved a nitylKq D

110mM, LE of 0.36) and prospects for further elaboration relativéwo fragments. The urea was used as a linker to connect the

to the parent fragments. It also exhibited inhibition actyvin ~ fragments. Further modi cations yielded compoun@sand 6

vitro and ex vivowith promisingin vivo activity also againdtl.  (Figure 8).

leprag the causative agent of lepros¥/|iitehouse et al., 20).9 During the optimization process, the authors had good
These successful FBDD campaigns against a range of targéights about the important features to the molecule birgiam

in pathogenioMycobacteriunhave yielded promising leads with this target. One of these features is the presence of pherga rin

indications of e cacy inex vivoandin vivo demonstrating both ~ substituted in meta position and is crucial for favoring bing.

the power and e cacy of the approach. The ability of these leads This work yielded two inhibitors § and 6) with potency

to work across a range of pathogens is also highly encouraginground 10mM, even though no e ect was observed on a cell

However, work still needs to be done to improve these leads t@ssay. Despite this negative result, this work showed tisibibty

progress them into early clinical evaluations and into daliuse. of the FBDD approach in getting micromolar inhibitors from

structurally simple fragments.

Case 2: Inhibitors of Dengue Virus Case 3: MTHL1 Inhibitors for Anticancer

Enzymes Drug Discovery

A 2014 paper Qoutard et al., 200)4describes the use of FBLD The mutT homolog 1 (MTH1) is an enzyme involved in the
in the discovery of inhibitors for an important subunit of prevention of incorporation of deoxynucleoside triphosphates
dengue virus (DENV) viral replication complex. In this work, (ANTPs) oxidized by reactive oxygen species (ROS), e.g.,
500 fragments were screened against two subunits of thé vird-oxodGTP or 2-OH-dATP, into DNA, which prevents the killing
replication complex: NS3 helicase (Hel) and the NS5 mRNAf the cell. MTHL1 is frequently overexpressed in cancer cetis an
methyltransferase (MTase) subunits. DENV Hel, located i this non-essential in normal cells, proving to be a druggablestarg
C-terminal region of the NS3 subunit of the replication complex,for cancer treatmentgmits and Gillespie, 2014; Berglund et al.,
is involved in viral genome replication and RNA capping. The2019.

role of DENV NS5 MTase is related with a double methylation Rudling et al. applied a combination of molecular docking,
(N-7 and 2'-O) during the cap formation process in avivirus SAR by catalog, and experimental testing for discovering and
(Dong et al., 2008 optimizing MTHZ1 inhibitors (Rudling et al., 2007 Initially,

The authors used a combination of Thermal Shift Assaya molecular docking-based virtual screening using a crystal
(TSA), X-ray diraction crystallography (XRD) and enzymatic structure of MTH1 was performed using 0.3 million fragments
assays in order to screen compounds against NS3 DENV Hel aficbm the ZINC fragment-like database, all commercially
NS5 DENV MTase subunits. The TSA was used as the primagyailable. Subsequently, for the 5,000 top-ranked fragments,
screening technique. During the TSA screening, not sunpgisi  allowed the search of analogs representing superstructures of
part of the fragments—used at high concentrations andhe fragment or containing similar substructures in the ZN
with poorly optimized physicochemical properties—presentediatabase using the chemical structures encoded as circular
solubility problems. This was the reason for the exclusion ofngerprints and the Tversky similarity indexT{ersky, 197)

4.8% of the screened compounds during this phase. This initidlhe criteria used to select analogs from 4.4 million comrizdisc
screening yielded 68 hits, from those, 7 were found boundhéo t available compounds in the ZINC database was the following:
DENV MTase subunit by XRD. (i) Tversky similarity >0.8; (ii) up to six additional heavy

Using a direct colorimetric ATPase-based assay to identifgtoms (HAs) compared to the parent fragment; (iii) improved
inhibitors, from those previous 7 crystallographic hits, 5docking score 80% lower compared to the parent fragment; (iv)
fragments Table 2 were classi ed as hits with their potency visual inspection of the binding modes. After these analyses
varying between 180M and 9 mM. a set of 22 commercially available fragments with at least v

Inthe most recent work, the fragmeréand4 (Figure 8 were  analogs comprising the above-mentioned criteria were ssflect
found bound at the DENV MTase S-Adenosyl-L-methioninefor experimental evaluation. Five of these 22 fragments sipw
(AdoMet) binding site using XRD. A computer-aided fragmentICsg values ranging from 5.6 to 78V were considered hits
optimization gave rise to a new series of compounds using thesed were used for F2LTéble 3. The fragment7 presented an
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FIGURE 8 | Fragment optimization predecessors and products@outard et al., 2014; Benmansour et al., 2017}.

ICs0 value of 79nM and its most potent analog presented aninhibition enhances the transmission of the electric impulse
ICs0 of 170 nM, representing a 470-fold improvememgble 3.  (Polinsky, 1998; Talesa, 2001

Although the crystal structure of the fragmentn complex with For the in silico inhibitor development, they divided the
MTH1 was not obtained, the crystallization of its most potentprocess into four steps. First, @ novodesign was applied
analog and MTH1 was solved at 1.85 A resolution, demonstgatinto generate an initial library of compounds. The rst library
an RMSD of 0.6 A between the common atoms of the fragrifent was then Itered according to ADME properties at the second
(binding mode predicted by molecular docking) and the analogstep. In the third step, the ltered library was ltered again
(crystal structure). Because of the closely related strastand using a similarity criterion. Finally, the resulting libsa was
binding modes of fragment8 and 9, its analogs were analyzed used in docking studies. The best three complexes were used
together, but the most potent analog presented agpl@f only  for molecular dynamic studies. In this work, they used three
3.5mM. The most potent analog of fragmeh® presented a 190- reference drugs for AD treatment: donepezil, galantamine,
fold increase of the activity, with an Kgof 120 nM (Table 3. The  and rivastigmine.

crystallization of fragmentOwith MTH1 was also unsuccessful,  For the de novodesign, the LigBuilder software was used.
but the molecular docking was able to predict the binding modeThe CAVITY procedure was employed to detect and analyze
showing an RMSD of 0.9 comparing the overlapping atom$igand-binding sites of the target. It classied the cawstie
with the crystal of the most potent analog obtained at 1.50 Alruggability, who would be used for docking studies. The
resolution. The analogs of the fragmeht were not available BUILD procedure was used in the exploring and growing/linking
during the study. This work demonstrated that virtual sereg) modes. In the explore mode, fragments from the program's
and SAR by catalog can be used to rapidly identify and optimizdatabase were added in the protein site and their interaction

fragments into nanomolar inhibitors{udling et al., 2017 was scored. Then, the fragments with the best scores were
. linked. In the growing mode, seeds molecules were put at the

Case 4: New Acetylcholinesterase binding site and fragments were added to the seeds. At the

Inhibitors Against Alzheimer's Disease linking mode, the seed was divided into fragments and other

Alzheimer's disease is a neurodegenerative disorder arithgments were added to them. After the BUILD procedure,
has no cure. The actual treatments are based on drudgbey got a library of 2.5 million compounds. The resulting
that leverage the transmission of electrical impulsedibrary was Itered according to ADME properties with the
Pascoini et al. (2019) computationally developed new software QUIKPROP where molecules that infringed more than
acetylcholinesterase (AChE) inhibitors. AChE is respdedibr ~ ve properties (physicochemical properties, lipophilicity, wate
decreasing levels of acetylcholine in the synaptic clefeirTh solubility, pharmacokinetics models) were discarded. Aalifpr
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TABLE 3 | Experimental data for the ve most potent MTH1 inhibitors (de& taken from Rudling et al., 2017.

Fragment ID Fragment 2D structure Fragment IC 5o Most potent analog 2D Analog IC 59
structure

7 79 mM 0.17 mM

8 24 mM 3.5mM

9 26 mM n/a n/a

10 23mM 0.12 mM

11 5.6mM n/a n/a

n/a, not available.

of 6,000 compounds results from this process. After this, thehemical libraries and the possibility of using a range
Tanimoto's coe cient was applied to measure the similarity of biophysical methods for screening, the easier and
among the molecules. Molecules below 0.85 were excluded aadalable implementation of this strategy has facilitates it
1,500 molecules were considered for the next step. The eal st popularization, especially among academic institutions and
consisted of docking studies, carried out with the GLIDBEwafe  smaller pharmaceutical companies.
and the Induced Fit Docking protocol. Afterward, they sedett The main reason for the success of the FBDD strategy is
the three best complexes from the docking and used them dsecause it presents a more e cient and consistent route for
input structures for molecular dynamic studies. Finallyeyh optimization of initial screening hits into lead compounds.
obtained three compounds with high stability and good birglin As reviewed here, many routes are available for expansion of
energies, some of them even better than the reference drugs. fragment hits andn silicomethods are key to support or guide
the majority of them.
CONCLUDING REMARKS A variety of in silico methods have been used in F2L
optimization in FBDD, from binding site analysis tde novo
FBDD has matured to become a key strategy in moderaesign of new fragment-derived ligands with synthesiigbil
pharmaceutical research. With less requirement for largaware methods. The case studies highlighted here clearly
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demonstrate how the di erenin silicomethods can be used in contributed to several parts of the manuscript. NF drafted the
integrated form and combined with experimental approaches tintroduction and one of the case studies. LS drafted thenfiexg
successfully develop higher a nity ligands from fragments optimization section and one of the case studies. JM-F drafted
Advances in arti cial intelligence methods, such as deepnost of thein silicostrategies section and one of the case studies.
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