Novel endochin-like quinolones exhibit potent *in vitro* activity against *Plasmodium knowlesi* but do not synergise with proguanil

Donelly A. van Schalkwyk*, Michael K. Riscoe*, Sovitj Pou, Rolf W. Winter, Aaron Nilsen, Maëlle Duffey, Robert W. Moon, Colin J. Sutherland

*Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK

**Veterans Affairs Medical Center, 3710 Southwest U.S. Veterans Hospital Road, Portland, OR 97239, USA

***Department of Molecular Microbiology and Immunology, 3181 Sam Jackson Boulevard, Portland, OR 97239, USA

****Medicines for Malaria Venture, 20 Route de Pré Bois, Geneva CH 1215, Switzerland

*****Department of Clinical Parasitology, Hospital for Tropical Diseases, Mortimer Market Centre, Capper Street, London WC1E 6JB, UK

Running title: New quinolones show cross-species antimalarial potency

#Address correspondence to Colin J. Sutherland, colin.sutherland@lshtm.ac.uk

Key words: *Plasmodium falciparum, Plasmodium knowlesi*, drug susceptibility, *in vitro*, isobolograms
Abstract

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver and blood stage parasites, making these drugs useful as both prophylaxis and treatment.

Recently, several derivatives of endochin have been optimised to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and P. vivax, their activity against the zoonotic P. knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesi in vitro, and compared this with their activity against P. falciparum tested under identical conditions. We demonstrate that ELQs are potent against P. knowlesi (EC50 values <117 nM), and equally effective against P. falciparum. We then screened select quinolones and partner drugs using a longer exposure (2.5 life cycles), and show that proguanil is 10-fold less potent against P. knowlesi when compared with P. falciparum, while the quinolones demonstrate similar susceptibility. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum. However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, combining the novel quinolone ELQ-300 with atovaquone, was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and its interaction with quinolones, and support the ongoing development of novel quinolones as potent antimalarials that target multiple species.
Introduction.

Malaria continues to exert a significant burden on humanity with around 228 million infections estimated in 2018, an increase from the 217 million infections estimated for 2014 (1). The World Health Organisation currently recommends artemisinin-based combination therapies (ACT) as the first-line treatment of uncomplicated malaria. These are composed of a potent, but short-lived artemisinin derivative combined with a long-acting partner drug (2). By using drugs in combination with different targets the intention is to delay the emergence of resistance to the individual components. However, recent evidence has emerged in the Greater Mekong subregion of resistance to both artemisinin (3, 4) and current partner drugs (5, 6). There is, therefore, an urgent need to develop new drugs and novel combination regimens before reduction in ACT efficacy occurs more widely.

Quinolones have been investigated as potential antimalarial agents since the Second World War (7). However, the only successful candidate from this class to emerge from these studies as an antimalarial has been atovaquone. Atovaquone targets the mitochondrial cytochrome bc₁ complex (8, 9) and is highly potent against Plasmodium species. Unfortunately, recrudescence after atovaquone monotherapy occurs rapidly. Atovaquone is therefore used in combination with a synergistic partner drug, proguanil (10), but even this combination is vulnerable to mutations in pf cyt b especially in areas of cycloguanil resistance (11, 12). Although the target of proguanil is not currently known, proguanil has recently been shown to increase in potency against Plasmodium falciparum after a longer in vitro exposure (13). Considering that the mitochondrial targeting atovaquone-proguanil combination differs in its mechanism of resistance to the components of current ACT, this combination has been investigated as an alternative treatment of multidrug resistant malaria infections (14), though it should be noted that the atovaquone-proguanil combinations tested performed poorly (only 90-92% effective at 42
days post-treatment) in that region of Cambodia, and are unlikely to be useful as treatment. Furthermore, drugs targeting the mitochondria kill both liver- and blood-stage malaria infections, and so can be used for both prophylaxis and treatment.

New quinolones based on endochin, a compound shown to be active at clearing avian malaria (15), have recently been synthesised and tested against malaria parasites (16-18). These endochin-like quinolones (ELQ) are equally effective in ex vivo blood stage screens against *P. falciparum* and *P. vivax* clinical field isolates, and are also effective against exoerythrocytic forms of rodent and monkey (*P. cynomolgi*) malaria (16). However, the activity of ELQs against the zoonotic *P. knowlesi*, an increasingly important cause of human malaria in Southeast Asia, is unknown. Importantly, recent articles have identified differences in in vitro (19, 20) and ex vivo (21) susceptibility between *P. knowlesi* and *P. falciparum* to established and experimental antimalarial agents. In particular, in vitro studies demonstrated that *P. knowlesi* is up to 8-fold less susceptible than *P. falciparum* to inhibitors of dihydroorotate dehydrogenase (e.g., DMS265 (20)), 6-fold less susceptible to ATP4 inhibitors (e.g., cipargamin, SJ733 (19)), around 3-fold less susceptible to cladosporin and pentamidine, and 66-fold less susceptible to the oxaborole AN13762 (19). Conversely, *P. knowlesi* was shown to be 10-fold more susceptible to dihydrofolate reductase inhibitors (e.g., pyrimethamine, cycloguanil (20)), around 4.5-fold more susceptible to ganaplacide (KAF156), and over 3-fold more susceptible to halofantrine (19). In spite of the reduced susceptibility of *P. knowlesi* compared with *P. falciparum*, many antimalarials remain potent against *P. knowlesi* in vitro (e.g., 6 nM for cipargamin), and any clinical significance of these reported species differences is yet to be established.

Here we test the in vitro activity of endochin and an ELQ series for activity against *P. knowlesi*, and compare this to the activity of a quinbolone-sensitive, reference *P. falciparum* line (3D7) under identical experimental conditions, exposed for a single asexual erythrocytic parasite life cycle (i.e., 27 h for our *P. knowlesi* A1-H.1 clone (22) and 48 h for
We then assess the impact of longer exposures to proguanil and select ELQs on the susceptibility of our *P. knowlesi* and *P. falciparum* lines. Finally, we use isobologram analysis *in vitro* to test for evidence of synergy between proguanil, or atovaquone, and ELQ compounds against both species.
Results and Discussion.

Endochin and six endochin-like quinolones (ELQ) were screened under identical in vitro conditions across one complete asexual erythrocytic life cycle against both the P. knowlesi A1-H.1 and the P. falciparum 3D7 lines (Table 1). All but one (ELQ-271) of the ELQ compounds were potent against the P. knowlesi line with EC₅₀ values under 100 nM. The potency of endochin and the ELQ compounds was similar against both P. knowlesi and P. falciparum, with a less than two-fold difference observed between species. With the exception of ELQ-300 all the quinolones screened were more active against P. falciparum (Table 1), though for endochin and ELQ-331 the differences were not significant (p = 0.6233 and p = 0.5014, respectively; Table 1). ELQ-400 and ELQ-480 are both active at under 10 nM making them more potent than chloroquine but not as active as dihydroartemisinin (Table 1).

P. falciparum exhibits significantly enhanced susceptibility to proguanil when incubated for more than one life cycle (13). Therefore, in preparation for in vitro combination analysis (isobolograms), we screened ELQ-300 and ELQ-400 as well as proguanil and atovaquone using a longer incubation time (2.5 life cycles). We had previously found no activity for proguanil at 10 µM (the highest concentration we tested) after a single life cycle exposure against either P. knowlesi or P. falciparum (data not shown). However, with a longer exposure (2.5 cycles), we observed an EC₅₀ value for proguanil of 2461 ± 236 nM for P. knowlesi, over ten-fold higher than the EC₅₀ value that we observed for P. falciparum 3D7 clone (228 ± 29 nM; Table 2). We expect natural variability within our EC₅₀ values as our assays are run using asynchronous parasite populations, and because the parasites have different life cycle lengths, meaning drugs are exposed longer to P. falciparum per life cycle than for P. knowlesi. Hence, we only consider a greater than three-fold change in EC₅₀ between species as a potentially important species difference (19).
Atovaquone, ELQ-300, and ELQ-400 were all more potent after the longer exposure. Atovaquone potency increased around three-fold from 2.5 nM (20) to 0.7 nM (Table 2), and was not significantly different between species. ELQ-300 and ELQ-400 were also more potent after longer in vitro exposures (Tables 1 and 2). Both compounds were now more active against *P. knowlesi* than *P. falciparum* (*p < 0.0072*), though the fold difference between species was small (<3-fold).

Based on these data, combination studies were then designed to explore the *in vitro* interactions between the compounds. These experiments were also run over multiple life cycles to take into account the increased potency of proguanil after longer exposures (13). As has been shown previously (10, 13, 23), atovaquone is synergistic in combination with proguanil against *P. falciparum* (Fig. 1A, Table 3). The investigational quinolones ELQ-300 and ELQ-400 were also synergistic when combined with proguanil against our *P. falciparum* line (Fig. 1B, 1C), confirming previous observations for ELQ-300 (16).

Surprisingly, neither atovaquone, nor the ELQ compounds demonstrated a synergistic interaction in combination with proguanil when tested against *P. knowlesi*. Instead, all interactions were additive/indifferent (Fig. 1D-F, Table 3). Without knowing the target of proguanil or understanding its mechanism of action, it is not possible to speculate on the reason for this species difference. Clearly, the ten-fold lower proguanil activity against *P. knowlesi* (not observed with quinolone activity) coupled with the lack of synergism with quinolones suggest a species difference in the inhibitory activity of this biguanide.

An alternative drug combination strategy for quinolones is suggested by recent data indicating that quinolones can inhibit the cytochrome *bc*₁ complex (*cyt bc*₁) at either the quinol oxidase (*Q*₀) or quinone reductase (*Q*ᵢ) site (24). Atovaquone and ELQ-400 are *Q*_₀ site inhibitors (8, 24), while ELQ-300 was shown to target the *Q*ᵢ site (24). Isobolograms combining a *Q*_₀ site inhibitor (atovaquone) with a *Q*ᵢ site inhibitor (ELQ-300) have previously demonstrated a moderately synergistic interaction against *P. falciparum* strain.
D6 in vitro (25). We confirm this moderately synergistic interaction between atovaquone and ELQ-300 against our *P. falciparum* 3D7 line (Fig. 2A) and show also a moderately synergistic interaction with this combination against our *P. knowlesi* line (Fig. 2C and Table 3). Combinations of atovaquone with ELQ-400, both inhibitors of the Qo site, were additive/indifferent against *P. falciparum* (Fig. 2B) and *P. knowlesi* (Fig. 2D and Table 3). Therefore, a more appropriate combination partner for the Qo site inhibitor, atovaquone, should perhaps be a Qi site inhibitor (such as ELQ-300) which (a) is considerably more potent than proguanil, and (b) demonstrates moderate synergism in combination with atovaquone against both *P. falciparum* and *P. knowlesi* species in vitro, unlike combinations with proguanil.

In vivo, proguanil is metabolized to cycloguanil by the liver cytochrome P450 (CYP2C19) (26, 27). Cycloguanil is an inhibitor of the enzyme dihydrofolate reductase (DHFR), a component of the folate pathway in malaria parasites. Thus, the drug combination atovaquone-proguanil actually serves as a triple drug therapy of atovaquone (cytochrome bc1 inhibitor), proguanil (target unknown), and its metabolite cycloguanil (DHFR inhibitor). Cycloguanil, like atovaquone, has been shown to be highly potent against *P. knowlesi* in vitro (20). Therefore, even though antagonistic interactions between atovaquone and cycloguanil have been described in vitro (13), the low nanomolar potency of both cycloguanil and atovaquone (20) should still support this combination for *P. knowlesi* infections, despite the reduced activity of proguanil, and its lack of synergy reported here.

In light of the above-mentioned data, the recent strategy proposed to block the cyclization of proguanil, thereby reducing its metabolism to cycloguanil, ought to be approached with caution (13). In the absence of cycloguanil, and with the reduced activity of proguanil, atovaquone may be exposed as a monotherapy against *P. knowlesi* infections. It will therefore be critical to screen the cyclization blocked tert-butyl proguanil (13) for its activity against *P. knowlesi*, and to test it in combination studies with quinolones in this species.
To our knowledge this is the first study to demonstrate differences in drug interactions between two human malaria species. We have reported previously that compounds in human trials for malaria (e.g., DSM 265, cipargamin) exhibit reduced \textit{in vitro} susceptibility to \textit{P. knowlesi} (19, 20), similar to our observations here for proguanil. Considering all new malaria treatments will likely comprise of combinations of drugs, it will be critical to ensure that new combinations involving compounds with reduced susceptibility against \textit{P. knowlesi}, interact similarly across species.

Resistance to 10 nM atovaquone (5 × EC$_{50}$) is induced readily \textit{in vitro} after exposure to only 105 parasites of the \textit{P. falciparum} clone W2, or exposure to 106 parasites of the 3D7 or FCR3 clones (28). Furthermore, exposure of 108 parasites of the \textit{P. falciparum} Dd2 clone to 10 nM atovaquone (10 × EC$_{50}$) also selected resistant parasites, but no resistant parasites emerged to 150 nM ELQ-300 (also 10 × EC$_{50}$) at the same inoculum (16). This suggests that the new endochin-like quinolones demonstrate a lower propensity to induce resistance in that parasite clone (16). Similar tests should now be performed on the \textit{P. knowlesi} A1-H.1 line and other newly adapted \textit{P. knowlesi} lines to explore the propensity of this species to develop resistance to the various quinolones.

In conclusion, novel endochin-like quinolones exhibit strong antimalarial activity (EC$_{50}$ values <117 nM) against \textit{P. knowlesi} \textit{in vitro}, and are equipotent against \textit{P. falciparum}. We demonstrate for the first time that quinolone combinations with proguanil lack synergy against \textit{P. knowlesi} \textit{in vitro}, suggesting distinct mechanisms of action in the malaria parasites. In contrast, combinations of inhibitors targeting the cytochrome \textit{bc$_1$} complex at the Q$_o$ site (e.g., atovaquone) with those targeting the Q$_i$ site (e.g., ELQ-300) show moderate synergism against both species.
Materials and Methods.

Drugs and experimental compounds. Proguanil hydrochloride (product no. G7048) was purchased from Sigma-Aldrich UK. Atovaquone was obtained from the Medicines for Malaria Venture. Endochin-like quinolones were synthesised as described below.

Chemical Synthesis. The chemical synthesis of endochin was performed as originally described by Andersag and others in 1948 (29), while methods for ELQ-271 and ELQ-300 were described by Nilsen *et al.* in 2014 (17). Methods for preparing ELQ-316 were described by Doggett *et al.* in 2012 (30). Preparation of ELQ-331 was described previously by Frueh *et al.* (31). Chemical synthesis of ELQ-400 proceeded by the methods of Stickles and coworkers in 2015 (32). Synthesis and characterization of ELQ-480 are described below.

5-fluoro-7-methoxy-2-methyl-3-(4-(4-(trifluoromethoxy)phenoxy)phenyl)quinolin-4(1H)-one (ELQ-480): ELQ-480 was synthesized according to the methods described by Nilsen *et al.* in 2014 (17). Purity of ELQ-480 was assessed as >95% by proton NMR. 1H-NMR spectra were obtained using a Bruker AMX-400 NMR spectrometer operating at 400.14 MHz in DMSO D$_6$. The NMR raw data were analyzed using the iNMR Spectrum Analyst software. Proton chemical shifts were reported in parts per million units (ppm), (δ) relative to the residual proton at 2.54 ppm in deuterated DMSO D$_6$. J coupling constants values are in Hertz (Hz). Coupling constants for 19F NMR operating at 376 MHz were also obtained for compounds containing fluorine elements for additional validation of structure.

NMR spectrum of ELQ-480: 1H-NMR (400 MHz; DMSO-d$_6$): δ 11.55 (s, 1H), 7.42 (d, $J = 8.1$ Hz, 2H), 7.25 (d, $J = 8.3$ Hz, 2H), 7.15 (d, $J = 8.7$ Hz, 2H), 7.06 (d, $J = 8.2$ Hz, 2H), 6.76 (s, 1H), 6.63 (d, $J = 13.3$ Hz, 1H), 3.85 (s, 3H), 2.18 (s, 3H).

Parasite Culture. *P. knowlesi* parasites (clone A1-H.1) and *P. falciparum* parasites (clone 3D7) were grown in RPMI 1640 supplemented with 25 mM HEPES, 25 mM Na$_2$HCO$_3$, 10 mM D-glucose, 2 mM L-glutamine, 50 mg/L hypoxanthine, 25 mg/L gentamicin sulphate, 5
g/L Albumax II and 10% (v/v) donor horse serum (Pan Biotech, P30-0702). All parasites were grown in human A+ red blood cells (National Health Blood and Transplant, UK). Parasites were incubated in sealed flasks at 37°C under a culture gas mixture of 96% N₂, 3% CO₂ and 1% O₂.

Growth inhibition assays and isobologram testing. Drug susceptibility was assessed precisely as described previously with parasites exposed to the drugs for one complete life cycle (27 h for *P. knowlesi* and 48 h for *P. falciparum*) or 2.5 life cycles (68 h for *P. knowlesi* and 120 h for *P. falciparum*) (19). Drug combination studies were performed as described previously (19, 23), with the exception that parasites were exposed to drugs for 2.5 cycles instead of one life cycle, and the starting parasitaemia was reduced to 0.5% while maintaining the haematocrit at 1%. The Fractional Inhibitory Concentrations (FICs) were calculated as described previously (33). The SYBR green I method was used to determine parasite viability (19, 34).
Competing interests

MD is employed by the Medicines for Malaria Venture, who partly funded the study.

All other authors: no competing interests to declare.

Author contributions

CJS, MKR, RM, DAvS conceived and designed the study. DAvS performed the parasite susceptibility screens. SP, RWW, and AN synthesized the ELQs. DAvS and CJS analysed the data and wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

This project was funded by the Medicines for Malaria Venture, grant MMV RD/15/0017 awarded to DAvS. RWM is supported by the UK Medical Research Council (MRC) Career Development Award (MR/M021157/1) jointly funded by the UK MRC and the UK Department for International Development. CJS is supported by Public Health England. MKR’s laboratory receives support from the US Department of Veterans Affairs (VA) Award # i01 BX003312. MKR is a recipient of a VA Research Career Scientist Award (14S-RCS001). Research reported in this publication was also supported by the US NIH under award numbers R01AI100569 (MKR) and R01AI141412 (MKR) and by the US Department of Defense PRMRP program (PR#181134).
References

Preclinical Drug Candidate ELQ-300 for Prophylaxis and Treatment of Malaria. ACS Infect Dis 3:728-735.

35
Table 1: Comparison of the *in vitro* susceptibility of *Plasmodium knowlesi* (clone A1-H.1) and *Plasmodium falciparum* (clone 3D7) exposed to novel endochin-like quinolones for one complete life cycle.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC(_{50}) values (nM)</th>
<th>Fold Difference (Pk/Pf)</th>
<th>P value(^w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. knowlesi A1-H.1</td>
<td>P. falciparum 3D7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 h exposure</td>
<td>48 h exposure</td>
<td></td>
</tr>
<tr>
<td>Endochin</td>
<td>18.9 ± 1.2</td>
<td>18.1 ± 0.5</td>
<td>1.04</td>
</tr>
<tr>
<td>ELQ-271</td>
<td>117 ± 12</td>
<td>64.5 ± 3.1</td>
<td>1.81</td>
</tr>
<tr>
<td>ELQ-300</td>
<td>15.4 ± 0.9</td>
<td>23.1 ± 1.2</td>
<td>0.67</td>
</tr>
<tr>
<td>ELQ-316</td>
<td>47.1 ± 2.6</td>
<td>33.5 ± 2.3</td>
<td>1.41</td>
</tr>
<tr>
<td>ELQ-331</td>
<td>49.0 ± 6.2</td>
<td>45.4 ± 1.6</td>
<td>1.08</td>
</tr>
<tr>
<td>ELQ-400</td>
<td>6.80 ± 0.26</td>
<td>4.95 ± 0.26</td>
<td>1.37</td>
</tr>
<tr>
<td>ELQ-480</td>
<td>7.06 ± 0.32</td>
<td>5.81 ± 0.26</td>
<td>1.22</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>33.1 ± 2.0</td>
<td>17.7 ± 1.3</td>
<td>1.87</td>
</tr>
<tr>
<td>Dihydroartemisinin</td>
<td>1.52 ± 0.07</td>
<td>3.64 ± 0.42</td>
<td>0.42</td>
</tr>
</tbody>
</table>

EC\(_{50}\) data are presented as mean ± SEM from at least 4 experiments each performed in duplicate. \(^w\)P values are calculated by comparing EC\(_{50}\) values for *P. knowlesi* versus *P. falciparum* using Student’s two-tailed paired t-test.
Table 2: Comparison of the in vitro susceptibility of *Plasmodium knowlesi* (clone A1-H.1) and *Plasmodium falciparum* (clone 3D7) exposed to proguanil and select quinolones for two and a half life cycles.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC<sub>50</sub> values (nM)</th>
<th>Fold</th>
<th>Difference</th>
<th>P value<sup>Ψ</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. knowlesi A1-H.1 68 h exposure</td>
<td>P. falciparum 3D7 120 h exposure</td>
<td>(Pk/Pf)</td>
<td></td>
</tr>
<tr>
<td>Proguanil</td>
<td>2461 ± 236</td>
<td>228 ± 29</td>
<td>10.79</td>
<td>0.0007</td>
</tr>
<tr>
<td>Atovaquone</td>
<td>0.71 ± 0.02</td>
<td>0.74 ± 0.09</td>
<td>0.99</td>
<td>0.1211</td>
</tr>
<tr>
<td>ELQ-300</td>
<td>5.31 ± 0.3</td>
<td>15.29 ± 1.2</td>
<td>0.35</td>
<td>0.0011</td>
</tr>
<tr>
<td>ELQ-400</td>
<td>1.32 ± 0.2</td>
<td>2.66 ± 0.3</td>
<td>0.50</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

EC₅₀ data are presented as mean ± SEM from at least 3 experiments each performed in duplicate. ^Ψ P values are calculated by comparing EC₅₀ values for *P. knowlesi* versus *P. falciparum* using Student’s two-tailed unpaired t-test.
Table 3: Mean fractional inhibitory concentrations (FICs) for the drug combinations tested in this study (Fig. 1 and Fig. 2).

<table>
<thead>
<tr>
<th>Combination tested</th>
<th>Mean FIC<sup>a</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. knowlesi A1-H.1</td>
<td>P. falciparum 3D7</td>
<td></td>
</tr>
<tr>
<td>Proguanil: Atovaquone</td>
<td>0.986 (0.949-1.024) ADD<sup>b</sup></td>
<td>0.545 (0.503-0.586) SYN</td>
<td></td>
</tr>
<tr>
<td>Proguanil: ELQ-300</td>
<td>1.077 (0.970-1.184) ADD</td>
<td>0.660 (0.619-0.700) SYN</td>
<td></td>
</tr>
<tr>
<td>Proguanil: ELQ-400</td>
<td>0.995 (0.858-1.132) ADD</td>
<td>0.631 (0.571-0.690) SYN</td>
<td></td>
</tr>
<tr>
<td>Atovaquone: ELQ-300</td>
<td>0.867 (0.814-0.920) M-SYN</td>
<td>0.816 (0.785-0.848) M-SYN</td>
<td></td>
</tr>
<tr>
<td>Atovaquone: ELQ-400</td>
<td>0.980 (0.961-0.998) ADD</td>
<td>1.016 (0.980-1.052) ADD</td>
<td></td>
</tr>
</tbody>
</table>

^a The mean FIC is calculated from all FICs within each experiment, and for all experiments performed. The mean is reported, with 95% confidence intervals in parentheses.

^b SYN = synergistic interaction, M-SYN = moderately synergistic interaction, and ADD = additive / indifferent interaction.
Figure 1: Comparison of the *in vitro* interaction of proguanil with select quinolones against *P. falciparum* (clone 3D7; Panels A-C) and *P. knowlesi* (clone A1-H.1; Panels D-F). Fractional Inhibitory Concentration (FIC) data are averaged from at least three independent experiments, each run in triplicate. Error bars show standard error of the mean (SEM). FIC values < 1.0 are considered synergistic, while FIC values = 1 are considered additive/indifferent.

Figure 2: Comparison of the *in vitro* interaction of atovaquone with two endochin like quinolones against *P. falciparum* (clone 3D7; Panels A-B) and *P. knowlesi* (clone A1-H.1; Panels C-D). Fractional Inhibitory Concentration (FIC) data are averaged from three independent experiments, each run in triplicate. Error bars show standard error of the mean (SEM). FIC values < 1.0 are considered synergistic, while FIC values = 1 are considered additive/indifferent.
Figure 1.

Plasmodium falciparum

A

B

C

Plasmodium knowlesi

D

E

F
Figure 2.

Plasmodium falciparum

Plasmodium knowlesi