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Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last
two decades to become a successful key technology in the pharmaceutical industry for
early stage drug discovery and development. The FBDD strategy consists of screening
low molecular weight compounds against macromolecular targets (usually proteins)
of clinical relevance. These small molecular fragments canbind at one or more sites
on the target and act as starting points for the development of lead compounds. In
developing the fragments attractive features that can translate into compounds with
favorable physical, pharmacokinetics and toxicity (ADMET—absorption, distribution,
metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled
fragment screening campaigns use a combination of screening by a range of biophysical
techniques, such as differential scanning �uorimetry, surface plasmon resonance,
and thermophoresis, followed by structural characterization of fragment binding using
NMR or X-ray crystallography. Structural characterization is also used in subsequent
analysis for growing fragments of selected screening hits.The latest iteration of
the FBDD work�ow employs a high-throughput methodology of massively parallel
screening by X-ray crystallography of individually soakedfragments. In this review
we will outline the FBDD strategies and explore a variety ofin silico approaches to
support the follow-up fragment-to-lead optimization of either: growing, linking, and
merging. These fragment expansion strategies include hot spot analysis, druggability
prediction, SAR (structure-activity relationships) by catalog methods, application of
machine learning/deep learning models for virtual screening and severalde novo design
methods for proposing synthesizable new compounds. Finally, we will highlight recent
case studies in fragment-based drug discovery wherein silicomethods have successfully
contributed to the development of lead compounds.

Keywords: fragment-based, drug discovery, lead discovery, in silico methods, machine learning, de novo design,
optimization, hot spot analysis
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INTRODUCTION

Fragment-Based Drug Discovery
Since the inception of fragment-based drug discovery (FBDD)
over 20 years ago it has become an established technology used
in both industry and academia (Hubbard, 2015). FBDD o�ers an
attractive approach for e�ectively exploring the chemical space
for binding a target protein. In conventional high-throughput
screening (HTS) campaigns, large libraries of often complex
compounds are screened for activity against a target (Hall
et al., 2014). In contrast, FBDD use relatively small libraries
of low complexity compounds representing fragments of larger
more drug-like compounds. By reducing the complexity of the
chemicals screened more of the potential binding sites of a target
protein can be explored through the binding promiscuity of the
fragments (Thomas et al., 2017). Where fragments do bind, albeit
with lower potency than the drug-like molecules of HTS, they
o�er good starting points to design larger higher a�nity binders
using knowledge of the protein structure as a template to generate
compounds with greater ligand e�ciency (improved per atom
binding energy to the target). This bottom-up approach means
that a greater range of chemical space can be explored, leading
quickly to higher a�nity lead compounds with greater speci�city
(Patel et al., 2014).

FBDD projects require relatively lower investments in
research and development (R&D) than HTS (Davis and
Roughley, 2017). An example is the discovery of vemurafenib
(ZelborafTM ), the �rst fragment-derived drug, which moved
relatively very quickly (6 years) between the phases of R&D
pipeline before reaching Food and Drug Association (FDA)
approval (Erlanson et al., 2016). Thus, FBDD provides attractive
opportunities for the drug discovery �eld.

Output of Structure-Enabled Fragment
Screening Campaigns
FBDD work�ows are multi-step starting with target selection
and protein isolation and followed by an initial screen of the
fragment library using biophysical techniques such as nuclear
magnetic resonance (NMR), surface plasmon resonance (SPR),
thermal-shift assay, microscale thermophoresis (MST), mass
spectrometry, and others. For fragments which show evidence
of binding, a further step of hit validation and characterization
occurs principally using X-ray crystallography (Verdonk and
Hartshorn, 2004). Using hit characterization, an iterative cycle
of fragment development can occur employing a range ofin
silico and experimental techniques. Advances in this protocol
try to compress the process by combining the initial fragment
screen with the hit characterization. This has been implemented
in a high throughput FBDD platform called XChem located
at the United Kingdom's national synchrotron the Diamond
Light Source (Cox et al., 2016). It uses the ability to produce
and handle a large number of crystals of the target protein
to screen the fragment library by soaking each individual
crystal with a fragment and then using X-ray crystallography
to determine which fragments have bound and where. Though
this high throughput technique often provides multiple hits, care
needs to be taken in interpreting the signi�cance of the hit.

Promiscuous fragments may bind parts of the protein which are
not involved in the protein function and therefore are unlikely
to yield a successful inhibitor. Additionally, as the fragments
are by their very nature weak binders and X-ray crystallography
being a sensitive technique, observed binding events mightbe
transient and not easily reproducible. It is therefore important to
con�rm hits with orthogonal structural (e.g., NMR), biophysical
techniques (SPR, MST, etc.) orin vitro biological assays.

Fragment Libraries
A crucial step in FBDD process is in the development and
choice of the fragment library used in the screening campaign.
Several fragment libraries have been developed that exploit
certain properties or chemistries. An example of a fragment
library is the Diamond-SGC Poised Library (DSPL) (Cox et al.,
2016). This has been developed for use with high-throughput
XChem platform and consists of around 760 fragments that
have been selected to contain at least one functional group
that is open to rapid, cheap follow-up synthesis using robust
well-characterized reactions (poised) and maximizing chemical
diversity. Other fragment libraries optimize other properties such
as solubility, 3D traits or based on subsets of existing drugsand
related molecules such as natural products (Schu�enhauer et al.,
2005). The fragment libraries generally share similar properties
of “Rule of 3” compliant i.e., less than 300 Da molecular
weight, 3 or less hydrogen bond donors, 3 or less hydrogen
bond acceptors and CLogP no more than 3. In addition,
they are soluble in dimethyl sulfoxide (DMSO) or phosphate
bu�ered saline. Fragment libraries generally tend to be< 1,000
fragments, which is signi�cantly less than the many millions
of compounds screened in high-throughput and high content
screening campaigns (Trevizani et al., 2017).

Fragment Expansion Strategies
Once the fragment screen has been completed and hits
characterized, the next step is the challenge of expanding these
fragments to generate larger molecular entities with high binding
a�nity and demonstrating inhibition activity. There are several
strategies that can be followed (Lamoree and Hubbard, 2017)
(Figure 1). One option is to use expert medicinal chemistry
advice to design and synthesize larger molecules based on
the protein and the fragment pose. Another approach is to
de�ne vectors along the fragment molecule based on the steric
hindrance of the protein target in which the fragment can be
expanded. The fragment is then searched for within a large library
of synthesizable (or purchasable) molecules which are bigger by
between one and three heavy atoms along the identi�ed vectors.
These expanded fragments can be synthesized and soaked/co-
crystallized and re-screened by X-ray crystallography. Expanded
fragments that show improved binding can be further extended
or structurally modi�ed using the same process, with this cycle
continuing until a larger high-a�nity binding entity is reached.

An alternative to this “small steps” approach is to try to get a
larger higher a�nity binding molecule in a single step. This can
be achieved by having anin silicomethod using the fragment in
a substructure search of a large purchasable compound library
(e.g., Zinc15), and to virtually screen the results using thepose
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FIGURE 1 | Multiple routes to expanding fragment to more drug-like molecule with improved binding af�nity.(A) Traditional medicinal chemistry route:
knowledge-based design and synthesis.(B) “Small steps” route: successive cycles of extension of the fragment hit by 1–3 heavy atoms through vectors de�ned by
high-resolution structural characterization methods, such as X-ray crystallography.(C) “Large leaps” or “SAR by catalog” route: from fragment to rule of 5 compliant
molecules using virtual screening of commercial compound libraries.(D) Fragment merging route: bridging two overlapping fragments bound at neighbor sites.
Regardless of the route, expanded fragments should be checked for biological activity usingin vitro, ex vivo,or in vivoassays.

of the fragment to dock the molecules and rank them based
on docking parameters (Trevizani et al., 2017). The top-ranking
virtual screening hits can then be co-crystallized and wellas
evaluatedin vitro and in vivo. A �nal expansion option is to
link or merge fragments that hit near to each other or within the
same site (Davis and Roughley, 2017). The combined fragments
can then be further expanded using the approaches described
previously. It is vital that as expansion progressesin vitro andin
vivoassays are conducted to asses activity of the new molecules.

In the next section, we will discuss in depth the main
optimization approaches used for a fragment structurally
characterized in a binding site of its target. Further sections will
describe existing software tools or modeling techniques (e.g.,
machine learning) employed for taking a fragment hit thorough
the path for becoming a lead compound—a process known as
fragment-to-lead (F2L)—for drug development and conclude
by presenting case studies wherein silico strategies have been
successfully utilized to support the F2L optimization process.

FRAGMENT OPTIMIZATION APPROACHES

After the hit identi�cation in a FBDD campaign, the fragment
moves forward to the optimization phase. This optimization
takes into account the structural characteristics of the ligand
as well as its binding site. The principle in using fragments
relies on the premise that these molecular entities are more
e�cient ligands compared to drug-like molecules, and their
structures can be further optimized more e�ciently. In fact,
this constitutes one of its many advantages. As small entities,
molecular fragments can be iteratively optimized to show a better
pharmacokinetic pro�le in the later development stages. Drug-
like molecules may contain functional groups that contribute

poorly to protein binding or, in some cases, can even disrupt the
protein-ligand interaction. On the other hand, fragments often
form high-quality interactions able to more easily bind to the
protein target, translating to a greater number of hits.Figure 2
depicts schematically this concept.

Another advantage of FBDD is the potential for faster hit
progression through the campaign, since the fragments are
usually structurally simple and many follow-up compounds can
be easily purchased from commercial databases (e.g., MolPort,
ZINC15, and ChemBridge) instead of being synthesized. Another
important characteristic often used to defend this approach is
the high hit rates. In this sense, high hit rates means that the
FBDD yields relatively more hits in comparison to the traditional
methods such as HTS (Coutard et al., 2014; Mondal et al.,
2015). This is due the inversely related nature between molecular
complexity and the binding probability (Hann et al., 2001).
Other advantages includes the more e�cient chemical space
sampling (Coutard et al., 2014; Mondal et al., 2015) and the
relative low cost to implement the FBDD, as it can be seen
from comparing the usual size of the HTS library (thousands of
compounds) with fragment libraries (hundreds of compounds)
(Macarron et al., 2011).

Assessment of the interactions between the fragment and
its binding site should be carefully performed for further
identi�cation of synthetically accessible vectors on the ligand.
Although x-ray crystallography data is a valuable techniquein
fragment optimization, is important to keep in mind that the
observed structural data only represents a snapshot of the system
under investigation. It's been known that the ligand a�nitycan be
a�ected by the structural protein dynamics without changing the
ligand-binding interface (Matias et al., 2000; Seo et al., 2014). This
complex dynamic environment (Henzler-Wildman and Kern,
2007; Boehr et al., 2009) can a�ect small and weak ligands as
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FIGURE 2 | Discovery and structural-optimization of drug-like molecules (A) and fragments(B) using protein target information. The surface represents the binding
site. The red and gray colors represent the level of complementarity of ligand with the active site. Pockets with low complementarity with ligand are colored in red;
pockets with high complementarity with ligand are highlighted in gray.

fragments. With this in mind, many methods can additionally
be used to guide the fragment identi�cation/optimization either
providing complementary data (e.g., thermodynamic data) or
acting as orthogonal approaches (Ciulli, 2013a). These methods
are mostly biophysical (Shuker et al., 1996; Lo et al., 2004;
Navratilova and Hopkins, 2010; Pedro and Quinn, 2016) and
their use has some advantages such as, direct measurement of
the binding, detection of small ligands with low a�nity, and
not needing any prior information about the protein function
(Ciulli, 2013b). Despite the supremacy of biophysical methods,
biochemical approaches are increasingly being used (Godemann
et al., 2009; Boettcher et al., 2010; Mondal et al., 2015) in FBLD.

In addition to orthogonal and complementary methods, the
ligand e�ciency (LE) or one of its related metrics should ideally
be used to keep track of the quality of follow-up ligands as they
progress through the iterative optimization cycle. Some of these
parameters are described below.

� Ligand E�ciency ( LE) (Hopkins et al., 2004; Nissink, 2009;
Davis and Roughley, 2017) D 1 G/HAC A ;

� Binding E�ciency Index (BEI) (Abad-Zapatero, 2013) D
pKi/MW B;

� PercentageE�ciency Index (PEI) (Abad-Zapatero, 2017;
Davis and Roughley, 2017) D % inhibition/MW B;

� Surface-bindingE�ciency Index (SEI) (Abad-Zapatero, 2013)
D pIC50/(TPSA C);

� Lipophilic E�ciency ( LipE/LLE) (Shultz, 2013) D pIC50–
cLogP;

� Size-IndependentLigandE�ciency ( SILE) (Nissink, 2009) D
1 G/HAC 1� x;

� LigandE�ciency-DependentLipophlicity (LELP) (Davis and
Roughley, 2017) D logP/LE.

AHeavy Atom Count;BMolecular Weight;CTopological Polar
Surface Area;

For the sake of brevity these metrics will not be further
discussed and we recommend the references above for a deeper
understanding. The structural complexity of the protein makes
larger, more complex and less e�cient molecules less likely to
bind. This is one of the main reasons why fragment libraries
often yield more hits when compared to a drug-like molecule
commonly used in HTS (Hann et al., 2001). The use of fragments
is a bottom-up approach, starting from less complex molecules
with greater binding e�ciency and ending up with a larger
optimized molecule. As already highlighted, there are threemain
strategies that can be employed to optimize a ligand found bound
in its target surface: linking, merging and growing (Figure 3).
The next sections are dedicated to discussing in more depth each
of them.

Growing
Fragment growing (Figure 3A) is the strategy most commonly
employed during FBLD campaigns. As the name suggests, it
consists of modifying the fragments to increase their size.
Conceptually this approach is identical to the traditional
compound modi�cation methods employed in the optimization
of hits from HTS campaigns. This modi�cation occurs through
the addition of groups.

A recent paper published byStrecker et al. (2019)is
an example of how the growing strategy can be used to
improve bind a�nity. Using computer-aided drug design
(CADD) and synthesis, the authors explored small structural
modi�cations in a previously (PDB: 3U0X) identi�ed compound
(1) (Ki D 800mM).

These studies showed that a modi�cation of a fragment
phenyl moiety to a naphthyl allowed two new simultaneousp-p
interactions, a parallel-displaced with Trp300 and an edge-to-face
with His233. This minor modi�cation led to a compound (2) with
a 3-fold improved binding a�nity (Ki D 271mM) (Figure 4).

Frontiers in Chemistry | www.frontiersin.org 4 February 2020 | Volume 8 | Article 93

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


de Souza Neto et al. In silicoStrategies for F2L Optimization

FIGURE 3 | Fragment optimization approaches: fragment growing(A), fragment linking(B), and fragment merging(C). The surface of the binding site is depicted in
gray. The red and gray colors represent the level of complementarity of ligand with the active site. Pockets with low complementarity with ligand are colored in red;
pockets with high complementarity with ligand are highlighted in gray.

FIGURE 4 | Hit to lead progression of an initial fragment(1) to a compound (2)
with improved af�nity.

This example highlights the use of optimal growth vectors
to introduce a rigid group, which led to an increased
binding a�nity. Alternatively, introduction of a moiety with
increased number of rotatable bonds could impact negatively—
due to the entropic penalty—in the a�nity. Although this
optimization approach can be computationally aided without
further structural data, small modi�cations—as in the caseof the
hypothetical �exible moiety addition—can led to great changes in
binding mode. When growing fragments is the chosen approach,
structural data can be decisive to avoid misinterpretation.

Linking
Fragment linking (Figure 3B) describes the process of joining
two non-competitive fragments (i.e., fragments that bind intwo
di�erent sub-pockets of the binding site) with a chemical linker

or spacer. Although conceptually simple, linking fragments is
perhaps the most challenging strategy to implement. Although
fragment linking is the most attractive approach in terms of
rapid improvement of potency, the design of a linker with
suitable �exibility while not disturbing the original binding
modes of the fragments, makes it one of the most challenging
optimization approaches.

As previously discussed, the introduction of �exible moieties
a�ects these compounds properties and an optimal orientation
should always be pursued. In fact, varying the degree of rigidity
of a linker for the purpose of conformational restriction of the
linked product can be used as a strategy for linker optimization,
as it can be seen in Chung and colleagues work (Chung et al.,
2009). This work shows how a conversion of oxime linkers into
monoamine and diamines interferes with the rigidity and its
impact on binding.

Although often neglected, the impact on the ADMET
properties should also be taken in consideration. In the case ofthe
linker, that usually adds rotatable bonds to the system (Ichihara
et al., 2011; De Fusco et al., 2017), this modi�cation can lead to
poor PK features, like low permeability (Veber et al., 2002).

Merging
This strategy (Figure 3C) can be used in cases where two distinct
fragments partially occupy the same region, or when two binding
sites have regions in common and therefore their ligands are
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partially competitive with respect to the site. In such cases
the overlapping parts form a nucleus where dissimilar parts
come together. In a recent example, a gain of 2 orders of
magnitude in potency was achieved for an inhibitor of �avin-
dependent monooxygenase (EthA) transcriptional repressor
(EthR) (Nikiforov et al., 2016) where the existence of overlapping
groups within fragments bound to EthR allowed the use of
merging as an optimization strategy.

Although not always possible, merging is a simpler strategy
than linking, as there is no need to design a spacer that joins
fragments together (Xu et al., 2017; Miyake et al., 2019). As also
seen in this example, like linking (Davis and Roughley, 2017), this
approach has the drawback of relying on high-quality structural
data to go further in the optimization process.

Therefore, merging is an approach related to the “molecular
hybridization” strategy, a long-consolidated approach in
medicinal chemistry for designing new compounds with
improved potency through the fusion of other active
compound structures.

IN SILICO STRATEGIES FOR F2L
OPTIMIZATION

Hot Spots Analysis and Pocket
Druggability Prediction
Hot spots analysis is an important tool for structure-based F2L
that allows the prediction of the small regions of the binding
sites containing residues mostly contributing to the binding
free energy (Cukuroglu et al., 2014). Once a fragment hit is
experimentally identi�ed, the hot spots analysis can be used to
map the subsites around the fragment hit using small organic
probes, driving the optimization into higher-a�nity ligands
(Hall et al., 2012).

One of the most used methods of hot spot analysis is the
FTMap web server (Kozakov et al., 2015). This algorithm places
16 small organic probe molecules of di�erent shape, size, and
polarity on the protein surface to �nd favorable positions for
each probe. Then, each probe type is clustered and overlapping
clusters of di�erent probes, called consensus sites (CSs), represent
the hot spots. The consensus sites are ranked by the number of
probe clusters, and the main hot spot is, generally, where the
fragment hit binds and secondary hot spots are used to extend
the fragment in the best direction (Hall et al., 2012; Ngan et al.,
2012; Kozakov et al., 2015).

As an example, we used the FTMap server for predicting
the hot spots for the oncogenic B-RAF kinase, the target
of the �rst marketed drug from fragment-based drug design,
vemurafenib (Bollag et al., 2012). Figure 5A shows the fragment
hit experimentally bound to B-RAF kinase (PDB ID: 2UVX)
(Donald et al., 2007), and the predicted hot spots around this
fragment (shown in yellow dots) using the FTMap server. In
Figures 5B–D, the iterative process of growing the fragment hit
led to the discovery of the drug vemurafenib (PDB ID: 3OG7)
(Bollag et al., 2010) with the hot spots shown in yellow dots.
Although hot spot analysis was not used in the F2L process of

vemurafenib, the results here showed that the predicted hot spots
overlap the grown portions of vemurafenib.

During fragment screening, the fragment hits can bind in
di�erent sites of the protein (Giordanetto et al., 2019). If
the binding site is not well-de�ned, the researchers can use
the pocket druggability prediction to move forward in F2L
with the most druggable site, capable to accommodate ligands
orally bioavailable (Schmidtke and Barril, 2010; Hussein et al.,
2015). There are many available methods for predicting pocket
druggability and these are well-described and reviewed elsewhere
(Barril, 2013; Abi Hussein et al., 2017).

SAR by Catalog
One fast and cheap way in F2L optimization is the SAR by
catalog approach (Hall et al., 2017). This approach relies on the
search of analogs ofin-houseor commercial databases that can
be purchased or rapidly accessed for testing (Schulz et al., 2011).
This process can use the fragment hit features for similarity,
ligand-based pharmacophores, shape-based, �ngerprints (Rogers
and Hahn, 2010; Riniker and Landrum, 2013; Alvarsson et al.,
2014), and substructure searches to �nd suitable compounds
(Hubbard and Murray, 2011; Andrade et al., 2018). Some
databases often used for SAR by catalog are ZINC (Sterling
and Irwin, 2015), MolPort (https://www.molport.com), Mcule
(https://mcule.com/), and eMolecules (https://www.emolecules.
com) that contains collections of commercially available
compounds. The databases Enamine (https://enaminestore.
com), ChemDiv (http://www.chemdiv.com/) and ChemBridge
(https://www.chembridge.com) are direct suppliers.

SAR by catalog approach only retrieves similar compounds
or superstructures of the fragment hit. Thus, other �lters should
be applied to �lter compounds with more optimized properties.
These �lters are molecular docking, ADMET, machine learning
models, aqueous solubility, among others, and will be discussed
later in this review.

Molecular Docking
Molecular docking is a computational approach used to predict
the position, orientation, and the binding scores of small
molecules to proteins (Torres et al., 2019). Hence, as the F2L
process is commonly addressed as a combinatorial problem,
molecular docking is a method that can be used in combination
with other approaches to enhance the F2L process, and to
increase the chances to convert a fragment hit into higher
a�nity ligands. The SAR by catalog approach in combination
with molecular docking, for example, can be used to select
compounds that maintain the fragment hit binding mode while
the binding energy is optimized. Moreover, the number of
generated optimized fragments can exceed the number that can
be tested experimentally. Thus, applying molecular docking,
large compound datasets are e�ciently assessed using SAR by
catalog, and a small subset of most promising compounds can
be selected by binding modes and scores for experimental testing
(Grove et al., 2016).

To overcome the problem that SAR by catalog has the
limitation to cover only the �nite chemical space of commercially
available compounds (Ho�er et al., 2018), it is possible to

Frontiers in Chemistry | www.frontiersin.org 6 February 2020 | Volume 8 | Article 93

https://www.molport.com
https://mcule.com/
https://www.emolecules.com
https://www.emolecules.com
https://enaminestore.com
https://enaminestore.com
http://www.chemdiv.com/
https://www.chembridge.com
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


de Souza Neto et al. In silicoStrategies for F2L Optimization

FIGURE 5 | Example of a hot spot analysis using FTMap web server of the oncogenic B-RAF kinase, the target of the �rst marketed drug from fragment-based drug
design, vemurafenib. The surface of the binding site is depicted in gray. (A) (PDB ID: 2UVX) the fragment hit (carbon atoms in purple sticks) and the predicted hot
spots (yellow dots and surface).(B–D) The iterative growing process of vemurafenib (PDB ID: 3OG7) overlapping the predicted hot spots (the carbon atoms of the
fragment hit portion is shown in purple sticks and carbon atoms of the grown portions in yellow sticks).

generate virtual catalogs with analogs to hit fragments that can
be easily synthesized, astronomically increasing the number of
possible compounds. Then, a docking-based virtual screening
can be applied to prioritize compounds for experimental
evaluation (Rodríguez et al., 2016; Männel et al., 2017).

Another scenario in F2L is when the co-crystallization of
a fragment hit commonly fails and no structural information
about the binding mode is available. In these cases, alternative
strategies for F2L process are required where the binding mode of
a fragment can be predicted using molecular docking calculations
(Kumar et al., 2012; Chevillard et al., 2018; Erlanson et al.,2019)
on high-quality three-dimensional structures of the target in apo
form or bound to other ligands. When neither of the latter are
available, a theoretical model of the target protein can be obtained
by homology modeling methods.

However, there are concerns about fragment docking in
the scienti�c community. The assumption is that fragments,
as low molecular weight compounds, are weak binders and
promiscuous in binding modes, and consequently, the fragment
docking implies in incorrect predictions of the binding modes.
Also, there is a concern that scoring functions of the
docking programs are parameterized to drug-like ligands, being
inaccurate to di�erentiate native and other low-energy poses
(Chen and Shoichet, 2009; Wang et al., 2015; Grove et al., 2016).
To overcome these concerns, there are studies demonstratingno
signi�cant di�erence in docking performance between fragments
and drug-like ligands (Verdonk et al., 2011; Joseph-mccarthy
et al., 2013). They showed that molecular weight is not the
principal parameter for docking performance, instead, for high
LE compounds the docking performance fared better for both
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fragments and drug-like ligands (Verdonk et al., 2011; Kumar
et al., 2012).

When available, the use of experimental structural
information data can be used to support and improve docking
performance. These data are used in docking programs including
distance constraints, pharmacophore constraints, shape-based
constraints, similarity or substructure overlap, interaction
�ngerprints, hydrogen-bond constraints, and others (Verdonk
et al., 2011; Erlanson et al., 2019; Jacquemard et al., 2019).

Similarly to hot spot analysis, molecular docking can also be
used to discover secondary binding pockets and guide the F2L
process (Männel et al., 2017).

Machine Learning (ML) and Deep Learning
(DL) Models
A large variety of F2L approaches use structure-based methods
to optimize fragments into high-a�nity ligands taking into
consideration the steric and electronic constraints within
binding pockets of the target of interest (Schneider and
Fechner, 2005). However, the optimized compounds generated
constantly present drawbacks of poor synthetic feasibility
and/or undesirable biological properties, including absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
properties (Yang et al., 2019b). In the last years, novel ligand-
based methods, including machine learning (ML) models, have
been used for F2L campaigns. ML models are statistical methods
that present the capacity to learn from data without the explicit
programming for this task, and then, make a prediction for new
compounds (Mak and Pichika, 2019). The increase of storage
capacity and the size of the datasets available, coupled to advances
in computer hardware such as graphical processing units (GPUs)
(Gawehn et al., 2018), provided means to move theoretical studies
in ML to practical applications in drug discovery (Vamathevan
et al., 2019).

The ML algorithms are widely used to construct quantitative
structure-activity relationship (QSAR) models, able to �nd
mathematical correlations between molecular features and
compound activity/property, and this correlation can be
categorical (active, inactive, toxic, nontoxic, etc.) or continuous
(pIC50, pEC50, Ki, and others) by means of classi�cation
or regression techniques (Tropsha, 2010; Cherkasov et al.,
2014). Thus, machine learning-based QSAR models can be
constructed for biological activity, ADMET properties, solubility
and synthetic feasibility, among other endpoints, and applied
after fragment optimization, with aforementioned methods,in
a cascade virtual screening for �ltering compounds with the
desired activities and properties (Figure 6) (Braga et al., 2014;
Neves et al., 2018; Pérez-Sianes et al., 2018).

More recently, a sub�eld of ML called deep learning (DL)
which utilizes arti�cial neural networks to learn from a large
amount of data have been used to resolve complex problems
(Mak and Pichika, 2019). DL models are not only able to learn
from a dataset and to make predictions for new data but are
also able to generate new data instances through a constructive
process (Schneider, 2018). In this context, there has been a rising

interest in using DL generative and predictive models for F2L
optimization (Olivecrona et al., 2017; Gupta et al., 2018).

For this task, a combination of DL architectures is used
and in many cases, generative DL models based on recurrent
neural networks (RNNs) are trained on the simpli�ed molecular
input line entry system (SMILES) representation of compounds
from large databases (DrugBank, ChEMBL, etc.) to learn the
syntax of SMILES language and the chemical space distribution
(Olivecrona et al., 2017). After training, the models are able
to generate new strings that are new SMILES, corresponding
to new compounds (Segler et al., 2018). Then, the transfer
learning (TL) can be used to �ne-tuning the model and generate
compounds related to a fragment hit. As the name suggests, TL
learns and transfers the information from an old source to a
new application (Yang et al., 2019b). The aim of this integrative
approach is to learn general features from a big dataset and,
then, retrain the model focusing on a smaller dataset such as
fragment hits, for F2L purposes (Figure 7) (Gupta et al., 2018;
Segler et al., 2018). Gómez–Bombarelli et al. used variational
autoencoder (VAE) to encode SMILES into a continuous latent-
space, then a separate multilayer perceptron trained to predict
several properties on the latent space was applied to generate new
molecules with the desired properties. After this, a decoder was
used to retrieve the molecules on the latent space into SMILES
(Gómez-Bombarelli et al., 2018). Handling these DL methods
in a multidimensional way, fragment hits can be optimized
automatically taking into consideration several parameterssuch
as bioactivity, solubility, synthetic feasibility, and ADMET
properties, generating new compounds with optimized values for
these parameters (Figure 7) (Olivecrona et al., 2017; Ramsundar
et al., 2017; Gómez-Bombarelli et al., 2018; Harel and Radinsky,
2018; Li et al., 2018; Merk et al., 2018; Polykovskiy et al.,
2018; Popova et al., 2018; Putin et al., 2018; Awale et al., 2019;
Vamathevan et al., 2019).

De novo Design
The de novoapproach looks for new chemical entities from
scratch within a structurally de�ned binding site (Schneider and
Clark, 2019). These entities are generated out of building blocks,
either by growing from an initial fragment or by linking two
or more non-overlapping fragments (Dey and Ca�isch, 2008;
Kumar et al., 2012). Since their arise,in silico methods have
played an important role in FBDD (Kumar et al., 2012).

Software for Building New Compounds Within a
Structurally-De�ned Binding Site
De novo design software takes advantage of a known
binding mode of a fragment, described experimentally or
computationally, to propose modi�ed analogs with improved
binding a�nities. The LUDI (Bohm, 1992) program was one of
the �rst programs developed forde novodesign. It calculates the
interaction sites, maps the molecular fragments, and connects
them using bridges, using an empirical scoring. Consideringthe
vast chemical space, evolutionary algorithms are widely used
(Srinivas Reddy et al., 2013). In this context, the program GANDI
(Dey and Ca�isch, 2008) connects pre-docked fragments with
linker fragments using a genetic algorithm and a tabu search.
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FIGURE 6 | Cascade virtual screening �ltering optimized compounds with the desired activities and properties.

The scoring function is a linear combination of force-�eld
binding energy and similarity measures. BREED (Pierce et al.,
2004) is a computational method for merging fragments that
is widely used. It aligns the 3D coordinates of two ligands and
recombines the fragments or substructures into the overlapping
bonds to generate new hybrid molecules in a strategy called
fragment shu�ing. LigBuilder (Wang et al., 2000; Yuan et al.,
2011) is a program that uses a genetic algorithm to build up the
ligands using a library of organic fragments. It contemplates
the growing and linking approach. The 2.0 version includes
the synthesis accessibility analysis through a chemical reaction
database and retro-synthetic analysis. Autogrow (Durrant et al.,
2009, 2013) is another growing approach algorithm that builds
a fragment upon a “core” sca�old. The fragment is docked
to the receptor. A genetic algorithm evaluates the docking
score to select the best population which forms the subsequent
generation. The last version considers the synthetic accessibility

and the druggability. The program ADAPT (Pegg et al., 2001;
Srinivas Reddy et al., 2013) applies a genetic algorithm which
uses molecular interactions and docking calculations as a
�tness function to reduce the search space. The initial sets of
compounds are iteratively built until it reaches the prede�ned
target value.

Prediction of ADMET Properties of New Compounds
The ADMET properties and synthetic accessibility (SA)
constitutes the secondary constraints whereas primary
constraints are geometric and chemical constraints derived
from the receptor or target ligand(s) and internal constraints
to the geometry and chemistry of the lead compound being
constructed. Issues with these points result in the majorityof
clinical trial failures (Dong et al., 2018). Numerous software
and web platforms were developed to predicted ADMET
parameters but presented limitations due to narrow chemical
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FIGURE 7 | Representation of the integrative approach of generative and predictive deep learning models and transfer learning for fragment-to-lead optimization.

space coverage or expensive prices (Cheng et al., 2012). Recent
works predominantly rely on ML methods, like random forest
(RF), support vector machine (SVM), and tree-based methods
(Ferreira and Andricopulo, 2019). The vNN Web Server for
ADMET predictions (Schyman et al., 2017) is a publicly available
online platform to predict ADMET properties and to build
new models based on the k-nearest neighbor (k-NN), which
rest on the premise that compounds with similar structures
have similar activities. vNN uses all nearest neighbors that are
structurally similar to de�ne the model's applicability domain.
The similarity distance employed is Tanimoto's coe�cient. The
platform allows running pre-build ADMET models, and to build
and run customized models. Those models assess cytotoxicity,
mutagenicity, cardiotoxicity, drug-drug interactions, microsomal
stability, and likelihood of causing drug-induced liver injury.
Like all machine learning methods, the lack of training datais
a limitation.

Pred-hERG (Braga et al., 2015; Alves et al., 2018) is a web
app that allows users to predict blockers and non-blockers of
the hERG channels, and important drug anti-target associated
with lethal cardiac arrhythmia (Mitcheson et al., 2000). The
current version of the app (v. 4.2) was developed using
ChEMBL (Willighagen et al., 2013) version 23, containing 8,134
compounds with hERG blockage data after curation, using robust
and predictive machine learning models based on RF. This app is
publicly available at http://labmol.com.br/predherg/.

In admetSAR 2.0 (Cheng et al., 2012; Yang et al., 2019a)
tool, the predictive models are built using RF, SVM and kNN

algorithms. It presents 27 endpoints and also includes eco-
toxicity models and an optimization module called ADMETopt
that optimize the query molecule by sca�old hopping based
on ADMET properties. The ADMETlab platform (Dong et al.,
2018) performs its evaluations based on a database of collected
entries and assess drug-likeness evaluation, ADMET prediction,
systematic evaluation and database/similarity searching. It uses
31 endpoints applying RF, SVM, recursive partitioning regression
(RP), naive Bayes (NB), and decision tree (DT).

SwissADME tool (Daina et al., 2017) uses predictive models
for physicochemical properties, lipophilicity and water solubility.
It also analyses pharmacokinetics models as BBB permeability,
gastrointestinal absorption, P-gp binding, skin permeation
(logKp), and CYP450 inhibition. Additionally, the tool presents
�ve drug-likeness models (Lipinsky, Ghose, Veber, Egan, and
Muegge) and medicinal chemistry alerts. It is integrated with the
SwissDrugDesign workspace. The QikProp (Schrödinger, LLC,
NY, 2019) provides rapid predictions of ADME properties for
molecules with novel sca�olds as for analogs of well-known
drugs and display information about octanol/water and water/gas
logPs, logS, logBBB, overall CNS activity, Caco-2 and MDCK cell
permeabilities, log Kd for human serum albumin binding, and
log IC50 for HERG KC-channel blockage.

Prediction of Synthetic Tractability (Synthesizability)
of New Compounds
Even though large numbers of molecules are generated by
de novo design, many of them are synthetically infeasible
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(Dey and Ca�isch, 2008). To address this problem, methods to
calculate the synthetic accessibility (SA) are being developed. SA
can be addressed by estimating the complexity of the molecule
or making a retrosynthetic approach, where the complete
synthetic tree leading to the molecules needs to be processed
(Ertl and Schu�enhauer, 2009). SYLVIA (Boda et al., 2007) is
one of the programs that estimate the synthetic accessibility
of an organic compound. It obtains the SA score by the
addition of �ve variables as the molecular graph complexity,
ring complexity, stereochemical complexity, starting material
similarity and reaction center substructure, where the �rst
three are structure-based and the other two utilize information
from starting material catalogs and reaction databases.Ertl
and Schu�enhauer (2009)developed another method that
uses historical synthetic knowledge obtained by analyzing
information from millions of already synthesized chemicals and
also considers molecule complexity. The method is based on a
combination of fragment contributions and a complexity penalty.
Podolyan et al. (2010)presented two approaches to quickly
predict the synthetic accessibility of chemical compounds by
utilizing SVMs operating on molecular descriptors. The �rst
approach (RSsvm) identi�es compounds that can be synthesized
using a speci�c set of reactions and starting materials and
builds the model by training the compounds identi�ed as
synthetically or otherwise accessible by retrosynthetic analysis
while the second approach (DRSVM) is constructed to generate
a more general assessment. More recently,Fukunishi et al. (2014)
designed a new method of predicting SA based on commercially
available compound databases and molecular descriptors where
the SA is estimated from the probability of the existence of
substructures of the compound, the number of symmetry atoms,
the graph complexity, and the number of the chiral center of
the compound.

Synthesizability-Aware Methods
Given the di�culty of synthesis of most of the leads produced
by de novoapproaches, some programs added methods to score
the SA. LeadCOp (Lin et al., 2018) is an example of these
programs that takes an initial fragment, looks for associated
reaction rules, virtually generate the reaction products and select
the best binding conformation. Them it generates conformers
and select one that becomes a reactant for another round. Also,
programs mentioned above as LigBuilder and Autogrow include
SA analysis on their current versions. In the medicinal chemistry
component ofSwissADME,a SA score is also included.

Di�erent programs use distinct algorithms forde novodesign
compounds in CADD.Table 1summarizes some programs cited
in this section.

CASE STUDIES IN THE LAST FIVE YEARS

Case 1: FBDD in the Development of New
Anti-mycobacterium Drugs
A successful application of the FBDD techniques have been
applied to early stage drug discovery of new therapeutics
against Mycobacterium sp.and in particular M. tuberculosis
(Mtb) and M. abscessus (Mab)(Thomas et al., 2017). Mtb,

TABLE 1 | FBDD programs with respective approaches.

Program Algorithm FBDD
Approach

SA

AUTOGROW DockingC Genetic
Algorithm

Growing YES (Latest
version)

LUDI Empirical scoring Linking NO

AUTO T and T Transplants fragments into
the lead

Merging NO

LeadOpCR Looks for associated
reaction rules

Growing YES

GANDI Genetic Algorithm Linking NO

LigBuilder 2 Genetic Algorithm Linking and
Growing

YES

ADAPT Genetic Algorithm Growing NO

the causative agent of tuberculosis, has several therapeutic
interventions developed to treat the disease. However, through
their long-term use and misuse, the e�cacy of these drugs is
becoming reduced with strains currently circulating that are
mono-resistant, multidrug-resistant, extensively drug-resistant
and totally drug-resistant. Despite this little drug development
activity has been undertaken since the 1960's. However, relatively
in response to the growing drug-resistant threat many di�erent
approaches are being deployed to developing novel therapeutics,
including FBDD. An example of such an e�ort is against the meta
cleavage product hydrolase (HsaD) that is involved in cholesterol
catabolism inMtb. Initial screening was conducted on a library of
1,258 fragments using di�erential scanning �uorimetry, with hits
con�rmed by ligand-observed NMR spectroscopy and inhibition
by enzymatic assay. The three con�rmed fragment initial hits
were structurally characterized by X-ray crystallography and
fragment soaking. A small series of compounds based on these
hits were further tested for activity bothin vitro andex vivowith
promising results (Ryan et al., 2017).

Another target of Mtb where FBDD has been applied
is the pantothenate synthetase (Pts) where a similar sized
fragment library of 1,250 rule-of-three compliant fragments was
investigated. An initial screen was performed using a thermal
shift assay, followed by a secondary screen using 1-D NMR
spectroscopy with ultimate hit validation by isothermal titration
calorimetry and characterization by X-ray crystallography.Three
distinct fragment binding sites were identi�ed (Silvestre et al.,
2013). Follow-up expansion of one of the fragment sites using
a combination of fragment linking and fragment growing
generated a new series of inhibitors. Though fragment linking
seemed to be an attractive approach, the limitation in the
repertoire of linkers compromised the binding mode. Greater
success came from fragment growth using expert knowledge and
the protein target as a template (Hung et al., 2009).

Targets in other pathogenicMycobacteriumsp. have also
been subject to successful FBDD campaigns. Most notably the
recent development of inhibitors against tRNA methyltransferase
(TrmD) of M. abscessus(Mab). This multi-drug resistant
pathogen is increasingly problematic in individuals with cystic
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�brosis and other chronic lung conditions. A library of 960
fragments was screened biophysically using di�erential scanning
�uorimetry in a similar fashion used for HsaD, with 53 hits
taken to validation and structural characterization usingX-ray
crystallography (no NMR based validation was undertaken).
Only 27 fragments could be validated all of which bound within
the substrate binding pocket. A strategy of fragment-merging
centered around the overlap of a 4-methoxyphenyl ring system
with the indole ring system of two fragments that spanned
the adenine and ribose binding pockets. This was explored
successfully with a new combined compound providing a new
aminopyrazole-indole sca�old with both improved a�nity (Kd D
110mM, LE of 0.36) and prospects for further elaboration relative
to the parent fragments. It also exhibited inhibition activity in
vitro andex vivowith promising in vivo activity also againstM.
leprae, the causative agent of leprosy (Whitehouse et al., 2019).

These successful FBDD campaigns against a range of targets
in pathogenicMycobacteriumhave yielded promising leads with
indications of e�cacy inex vivoandin vivo demonstrating both
the power and e�cacy of the approach. The ability of these leads
to work across a range of pathogens is also highly encouraging.
However, work still needs to be done to improve these leads to
progress them into early clinical evaluations and into clinical use.

Case 2: Inhibitors of Dengue Virus
Enzymes
A 2014 paper (Coutard et al., 2014) describes the use of FBLD
in the discovery of inhibitors for an important subunit of
dengue virus (DENV) viral replication complex. In this work,
500 fragments were screened against two subunits of the viral
replication complex: NS3 helicase (Hel) and the NS5 mRNA
methyltransferase (MTase) subunits. DENV Hel, located in the
C-terminal region of the NS3 subunit of the replication complex,
is involved in viral genome replication and RNA capping. The
role of DENV NS5 MTase is related with a double methylation
(N-7 and 2'-O) during the cap formation process in �avivirus
(Dong et al., 2008).

The authors used a combination of Thermal Shift Assay
(TSA), X-ray di�raction crystallography (XRD) and enzymatic
assays in order to screen compounds against NS3 DENV Hel and
NS5 DENV MTase subunits. The TSA was used as the primary
screening technique. During the TSA screening, not surprisingly
part of the fragments—used at high concentrations and
with poorly optimized physicochemical properties—presented
solubility problems. This was the reason for the exclusion of
� 4.8% of the screened compounds during this phase. This initial
screening yielded 68 hits, from those, 7 were found bound to the
DENV MTase subunit by XRD.

Using a direct colorimetric ATPase-based assay to identify
inhibitors, from those previous 7 crystallographic hits, 5
fragments (Table 2) were classi�ed as hits with their potency
varying between 180mM and 9 mM.

In the most recent work, the fragments3and4(Figure 8) were
found bound at the DENV MTase S-Adenosyl-L-methionine
(AdoMet) binding site using XRD. A computer-aided fragment
optimization gave rise to a new series of compounds using these

TABLE 2 | Inhibition and potency data from the �nal hits (Coutard et al., 2014).

DENV 2'O-Mtase activity
inhibition (%)

DENV 2'O-MTase
activity IC 50 (mM)

81 4 3.90 � 0.16

91 11 2.83 � 0.18

95 85 0.18 � 0.01

157 9 9.39 � 0.90

217 11 3.12 � 0.27

two fragments. The urea was used as a linker to connect the
fragments. Further modi�cations yielded compounds5 and 6
(Figure 8).

During the optimization process, the authors had good
insights about the important features to the molecule binding on
this target. One of these features is the presence of phenyl rings
substituted in meta position and is crucial for favoring binding.

This work yielded two inhibitors (5 and 6) with potency
around 100mM, even though no e�ect was observed on a cell
assay. Despite this negative result, this work showed the feasibility
of the FBDD approach in getting micromolar inhibitors from
structurally simple fragments.

Case 3: MTH1 Inhibitors for Anticancer
Drug Discovery
The mutT homolog 1 (MTH1) is an enzyme involved in the
prevention of incorporation of deoxynucleoside triphosphates
(dNTPs) oxidized by reactive oxygen species (ROS), e.g.,
8-oxodGTP or 2-OH-dATP, into DNA, which prevents the killing
of the cell. MTH1 is frequently overexpressed in cancer cells and
is non-essential in normal cells, proving to be a druggable target
for cancer treatment (Smits and Gillespie, 2014; Berglund et al.,
2016).

Rudling et al. applied a combination of molecular docking,
SAR by catalog, and experimental testing for discovering and
optimizing MTH1 inhibitors (Rudling et al., 2017). Initially,
a molecular docking-based virtual screening using a crystal
structure of MTH1 was performed using 0.3 million fragments
from the ZINC fragment-like database, all commercially
available. Subsequently, for the 5,000 top-ranked fragments,
allowed the search of analogs representing superstructures of
the fragment or containing similar substructures in the ZINC
database using the chemical structures encoded as circular
�ngerprints and the Tversky similarity index (Tversky, 1977).
The criteria used to select analogs from 4.4 million commercially
available compounds in the ZINC database was the following:
(i) Tversky similarity > 0.8; (ii) up to six additional heavy
atoms (HAs) compared to the parent fragment; (iii) improved
docking score 80% lower compared to the parent fragment; (iv)
visual inspection of the binding modes. After these analyses,
a set of 22 commercially available fragments with at least �ve
analogs comprising the above-mentioned criteria were selected
for experimental evaluation. Five of these 22 fragments showing
IC50 values ranging from 5.6 to 79mM were considered hits
and were used for F2L (Table 3). The fragment7 presented an
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FIGURE 8 | Fragment optimization predecessors and products (Coutard et al., 2014; Benmansour et al., 2017).

IC50 value of 79mM and its most potent analog presented an
IC50 of 170 nM, representing a 470-fold improvement (Table 3).
Although the crystal structure of the fragment7 in complex with
MTH1 was not obtained, the crystallization of its most potent
analog and MTH1 was solved at 1.85 Å resolution, demonstrating
an RMSD of 0.6 Å between the common atoms of the fragment7
(binding mode predicted by molecular docking) and the analog
(crystal structure). Because of the closely related structures and
binding modes of fragments8 and 9, its analogs were analyzed
together, but the most potent analog presented an IC50 of only
3.5mM. The most potent analog of fragment10presented a 190-
fold increase of the activity, with an IC50of 120 nM (Table 3). The
crystallization of fragment10with MTH1 was also unsuccessful,
but the molecular docking was able to predict the binding mode,
showing an RMSD of 0.9 comparing the overlapping atoms
with the crystal of the most potent analog obtained at 1.50 Å
resolution. The analogs of the fragment11 were not available
during the study. This work demonstrated that virtual screening
and SAR by catalog can be used to rapidly identify and optimize
fragments into nanomolar inhibitors (Rudling et al., 2017).

Case 4: New Acetylcholinesterase
Inhibitors Against Alzheimer's Disease
Alzheimer's disease is a neurodegenerative disorder and
has no cure. The actual treatments are based on drugs
that leverage the transmission of electrical impulses.
Pascoini et al. (2019), computationally developed new
acetylcholinesterase (AChE) inhibitors. AChE is responsible for
decreasing levels of acetylcholine in the synaptic cleft. Their

inhibition enhances the transmission of the electric impulse
(Polinsky, 1998; Talesa, 2001).

For the in silico inhibitor development, they divided the
process into four steps. First, ade novodesign was applied
to generate an initial library of compounds. The �rst library
was then �ltered according to ADME properties at the second
step. In the third step, the �ltered library was �ltered again
using a similarity criterion. Finally, the resulting library was
used in docking studies. The best three complexes were used
for molecular dynamic studies. In this work, they used three
reference drugs for AD treatment: donepezil, galantamine,
and rivastigmine.

For the de novodesign, the LigBuilder software was used.
The CAVITY procedure was employed to detect and analyze
ligand-binding sites of the target. It classi�ed the cavities'
druggability, who would be used for docking studies. The
BUILD procedure was used in the exploring and growing/linking
modes. In the explore mode, fragments from the program's
database were added in the protein site and their interaction
was scored. Then, the fragments with the best scores were
linked. In the growing mode, seeds molecules were put at the
binding site and fragments were added to the seeds. At the
linking mode, the seed was divided into fragments and other
fragments were added to them. After the BUILD procedure,
they got a library of 2.5 million compounds. The resulting
library was �ltered according to ADME properties with the
software QUIKPROP where molecules that infringed more than
�ve properties (physicochemical properties, lipophilicity, water
solubility, pharmacokinetics models) were discarded. A library
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TABLE 3 | Experimental data for the �ve most potent MTH1 inhibitors (data taken from Rudling et al., 2017).

Fragment ID Fragment 2D structure Fragment IC 50 Most potent analog 2D
structure

Analog IC 50

7 79 mM 0.17 mM

8 24 mM 3.5 mM

9 26 mM n/a n/a

10 23 mM 0.12 mM

11 5.6 mM n/a n/a

n/a, not available.

of 6,000 compounds results from this process. After this, the
Tanimoto's coe�cient was applied to measure the similarity
among the molecules. Molecules below 0.85 were excluded and
1,500 molecules were considered for the next step. The �nal step
consisted of docking studies, carried out with the GLIDE software
and the Induced Fit Docking protocol. Afterward, they selected
the three best complexes from the docking and used them as
input structures for molecular dynamic studies. Finally, they
obtained three compounds with high stability and good binding
energies, some of them even better than the reference drugs.

CONCLUDING REMARKS

FBDD has matured to become a key strategy in modern
pharmaceutical research. With less requirement for large

chemical libraries and the possibility of using a range
of biophysical methods for screening, the easier and
scalable implementation of this strategy has facilitated its
popularization, especially among academic institutions and
smaller pharmaceutical companies.

The main reason for the success of the FBDD strategy is
because it presents a more e�cient and consistent route for
optimization of initial screening hits into lead compounds.
As reviewed here, many routes are available for expansion of
fragment hits andin silicomethods are key to support or guide
the majority of them.

A variety of in silico methods have been used in F2L
optimization in FBDD, from binding site analysis tode novo
design of new fragment-derived ligands with synthesizability-
aware methods. The case studies highlighted here clearly
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demonstrate how the di�erentin silicomethods can be used in
integrated form and combined with experimental approaches to
successfully develop higher a�nity ligands from fragments.

Advances in arti�cial intelligence methods, such as deep
learning, hold a great potential to accelerate the optimization of
fragment hits in lead compounds. Recent examples show that
these hits can be already optimized automatically taking into
consideration several parameters such as bioactivity, solubility,
synthetic feasibility, and ADMET properties.
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